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We investigate the spin-orbit induced spin-interference pattern of ballistic electrons traveling along any
regular polygon. It is found that the spin interference depends strongly on the Rashba and Dresselhaus spin-
orbit constants as well as on the sidelength and alignment of the polygon. We derive the analytical formulas for
the limiting cases of either zero Dresselhaus or zero Rashba spin-orbit coupling, including the result obtained
for a circle. We calculate the nonzero Dresselhaus and Rashba case numerically for the square, triangle,
hexagon, and circle and discuss the observability of the spin interference which can potentially be used to

measure the Rashba and Dresselhaus coefficients.
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I. INTRODUCTION

In recent years, much research has been devoted to study
the means to manipulate the spin of electrons. A prime can-
didate for spin manipulation is the Rashba spin-orbit
interaction,'-? which arises in certain semiconductor quantum
wells such as InGaAs heterostructures as a result of struc-
tural inversion asymmetry. The strength of the spin-orbit in-
teraction depends on the design of the heterostructures® and
can be dynamically altered by applying a gate voltage,*
hence, offering a way to manipulate the spin in a controlled
fashion.

Another spin-orbit interaction present in for instance
GaAs is the Dresselhaus spin-orbit interaction® which stems
from the absence of bulk inversion symmetry. Recently® it
has been shown for bulk GaAs structures that induced uni-
form strain affects the Dresselhaus spin splitting, hence, giv-
ing another way to engineer spin manipulation.

In this paper, which is a justification and generalization of
our recently introduced proposal,” we will further develop
our idea to study spin manipulation by means of the Rashba
and Dresselhaus interaction via spin-interference effects on
the conductance. We will treat the Rashba and Dresselhaus
spin splitting on an equal footing and we will derive the
interference pattern resulting from their combined effect on
the spin of the electron.

For ring structures the interference effect due to spin-orbit
interaction has been well investigated®'?> and for square
loops it has recently been shown'? that interference due to
Rashba spin-orbit coupling can lead to electron localization.
We will discuss the interference pattern due to the Rashba
and Dresselhaus spin-orbit interaction of electrons traveling
along polygons. In this way we are able to propose a scheme
how to experimentally obtain the Rashba and Dresselhaus
parameters from the spin interference. The electrons will be
treated as ballistic wave packets with a spin traveling both
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clockwise and counter-clockwise along the sides of a regular
polygon which is positioned in the X-y plane, the two-
dimensional electron gas (2DEG) of a semiconductor hetero-
structure. Since the spin-orbit interaction depends on the
travel direction, the spins of the electrons will rotate along
different directions for each side of the polygon with a pre-
cession angle that depends both on the sidelength as well as
on the strength of the Rashba and Dresselhaus spin splitting.
For certain precession angles the counter-clockwise and
clockwise spin waves interfere completely destructive or
constructive after a full rotation, which corresponds, respec-
tively, to a large and small conductivity. We include an
Aharonov-Bohm (AB) phase difference between the counter-
clockwise and clockwise spin waves and derive that for an
unpolarized beam the spin interference affects the amplitude
of the AB oscillation. The procedure we use to calculate the
spin interference transforms the spin by a series of quantum-
mechanical rotations corresponding to the various sides of
the polygon.

II. INTERFERENCE INTENSITY

Consider the n-sided regular polygon of Fig. 1 which the
electron traverses both clockwise and counter-clockwise si-
multaneously. Let us concentrate first on the counter-
clockwise traveling part. The spin-orbit interaction manifests
itself as an effective magnetic field about which the spin
precesses. This effective magnetic field is constant along a
side but differs for different sides. We assume for the mo-
ment that the electron will start at the beginning of the &
=0 side indicated by the O in Fig. 1 which we will call the
origin. We will denote the quantum mechanical rotation of
the spin along a side k with R; and the precession angle (of
which R, is a function) with s. Suppose that the initial spin
polarization direction is along the z axis. We thus have a J?

©2006 The American Physical Society
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FIG. 1. Polygon with n vertices. The effective magnetic field
direction changes as a function of the side k.

and J, eigenstate %,m}E lm). The wave function after trav-
eling along the side k then reads

RJm)=2, D7 (R)|m"), (1)

m

where Drln/,zm(Rk) is the rotation matrix'# corresponding to the

rotation operator R;. Using the group multiplication law for
the rotation matrices repeatedly, we find for the spin wave
function after completing the polygon counter-clockwise

Almy= 2D (A)|m"), )

m

where the rotation A is given by

A= Rn—l T RO = e—n{g.]/ﬁ. (3)

The rotation A is characterized by the rotation direction unit

vector % and angle n{ which we will calculate analytically
later for some limiting cases. The clockwise going spin wave
function reads

Al lmy=2 D2 (AN)m'y= 2 D> (A)m'),  (4)

m

where the last step follows from the unitarity of the Wigner
D functions and * denotes the complex conjugate. The total
final state becomes

1 1
) = —=Alm) + —=A""|m), (5)
V2 V2

yielding for the interference intensity in the origin
[HO) = 1+ Re[ D, (4%)]. (6)

We now generalize by starting with a spin polarized in an
arbitrary direction, which we, however, can decompose into
a linear combination of spin-up and spin-down along the
original z axis

| 7 m") = al|t)+b]]). ()

Furthermore, we include the effect of a magnetic field caus-
ing an Aharonov-Bohm phase difference & between the
counter-clockwise and clockwise traveling wave (we ignore
the effect of the magnetic field on the spin). We find for the
total final state
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|¢>=ei5LrA| /") + %A_1| S m"), (8)
V2 V2
and for the interference intensity
|¢(0)|2 = |a|2{1 + Re[eiaD(lﬁz)(l/z)(Az)]}
+ |b|2{1 + Re[eiéDl-/(zl/z)—(1/2)(A2)]}
+2 Re{a'b[e DL 1) 12)(A?) + €°D{{7)_10)(AD T}

)

In the following we will frequently make use of Euler pa-
rameters to express rotations, for a discussion of Euler pa-
rameters see, for instance, Ref. 15. By expressing the rota-
tion matrices in terms of Euler parameters,?” the interference
intensity reads

|(0)]> =1 + ¢y cos 5+ (|al* = |b|*)es sin &
+4[Re(a"b)e; + Im(a’b)e, |sin 6. (10)

If we average over the spin polarization the intensity reduces
to

|(0)]> = 1 + eg(A%)cos 6. (1)

In the following section we will discuss the various contri-
butions to the rotation A% and seek a closed expression for it.

III. ROTATION

The important spin-orbit contributions to the Hamiltonian
are the Rashba and linear Dresselhaus terms, for a [001]
2DEG given by, respectively,

HR = aR('Qky _j)kx) 5

Hpy = ap (= Xk, +Jk,). (12)

Their effect on the spin can be described as a rotation about
the sum of the effective magnetic fields of the individual
terms, the (dimensionless) direction of which is given by the
vector

sin 8 —cos B
B=sg| —cos B [+sp| sinB |, (13)
0 0

which follows from Eq. (12) by expressing the wave vector
in the angle B with the x axis. The parameter s;,i=R, D1 is
the angle through which the spin would rotate about the ef-
fective magnetic field direction B; in the absence of the other.
Hence, s; determines the relative weight of that particular
term in the sum. The precession angle about the total effec-
tive magnetic field is the modulus of the vector Eq. (13)

s(B) =|B]. (14)

The Euler parameters then read

s(B)

€y =Cos T
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e =B sin @ (15)

For a polygon, the angle 3 assumes only the discrete values
Bi=2mk/n where n is the number of vertices of the polygon
and k ranges from O to n—1. Notice that we restrict for the
moment one edge of the polygon to be positioned along the
x axis (as in Fig. 1), a condition on which we will comment
extensively later on. In the expectation that rotations along
successive polygon edges will partially cancel each other we
decompose the rotation along a side into Euler angles
(¢.0,9): R=R (©)R,(O)R (). (We use the so-called zyz
convention.) We find for the Euler angles

0=sign(B)s(By),
P=- w?

Sg sin B — sp; cos By
— Sk COS By + Sp; sin B

where we have included the overall sign of B in the Euler
angle @ since it is divided out in the expression for the other
Euler angles. The Euler angles become particularly simple
for sp ==xsg for then ¢Yy=—-@=m/4, 37w/4, O=\2sy
(sin B ¥ cos By), respectively, and the total rotation Eq. (3)
becomes??

tan = (16)

(3)m 3)m

n-1
A= RZ<— —)Ry[ \ESRE (sin B, F cos Bk)]RZ<—)
4 ’ k=0

4
=1. (17)

Hence, we always have a maximum for sp;=+sg.

A. CUD1=0 or aR=0

Consider now the limit ap;=0. We find for the Euler
angles

(@’07¢)=(ﬁkvs’_ﬂk)7 (18)

where we have written s for s;. The rotation R, we may then
write as

Ri=R(BIR()R.(= By). (19)

The product of two adjacent rotations in Eq. (3) takes the
form

Ry iRy = Rz(:BkH)Ry(s)Rz(_ ,31)Ry(S)Rz(— ,Bk)~ (20)
The total rotation Eq. (3) then simplifies to

"Ro= Rz(IBn)[Rz(_ ,31)Ry(s)]n == Rg(nf) >
(21)

A=R, |-

where we introduced a new rotation

R{) =R.(= BIR(s). (22)

The interpretation of the new rotation Eq. (22) is straightfor-
ward: first a rotation about y and then, since the magnetic
field rotates counter-clockwise, the spin vector rotates clock-
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wise about z. In terms of Euler parameters the rotation Eq.
(22) reads

€= Ccos B cos 2o cos g, (23a)
2 2 2

N T Y 4
e;=sin — sin — =&, sin =,

23b
2 2 2 (23b)
S ~
e, =C0s — sin 5= &, sin g, (23¢)
. ,31 s
e3=—sin ? cos 5 = ¢, sin 5, (23d)
yielding for the rotation direction
. B .S
sin — sin
2 2
A 1 s
&= cos B sin— |. (24)
\/ 5 Bl ) S 2 2
1—cos” — cos” —
2 2 . B s
—sin — cos =
2 2

The Euler parameters of the square of the total rotation Eq.
(3) (i.e., A?) are

eg=cosnd,

e=&sinnl. (25)

From Eq. (11) we can directly read off the condition for a
maximum, respectively, a minimum in the interference inten-
sity in terms of the Euler parameters

ep=1, (26a)

(26b)

Equation (26a), respectively, (26b) together with Eq. (25)
specifies the angles ¢ for which we have a maximum, respec-
tively a minimum. Combining Eq. (26a) with Eq. (23a) we
find a maximum intensity if

eO=—1.

2mir

cos — +1
n n
coss=———"7-1, me{l’i]‘ (27)

a
COSz_
n

From Eq. (26b) together with Eq. (23a) we find a minimum
intensity if

Cm+ 1)
cos — +1
n n—1
-1, me|l,—|. (28)
5T 2
cos”—
n

COS § =

The restrictions for m follow from cos s e[-1,1].
From Eq. (23a) we see that if (and only if) s — s+247, then
{— {+2m. The rotation A? is characterized by n2{ which
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transforms then as n2{—n2{+n4m=n2{. Thus A? is peri-
odic in s with period 27, ergo is the interference intensity.
That is the reason why we could rewrite the conditions to get
extrema for cos s/2 into conditions for cos s without losing
any information.

Apart from the round trip interference which happens at
the entrance lead of the polygon we could also imagine a
lead halfway of the polygon causing interference in the for-
ward direction. It can be readily observed that the forward
interference intensity is given by the same expression Eq.
(11) as the backward interference, except for the substitution
A?—A. The intensity halfway attains maxima and minima,
respectively, for

2m+1)m T s n
cos—————=cos—cos—, me |0,—|, (29a)
n n 2 4
2mir T S n
cos =cos—cos—, me|l,—|. (29b)
n n 2 2

Notice that for n odd we cannot rewrite the condition for
cos s/2 in a condition for cos s since the period in s is 4 for
n odd.

If the starting point of the spin wave function is not the
origin but, say, p radians removed from the origin O (on the
k=0 side), the total rotation becomes

A" =R(p)AR]'(p), (30)

which is merely a similarity transformation and transforms
the spin to a different basis. Since we average over the spin
a similarity transformation does not change the result for the
intensity. If the polygon has not one side aligned along the %
direction but tilted at some angle y then we have the substi-
tution B;— B+ x. Again, the total rotation will be changed
by a similarity transformation

A" =R.(YAR.' (y), (31)

unaltering the results for the intensity. Things change, how-
ever, if both the Rashba and Dresselhaus interaction play a
role, as shown in Sec. III B since then adjacent rotations do
not cancel each other neatly.

The Rashba B field becomes the linear Dresselhaus B field
if we make the substitution 8, — B;— /2. The total rotation
Eq. (3) once again changes by a similarity transformation

A" =R.(- m2)AR;' (- m/2). (32)

Hence, the derived results hold as well in the limit az=0,
ap * 0

We will now rewrite Eq. (11) in terms of physical vari-
ables. According to Ref. 16 the spin precession angle s in a
one-dimensional ballistic channel with Rashba-spin-orbit
(SO) coupling is given by

2apm”
hZ

s= X L, (33)
with aj as the Rashba coefficient, m” as the effective elec-
tron mass, and L as the sidelength of the polygon. Using Eq.
(23a) to express £ in s we find for the averaged interference
intensity Eq. (11)

PHYSICAL REVIEW B 73, 235315 (2006)

2apm” 1
|4(0)]> = 1 + cosy 2n arccos| cos T eos| 2221 ) | teos &,
2

n #?

(34)

where we substituted Eq. (33) for the precession angle s. An
interesting limit is to let the number of vertices n go to in-
finity and at the same rate reduce the sidelength L, thereby
obtaining a circle. From Fig. 1 we derive the relation

T L

sin —=—, (35)

n 2R
with R the circumradius. We can express # in terms of L by
using Eq. (35), and taking the limit L—0 we find for the
intensity

2apm”\?
|¢’(0)|2|Circle-roundtrip: 1+ COS|:27T 1+ ( ;2 R) :|COS 0.

(36)

The intensity halfway is obtained from Egs. (34) and (36) by
dividing the argument of the cosine by 2 and by changing the

sign in front of the cosine because of the minus sign in Eq.
(21)

2apm” \?
|(//(0)|2|circle-halfway =1- COS|:7T I+ ( 72 R) :|COS 0.

(37)

Previously in Ref. 12 the interference pattern for ring struc-
tures due to the Rashba effect was derived by calculating the
eigenvalues in the ring for clockwise and counter-clockwise
traveling electrons. A form similar to that of Eq. (37) was
found except for missing the square root. In a subsequent
work!” it was shown that the Hamiltonian used in Ref. 12
was incomplete and by using the full Hamiltonian the ex-
pression Eq. (37) was derived. Furthermore, in Ref. 17 it was
argued that the expression in Ref. 12 corresponds to the adia-
batic limit of large Rashba effect, i.e., 2aRm*R/ fi?>1, in
which the spin follows the effective magnetic field giving
rise to a Rashba phase difference between clockwise and
counter-clockwise traveling spins. The square-root form then
arises because of an out-of-plane component of the spin with
respect to the effective magnetic field shown in Ref. 17 to
yield an additional, Aharonov-Anandan'® phase difference
between the oppositely traveling spins. With our approach
we have calculated analytically the geometric phase accumu-
lation for any polygon for the Rashba (or the Dresselhaus)
effect, both for round trip and halfway interference, and, as
will be shown next, the interplay between Rashba and
Dresselhaus effect gives an even much richer phase accumu-
lation behavior.

B. p, (a1 #0

For general aj, ap; the above analysis does not lead to a
closed expression for the total rotation. The general case can,
however, be easily calculated numerically by multiplying ro-
tation matrices and plugging the result into Eq. (11). The
result obtained for the interference intensity in the origin for
the square is shown in Fig. 2.
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interference intensity in origin

FIG. 2. (Color online) Interference intensity in the origin for the
square as a function of the Rashba precession angle sp and the
linear Dresselhaus precession angle sp; in units of 77. From bottom
to top, the square makes an angle 0,7/20,7/10,37/20,7/5,7/4
with the X axis. The interval between the contour lines, drawn in red
(gray), is 0.25.

Figure 2 shows the interference pattern (with white and
black denoting respectively maximum and minimum inten-
sity) for different alignments of the square in the xy plane
from 0 to 7r/4 angle with the ¥ axis. The pattern is symmet-
ric with respect to the offset angle 7/4 because of the sym-
metry between the Rashba and linear Dresselhaus interaction
and the pattern repeats itself of course after offset /2. We
observe as derived in Eq. (17) the maxima lines agp==*ap,
and the symmetry between Rashba and linear Dresselhaus.
The maxima and minima along the lines s,;=0, sz # 0 and

PHYSICAL REVIEW B 73, 235315 (2006)
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0
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FIG. 3. (Color online) Interference intensity in the origin for the
square as a function of the sidelength and alignment with the X axis
for linear Dresselhaus coefficient ap;=0.7X10"'2eVm and
Rashba coefficient az=1.5X 1072 eV m for the left figure and ay
=3.0X 10712 eV m for the right figure. L=1000 nm corresponds to
sp1=0.397, s=0.847, respectively, sp=1.687 for an effective
mass m” =0.067m, with m( the bare electron mass. The interval
between the contour lines, drawn in red (gray), is 0.25.

sg=0, sp; #0 follow from Egs. (27) and (28) with n=4.
They are given by s5.,,,=0,7,27 and Smin=arccos(1
—\2),27—arccos(1-v2). As we discuss in the following
section, the strong dependence on the precession angle and
alignment can be exploited to observe the spin interference.

IV. DISCUSSION

As a first order approximation the conductance is in-
versely proportional to the interference intensity in the
origin,' hence, any alteration of the spin interference should
manifest itself as a change in the conductance. Furthermore,
as observed from Eq. (11), the spin interference affects the
amplitude of the AB oscillation which is an experimentally
measurable quantity in solid state devices.?” In the following
discussion we will therefore assume that the interference in-
tensity can measured and we will focus on the spin-
interference itself and we will stipulate how to obtain the
spin-orbit parameters from it.

From Fig. 2 it is observed that the spin interference varies
as a function of the precession angle and the alignment of the
polygon (a square in this case). The precession angle is a
function of the sidelength of the polygon as well as a func-
tion of the Rashba and Dresselhaus coefficients «;, i=R,D1,
see Eq. (33). With both the Rashba and Dresselhaus coeffi-
cients experimentally accessible parameters and the side-
length and alignment at choice, the spin interference can be
experimentally changed. In turn, the known dependence of
the spin interference on the sidelength and the alignment can
be used to find the Rashba and Dresselhaus coefficients. As
an illustration we have plotted in Fig. 3 the spin interference
of the square as a function of the sidelength and the align-
ment for realistic values for the Rashba and Dresselhaus con-
stants.

Varying the sidelength corresponds to moving along a line
through zero with slope determined by the ratio of ay and
ap in one of the figures of Fig. 2. From measurements with
different sidelength L as in Fig. 3 it is possible to draw con-
tour lines of the measured interference intensity through
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interference intensity in origin

FIG. 4. (Color online) Interference intensity in the origin for the
triangle (upper left), square (upper right), hexagon (lower left) all
aligned along the ¥ axis and the circle (lower right). The sidelengths
of the triangle and the hexagon and the radius of the circle have
been scaled according t0: 3Ljangle=6Lpexagon=2TR=4Lquare and
the units of s and sp; correspond to the rotation angle over one
sidelength of the square. The interval between the contour lines,
drawn in red (gray), is 0.25.

which the lines should pass. Multiple measurements will
single out a specific line, hence, giving the ratio of the coef-
ficients. The order of magnitude of the coefficients can be
quickly determined from the number of extrema within a
certain range of the sidelength L. To find the coefficients
individually, it will be necessary to fit the interference pattern
with our model. In that respect it is promising that for dif-
ferent values of the coefficients the spin interference displays
very distinct behavior, which is illustrated in Fig. 3 which
plots the interference pattern for two values of ay.

Until now we have constricted the discussion to square
patterns but the type of polygon can be exploited as well for
the determination of the spin-orbit parameters. In Fig. 4 we
have plotted the interference pattern for the triangle (upper
left), square (upper right), and hexagon (lower left), all
aligned along the X axis.

The spin-orbit parameters can then be determined by mea-
suring the interference intensity as a function of polygon
which, by comparison with our model, will yield the param-
eters. Especially the interference patterns for polygons with
low number of vertices are distinctive. With increasing num-
ber of vertices, the polygonal interference pattern converges
rapidly to that of a circle shown in the lower right of Fig. 4
(which is actually a 1000 sided polygon), see below.

In a real sample there might be two or more current leads
attached to the polygon giving interference effects at all of
them. However, the interference at the lead(s) different from
the one through which the electron enters will be smeared
out by placing a large number of polygons in a row since the
interference of the space part of the wave function at the
lead(s) is uncorrelated between polygons. This has been
nicely shown in Ref. 21 to be the case for the AB h/e oscil-
lations.

In general, another spin-orbit contribution to the Hamil-
tonian, the cubic Dresselhaus term given by

PHYSICAL REVIEW B 73, 235315 (2006)

Hps = apy(Rk.k; = 9kik,) (38)

can become important for certain heterostructures. This term
can be readily included numerically. We observe, however,
that the cubic Dresselhaus term vanishes identically for the
square aligned along the X direction and its effect can ac-
cordingly be minimized. Furthermore, from simulations it is
observed that, for reasonable values of a3, its effect on the
spin interference for the square aligned along the x-y direc-
tion is minimal. Notice from Fig. 2 that for these two align-
ments of the square the spin interference displays distinct
features, hence, the alignment would still count as a variable.

The question that arises is how robust the spin-
interference effect is to deviations from the exact polygon
path. If we imagine a finite channel in the shape of a polygon
in which the electron will undergo specular reflection on the
walls, then in our model the path will be a zig-zag pattern
and we might suspect that contributions to the rotation of the
zig and zag paths will cancel each other as long as they are
small. More specifically, if we choose the y axis as the di-
rection of the rotation corresponding to motion along the
polygon side and the direction of the zig and zag rotation
under an angle +p, respectively, with the y axis in the x-y
plane, then a combined zig-zag gives a rotation

R§IR§ = Rz(B)Ry(sl)Rz(_ Zﬁ)Ry(S,)Rz(B)

’ . 200 I 0
=R,(2s") - 4iex(s")es(B) 0 -1

0 _1> 20\ 2
Lo )t OLEEE®)].

+ 462(S’)€§(B)(

(39)

195 |
19
1.85

1.8

exact intensity

1.75

averaged intensity

1.7 1

1.65

FIG. 5. (Color online) The interference intensity as a function of
Rashba precession angle s averaged over more than 80 000 ballis-
tic trajectories for a square of finite width, finite opening, and varia-
tion in sidelength (between squares) is given by the red (solid) line.
For comparison the exact result is shown as well by the green
(dashed) line. The Dresselhaus precession angle for this particular
plot is sp;=—0.427 but this plot is representative of what is being
observed for other values of sp; as well.
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where s’ =\s?>+w? with s the precession angle along the ex-
act polygon side and with w the precession angle due to the
finite width. If both the deviation angle [e5(8)] and the spin-
orbit coupling [e,(s’)] are small then the correction due to
the finite width is third order. This applies also to a polygon
with a large number of vertices and the deviation from a
circular trajectory will therefore be third order, explaining
the rapid convergence of the interference pattern to that of a
circle, as discussed above.

If the spin-orbit coupling is finite then the finite width
gives a linear correction to the rotation. Also, if the spin-orbit
interaction is small and the deviation angle large, a linear
correction results. In order to determine if the spin interfer-
ence will survive for an array of squares with both finite
width and variation in sidelength a simulation has been writ-
ten. Figure 5 plots the round-trip spin interference as a func-
tion of sz averaged over more than 80 000 trajectories for a
square with finite width (aspect ratio 10%), finite opening
(aspect ratio 10%), and variation in sidelength between
squares (10%) together with the exact result.

As can be observed from Fig. 5, the averaged result given
by the red (solid) line resembles the exact trajectory given by
the green (dashed) line quite closely in the position of the
extrema and general trend in between, the difference being

PHYSICAL REVIEW B 73, 235315 (2006)

mainly the reduction in range and the (slight) shift of the
averaged curve for higher values of s;. These differences,
however, do not obscure the possibility to use the spin inter-
ference to determine the spin-orbit parameters since the shift
onsets at fairly large values of s and furthermore, it is the
general trend of the spin interference as a function of the
sidelength that is used to deduce the parameters. Therefore,
we argue that the spin interference can be used to determine
the spin-orbit parameters using nanopatterned arrays of
squares.

In summary, spin-orbit coupling in polygon structures
gives rise to spin interference with strong dependence on the
spin-orbit coupling constants and sidelength and alignment
of the polygon. The dependence on the sidelength, align-
ment, and polygon type can be exploited to extract the spin-
orbit parameters from the spin-interference pattern which is
observable for instance from its effect on the amplitude of
the Aharonov-Bohm oscillation.
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