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Abstract: Rhodium(I)-catalyzed 1,4-addition of arylboronic acids to α,β-unsaturated carbonyl 

compounds was carried out in the presence of a chiral phosphoramidite ligand based on (R)-binol 

and dialkylamines. The reaction was significantly accelerated in the presence of a base such as 

KOH and Et3N, allowing the reaction to be completed within 6 h at 50 °C. The addition to 

2-cyclohexenone achieved enantioselectivities up to 99%, though they were less effective for 

2-cyclopentenone (79% ee), 2-cycloheptenone (77% ee) and acyclic enones (31-43% ee). 
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 The conjugate addition of nucleophiles to activated alkenes such as Michael reaction of 

enolates or organocopper reagents to enones is a widely used process in organic chemistry.1 It was 

recently demonstrated that rhodium(I) complexes are excellent catalysts for such conjugate 

additions of aryl- and alkenylboronic acids to α,β-unsaturated carbonyl compounds or other 

Michael acceptors.2 Since various chiral phosphines are available for rhodium catalysts, the 

protocol was recently extended to asymmetric versions using chiral P-P ligands such as BINAP3 

and diphosphonites4 and P-N ligands such as amidomonophosphines.5 Although BINAP achieved 

high enantioselectivities practical for the addition to both cyclic and acyclic enones, the reactions 

often used large excesses of organoboronic acid because of a competitive hydrolytic B-C bond 



 

cleavage of organoboronic acids due to a low catalyst efficiency requiring a temperature of over 

100 °C in an aqueous solvent. This problem has recently been solved by the use of RhOH-binap 

catalyst that completes the reaction at 35 °C.6 However, the substrates that can be used have been 

limited to relatively simple substrates because of the highly rigid coordination space of a BINAP 

ligand. 

 

In connection with our interest in rhodium-catalyzed reactions of organoboronic acids, we report 

here the results of a preliminary study on the effects of monodentate phosphoramidite ligands (4) 

and bases in the 1,4-addition of arylboronic acids to α,β-unsaturated carbonyl compounds (Scheme 

1).7 Among the various phosphoramidite ligands extensively studied by Feringa and co-workers,8 

diethylamino derivative (4a) was found to be an excellent catalyst for cyclic enones. Since the 

enantioselectivity was reduced by raising the reaction temperature, the presence of a base was 

critical to carry out the reaction under mild conditions and to achieve high enantioselective. The 

reaction was completed within 6 h at 50 °C in the presence of 1 equivalent of KOH or Et3N in 

striking contrast to the reaction occurring at 90 °C in the absence of a base.  

<<Scheme 1>> 

The effects of representative phosphoramidite ligands (4) and enones are summarized in Table 1. 

The catalyst was prepared in situ by mixing Rh(acac)(C2H4)2 (3 mol%) and two equivalents of 4 at 

room temperature for 1 h. Rh(acac)(coe)2, [RhCl(C2H4)2]2 and [Rh(OH)(cod)]2 also gave analogous 

yields and enantioselectivities to those of Rh(acac)(C2H4)2. The addition of phenylboronic acid to 

2-cyclohexenone at 50 °C for 6 h in aqueous dioxane (6/1) resulted in 19% yield in the absence of a 

base (entry 1). In contrast, the yields were almost quantitative in the presence of 1 equivalent of 

Et3N or KOH (entries 2 and 3). Phosphoramidites are sensitive to hydrolysis with water, but their 

rhodium complexes were sufficiently stable to be used in alkaline solution, whereas the yields 

decreased when a catalyst of less than 1 mol% was used. The enantioselectivities dramatically 

changed in a series of N,N-dialkylamino derivatives (entries 3-7). Among the ligands studied, 



 

N,N-diethyl derivative (4a) exhibited the best enantioselectivity (98-99% ee, entries 2 and 3). The 

selectivities were reduced by increasing the bulkiness of amino groups (entries 4-6) except for the 

morpholine derivative (4e), which exceptionally showed a high selectivity comparable to that of the 

N,N-diethylamino derivative (entry 7). The phosphoramidites derived from (R)-(+)-binol generally 

afforded (R)-3-phenylcyclohexanone. 

<<Table 1>> 

Although hydrolytic B-C bond cleavage is a serious side-reaction at 100 °C, a 50% excess of 

arylboronic acids was a sufficient amount to complete the reaction at 50 °C. Indeed, both 3-chloro- 

(2b) and 3-methoxyphenylboronic acid (2c) afforded 75% and 84% yields of products with 98-99% 

ee (entries 8 and 9). In contrast to the excellent enantioselectivities for 2-cyclohexenone, the ligand 

was highly sensitive to enones. The selectivities decreased to 79% ee for 2-cyclopentenone and to 

77% ee for 2-cycloheptenone (entries 10 and 11). Acyclic enones such as 3-nonen-2-one and 

5-methyl-3-hexen-2-one resulted in 1% ee and 11% ee, respectively. Although reoptimization of the 

ligands for acyclic enones showed that the N,N-diisopropyl derivative (4b) increases the selectivity 

to 31-43% ee (entries 12 and 13), all attempts at an enantioselective reaction practical for acyclic 

enones failed.9 An extension of the protocol to α,β-unsaturated lactones suffered from a slow 

addition and a high sensitivity to saponification. Finally, an 84% ee was achieved by heating the 

mixture at 90 °C in the absence of bases (entry 14). 

 

In conclusion, Feringa's phosphoramidites were found to be excellent ligands for the 

rhodium-catalyzed conjugate addition of arylboronic acids to cyclic enones. High reaction rates and 

enantioselectivities up to 99% were obtained for 2-cyclohexenone when the reactions were carried 

out at 50 °C in the presence of a base. Because of the availability of various derivatives by a simple 

synthetic route, phosphoramidites are practical chiral ligand that are easily variable depending upon 

the substrates.  

 



 

Representative procedure (entry 3 in Table 1): A flask charged with Rh(acac)(C2H4)2 (0.03 mmol), 

4a (0.06 mmol) and PhB(OH)2 (1.5 mmol) was flushed with argon. 1,4-Dioxane-H2O (6/1, 3 ml) 

and KOH (10 M in H2O, 0.1 ml, 1 mmol) were successively added. After being stirred for 1 h, 

2-cyclohexenone (1 mmol) was added. The resulting mixture was then stirred for 6 h at 50 °C. 

Chromatography over silica gel gave (R)-3-phenylcyclohexanone: 95% yield, 98% ee, [α]20
D +21.4 

(c 0.95, CHCl3). The enantiomer excess was determined by HPLC analysis using a chiral stationary 

phase column (Daicel Chiralpak AD) with hexane/2-propanol = 98/2. 
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Scheme 1. Asymmetric 1,4-Addition of Arylboronic Acids to 
Enones
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Table 1. Asymmetric 1,4-Addition of Arylboronic Acids to Enones
(Scheme 1)a

O
O
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O

O

C5H11

O

O

entry enone ArB(OH)2
2

ligand
3

yield/% ee%

1b

2c

3

4

5

6

7

8

9

2a

2a

2a

2a

2a

2a

2a

2b

2c

4a

4a

4a

4b

4c

4d

4e

4a

4a

19

90

95

38

5

67

68

75

84

-

99 (R)

98 (R)

22 (S)

24 (R)

51 (R)

89 (R)

99

98

10

11

12

13

2b

2a

2a

2a

4a

4a

4b

4b

97

67

50

39

79

77

43

31

14d 2a 4a 55 84

aA mixture of enone (1 mmol), ArB(OH)2 (1.5 mmol), Rh(acac)(C2H4)2 (0.03 
mmol), ligand (0.06 mmol) and KOH (1 mmol) in dioxane-H2O (6/1, 3 ml) was 
stirred for 6 h at 50 °C, unless otherwise noted. bThe reaction was conducted in 
the absence of KOH. cEt3N (1 mmol) was used in place of KOH.
dat 90 °C for 6 h in the absence of KOH.  
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aA mixture of enone (1 mmol), ArB(OH)2 (1.5 mmol), Rh(acac)(C2H4)2 (0.03 
mmol), ligand (0.06 mmol) and KOH (1 mmol) in dioxane-H2O (6/1, 3 ml) was 
stirred for 6 h at 50 °C, unless otherwise noted. bThe reaction was conducted in 
the absence of KOH. cEt3N (1 mmol) was used in place of KOH.
dat 90 °C for 6 h in the absence of KOH.
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