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Sphericity and Identity Test for High-dimensional

Covariance Matrix using Random Matrix Theory

Shoucheng Yuana, Jie Zhoua∗, Jianxin Panb Jieqiong Shena

aCollege of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

bSchool of Mathematics, University of Manchester, Manchester M13 9PL, UK

Abstract: This paper addresses the issue of testing sphericity and identity of high-dimensional popula-

tion covariance matrix when the data dimension exceeds the sample size. The central limit theorem of

the first four moments of eigenvalues of sample covariance matrix is derived using random matrix theory

for generally distributed populations. Further, some desirable asymptotic properties of the proposed test

statistics are provided under the null hypothesis as data dimension and sample size both tend to infinity.

Simulations show that the proposed tests have a greater power than existing methods for the spiked

covariance model.

Keywords: Sphericity test; Identity test; High-dimensional covariance matrix; Spiked model; Spectral

distribution.

1. Introduction

High-dimensional statistical inference problems for covariance matrices are increasingly encoun-

tered in many applications such as image processing, stock marketing and genetics. A fundamental

problem in such applications is the hypothesis test for covariance matrix when data dimension is

much larger than the sample size. With the advancement in computer technology, it is feasible to

analyze the high-dimensional data. However, many of the classical multivariate methods may not

work properly when the dimension equals or exceeds the sample size. These procedures rely on the

classical regime where the sample size tends to infinity while the dimension remains fixed.

Let X1, . . . , Xn be independent and identically distributed (i.i.d.) p-dimensional vectors with

mean zero and covariance matrix Σp. We focus on testing two structures for the population covari-

ance matrix:

1) The sphericity test

H0a : Σp = σ2Ip vs. H1a : Σp 6= σ2Ip; (1)

2) The identity test

H0b : Σp = Ip vs. H1b : Σp 6= Ip, (2)
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where σ is an unknown but finite positive constant, and Ip is the p× p identity matrix. Traditional

tests for covariance matrix based on the likelihood ratio (Anderson (2003)) can not used when the

dimensionality diverges at the same rate as the sample size, since the sample covariance matrix

(SCM) cannot converge to its population counterpart in high-dimensional regime where both n

and p tend to infinity.

In the need of theoretical research and practical application, the study of the above hypothesis

tests has attracted statisticians’ attentions in high-dimensional regime. Ledoit and Wolf (2002)

restudied certain tests originally setting up by John (1971) and Nagao (1973) in a fixed p context

and generalized the locally best invariant (LBI) tests to accommodate the situation that both p and

n go to infinity with p/n→ c ∈ (0,∞). Birke and Dette (2005) later extended these results to the

cases c = 0 and c = ∞ in high-dimensional regime. Meanwhile, Srivastava (2005) refined the LBI

tests by applying the unbiased estimators of trΣk
p/p, k = 1, 2. Subsequently, some test statistics were

investigated based on these unbiased estimators, such as in Srivastava et al. (2011); Srivastava and

Yanagihara (2010). Moreover, Fisher et al. (2010); Fisher (2012) studied homogeneous statistics

constructed from unbiased estimators of trΣk
p/p, k = 1, 2, 3, 4. Although these tests overcame the

constraint of the classical regime, they relied heavily on the normality assumption. For non-normal

case, Bai et al. (2009) modified the likelihood ratio tests to accommodate the situations where p

and n both can be large but p < n. Chen et al. (2010) developed a method where the statistics are

constituted by some well-selected U -statistics. In Wang and Yao (2013), the likelihood ratio test and

LW test proposed in Ledoit and Wolf (2002) for sphericity were modified in the general population

using random matrix theory (RMT). Most recently, a robust test for sphericity was addressed in

Tian et al. (2015) by taking the maximum of two test statistics proposed in Srivastava (2005) and

Fisher et al. (2010). Wang et al. (2018) proposed two statistics for testing the identity of high-

dimensional covariance matrix, based on large dimensional random matrix theory. Hu et al. (2019)

considered testing the sphericity of elliptical populations by using the linear spectral statistics of

high-dimensional sample covariance matrix.

A method based on inequalities was presented to construct test statistics in Srivastava (2005).

Fisher et al. (2010) and Fisher (2012) employed successfully this method to design some desired

statistics composed of the first four moments of eigenvalues of the SCM and tested the hypotheses

(1) and (2) under the assumption of normal distribution. In this paper, we primarily focus on

the central limit theorem (CLT) of the first four moments of spectral distribution of the SCM for

general populations. Motivated form Srivastava (2005), we construct some new test statistics in

order to pursue the higher test powers for the spiked covariances introduced by Johnstone (2001).

Whereas, from the technical point of view, the proposed approach differs from Fisher et al. (2010);

Fisher (2012); Ledoit and Wolf (2002); Srivastava (2005) and is analogous to the way devised in

Bai et al. (2009). The pivotal tool is the CLT for linear spectral statistics of the SCM established

in Bai and Silverstein (2004) and later meliorated in Pan and Zhou (2008).

We discuss the testing problems (1) and (2) from the viewpoint of RMT. We propose new

test statistics for general populations in high-dimensional regime where both the dimension p and
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the sample size n tend to infinity with p/n → c ∈ (0,∞). Under this regime, an asymptotic joint

distribution of the first four moments of the eigenvalues is deduced from the CLT for linear spectral

statistics of the SCM. Then, we derive some desirable asymptotic properties of the proposed test

statistics under the null hypotheses utilizing the aforementioned joint distribution. Moreover, some

numerical simulations are provided for demonstrating the performance of the proposed tests.

This paper is organized as follows. In Section 2, we review the consistent estimators of trΣk
p/p

for k = 1, 2, 3, 4 under the general assumptions and derive their asymptotic behaviors with general

moment conditions under the null hypotheses. In Section 3, we introduce two new test statistics

and deduce their asymptotic normality. Section 4 reports some simulation results that demonstrate

the asymptotic behavior of the proposed statistics and the good performance for high-dimensional

covariance with spiked structure. Section 5 provides the analysis of actual data, and Section 6

includes concluding remarks. All the technical details including the preliminary results in RMT

and the proofs of lemmas and theorems are presented in the appendix.

2. Estimators of trΣk/p and their asymptotic properties

Let the SCM be Sn = 1
n

∑n
i=1XiX

′
i. Suppose that Hp and Fn are respectively spectral distribu-

tions of Σp and Sn. We define the integer-order moments of Hp and Fn:

αk :=

∫
tkdHp(t) =

1

p
tr(Σk

p) and β̂k :=

∫
tkdFn(t) =

1

p
tr(Skn), k = 1, 2, . . .

Assuming that the observations are normally distributed, the estimators α̂k of αk, k = 1, 2, 3, 4,

were proved to be consistent, unbiased and asymptotically normal as (n, p) → ∞ and adopted in

Srivastava (2005); Fisher et al. (2010); Fisher (2012); Tian et al. (2015). These estimators can be

expressed as the polynomials of β̂k’s:

α̂1 = β̂1,

α̂2 = τ2

(
β̂2 − cnβ̂2

1

)
,

α̂3 = τ3

(
β̂3 − 3cnβ̂2β1 + 2c2

nβ̂
3
1

)
,

α̂4 = τ4

(
β̂4 − 4cnβ̂3β̂1 −

2n2 + 3n− 6

n2 + n+ 2
cnβ̂

2
2 +

10n2 + 12n

n2 + n+ 2
c2
nβ̂2β̂

2
1 −

5n2 + 6n

n2 + n+ 2
c3
nβ̂

4
1

)
,

where

cn = p/n,

τ2 = n2/((n− 1)(n+ 2)),

τ3 = n4/((n− 1)(n− 2)(n+ 2)(n+ 4)),

τ4 = n5(n2 + n+ 2)/((n+ 1)(n+ 2)(n+ 4)(n+ 6)(n− 1)(n− 2)(n− 3)).

If the underlying distribution is non-normal, we note that the unbiasedness does not hold any
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more for α̂k, k = 2, 3, 4, but the consistency and asymptotic normality can be retained under some

suitable assumptions in Tian et al. (2015).

Assumption 1: The sample size n and the dimension p both tend to infinity with cn = p/n→
c ∈ (0,∞).

Assumption 2: There is a doubly infinite matrix composed of i.i.d. random variables wij satis-

fying

E(wij) = 0, E(w2
ij) = 1, E(w4

ij) <∞, i, j ≥ 1.

Letting Wn = (wij)1≤i≤p,1≤j≤n, the observation vectors can be represented as Xj = Σ
1/2
p w·j , where

w·j = (wij)1≤i≤p is the j-th column of the matrix Wn.

Assumption 3: The spectral norm of Σp is bounded by a positive constant and the population

spectral distribution Hp converges weakly to a non-random distribution H as p→∞.

It is worth pointing out that we are accustomed to assuming E(w4
11) = 3 + ∆ where ∆ is a finite

constant which is 0 if wij is normal in Assumption 2. Under these assumptions, we know that the

estimators α̂k converge almost surely to αk, k = 1, 2, 3, 4 from Tian et al. (2015).

Lemma 2.1: Under Assumptions 1–3, if Σp = Ip, then

p


β̂1 − 1

β̂2 − (1 + cn)

β̂3 − (1 + 3cn + c2
n)

β̂4 − (1 + 6cn + 6c2
n + c3

n)

 D−→ N4(m,V), (3)

where

m = (1 + ∆)(0, c, 3c+ 3c2, 6c+ 17c2 + 6c3)′,

and V is a 4× 4 symmetric matrix with entries

V11 = 2c+ c∆,

V12 = 4c(c+ 1) + 2c(c+ 1)∆,

V13 = 6c(c2 + 3c+ 1) + 3c(c2 + 3c+ 1)∆,

V14 = 8c(c3 + 6c2 + 6c+ 1) + 4c(c3 + 6c2 + 6c+ 1)∆,

V22 = 4c(2c2 + 5c+ 2) + 4c(c2 + 2c+ 1)∆,

V23 = 12c(c3 + 5c2 + 5c+ 1) + 6c(c3 + 4c2 + 4c+ 1)∆,

V24 = 8c(2c4 + 17c3 + 32c2 + 17c+ 2) + 8c(c4 + 7c3 + 12c2 + 7c+ 1)∆,

V33 = 6c(3c4 + 24c3 + 46c2 + 24c+ 3) + 9c(c4 + 6c3 + 11c2 + 6c+ 1)∆,

V34 = 24c(c5 + 12c4 + 37c3 + 37c2 + 12c+ 1) + 12c(c5 + 9c4 + 25c3 + 25c2 + 9c+ 1)∆,

V44 = 8c(4c6 + 66c5 + 300c4 + 485c3 + 300c2 + 66c+ 4)
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+ 16c(c6 + 12c5 + 48c4 + 74c3 + 48c2 + 12c+ 1)∆.

Lemma 2.1 can be viewed as a new CLT of linear spectral statistics β̂k, k = 1, 2, 3, 4. It shows

that the first four moments of spectral distributions of Sn asymptotically follow normal distribution

when the population covariance Σp is an identity matrix. If w11 is normal, then the formula (3)

reduces to a simpler form with ∆ = 0. One can observe that the asymptotic distribution crucially

depends on the limiting dimension-to-sample ratio c. In addition, the entries in the covariance

matrix V become more and more complicated as the order of moments of sample eigenvalues

increases.

Lemma 2.2: Under Assumptions 1–3, if Σp = Ip, then

n(α̂1 − 1, α̂2 − 1, α̂3 − 1, α̂4 − 1)′
D−→ N(m̃, Ṽ), (4)

where

m̃ = ∆(0, 1, 3, c+ 6)′,

and

Ṽ =
1

c


2 + ∆ 4 + 2∆ 6 + 3∆ 8 + 4∆

4 + 2∆ 4(c+ 2) + 4∆ 12(c+ 1) + 6∆ 8(3c+ 2) + 8∆

6 + 3∆ 12(c+ 1) + 6∆ 6(c2 + 6c+ 3) + 9∆ 24(c2 + 3c+ 1) + 12∆

8 + 4∆ 8(3c+ 2) + 8∆ 24(c2 + 3c+ 1) + 12∆ 8(c3 + 12c2 + 18c+ 4) + 16∆

 .

In fact, Lemma 2.2 can also be viewed as a CLT for the estimators α̂k of αk(k = 1, 2, 3, 4) when the

population covariance Σp is identity. One can see from (4) that the unbiasedness of α̂k, k = 2, 3, 4,

can not retain and their mean vectors and the covariance matrix bring some shifts related to ∆.

When neither ∆ = 0 nor Σp = Ip, the limiting distribution will become very complicated (see Pan

and Zhou (2008)).

3. Test procedures

The testing problems (1) and (2) remain invariant under the scalar transformation x→ cx(c 6= 0),

and the orthogonal transformation x→ Gx, where G is an orthogonal matrix. Thus, we can assume

without loss of generality that Σp = diag(λ1, . . . , λp) with λi > 0 for i = 1, . . . , p.
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3.1. A test for sphericity

From Hölder’s inequality, we know that( p∑
i=1

λ2
i

)3

≤
( p∑
i=1

λ4
i

)( p∑
i=1

λi

)2

with equality holding if and only if λ1, . . . , λp are equal. Therefore, the moments of the distribution

Hp satisfy

α4

α2
2

≥ α2

α2
1

, (5)

and the equality holds if and only if the hypothesis of sphericity is true (see Srivastava (2005) and

Fisher et al. (2010)). Denote

φ :=
α4

α2
2

− α2

α2
1

≥ 0,

then φ = 0 if and only if Σ = σ2Ip. Hence, the sphericity test (1) is equivalent to the following

hypothesis

H0a : φ = 0 vs. H1a : φ > 0.

We propose the new test statistic

γ1 =
α̂4

α̂2
2

− α̂2

α̂2
1

. (6)

It is worth noting that in Srivastava (2005) and Fisher et al. (2010), the test statistics

Ts =
α̂2

α̂2
1

− 1 and Tf =
α̂4

α̂2
2

− 1

were designed to test the hypotheses α2/α
2
1− 1 = 0 and α4/α

2
2− 1 = 0 respectively. Obviously, the

test statistic (6) can be treated as a linear combination of Ts and Tf . From Tian et al. (2015), we

know that these two statistics are asymptotically independent while the limiting ratio c is large.

Thus, the asymptotic normality of statistic γ1 still holds as c increases. The following theorem gives

the asymptotic distribution of the statistic γ1 under null hypothesis H0a.

Theorem 3.1: Under Assumptions 1–3, when the null hypothesis H0a in (1) holds, we have

T1 =
nγ1 −m1√

V1

D−→ N(0, 1),

where m1 = (c+ 3)∆, V1 = 8c2 + 96c+ 36. Further, if E(w4
11) = 3, then

T1 =
nγ1

2
√

2c2 + 24c+ 9

D−→ N(0, 1). (7)
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3.2. A test for identity

Here, we consider the problem of testing the covariance matrix to be identity. This is equivalent

to the null hypothesis that λi = 1 for all i = 1, . . . , p against the alternative that λi 6= 1 for at least

one i, i = 1, . . . , p. It is clear that

1

p

p∑
i=1

(λ2
i − λi)2 =

1

p

(
trΣ4

p − 2trΣ3
p + trΣ2

p

)
= α4 − 2α3 + α2 ≥ 0

with equality holding if and only if λi = 1 for all i. Thus, we propose a new test statistic

γ2 = α̂4 − 2α̂3 + α̂2, (8)

which is a consistent estimator of α4 − 2α3 + α2. The following theorem gives the asymptotic

distribution of the statistic γ2 under the null hypothesis H0b.

Theorem 3.2: Under Assumptions 1–3, when the null hypothesis H0b in (2) holds, we have

T2 =
nγ2 −m2√

V2

D−→ N(0, 1),

where m2 = ∆(c+ 1), V2 = 8c2 + 24c+ 4. Further, if E(w4
11) = 3, then

T2 =
nγ2

2
√

2c2 + 6c+ 1

D−→ N(0, 1). (9)

Remark 3.1: For the case of population mean µ being unknown, the data are represented as

Xj = µ+ Σ1/2w·j , j = 1, . . . , n,

then the sample covariance matrix should be taken as

S∗n =
1

n− 1

n∑
j=1

(Xj − X̄)(Xj − X̄)′,

where X̄ = 1
n

∑n
j=1Xj. Because the rank of the matrix X̄X̄ ′ is one, from Theorem A.44 in Bai

and Silverstein (2010), substituting Sn for S∗n will not affect the limiting distributions in Theorems

3.1 and 3.2.

4. Simulation studies

In this section, simulation studies are done to demonstrate the effectiveness of the proposed

statistics T1 and T2, and to perform comparative studies on the congeneric test statistics in testing
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the hypotheses (1) and (2).

4.1. Normality and the attained significance levels

Consider the following two cases of population distributions:

Case 1: w·j is a p-dimensional normal random vector with mean 0p and covariance matrix Σp = Ip;

Case 2: w·j consists of the i.i.d. random variables wij , i = 1, . . . , p, following the standardized

Gamma(4, 0.5) so that E(wij) = 0, E(w2
ij) = 1, and Σp = Ip. It is easy to see E(w4

11) = 4.5

and ∆ = 1.5.

For the sphericity test (1), we compare the proposed statistics with four statistics given respec-

tively in Srivastava (2005) (referred as Ts), Fisher et al. (2010) (referred as Tf ) for Case 1, and

Wang and Yao (2013) (referred as TCJ), Tian et al. (2015) (referred as Tm) for Case 2. For the

identity test (2), we also take into account four tests given respectively in Srivastava (2005) (still

referred as Ts), Fisher (2012) (still referred as Tf ) for Case 1, and Wang et al. (2013) (referred

as TCLW ), Wang et al. (2018) (referred as TWH) for Case 2. Note that the tests in Wang and

Yao (2013) and Wang et al. (2013) are the modified versions of those developed in John (1971)

and Ledoit and Wolf (2002) respectively for general distributions. We set the significant level as

α = 0.05 , and simulate 10000 independent trials for all tests.

We demonstrate the empirical size of these test statistics in terms of the attained significance

level (ASL). To verify the performance of the ASLs, we compare the statistics T1 and T2 with the

aforementioned test statistics. Tables 1 and 2 respectively present the ASLs of T1, T2, Ts, Tf for

Case 1 and T1, T2, TCJ , TCLW for Case 2 when the sample size n is set as 20, 40, 80, 120 and the

data dimension p = cn with c = 1, 2, 5, 10. It can be seen that the ASLs of these tests are close to

the nominal significant level α as p and n both increase. At the same time, it is also noted that

the ASLs of the proposed statistics T1 and T2 perform better in most situations when data come

from the gamma population.

Table 1. The ASLs of Ts, Tf and the proposed two test statistics for Case 1

p = cn c = 1 c = 2 c = 5 c = 10

(a) Sphericity test

Ts Tf T1 Ts Tf T1 Ts Tf T1 Ts Tf T1

n = 20 0.0529 0.0319 0.0325 0.0507 0.0360 0.0375 0.0514 0.0412 0.0432 0.0544 0.0414 0.0444
n = 40 0.0525 0.0486 0.0497 0.0522 0.0496 0.0507 0.0499 0.0506 0.0523 0.0527 0.0494 0.0518
n = 80 0.0490 0.0535 0.0521 0.0550 0.0529 0.0534 0.0519 0.0534 0.0530 0.0543 0.0525 0.0536
n = 120 0.0521 0.0543 0.0526 0.0479 0.0551 0.0538 0.0487 0.0509 0.0498 0.0499 0.0494 0.0494

(b) Identity test

Ts Tf T2 Ts Tf T2 Ts Tf T2 Ts Tf T2

n = 20 0.0572 0.0575 0.0484 0.0520 0.0606 0.0531 0.0565 0.0585 0.0490 0.0501 0.0515 0.0468
n = 40 0.0536 0.0610 0.0595 0.0488 0.0602 0.0557 0.0522 0.0588 0.0543 0.0535 0.0581 0.0564
n = 80 0.0545 0.0610 0.0580 0.0510 0.0628 0.0589 0.0516 0.0545 0.0534 0.0519 0.0535 0.0512
n = 120 0.0493 0.0589 0.0565 0.0517 0.0564 0.0556 0.0535 0.0558 0.0533 0.0514 0.0520 0.0518

We also check the QQ plots of the test statistics T1 and T2 under the null hypotheses for sphericity

and identity tests. Figures 1 and 2 show the QQ plots of the 10000 observations of the test statistics

8



Table 2. The ASLs of TCJ , Tm, TCLW , TWH and the proposed two test statistics for Case 2

p = cn c = 1 c = 2 c = 5 c = 10

(a) Sphericity test

TCJ Tm T1 TCJ Tm T1 TCJ Tm T1 TCJ Tm T1

n = 20 0.0748 0.0976 0.0461 0.0728 0.1006 0.0488 0.0722 0.1053 0.0422 0.0686 0.1119 0.0383
n = 40 0.0683 0.1084 0.0627 0.0623 0.1144 0.0564 0.0641 0.1114 0.0430 0.0573 0.1066 0.0385
n = 80 0.0599 0.1062 0.0578 0.0586 0.1024 0.0465 0.0572 0.1080 0.0411 0.0552 0.1064 0.0395
n = 120 0.0541 0.0912 0.0539 0.0558 0.0977 0.0461 0.0541 0.1021 0.0356 0.0504 0.0969 0.0326

(b) Identity test

TCLW TWH T2 TCLW TWH T2 TCLW TWH T2 TCLW TWH T2

n = 20 0.1062 0.1272 0.1035 0.0966 0.1119 0.0890 0.0854 0.0966 0.0713 0.0823 0.0835 0.0553
n = 40 0.0808 0.1013 0.0884 0.0764 0.1071 0.0692 0.0685 0.0796 0.0528 0.0670 0.0673 0.0388
n = 80 0.0707 0.0979 0.0729 0.0595 0.0855 0.0554 0.0561 0.0679 0.0482 0.0549 0.0607 0.0381
n = 120 0.0642 0.0878 0.0624 0.0569 0.0751 0.0516 0.0538 0.0647 0.0410 0.0588 0.0559 0.0357

T1 and T2 under the null hypotheses with n = 200 and p = 400 for Cases 1 and 2 respectively, and

indicate that the statistics T1 and T2 are normally distributed for sufficiently large n and p under

the null hypotheses.
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(b) T2 for Case 1 under H0b

Figure 1. Normal QQ plots for Case 1 from 10000 independent trials.

4.2. The powers of the spiked covariance

We make simulations on the powers of the proposed tests for normal and gamma populations. To

compare the proposed statistics with the statistics given in Srivastava (2005); Fisher et al. (2010);

Fisher (2012) for normal population and in Wang et al. (2013); Wang and Yao (2013); Tian et al.

(2015); Wang et al. (2018) for gamma population, we discuss some hypothesis testing problems

considered in Fisher et al. (2010); Fisher (2012); Srivastava (2006).

Among different structures of population covariance matrices, we are interested in the spiked

covariance model which has been applied to signal processing, wireless communication and net-

working technology (see Nadakuditi and Edelman (2008); Torun et al. (2011); Couillet and Debbah

(2011); Bianchi et al. (2011); Couillet and Hachem (2013)). Suppose that the alternative hypothesis
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(b) T2 for Case 2 under H0b

Figure 2. Normal QQ-Plots for Case 2 from 10000 independent trials.

has the following form

Σp =

(
Θk 0

0 Ip−k

)
(10)

where k < p is a fixed number, Θk denotes a k×k diagonal matrix with all entries not being 1, Ip−k

is the (p−k)× (p−k) identity matrix. When the population are normal and gamma distributions,

their powers are respectively shown in Tables 3 and 4.

Table 3 shows the powers in the sphericity and identity tests under the normality assumption. The

population covariance matrix Σp is given by setting Θ1 = 1 + 3
√
c and Θ4 = diag(0.5, 1.5, 3.5, 5.5)

in the sphericity test, and Θ2 = I2 +
√
c · diag(0.2, 3.5) and Θ5 = diag(1.2, 1.5, 1.8, 2.5, 6) in the

identity test.

Table 4 gives the powers in the sphericity and identity tests for gamma population. In the

sphericity test, Θ2 = I2 +
√
c · diag(0.3, 3) and Θ4 = diag(0.5, 2.25, 3.5, 6). In the identity test,

Θ1 = 1 + 3
√
c and Θ3 = diag(0.6, 2, 5).

Tables 3 and 4 show that the empirical powers of all test statistics increase as the sample size

becomes large. Meanwhile, from the simulation results, we can see that the proposed tests are

more powerful than the compared tests when k is very small, e.g., k = 1 or 2. If k gets bigger, the

performance of these tests T1 and T2 also becomes better and better as the sample size n increases.

At the same time, we note that the power of the proposed statistic T1, as the linear combination

of the statistics Ts and Tf , increases significantly while c becomes large and k is small.

4.3. Performances for uniform and Student’s t distributions

In our study, we hope that the proposed statistics still work reasonably well in some different

distributions, e.g., uniform distribution or Student’s t distribution. We mainly look at two scenarios

under Assumption 2: (i) each wij follows uniform distribution over the interval (−
√

3,
√

3); (ii)

10



Table 3. Empirical powers from normal data for the sphericity and identity tests

p = cn c = 1 c = 2 c = 5 c = 10

(a) Sphericity test

Ts Tf T1 Ts Tf T1 Ts Tf T1 Ts Tf T1

Θ1 = 1 + 3
√
c

n = 20 0.6335 0.6754 0.6856 0.6986 0.7437 0.7602 0.7294 0.7861 0.7996 0.7903 0.8545 0.8712
n = 40 0.7969 0.8832 0.8885 0.8251 0.9202 0.9290 0.8575 0.9472 0.9690 0.8910 0.9682 0.9796
n = 80 0.8930 0.9786 0.9800 0.9161 0.9906 0.9911 0.9366 0.9950 0.9960 0.9395 0.9964 1
n = 120 0.9341 0.9946 0.9950 0.9542 0.9975 0.9977 0.9567 0.9995 1 0.9745 0.9990 1

Θ4 = diag(0.5, 1.5, 3.5, 5.5)

n = 20 0.9403 0.8944 0.8855 0.8469 0.8017 0.8033 0.5762 0.5555 0.5748 0.3306 0.3140 0.3205
n = 40 0.9956 0.9970 0.9971 0.9597 0.9729 0.9735 0.6933 0.7702 0.7757 0.3681 0.4242 0.4256
n = 80 1 1 1 0.9936 0.9993 0.9997 0.9154 0.7657 0.9154 0.3689 0.5260 0.5292
n = 120 1 1 1 0.9971 1 1 0.7757 0.9576 0.9588 0.3811 0.5744 0.5769

(b) Identity test

Ts Tf T2 Ts Tf T2 Ts Tf T2 Ts Tf T2

Θ2 = I2 +
√
c · diag(0.2, 3.5)

n = 20 0.8118 0.8437 0.8591 0.8390 0.8866 0.8972 0.8625 0.9083 0.9207 0.8800 0.9260 0.9342
n = 40 0.9180 0.9624 0.9671 0.9354 0.9774 0.9791 0.9470 0.9870 0.9877 0.9541 0.9889 0.9898
n = 80 0.9679 0.9957 0.9966 0.9765 0.9989 0.9991 0.9845 0.9992 0.9993 0.9876 0.9989 0.9990
n = 120 0.9885 0.9995 0.9999 0.9912 0.9997 1 0.9936 1 1 0.9990 1 1

Θ5 = diag(1.2, 1.5, 1.8, 2.5, 6)

n = 20 0.9718 0.9647 0.9644 0.9018 0.9027 0.8745 0.6476 0.6824 0.6899 0.3886 0.4264 0.4320
n = 40 0.9977 0.9982 0.9985 0.9824 0.9840 0.9690 0.7394 0.8370 0.8396 0.3996 0.5463 0.5490
n = 80 0.9999 1 1 0.9815 0.9925 0.9993 0.7841 0.9446 0.9474 0.4140 0.6197 0.6370
n = 120 1 1 1 0.9982 0.9995 1 0.8030 0.9783 0.9791 0.4150 0.6683 0.6824

Table 4. Empirical powers from gamma data for the sphericity and identity tests

p = cn c = 1 c = 2 c = 5 c = 10

(a) Sphericity test

TCJ Tm T1 TCJ Tm T1 TCJ Tm T1 TCJ Tm T1

Θ2 = I2 +
√
c · diag(0.3, 3)

n = 20 0.5060 0.5186 0.4912 0.5897 0.6218 0.5892 0.6757 0.7205 0.7026 0.6977 0.7695 0.7462
n = 40 0.7158 0.7864 0.7744 0.7563 0.8462 0.8467 0.8073 0.9116 0.9086 0.8287 0.9269 0.9218
n = 80 0.8432 0.9383 0.9414 0.8789 0.9681 0.9702 0.8953 0.9860 0.9875 0.9107 0.9894 0.9912
n = 120 0.9056 0.9820 0.9855 0.9238 0.9927 0.9940 0.9413 0.9972 0.9973 0.9433 0.9985 0.9992

Θ4 = diag(0.5, 2.25, 3.5, 6)

n = 20 0.9048 0.8946 0.7404 0.8224 0.8149 0.7078 0.5742 0.5884 0.5079 0.3700 0.3887 0.3320
n = 40 0.9948 0.9953 0.9892 0.9582 0.9700 0.9566 0.7245 0.7918 0.7513 0.4212 0.5110 0.4754
n = 80 1 1 1 0.9932 0.9986 0.9986 0.8124 0.9342 0.9227 0.4666 0.6423 0.6112
n = 120 1 1 1 0.9983 1 0.9998 0.8557 0.9689 0.9627 0.4703 0.6883 0.6749

(b) Identity test

TCLW TWH T2 TCLW TWH T2 TCLW TWH T2 TCLW TWH T2

Θ1 = 1 + 3
√
c

n = 20 0.5905 0.6897 0.6010 0.6417 0.7256 0.6800 0.6858 0.7353 0.7476 0.6963 0.7033 0.7882
n = 40 0.7500 0.8397 0.8139 0.7819 0.8543 0.8795 0.8130 0.8557 0.9180 0.8210 0.8290 0.9340
n = 80 0.8618 0.9352 0.9571 0.8761 0.9373 0.9766 0.8940 0.9328 0.9881 0.9080 0.9021 0.9909
n = 120 0.9032 0.9658 0.9902 0.9126 0.9646 0.9960 0.9306 0.9588 0.9968 0.9442 0.9663 1

Θ3 = diag(0.6, 2, 5)

n = 20 0.8074 0.8712 0.7944 0.6364 0.7317 0.6398 0.3981 0.4698 0.4191 0.2232 0.2590 0.2299
n = 40 0.9338 0.9642 0.9566 0.7846 0.8768 0.8536 0.4581 0.5558 0.5515 0.2291 0.2990 0.2907
n = 80 0.9869 0.9960 0.9971 0.8786 0.9487 0.9703 0.4918 0.6137 0.6964 0.2260 0.3000 0.3388
n = 120 0.9943 0.9992 1 0.9140 0.9693 0.9914 0.4984 0.6310 0.7558 0.2256 0.2997 0.3529

each wij is distributed as
√

3
4 t(8), where t(8) means the Student’s t distribution with 8 degrees

of freedom. The significant level is set as α = 0.05. When the true covariance matrix is identity,

the ASLs of T1, TCJ , Tm for sphericity test and T2, TCLW , TWH for identity test are respectively

shown in Tables 5 and 6.
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Table 5. The ASLs of test statistics from the uniform distribution, w11 ∼ U(−
√

3,
√

3)

p = cn c = 1 c = 2 c = 5 c = 10

(a) Sphericity test

TCJ Tm T1 TCJ Tm T1 TCJ Tm T1 TCJ Tm T1

n = 20 0.0488 0.0642 0.0364 0.0502 0.0734 0.0425 0.0476 0.0775 0.0516 0.0512 0.0865 0.0612
n = 40 0.0509 0.0793 0.0508 0.0561 0.0920 0.0604 0.0524 0.0883 0.0671 0.0453 0.0898 0.0683
n = 80 0.0496 0.0849 0.0572 0.0481 0.0864 0.0539 0.0493 0.0915 0.0685 0.0520 0.0974 0.0746
n = 120 0.0526 0.0886 0.0556 0.0493 0.0854 0.0579 0.0534 0.0875 0.0656 0.0474 0.0902 0.0759

(b) Identity test

TCLW TWH T2 TCLW TWH T2 TCLW TWH T2 TCLW TWH T2

n = 20 0.0549 0.0469 0.0398 0.0612 0.0538 0.0467 0.0640 0.0551 0.0579 0.0600 0.0535 0.0597
n = 40 0.0544 0.0413 0.0463 0.0581 0.0485 0.0568 0.0559 0.0496 0.0645 0.0529 0.0477 0.0709
n = 80 0.0542 0.0424 0.0602 0.0518 0.0412 0.0639 0.0505 0.0478 0.0775 0.0513 0.0502 0.0731
n = 120 0.0458 0.0360 0.0582 0.0552 0.0394 0.0678 0.0532 0.0414 0.0789 0.0544 0.0504 0.0860

Table 6. The ASLs of test statistics from the Student’s t distribution, w11 ∼
√

3/4 t(8)

p = cn c = 1 c = 2 c = 5 c = 10

(a) Sphericity test

TCJ Tm T1 TCJ Tm T1 TCJ Tm T1 TCJ Tm T1

n = 20 0.0729 0.0934 0.0479 0.0710 0.1017 0.0537 0.0723 0.1148 0.0475 0.0703 0.1115 0.0417
n = 40 0.0727 0.1119 0.0685 0.0678 0.1166 0.0622 0.0654 0.1212 0.0521 0.0573 0.1136 0.0411
n = 80 0.0660 0.1142 0.0671 0.0586 0.1158 0.0588 0.0540 0.1070 0.0456 0.0568 0.1024 0.0322
n = 120 0.0576 0.0924 0.0558 0.0556 0.1062 0.0520 0.0558 0.1044 0.0412 0.0594 0.1060 0.0332

(b) Identity test

TCLW TWH T2 TCLW TWH T2 TCLW TWH T2 TCLW TWH T2

n = 20 0.1050 0.1297 0.1040 0.0999 0.1240 0.1013 0.0881 0.0929 0.0737 0.0834 0.0851 0.0593
n = 40 0.0844 0.1276 0.1012 0.0781 0.1100 0.0776 0.0673 0.0788 0.0588 0.0688 0.0684 0.0474
n = 80 0.0671 0.1038 0.0829 0.0656 0.0863 0.0630 0.0598 0.0692 0.0429 0.0577 0.0626 0.0376
n = 120 0.0586 0.0856 0.0698 0.0568 0.0792 0.0492 0.0594 0.0674 0.0395 0.0600 0.0542 0.0346

The results in Tables 5 and 6 indicate that the ASLs of the statistics T1, T2, TCJ , TCLW and

TWH appear to be more conservative around α = 0.05 except that Tm is a little bit too big, as

the sample size n becomes larger under the null hypotheses, whether the data come from uniform

distribution or t distribution. Meanwhile, we also note that the proposed statistics T1 and T2 have

more accurate ASLs than TCJ , TCLW and TWH in most cases.

Next, we compare the powers of sphericity and identity tests when data come from uniform dis-

tribution and t distribution as mentioned above. When n = 50, the empirical powers are presented

in Figures 3 and 4.

Figure 3 demonstrates that when data are from uniform distribution, the statistic T1 has better

performance than TCJ , but T2 does not outperform TWH . Meanwhile, if data come from t distri-

bution, we also see from Figure 4 that the powers of the statistics T1 and T2 respectively become

better than TCJ and TCLW , TWH .

5. Leukemia data analysis

In this section, the statistics are applied to the classical leukemia data in Golub et al. (1999).

The data are published at the website: http://portals.broadinstitute.org/cgi-bin/cancer/

publications/pub_paper.cgi?mode=view&paper_id=43. We still adopt the preprocessing way
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Figure 3. Empirical powers versus dimension p under uniform distribution from 10000 independent trials.
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Figure 4. Empirical powers versus dimension p under t distribution from 10000 independent trials.

attributed to Dudoit et al. (2002) and Dettling and Bühlmann (2003) by filtering, thresholding and

a logarithmic transformation. The data are comprised of p = 3571 genes and the effective sample

size is only n = 70. As a cross-sectional example, the data are adopted to verify test procedures

for sphericity and identity of the covariance matrices in Fisher et al. (2010), Fisher (2012) and

Srivastava (2006). For test of sphericity, the value of statistic T1 is 213.974, and the corresponding

p-value is 0. For test of identity, the value of statistic T2 is 6967.0553, and the corresponding p-value

is 0. Thus, we conclude that the hypothesis of sphericity or identity covariance matrix is rejected,

in consistent with the ones by Srivastava (2005), Fisher et al. (2010) and Fisher (2012).
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6. Concluding remarks

The issue of testing sphericity or identity of covariance matrix in high-dimensional cases is

addressed. Like Srivastava (2005), Fisher et al. (2010) and Fisher (2012), our test statistics are

induced by some inequalities. But unlike the Ts and Tf test statistics, we employ the first four

moments of the sample eigenvalues under the general distribution assumptions based on the RMT.

We derive the asymptotic joint distribution of these moments. Moreover, we propose new statistics

constructed by the first four moments of eigenvalues for the sphericity test and identity test,

and obtain the desirable asymptotic properties of the proposed statistics T1 and T2 under the null

hypotheses for the general populations. Simulations indicate that, for the spiked covariance models,

whether the underlying distribution is normal or not, the proposed test statistics perform better

than the existing test statistics. As an interesting question, we will deduce the asymptotic behavior

of the alternative hypothesis in the future.
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Appendix A. Preliminary results in RMT

Suppose that Assumptions 1–3 hold, from Silverstein (1995), the spectral distribution Fn of

the sample covariance matrix Sn converges weakly to a limiting distribution F c,H , whose Stieltjes

transform s(z) satisfies the following equation:

s(z) =

∫
1

t(1− c− czs(z))− z
dH(t), z ∈ C+. (A1)

Let F cn,Hp be a distribution derived from F c,H by substituting cn and Hp for c and H respectively.

Then, the kth moments of F cn,Hp and F c,H are respectively given by

βk =

∫
tkdF cn,Hp(t) and β̃k =

∫
tkdF c,H(t), k = 1, 2, . . . (A2)

Obviously, βk → β̃k as (n, p)→∞.

Pan and Zhou (2008) derives the CLT for the linear spectral statistics. Specifically, denote

Gn(x) = p(Fn(x) − F cn,Hp(x)), then for any analytic functions f1, . . . , fk on an open region con-

taining the support of F c,H , the random vector(∫
f1(x)dGn(x), . . . ,

∫
fk(x)dGn(x)

)′
14



converges weakly to a normal vector (Xf1 , . . . , Xfk)′ under some assumptions on the population

covariance matrix Σ.

When Σp = Ip, the distribution F c,H is the well-known Marčenko–Pastur law:

gc(x) =
1

2πcx

√
((1 +

√
c)2 − x)(x− (1−

√
c)2), (1−

√
c)2 ≤ x ≤ (1 +

√
c)2, (A3)

and, from (A1), the Stieltjes transform satisfies

s(z) =
1

1− c− czs(z)− z
.

Denoting s(z) = cs(z) − 1−c
z ,∆ = E(w4

11 − 3), and applying the CLT for linear spectral statistics

in Pan and Zhou (2008), we obtain that the random vector (Xf1 , . . . , Xfk)′ follows the normal

distribution with the mean function

E[Xfi ] = − 1

2πi

∮
c(s(z)/(1 + s(z)))3fi(z)

(1− c(s(z)/(1 + s(z)))2)2
dz − E(w4

11 − 3)

2πi

∮
c(s(z)/(1 + s(z)))3fi(z)

1− c(s(z)/(1 + s(z)))2
dz

=: I1(fi) + I2(fi)∆, 1 ≤ i ≤ k, (A4)

and the covariance function

Cov(Xfi , Xfj ) = − 1

2π2

∮ ∮
fi(z1)fj(z2)

(s(z1)− s(z2))2
s′(z1)s′(z2)dz1dz2

− cE(w4
11 − 3)

4π2

∮
fi(z1)

∂

∂z1

{ s(z1)

1 + s(z1)

}
dz1 ·

∮
fj(z2)

∂

∂z2

{ s(z2)

1 + s(z2)

}
dz2

=: J1(fi, fj) + J2(fi, fj)∆, 1 ≤ i, j ≤ k, (A5)

where the integrals are along contours enclosing the support of F c,H . However, the concrete appli-

cations of the CLT are inconvenient, since those parameters in the CLT are expressed through the

integrals on contours that are vague. Therefore, we use another way for calculating conveniently

these parameters. Using the idea employed in Zheng (2012), we can convert all these integrals along

the unit circle by introducing a change of variable

z = 1 + hrξ + hr−1ξ̄ + h2,

where h =
√
c, r > 1 but close to 1, and |ξ| = 1. In Wang and Yao (2013), the integrals in (A4)

and (A5) are written as follows:

I1(fi) = lim
r↓1

1

2πi

∮
|ξ|=1

fi(|1 + hξ|2)

(
ξ

ξ2 − r−2
− 1

ξ

)
dξ, (A6)

I2(fi) =
1

2πi

∮
|ξ|=1

fi(|1 + hξ|2)
1

ξ3
dξ, (A7)

J1(fi, fj) = lim
r↓1
− 1

2π2

∮
|ξ1|=1

∮
|ξ2|=1

fi(|1 + hξ1|2)fj(|1 + hξ2|2)

(ξ1 − rξ2)2
dξ1dξ2, (A8)
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J2(fi, fj) = − 1

4π2

∮
|ξ1|=1

fi(|1 + hξ1|2)

ξ2
1

dξ1

∮
|ξ2|=1

fj(|1 + hξ2|2)

ξ2
2

dξ2. (A9)

Appendix B. Proof of Lemma 2.1

Denote fk(x) = xk, k = 1, 2, 3, 4. Based on the CLT for linear spectral statistics, we note that

the random vector(∫
f1(x)dGn(x),

∫
f2(x)dGn(x),

∫
f3(x)dGn(x),

∫
f4(x)dGn(x)

)′
converges weakly to a normal vector (Xf1 , Xf2 , Xf3 , Xf4)

′ with the mean

m = (I1(f1), I1(f2), I1(f3), I1(f4))′ + ∆(I2(f1), I2(f2), I2(f3), I2(f4))′, (B1)

and the covariance

V = (J1(fi, fj) + J2(fi, fj)∆)1≤i,j≤4. (B2)

From the residue theorem, and (A6) and (A7), we can obtain each term in the entries of the vector

m given by (B1), as follows:

I1(f1) = I2(f1) = 0,

I1(f2) = I2(f2) = c,

I1(f3) = I2(f3) = 3c+ 3c2,

I1(f4) = I2(f4) = 6c+ 17c2 + 6c3.

Similarly, from (A8) and (A9), we get each term in the entries of the matrix V given by (B2), as

follows:

J1(f1, f1) = 2c,

J1(f2, f2) = 4c(2c2 + 5c+ 2),

J1(f3, f3) = 6c(3c4 + 24c3 + 46c2 + 24c+ 3),

J1(f4, f4) = 8c(4c6 + 66c5 + 300c4 + 485c3 + 300c2 + 66c+ 4),

J1(f1, f2) = J1(f2, f1) = 4c(c+ 1),

J1(f1, f3) = J1(f3, f1) = 6c(c2 + 3c+ 1),

J1(f1, f4) = J1(f4, f1) = 8c(c3 + 6c2 + 6c+ 1),

J1(f2, f3) = J1(f3, f2) = 12c(c5 + 5c2 + 5c+ 1),

J1(f2, f4) = J1(f4, f2) = 8c(2c4 + 17c3 + 32c2 + 17c+ 2),

J1(f3, f4) = J1(f4, f3) = 24c(c5 + 12c4 + 37c3 + 37c2 + 12c+ 1),
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J2(f1, f1) = c,

J2(f2, f2) = 4c(c2 + 2c+ 1),

J2(f3, f3) = 9c(c4 + 6c3 + 11c2 + 6c+ 1),

J2(f4, f4) = 16c(c6 + 12c5 + 48c4 + 74c3 + 48c2 + 12c+ 1),

J2(f1, f2) = J2(f2, f1) = 2c(c+ 1),

J2(f1, f3) = J2(f3, f1) = 3c(c2 + 3c+ 1),

J2(f1, f4) = J2(f4, f1) = 4c(c3 + 6c2 + 6c+ 1),

J2(f2, f3) = J2(f3, f2) = 6c(c3 + 4c2 + 4c+ 1),

J2(f2, f4) = J2(f4, f2) = 8c(c4 + 7c3 + 12c2 + 7c+ 1),

J2(f3, f4) = J2(f4, f3) = 12c(c5 + 9c4 + 25c3 + 25c2 + 9c+ 1).

Meanwhile, using the Marčenko–Pastur law given by (A3), we can obtain

β1 =

∫
f1(x)dF cn,Hp(x) = 1,

β2 =

∫
f2(x)dF cn,Hp(x) = 1 + cn,

β3 =

∫
f3(x)dF cn,Hp(x) = 1 + 3cn + c2

n,

β4 =

∫
f4(x)dF cn,Hp(x) = 1 + 6cn + 6c2

n + c3
n.

Appendix C. Proof of Lemma 2.2

Using Lemma 2.1, we have

n(β̂1 − β1, β̂2 − β2, β̂3 − β3, β̂4 − β4)′
D−→ N(m/c,V/c2).

Let u = (x, y, z, w)′. Define a vector function

Gn(u) =


x

τ2(y − cnx2)

τ3(z − 3cnxy + 2c2
nx

3)

τ4

(
w − 4cnxz −

2n2 + 3n− 6

n2 + n+ 2
cny

2 +
10n2 + 12n

n2 + n+ 2
c2
nx

2y − 5n2 + 6n

n2 + n+ 2
c3
nx

4

)

 .
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Obviously, Gn(u) has a continuous partial derivative at b = (β1, β2, β3, β4)′ and the Jacobian

matrix is

Jn(u) =
∂Gn(u)

∂u′
=


1 0 0 0

−2τ2cnx τ2 0 0

τ3(6c2
nx

2 − 3cny) −3τ3cnx τ3 0

τ4(−4cnz + 2a2c
2
nxy + 3a3c

3
nx

3) τ4(−2a1cny + a2c
2
nx

2) −4τ4cnx τ4

 ,

where

a1 =
2n2 + 3n− 6

n2 + n+ 2
, a2 =

10n2 + 12n

n2 + n+ 2
, a3 =

5n2 + 6n

n2 + n+ 2
.

Using the Delta method, we can obtain, as (n, p)→∞,

n(α̂1 − 1, α̂2 − 1, α̂3 − 1, α̂4 − 1)′ + n((1, 1, 1, 1)′ −Gn(b))
D−→ N

(
J(b)m/c, J(b)VJ ′(b)/c2

)
,

Some elementary calculations reveal that

n((1, 1, 1, 1)′ −Gn(b))→ (0, 0, 0, 0)′,

and

J(b)m

c
:= m̃ = ∆ · (0, 1, 3, c+ 6)′,

J(b)VJ ′(b)

c2
:= Ṽ =

1

c


2 4 6 8

4 4(c+ 2) 12(c+ 1) 8(3c+ 2)

6 12(c+ 1) 6(c2 + 6c+ 3) 24(c2 + 3c+ 1)

8 8(3c+ 2) 24(c2 + 3c+ 1) 8(c3 + 12c2 + 18c+ 4)



+
∆

c


1 2 3 4

2 4 6 8

3 6 9 12

4 8 12 16

 .

Therefore,

n(α̂1 − 1, α̂2 − 1, α̂3 − 1, α̂4 − 1)′
D−→ N(m̃, Ṽ).

Appendix D. Proof of Theorem 3.1

Let

f1(t) =
w

y2
− y

x2
, t = (x, y, w)′.
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It is clear that f1(t) has a continuous partial derivative at t0 = (1, 1, 1)′, and

J(t) =
∂f1(t)

∂t
=

(
2y

x3
,−2w

y3
− 1

x2
,

1

y2

)′
.

Note that f(t0) = 0 and J(t0) = (2,−3, 0, 1)′. Using the Delta method, we have

n

(
α̂4

α̂2
2

− α̂2

α̂2
1

− f(t0)

)
D−→ N(J(t0)′m̃, J(t0)′ṼJ(t0)).

By simply calculating, we know

J(t0)′m̃ = (c+ 3)∆,

J(t0)′ṼJ(t0) = 8c2 + 96c+ 36.

Therefore,

nγ1
D−→ N(m1, V1),

where the mean m1 = (c+ 3)∆ and the covariance V1 = 8c2 + 96c+ 36. Thus,

T1 =
nγ1 −m1√

V1

D−→ N(0, 1).

Appendix E. Proof of Theorem 3.2

The proof of this theorem is similar to Theorem 3.1. Let

f2(t) = w − 2z + y, t = (x, y, z, w)′.

It is clear that f2(t) has a continuous partial derivative at t0 = (1, 1, 1, 1)′, and

J(t0) =
∂f2(t)

∂t

∣∣∣
t=t0

= (0, 1,−2, 1)′.

Using the Delta method, we have

nγ2
D−→ N(m2, V2),

with the mean m2 = J(t0)′m̃ = (c+ 1)∆, and the covariance V2 = J(t0)′ṼJ(t0) = 8c2 + 24c+ 4.

Therefore,

T2 =
nγ2 −m2√

V2

D−→ N(0, 1).
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