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The spatio-temporal development of electron
swarms in gases: moment equation analysis and
Hermite polynomial expansion z

Hirotake Sugawara, Y Sakai, H Tagashiray and K Kitamoriy
Division of Electronics and Information Engineering, Hokkaido University, Sapporo

060 Japan

y Department of Electrical Engineering, Hokkaido Institute of Technology, Sapporo

006 Japan

Abstract. Spatio-temporal development of electron swarms in gases is simulated

using a propagator method based on a series of one-dimensional spatial moment

equations. When the moments up to a suécient order are calculated, the spatial

distribution function of electrons, p(x), can be constructed by an expansion technique

using Hermite polynomials and the weights of the Hermite components are represented

in terms of the electron diãusion coeécients. It is found that the higher order Hermite

components tend to zero with time, that is, the normalized form of p(x) tends to a

Gaussian distribution. A time constant of the relaxation is obtained as the ratio of

the second- and third-order diãusion coeécients, D2
3=D

3
L. The validity of an empirical

approximation in time-of-çight experiments that treats p(x) as a Gaussian distribution

is indicated theoretically. It is also found that the diãusion coeécient is deåned as the

derivative of a quantity called the cumulant which quantiåes the degree of deviation

of a statistical distribution from a Gaussian distribution.

1. Introduction

The spatio-temporal development of electron swarms in gases has been analyzed in terms
of a basic measurement model of electron swarm parameters such as the drift velocities
and the diãusion coeécients, which are the most fundamental quantities describing
the dynamics of weakly ionized plasmas and are indispensable parameters in plasma
simulations based on çuid model. A history of early investigations and succeeding
developments of the study on electron swarms were described by Huxley and Crompton
(1974). Among the typical observation models discussed in Tagashira et al (1977), those
which deal both with spatial and with temporal proåles of electron swarm evolution are
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generally called time-of-çight (TOF) experiments. Several investigations of the TOF
model have been presented thereafter.

Fourier transform of the Boltzmann equation was initiated by Parker and Lowke
(1969) as an analytic approach to TOF experiments, and Tagashira et al (1977) derived a
solution based on a Gaussian distribution and its spatial derivatives from the eigenvalues
of the Boltzmann equation. Moment (or kinetic) equation analysis is another technique
by which to derive the TOF parameters (Kitamori et al 1980, Kumar 1981, Skullerud
and Kuhn 1983, Skullerud 1984, Penetrante et al 1985, Robson 1991). Numerically, TOF
parameters were calculated using direct estimation of moment (Kitamori et al 1980),
the path integral method (Skullerud 1984), multi-term approximation of the Boltzmann
equation and Monte Carlo simulation (Penetrante et al 1985), the çight-time integral
method (Ikuta and Murakami 1987, Ikuta et al 1988, Robson 1995, Kumar 1995), and so
forth. On the basis of the TOF method and its modiåed model of arrival time spectra,
which was proposed by Kondo and Tagashira (1990) and Date et al (1992) to follow a
practical method of experimental measurements, Nakamura (1987, 1988), Kurachi and
Nakamura (1991), Hasegawa et al (1996) and Yoshida et al (1996) measured the electron
drift velocities and the diãusion coeécients in N2, CO, CO2, SiH4/Kr, SF6 and CH4.

In TOF experiments, the spatial distribution of electrons along the electric åeld is
often approximated as a Gaussian distribution (Nakamura 1987). The drift velocity
and the diãusion coeécient are derived from the temporal variations of the position
of the center of mass and the variance of the distribution. This approximation
seems empirically natural and appropriate, because a Gaussian distribution is the
analytic solution of the second-order diãusion equation and continuity equation analyses
including the terms up to the second-order gradient of the electron number density are
usually adequate. However, the formal description of electron swarm development in
hydrodynamic regime includes higher order terms of the density gradient (Kumar et
al 1980, Pitchford et al 1981, Kumar 1981, Blevin and Fletcher 1984, Penetrante et al
1985, Robson 1991). In order to validate the approximation, which treats the spatial
distribution as a Gaussian distribution, it is important to evaluate the eãects of the
higher order terms. At the same time, knowledge of the terms would enable us to
extract their inconspicuous but present eãects from practical swarm experiments.

In the present paper, the spatial moments are calculated by a propagator method
(Sugawara et al 1997) based on a series of simultaneous moment equations. An
expansion technique using Hermite polynomials is introduced to derive the spatial
distribution of electrons from the spatial moments. The weights of the Hermite
components, which are represented as functions of the higher order diãusion coeécients,
and their time dependence are evaluated quantitatively in order to determine why
consideration of the terms up to the second order are eãectively suécient in continuity
equation analyses; and why and when the spatial distribution of electrons can be
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approximated as a Gaussian distribution.

2. Calculation method

2.1. Moment equations

The spatio-temporal development of an electron swarm under a uniform electric åeld
E = (Ex; 0; 0) applied in the x direction is considered here. Generally, the term
`moment' indicates both of the spatial and velocity moments; however, it implies the
spatial moment with respect to the x direction in the present paper, hereafter.

The nth-order moment mn is obtained from the electron distribution function
f (r;v; t) deåned in the phase space (r;v) = (x; y; z; vx; vy; vz) as

mn(t) =
Z
r;v

xnf(r;v; t)drdv: (1)

The values of m0, m1 and m2 are related to some basic statistical quantities, namely the
electron population, the centroid (the mean position) and the variance of an electron
swarm.

The moment equations, which represent the temporal variation of mn, are derived
from the Boltzmann equation by integrating it with the weight of xn asZ
r
xn

@
@t
f(r;v; t)dr =

Z
r
xn
(
ÄaÅ@

@v
Ä v Å@

@r
+

†
@
@t

!
coll

)
f (r;v; t)dr (2)

@

@t
mn(v; t) = Ä ax

@

@vx
mn(v; t) + nvxmnÄ1(v; t) +

†
@

@t

!
coll

mn(v; t) (3)

where a = (ax; 0; 0) = (eEx=m; 0; 0) is the acceleration due to E, e and m are
the electronic charge and mass, and the subscript `coll' represents the collision term.
Equation (3) shows that the moment equations have a system of hierarchy and they can
be calculated in velocity space.

2.2. The propagator method

The propagator method is a calculation technique by which to obtain the electron
distribution in phase space. Phase space is divided into small sections called cells and
the electron motion between cells due to drift and collision processes is calculated using
a function called the propagator. Sugawara et al (1997) performed a simultaneous
calculation of zeroth and årst-order moment equations to obtain the centroid drift
velocity of electron swarms. This technique is extended for multi-order moment
equations in the present paper.

In the present model, the moment equations can be calculated in two-dimensional
velocity space (v) = (v;í) due to the rotational symmetry of f(v;í) around vx axis.
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Velocity space (v;í) is divided into cells prepared for every Åèand Åías shown in
ågure 1, in which èis the electron energy corresponding to the electron velocity v.

Since the electrons in a cell dv have a coherent velocity, they move together and
their spatial motion appears as a parallel shift during a short period Åt of collisionless
çight. When the initial values of mn are known, the values after the çight of distance
Åx are obtained as follows:

mn(v; t) =
Z 1
Ä1

xnp(x;v; t)dx (4)

mn(v; t+ Åt) =
Z 1
Ä1

xnp(x;v; t+ Åt)dx =
Z 1
Ä1

xnp(xÄÅx;v; t)dx

=
Z 1
Ä1

(x+ Åx)np(x;v; t)dx =
nX
k=0

nCkÅx
nÄkmk(v; t) (5)

where p is the spatial distribution function of electrons, and nCk represents the binomial
coeécients. This calculation can be carried out leaving p unknown. Here, Åx could
be evaluated as Åx = vxÅt or Åx = Åè=(eEx) even in velocity space. The latter is
adopted in the present calculation in order to satisfy the law of energy conservation in
the drift motion.

A computational cell is prepared for every dv and every order n. Iterative calculation
starts with appropriate initial conditions of mn(v). The drift and collision processes
are alternately calculated every Åt following the development of mn(v). Practical
simulation conditions will be presented in section 4.

2.3. Hermite polynomial expansion

The nth-order Hermite polynomial Hn(X) is the solution of a diãerential equation
Y 00 Ä 2XY 0 + 2nY = 0. The series of Hn(X) can be generated in the following way:

H0(X) = 1; H1(X) =
p

2X; Hn+1(X) =
p

2XHn(X)Ä nHnÄ1(X): (6)

Hn(X) satisåes the following orthogonality:Z 1
Ä1

Hn(X)Hm(X) exp
ê
ÄX2

ë
dX = énmn!

p
ô (7)

where énm is Kronecker's delta which equals unity when n = m; otherwise it is zero.
Here, we expect that the spatial distribution of electrons, p(x), can be expanded

using Hermite components deåned as Hn(X) exp(ÄX2). Skullerud (1984) and Viehland
(1994) applied the Hermite polynomial expansion to the electron velocity distribution.
In the present case, the expansion technique is applied to the spatial distribution p(x),
instead. Conditions which allow the expansion are the orthogonality shown in equation
(7) and a boundary condition that Hn(X) exp(ÄX2) ! 0 when X ! Ü1 similarly
to the expansion of the velocity distribution. Forms of some årst Hn(X) exp(ÄX2) are
shown in ågure 2. The zeroth order components have a Gaussian distribution.
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It is important to note that X must be a dimensionless quantity since Hn(X) is
the sum of diãerent orders of powers of X. In order to describe p(x) using Hn(X), the
following dimensionless quantities are deåned upon introducing the unit length

p
2õ;

namely the length X, the spatial distribution P (X) and the n-th order moment Mn:

X =
xp
2õ

(8)

P (X) = p(x)
dx

dX
=
p

2õp(x) (9)

Mn =
Z 1
Ä1

XnP (X)dX =
mnêp
2õ
ën (10)

where õ is the standard deviation of p(x) deåned as õ2 = (m2=m0)Ä (m1=m0)2, which
is time-dependent. Then P (X) and p(x) are expanded as

P (X) =
1X
n=0

Pn(X) =
1X
n=0

CnHn(X) exp(ÄX2) (11)

p(x) =
1X
n=0

pn(x) =
1p
2õ

1X
n=0

CnHn

†
xp
2õ

!
exp

†
Ä x2

2õ2

!
: (12)

Here, Cn is a constant which represents the weight of the nth-order Hermite component.
The factor

p
2 of the unit length appears so that Cn = 0 (n ï 1) when p(x) itself is a

Gaussian distribution.
Considering equations (7) and (10), Cn is given by the following equation:

Cnn!
p
ô=

Z 1
Ä1

Hn(X)P (X)dX =
nX
k=0

Sn;kMk (13)

Sn;k = (Ä1)(nÄk)=2
êp

2
ë2kÄn n!

f(nÄ k)=2g!k!
(14)

where Sn;k (n ï k ï 0) is the coeécient of Xk in Hn(X), and nÄ k must be an even
integer, otherwise Sn;k = 0. Some årst Cn are obtained as follows:

C0 =
M0

0!
p
ô

=
1

0!
p
ô
m0 (15)

C1 =

p
2M1

1!
p
ô

=
1

1!
p
ô

m1

õ
(16)

C2 =
2M2 ÄM0

2!
p
ô

=
1

2!
p
ô

ím2

õ2
Äm0

ì
(17)

C3 =
2
p

2M3 Ä 3
p

2M1

3!
p
ô

=
1

3!
p
ô

ím3

õ3
Ä 3

m1

õ

ì
(18)

C4 =
4M4 Ä 12M2 + 3M0

4!
p
ô

=
1

4!
p
ô

í
m4

õ4
Ä 6

m2

õ2
+ 3m0

ì
(19)

C5 =
4
p

2M5 Ä 20
p

2M3 + 15
p

2M1

5!
p
ô

=
1

5!
p
ô

ím5

õ5
Ä 10

m3

õ3
+ 15

m1

õ

ì
: (20)
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When mn is represented as the central moment relative to the centroid of p(x),
the fastest convergence with respect to n will be expected. Coordinates can be easily
converted from a laboratory system to the centroid system using equation (5). We
obtain m1 = 0 and õ2 = m2=m0 in the centroid system; therefore, always C1 = C2 = 0.

Note here that the electron motion is calculated by using the moment equations
independently of the Hermite expansion technique, which is applied only to construct
p(x) at a moment based on the instantaneous values of mn, in contrast to the fact
that other conventional expansion techniques using Fourier transform and Legendre
polynomials are applied to describe the electron motion in real space and velocity space.

3. Relation between physical and statistical quantities

3.1. The spatial moments and the diãusion coeécients

An interesting fact is that the normalized weights Cn=m0 of Hermite components of p(x)
are represented in terms of the higher order electron diãusion coeécients Dn mediated
by the spatial moments mn. Dn are deåned as the coeécients of the spatial gradient
terms of the electron number density in the electron continuity equation below:

@

@t
p(x; t) =

†
Ri ÄWr

@

@x
+DL

@2

@x2
ÄD3

@3

@x3
+D4

@4

@x4
ÄÅÅÅ

!
p(x; t) (21)

where Ri is the ionization frequency, Wr is the centroid drift velocity and DL (= D2) is
the second-order longitudinal diãusion coeécient. Dn are derived as shown below from
equation (21) by integrating it with the weight (xÄg)n, where g is the centroid of p(x):

Dn =
1
n!

d
dt

Z 1
Ä1

(xÄ g)n
p(x; t)
m0

dxÄ
nÄ2X
k=2

1
(nÄ k)!

Dk

Z 1
Ä1

(xÄ g)nÄk
p(x; t)
m0

dx (22)

=
1
n!

d
dt
mn

m0
Ä

nÄ2X
k=2

1
(nÄ k)!

Dk
mnÄk
m0

: (23)

The early derivation of Dn presented as equation (5) by Tagashira et al (1977)
includes an extra factor (Ä1)k. However, according to the present veriåcation, this factor
seems unnecessary when the right-hand side of equation (21) originally has alternate
negative signs. A practical diãerence in Dn due to (Ä1)k term appears for n ï 5, thus,
the deånitions of DL, D3 and D4 are common to both equations.

One can rewrite Cn=m0 by appropriately replacing the moments in equations (15){
(20) with Dn based on the results of recursive transformations of Dn using equation
(23).

Cn=m0 are constants for n = 0; 1; 2:

C0

m0
=

1p
ô
;

C1

m0
=

1p
ô

m1

õ
= 0;

C2

m0
=

1

2!
p
ô

m2 Äõ2

õ2
= 0: (24)
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For n = 3; 4; 5, each Cn=m0 is represented by a corresponding Dn respectively

C3

m0
=

3!D3t+m3;0

3!
p
ô(2!DLt+m2;0)3=2

=
î3

3!
p
ôî3=2

2

(25)

C4

m0
=

4!D4t+m4;0

4!
p
ô(2!DLt+m2;0)4=2

=
î4

4!
p
ôî4=2

2

(26)

C5

m0
=

5!D5t+m5;0

5!
p
ô(2!DLt+m2;0)5=2

=
î5

5!
p
ôî5=2

2

(27)

where în = n!Dnt+ mn;0 is obtained from integration of Dn with respect to time and
mn;0 is a constant which appears in the integration.

For n ï 6, additional terms other than în appear in the representation of Cn=m0:

C6

m0
=
î6 + 10î2

3

6!
p
ôî6=2

2

(28)

C7

m0
=
î7 + 35î4î3

7!
p
ôî7=2

2

(29)

C8

m0
=
î8 + 56î5î3 + 35î2

4

8!
p
ôî8=2

2

(30)

C9

m0
=
î9 + 84î6î3 + 126î5î4 + 280î3

3

9!
p
ôî9=2

2

: (31)

The numerators in these equations consist ofîi satisfying i ï 3, the sum of the subscripts
i in a term is n, and any combination of such subscripts appears in the numerators.

Considering that each în is a linear function with respect to t under an assumption
that Dn is a constant in equilibrium, comparison of the orders of t in each pair of
numerator and denominator of Cn=m0 gives a result that Cn=m0 (n ï 3) tend to zero
when t!1. This result indicates that the normalized form of p(x) tends to a Gaussian
distribution.

3.2. The diãusion coeécients and the cumulants

In fact, în is a statistical quantity called the cumulant. The relation between the
electron diãusion coeécients and the cumulants is presented in this subsection.

Introducing a parameter û, the moment generating function M(û) for the moment
mn and the cumulant generating function K(û) for the cumulant în are deåned formally
as follows:

M(û) =
1X
n=0

mn
ûn

n!
=
Z 1
Ä1

exp(ûx)p(x)dx (32)

K(û) =
1X
n=1

în
ûn

n!
= log

M(û)
m0

(33)
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where M(û) has been divided by m0 in equation (33), in order to treat în as normalized
values. It is known that în = 0 (n ï 3) when p(x) is a Gaussian distribution; thus the
cumulants are recognized as quantities representing the degree of deviation of p(x) from
a Gaussian distribution.

A kind of continuity equation of M(û) is obtained as follows by integrating equation
(21) with the weight of exp(ûx):

@
@t
M(û) =

ê
Ri +Wrû+DLû

2 +D3û
3 +ÅÅÅ

ë
M(û) (34)

where the operators (@n=@xn) have been replaced with (Ä1)nûn in n times of partial
integrations. Using the relation M(û) = m0 expfK(û)g derived from equation (33),
equation (34) is rewritten as

Ri +Wrû+DLû
2 +D3û

3 +ÅÅÅ=
@M(û)=@t

M(û)
=

(@=@t)m0 expfK(û)g
m0 expfK(û)g (35)

=
1

m0

dm0

dt
+
@

@t

í
î1û+

1

2!
î2û

2 +
1

3!
î3û

3 +ÅÅÅ
ì
: (36)

A comparison of the coeécients of ûgives the following relation:

Dn =
1

n!

d

dt
în (n ï 2): (37)

Conventionally, Dn have been considered as the derivatives of mn. However, the
physical meaning of the second term in equation (23) has never been explained clearly.
Now Dn have been proven to be the derivatives of the cumulants.

The third- and fourth-order cumulants normalized with respect to the standard
deviation õ, î3=õ3 and î4=õ4, have been recognized to be the statistical quantities
called skewness and kurtosis, respectively, which represent the degrees of asymmetry
and concentration of the form of a distribution function. Eãects of the skewness and the
kurtosis on transport coeécients deåned in real space and velocity space were discussed
in Kumar et al (1980) and Viehland (1994), respectively. Equation (37) represents the
relation of D3 and D4 to the skewness and kurtosis of a spatial distribution explicitly.

3.3. The weights of Hermite components and the cumulants

Now we know what în is. Equations (24){(31) can be derived more analytically.
M(û) is represented using the Hermite components by expanding p(x) as

M(û) =
Z 1
Ä1

exp
êp

2õûX
ë( 1X

n=0

CnHn(X) exp(ÄX2)

)
dX: (38)

=
Z 1
Ä1

exp

†
õ2û2

2

!( 1X
n=0

Hn(X)
(õû)n

n!

)( 1X
n=0

CnHn(X) exp(ÄX2)

)
dX (39)

= exp

†
õ2û2

2

! 1X
n=0

n!
p
ôCn

(õû)n

n!
(40)
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where the quantity exp
êp

2õûX
ë

in equation (38) has been rewritten using the
generating function of Hermite polynomials. Equation (40) becomes

1X
n=0

Cn
m0

(õû)n =
1p
ô

exp

†
Äõ

2û2

2

!
expfK(û)g (41)

=
1p
ô

exp
í
Ä1

2
õ2û2 +î1û+

1

2!
î2û

2 +
1

3!
î3û

3 +ÅÅÅ
ì
: (42)

Again, a comparison of the coeécients of ûgives the relations between Cn and în. We
obtain î1 = 0 and î2 = õ2 since C1 = C2 = 0; therefore

1X
n=0

Cn
m0

(õû)n =
1p
ô

exp

† 1X
i=3

1
i!
îiû

i

!
=

1p
ô

1Y
i=3

8<: 1X
j=0

1
j!

í1
i!
îiû

i
ìj9=; : (43)

It has been analytically shown here why the numerators in equations (28){(31) consist
of îi satisfying i ï 3, why the sum of the subscripts i in a term is n and why any
combination of such subscripts appears in the numerators.

4. Simulation conditions

The development of an electron swarm in SF6 at E=N of 1414 Td (E = 500 V cmÄ1

at 1 Torr, 0éC) is simulated. The number density of gas molecules N at 0éC is
3:54Ç1016 cmÄ3. Here, SF6 is chosen as an example of real gases. SF6 involves varieties
of electron collision processes such as ionization, electron attachment, vibrational and
electronic state excitations as well as elastic collision. The set of the electron collision
cross sections of SF6 is taken from Itoh et al (1993), which has been prepared well so
that one can reproduce experimental data of the diãusion coeécients as well as the
ionization coeécient and the drift velocity. Computationally, SF6 is more complicated
than rare gases because of the collision processes; however, the relaxation of the electron
energy distribution is far faster with it.

It is assumed that the initial electrons start from x = 0 with the Maxwellian velocity
distribution with a mean energy of 1 eV. The moments from m0 up to m9 are calculated
here simultaneously. The cell widths and the time step for the propagator method are
determined to be Åè= 0:2 eV, Åí= ô=90 rad and Åt = 0:1 ps. In order to verify
the results of the propagator method, a Monte Carlo simulation is performed under the
same condition.

5. Results and discussion

5.1. The spatio-temporal development of an electron swarm

Figure 3 is the calculation result of p(x; t) of an electron swarm. Equilibrium values of
the mean energy ñèand other electron swarm parameters obtained by the two methods
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are listed in table 1. As an unavoidable tendency in numerical calculation, the instability
of the calculation results increases with the increase in the order of the electron swarm
parameters. The value of D4 by the Monte Carlo simulation is reliable only in its order
of magnitude, since the statistical çuctuation of the higher order moments was large
even though two million electrons were sampled in the simulation. However, the two
results agree well with each other, that veriåes the principle of the present moment
equations and propagator method.

Table 1. Electron swarm parameters calculated by a Monte Carlo simulation (MC)

and a propagator method (PM) in SF6 at E=N = 1414 Td.

Method ñè Ri Wr DL D3 D4

(eV) (sÄ1) (cm sÄ1) (cm2 sÄ1) (cm3 sÄ1) (cm4 sÄ1)

MC 14:88 514:2Ç 106 68:1Ç 106 0:945Ç 106 5:56Ç 103 Ä16:7

PM 14:89 514:3Ç 106 68:2Ç 106 0:957Ç 106 6:02Ç 103 Ä11:8

Figure 4 shows how p(x) is constructed by the Hermite components. In order to
demonstrate the contribution of the higher order components to p(x), an asymmetric
p(x) has been chosen here. Since an early distribution form has a strong asymmetry,
a part of p(x) is numerically negative. However, this simply indicates that more
components are required to express p(x) precisely when p(x) is asymmetric. Nonetheless,
it has been demonstrated that a primary portrait can be reproduced by some årst few
orders of Hermite components.

5.2. The electron energy distribution

The electron energy distribution, F (è), at t = 4 ns calculated from m0(v;í) is shown
in ågure 5. It has been conårmed that electron swarm parameters deåned in velocity
space, such as the mean energy and the average velocity, had reached their equilibrium
values by this moment.

As indicated by the large population of high-energy electrons in ågure 5, as well
as by the large Ri in table 1, ionization (threshold èion = 15:8 eV) occurs frequently
under this condition. One may suspect that ionization may deform the Gaussian form
of the spatial distribution since high-energy electrons tend to locate themselves within
the leading part of an electron swarm. In order to examine this point, the energy-
resolved spatial distribution of electrons is presented in ågure 6, which is constructed in
the same way as ågure 3 by applying the Hermite expansion technique to the energy-
resolved moments. It is true that the centroid of high energy electrons is shifted forward
from that of the entire electron swarm. However, the electrons with energies higher than
èion are distributed almost throughout the entire range of the swarm, keeping their forms
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close to Gaussian distributions. Ionization does not seem to deform the Gaussian proåle
of p(x).

5.3. The relaxation time

Figure 7 shows the temporal variations of the cumulants î2 (= m2) and î3 (= m3). The
eãect of the årst stage of electron swarm development, relaxation of F (è), appears as
m2;0 and m3;0, and this stage is less than 1 ns. Figure 8 shows the temporal decay of
Cn=m0 (n ï 3), that conårms the convergence of p(x) to a Gaussian distribution. This
process is the second stage.

The order of t in the representations of Cn=m0 gives an index of its speed of
asymptotic decay. This order is denoted as On (< 0) hereafter, and the most signiåcant
order, which is closest to zero, is adopted as On when Cn=m0 has terms with diãerent
orders. We obtain On = [n=3] Ä n=2, where [x] is Gauss' truncation symbol which
represents the greatest integer that does not exceed x. On is closest to zero at n = 3,
for which the speed of decay is slowest. While Än=2 decreases linearly, [n=3] increases
in a stepwise manner for every increment of three in n due to the rule `Cn=m0 consists
of îi (i ï 3)'. On takes maximum values when n is a multiple of three due to the factor
în=33 , and its inçuence appears in ågure 8 as slow decay of C3, C6 and C9.

One can treat p(x) as a Gaussian distribution when the most signiåcant coeécient
C3=m0 is small enough. The lifetime of C3=m0 can be evaluated by a kind of time
constant ú= D2

3=D
3
L derived from the coeécient part of t in C3=m0 by omitting the

constant factors.
q
ú=t ú 1 is a criterion for the approximation. The time dependence

tÄ1=2 of the third-order coeécient agrees with a prediction by Kumar et al (1980, section
2). Here, ú= 0:04 ns under the present condition at 1 Torr and other examples of ú
calculated by Date et al (1992) for Kr at E=N = 200 Td and 500 Td at 1 Torr were
around 0.3 ns.

The relaxation time of an electron swarm depends on E=N and it is in inverse
proportion to the gas pressure at a practical value of E=N . The order of magnitude of
the delay time, converted to that at 1 Torr, for a measurement shot is from 100 ns to 1 ñs
or more (Nakamura 1987, 1988, Yoshida et al 1996, Shishikura et al 1997). Although
the decay of a function of tÄn type is generally much slower than that of an exponential
decay, both of the årst and second stages of the electron swarm development will ånish
by the moment of observation in practical electron swarm experiments.

5.4. Treatment in continuity equation analyses

The eãect of the higher order diãusion coeécients on p(x) diminishes and p(x) tends
to a Gaussian distribution which is the analytic solution of the second-order diãusion
equation with constant transport coeécients. A continuity equation is identical to
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a diãusion equation with constant transport coeécients when F (è) is in equilibrium
everywhere under a uniform electric åeld.

In most of conventional continuity equation analyses, the electron number density
gradient terms up to the second order are calculated and the higher order diãusion
terms other than the usual second-order one are rarely considered. The reason why
one can adopt this treatment without incurring a considerable error seems to be not
simply because the higher order transport coeécients are regarded as being small, but
rather because the eãect of the higher order terms diminishes in any case. Convergence
of p(x) to a Gaussian distribution would be a theoretical explanation for the empirical
approximation.

6. Conclusions

The spatio-temporal development of electron swarms in gases under a uniform electric
åeld was described by simultaneous spatial moment equations. The spatial distribution
of electrons can be constructed using a Hermite polynomial expansion technique based
on the spatial moments calculated by a propagator method. The present calculation
result agreed well with that of a Monte Carlo simulation. The relaxation process of
electron swarms includes two successive stages, namely relaxations of the electron energy
distribution and the form of the spatial distribution.

The weights of the Hermite components are represented in terms of the higher order
electron diãusion coeécients, for which a more substantial deånition as the derivatives of
statistical quantities called cumulants has been given. The representations of the weights
indicate that the normalized form of the spatial distribution of electrons converges to a
Gaussian distribution, as is empirically approximated in time-of-çight experiments. The
speed of convergence of the spatial distribution of electrons to a Gaussian distribution
is dominated primarily by the second- and third-order diãusion coeécients, DL and D3.
A time constant D2

3=D
3
L was derived to evaluate the relaxation time necessary to attain

a Gaussian distribution.
The eãect of higher order diãusion coeécients disappears in long-time solution of

the spatio-temporal development of an electron swarm. This result indicates that a
standard treatment in continuity equation analyses taking into account of the density
gradient terms up to the second order, namely the usual diãusion term, and truncating
the other higher order terms seems reasonable not only on empirical grounds but also
on the theoretical grounds.
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Figure 1. Cells for the calculation of the spatial moments. Two-dimensional velocity
space (v;í) is divided into cells. The cells with full squares, for example, are at the same
velocity. Each cell has the amount of the corresponding order of moment of the electrons
in the cell mn(v;í)dvdí.
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Figure 2. Forms of Hermite components Hn(X) exp(ÄX2) (n = 0; 1; 2; 3).
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Figure 3. The spatio-temporal development of an electron swarm in SF6 at E =
500 V cmÄ1 and p = 1 Torr (E=N = 1414 Td): histogram, Monte Carlo simulation (MC);
and full curve, propagator method (PM). In the MC, electrons are directly sampled at each
position. In contrast, the PM calculates the simultaneous moment equations in velocity
space, then the spatial distribution is constructed using a Hermite expansion technique
based on the calculation results of the spatial moment.
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Figure 4. The composition of the spatial distribution of electrons in SF6 at t = 1 ns
using Hermite components pn(x) calculated by the propagator method. The histogram is
the result of a Monte Carlo simulation.
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Figure 5. The electron energy distribution in SF6 at E=N = 1414 Td: histogram,
Monte Carlo simulation; and full curve, propagator method. Fn(è) is the nth-order term
of the Legendre expansion calculated from m0(v;í).
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Figure 6. The energy-resolved spatial electron distribution p(x;è) in SF6 at E=N =
1414 Td and t = 4 ns calculated by a propagator method. p(x;è) is represented as a
function relative to the centroid of the entire electron swarm. Each full circle represents the
centroid position of p(x;è) at the corresponding electron energy è. High-energy electrons
are shifted forward within the electron swarm; however, the electrons with energies higher
than èion = 15:8 eV are distributed almost throughout the entire range of the swarm,
keeping their forms close to Gaussian distributions.
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Figure 7. Relaxation of the moments mn: full circles, Monte Carlo simulation; and
full curves, propagator method. The central moment mn is equivallent to the cumulant
în for n = 2 and 3. The diãusion coeécients are obtained as DL = (dm2=dt)=2! and
D3 = (dm3=dt)=3!. The inçuence of the relaxation process of the electron swarm appears
as m2;0 and m3;0 which are obtained from the points of interaction between the åtting
lines and the vertical axes. The inçuence of m2;0 and m3;0 is eãectively small in long-time
solution.
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Figure 8. The temporal decays of the weights of Hermite components Cn=m0 of the
spatial electron distribution p(x) in SF6 at E = 500 V cmÄ1 and 1 Torr (E=N = 1414 Td).
It is assumed that p(x) is given as a normalized function relative to the centroid of an
electron swarm; thus, m0 = 1, C0 = ôÄ1=2 and C1 = C2 = 0. The decays of C3, C6 and
C9 are slow due to an eãect of the third order diãusion coeécient D3.


