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We investigate a model of randomly copuled neurons. The elements are FitzHgh-Nagumo
excitable neurons. The interactions between them are the mixture of excitatory and in-
hibitory. When all interactions are excitatory, a rest state is globally stable due to the
excitability of neurons. Increasing the number of inhibitory connections, we observe the
phase transition from the rest state to an oscillatory state. An analytical description for the
critical point of the transition is obtained by means of random matrix theories for an infinite
number of neurons, and the result is in good agreement with numerical simulation.

§1. Introduction

In recent years, many studies of complex networks have been reported.1) How-
ever, the dynamics of excitable elements on complex networks has not yet studied.
In this paper, we study the system of N coupled excitable neurons on random net-
works in order to investigate the effect of network structure on neural firing. The
connections between the neurons are the mixture of excitatory and inhibitory ones.

When all the interactions between neurons are excitatory, the rest state is glob-
ally stable. Increasing the number of inhibitory connections, we observe the phase
transition from the rest state to an oscillatory state. The asymptotic description
of the critical point of the transition is obtained analytically in the limit of infinite
number of neurons. The transition depends on the ratio of inhibitory connections
and a coupling strength for larger networks.

§2. Model

The model we consider is the following randomly coupled FitzHugh-Nagumo
elements.2),3)

u̇i = ui(ui − α)(1 − ui) − vi +
K

N

∑
i�=j

κij(uj − ui) ,

v̇i = τ(ui − γvi) ,

where α, τ, γ are parameters, K is a coupling strength and N is the number of
elements. An adjacency matrix {κij} defines the network structure, i.e., the connec-
tions between the elements. The components of the adjacency matrix are randomly
determined by

κij =
{

1 with probability 1 − p ,
−1 with probability p ,
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where p is the probability that a connection between two elements is inhibitory. Thus,
the interactions between the elements are the mixture of excitatory and inhibitory.
Employing α = 0.01, τ = 0.001 and γ = 1.0, each element is excitable. When
p = 0, i.e., all connections are excitatory, the rest state (ui, vi) = (0, 0) is globally
stable. Increasing p, that is the ratio of the number of inhibitory connections to the
number of all connections, we observe the phase transition from the rest state to the
oscillatory state.

§3. Numerical simulations

In this section, we investigate numerically the transition from the rest state to
the oscillatory state by changing the parameters K and p. For smaller values of K
and p, all neurons soon fall into the rest state. On the other hand, beyond certain
critical parameters, most of the firing patterns for given adjacency matrixes converge
to periodical excitations. In addition, many periodic solutions coexist in the same
parameters, K and p and a fixed network {κi,j}. Depending on the initial conditions,
one of the firing patterns are selected. Typical periodic firing patterns with a fixed
{κi,j} are depicted in Fig. 1.

In order to characterize the transition from the rest state to the oscillatory state
by changing the parameters p and K, we introduce the following normalized norm
as an order parameter:

l2 = lim
T→∞

1
T

√√√√∫ T

0

1
N

N∑
i=1

(u2
i + v2

i )dt .

Increasing coupling strength K with fixed p, we observe that the rest state becomes
unstable and a spontaneous firing appears. The transition point, of course, depends
on the matrix {κi,j} and the system size N . However, the order parameter averaged
over the different adjacent matrix with fixed p, L2 = 〈l2〉κ, converges to a finite value.

Fig. 1. Typical time evolutions of ui. Many firing patterns coexist in the same parameters with

fixed network structure {κi,j}. The parameters are α = 0.01, τ = 0.001, γ = 1.0, p = 0.75,

K = 0.1 and N = 5. Depending on the initial conditions, dynamics falls into a periodic state.
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Fig. 2. The phase transition from the rest state to the oscillatory state. (a) The order parameter

L2 as a function of coupling strength K. The transitions are clearly observed. square: p = 0.75,

star: p = 0.8, rhombic: p = 0.85. (b) The system size dependency of the order parameter

for p = 0.75. The critical points converge to Kc ∼ 0.022, which agrees well with theoretical

prediction for N → ∞. Rhombic: N = 10, star: N = 20, square: N = 50, triangle: N = 100,

and circle: N = 200. (c) The order parameter L2 in (p, K)-parameters space is shown. The

gray region shows L2 < 0.01, in which the rest state is globally stable. Dotted lines show the

critical line obtained by linear stability analysis and p = 1/2, i.e., the asymptotic critical value

for K, N → ∞. N = 200 and the other parameters are the same as in Fig. 1

The K dependency of the order parameter L2 is shown in Fig. 2(a) for different values
of p. It is clearly shown that the transition from the rest state to the oscillatory state
occurs, and that the critical point depends on p. The dependency of the system size
N for the transition is also shown in Fig. 2(b). The critical value of K converges
the value Kc ∼ 0.022 with the increase of the system size. The phase diagram in
(p, K)-parameters space is shown in Fig. 2(c), where the gray region represents that
the rest state is globally stable. The critical line agrees well with the theoretical
prediction K = Kc(p) represented by dotted line, which is discussed in the next
section.

Near the critical parameters, the number of firing neurons is very small and
most of the elements remain the rest state, i.e., the firing is localized. Indeed
ρ = maxi ui/

∑
i ui, which measures the localization of the firing, takes larger value

along the critical line. As the coupling strength K increases with fixed {κi,j}, ρ is
decreased, indicating that many neurons start to fire.

§4. Linear stability analysis

In this section, we briefly describe the result of the linear stability analysis. The
eigenequation of our model is given by

∥∥∥∥(λ + γτ)
[
(λ + α)I − K

N

{
κ

′
i,j

}]
+ τI

∥∥∥∥ = 0 , (4.1)
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where I represents the unit matrix and

{κ′
i,j} =

{
κi,j if i �= j ,
−∑

j κi,j if i = j .

Therefore, the eigenvalues of the above equation are expressed as

λi± = −1
2

{
−(α + γτ − Kξi) ±

√
(α + γτ − Kξi)2 − 4(αγτ + τ − Kξiγτ)

}
, (4.2)

where ξi represents the eigenvalues of {κ′
i,j}. Using the results obtained by Bray

and Rodgers,4) we find that the distribution of eigenvalues of {κ′
i,j} approaches to

δ(2p − 1) in the limit N → ∞. Therefore the Hopf bifurcation occurs at

K(2p − 1) = α + γτ . (4.3)

The critical line Kc(p) = (α + γτ)/(2p − 1) is shown in Fig. 2(c), which is in good
agreement with numerical simulation for N = 200. This analysis also shows that
oscillation does not appear at p ≤ pc = 1/2. It means that the ratio of inhibitory
coupling must be larger than 1/2 so that the spontaneous firing appears.

§5. Conclusion

We have investigated the transition from the rest state (ui, uj) = (0, 0) to the
oscillatory state in randomly coupled neurons. Because each element is excitable,
the rest state is a globally stable solution when all connections between elements are
excitatory. Increasing p, the ratio of the number of inhibitory connections, we have
found numerically that the firing patterns appear beyond a critical value. Numerics
showed that most of the firing patterns are periodic. In addition, these solutions are
multistable, that is, many stable periodic solutions coexist in the same parameters
with fixed adjacent matrix. Using the linear stability analysis, we showed that there
exists the critical value pc = 1/2, below which the rest state is stable for any coupling
strength K. An asymptotic estimation for the critical line in (p, K)-parameters
space is obtained for N → ∞ by means of random matrix theories, which is in good
agreement with numerical simulation.
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