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A simple mean-field idea is applicable to the pattern dynamics of large assemblies of
limit-cycle oscillators with non-local coupling. This is demonstrated by developing a math-
ematical theory for the following two specific examples of pattern dynamics. Firstly, we
discuss propagation of phase waves in noisy oscillatory media, with particular concern with
the existence of a critical condition for persistent propagation of the waves throughout the
medium, and also with the possibility of noise-induced turbulence. Secondly, we discuss the
existence of an exotic class of patterns peculiar to non-local coupling called chimera where
the system is composed of two distinct domains, one coherent and the other incoherent,
separated from each other with sharp boundaries.

§1. Introduction

The mean-field idea is one of the most elementary ideas in statistical mechanics
of many-body systems with strong interaction. The usefulness of this idea seems to
have been realized recently through the fact, e.g., that its advanced form turned out
successful in dealing with frustrated system like spin glasses, providing also a useful
tool for solving various problems of probabilistic information processing.1) Apart
from such direction of application, the simple original idea of the mean field seems
still useful for a better understanding of collective behavior of a variety of cooperative
systems composed of nonlinear non-equilibrium elements such as periodic or non-
periodic self-sustained oscillators. It has in fact been realized, particularly through
the study of synchronization phase transition over the last few decades, that the
same idea works well for some statistical problems of large populations of limit-cycle
oscillators when the coupling is global.2)–4)

The goal of the present paper is to show how the classical mean-field idea finds
application to oscillator systems when the coupling range becomes finite and even far
smaller than the linear dimension of the system. In such cases, the spatial degrees of
freedom involved become so large as to enable us to discuss pattern dynamics. Our
argument will be demonstrated through the following two topics. The first one is
relevant to the general and practically important problem as to how and under what
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conditions phase waves can propagate without decay through random oscillatory
media. We will sketch our previous theory5) with some generalization on the onset
of long-range coherence, i.e., the onset of persistent propagation of waves, in noisy
oscillatory media. This theory may be regarded as a non-local generalization of
the theory on the onset of collective oscillation in globally coupled phase oscillators
with noise proposed earlier.6) Similarly to the case of globally coupled oscillators,
exact critical condition and an asymptotic theory valid near the critical point can be
formulated by virtue of the mean-field idea, which would be hard when the coupling
were local. Unlike the case of global coupling, however, the critical condition now
depends on the wavelength of the phase wave concerned. We shall also argue that
under suitable conditions noise-induced turbulence occurs through the mechanism
that noise changes the effective dynamics of the system in such a way that the
stability of spatially uniform oscillations may become violated.

In the second topic, we will discuss exotic patterns characterized by a coexistence
of coherent and incoherent domains separated from each other with sharp boundaries.
The non-local nature of the coupling is crucial for giving rise to this type of patterns.
The existence of such pattern was first confirmed and explained by Kuramoto and
Battogtokh 7) for a one-dimensional array of phase oscillators, and studied in further
detail by Abrams and Strogatz who also called such composite patterns chimera
states.8) It was found later that chimera states also appear in two-dimensional
spiral waves in reaction-diffusion systems when the systems involves some diffusion-
free components.9) In the present paper, we will review the one- and two-dimensional
chimera states a little more informally and also from a little broader perspective than
before.

§2. Hierarchy of mathematical models
for non-locally coupled oscillators

We will start with globally coupled phase oscillators with sine coupling, namely,
the model proposed by one of the present authors in 1975 as a solvable model for
studying synchronization phase transition.2) Then we will deform the model step
by step in such a manner that a much broader class of oscillator dynamics involving
spatial degrees of freedom may be discussed and analyzed mathematically at the
same level of precision as for the original solvable model. The original model takes
the form

dφi

dt
= ωi −

k

N

N∑
j=1

sin(φi − φj), i = 1, 2, · · ·N. (2.1)

In the arguments which follow, we will mainly be concerned with the oscillators
with identical nature, and therefore drop the suffix i from ωi. Let us first relax the
condition of global coupling by modifying the above equation in the form

dφi

dt
= ω − k

N∑
j=1

Gij sin(φi − φj + α). (2.2)
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Here the radius of the coupling Gij is assumed finite and even much shorter than
the linear size of the system. With this generalization we would have sufficiently
large spatial degrees of freedom to discuss pattern dynamics, not only the collective
motion of the system as a whole. Also, the original sine coupling has been slightly
generalized by inserting a constant α. The system may further be generalized to
include external noise, and this will separately be discussed later.

We will now take a continuum limit by replacing the sum with a spatial integral:

∂

∂t
φ(r, t) = ω − k

∫
dr′G(r − r′) sin(φ(r, t) − φ(r′, t) + α). (2.3)

In taking this limit, we keep the coupling range finite. The last point is crucial,
because in this way the number of oscillators which fall within the coupling range
becomes infinite, precisely as for globally coupled systems. And this enables us to
apply the mean-field theory as an exact theory. The sine-coupled non-local phase
oscillator model thus obtained will be used later to illustrate our theory. Regarding
the spatial integral in the equation above, our understanding is that it does not
necessarily imply that the system is a true continuum, but that it may only mean
that the spatial distribution of the oscillators is sufficiently dense.

It would be interesting to take a few more steps of generalization of our model.
Firstly, we replace the sine function of the phase coupling with a general coupling
function Γ which is a 2π-periodic function of the phase difference between the pair
of interacting oscillators:

∂

∂t
φ(r, t) = ω +

∫
dr′G(r − r′)Γ (φ(r, t) − φ(r′, t)). (2.4)

Furthermore, it is generally known that the form of non-locally coupled phase os-
cillator model obtained in this way can be derived under suitable conditions from a
vector dynamical system model for non-locally coupled oscillators of the form9)

∂

∂t
A(r, t) = F (A(r, t)) + kS(r, t), (2.5)

S(r, t) =
∫

dr′G(r − r′)h(A(r′, t)). (2.6)

The part Ȧ = F appearing in the first equation represents a local limit-cycle oscil-
lator. The local oscillators are commonly under the influence of a field S multiplied
by a coupling parameter k. The S-field is generally space-time dependent, and its
value at a given point r in space actually represents the net force due to the non-
local coupling experienced by the oscillator situated there. Thus, S may be called
the mean field. The method of reduction to be used here for deriving the phase
equation (2·4) is the so-called phase reduction, and the condition under which this
method is applicable is that the coupling between the oscillators and the mean field,
represented by the parameter k, is sufficiently weak. If some external noises are
introduced, which will be done later, they must be weak as well.

We may further argue that the vector model given by Eqs. (2·5) and (2·6) itself
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is a consequence of reduction from a class of reaction-diffusion systems of the form

∂

∂t
A(r, t) = F (A(r, t)) + kS(r, t), (2.7)

τ
∂

∂t
S(r, t) = −S + D∇2S + h(A(r, t)). (2.8)

While the first equation Eq. (2·7) is identical with Eq. (2·5), S is no longer a simple
mean field but it represents an independent dynamical field variable obeying the
second equation Eq. (2·8). The characteristic time scale of S, denoted by τ , has been
inserted for the sake of convenience. It is clear that the model given by Eqs. (2·5)
and (2·6) results from adiabatic elimination of S in the last model by assuming that
τ is sufficiently small. The quantity G in Eq. (2·6) is then the Green’s function of the
Helmholtz differential equation obtained by equating the right-hand side of Eq. (2·8)
to zero. Thus, G decays exponentially at long distances, and the characteristic length
of decay is given by

√
D. This means that if S diffuses infinitely fast, then the

oscillators in the reduced system become globally coupled, while if D is sufficiently
small, then the effective coupling stays practically local. In what follows, a few more
remarks will be given on the last reaction-diffusion system, because this model seems
to have some interesting physical implications.10), 11)

A possible interpretation of the model given by Eqs. (2·7) and (2·8) would be
that the system represents a continuum model of a hypothetical biological cellular
assembly, where each cell is exhibiting oscillatory activity. The cells are not in direct
contact with each other, but their interaction is mediated by an extra chemical with
concentration S which is diffusive. As before, the local dynamics is influenced by
the local concentration of this chemical which itself is produced from the individual
cells.

It is clear that the above reaction-diffusion model must involve at least three
components, because Eq. (2·7) which represents oscillator dynamics already involves
two components or more. A simple example of this model is given by

dX

dt
= f(X,Y ) + kS, (2.9)

dY

dt
= g(X,Y ), (2.10)

τ
∂S

∂t
= −S + D∇2S + X, (2.11)

where

f = ε−1(X − X3 − Y ), (2.12)
g = aX + b. (2.13)

Here the local dynamics is given by the FitzHugh-Nagumo type equation, and the
local coupling between the oscillators and the diffusive field S is simplified to a linear
form. In later sections, we will work with this specific model numerically to confirm
our theory.
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Up to now, we have discussed a hierarchy of mathematical models of coupled
oscillators. These models may appear rather different from each other, but they
may all be describing one identical system; what is different may only be the level
of description. In studying a specific problem of pattern dynamics, it seems often
useful to jump flexibly from one level of description to another, because this may
often consolidate the validity of our arguments. In the remaining part of this article,
this attitude will be taken in approaching the two problems announced before.

§3. Onset of long-range coherence in noisy oscillatory media

The first issue to be discussed is the onset of long-range coherence in random
fields of oscillators. The randomness will be introduced below in the form of external
noise rather than frozen randomness, simply because the theory would be far easier
for noise. Consider a noisy version of Eqs. (2·7) and (2·8) obtained by adding a noise
term to Eq. (2·7):

∂

∂t
A(r, t) = F (A(r, t)) + kS(r, t) + ζ(r, t). (3.1)

The noise ζ has been assumed to be white Gaussian and applied independently from
site to site. Throughout the present paper, the time constant τ is assumed to be
relatively small. This means that adiabatic elimination of S from our system is
allowed, and thus the notion of effective coupling range is clear. Under these con-
ditions, one would like to know under what condition phase waves can propagate
through such noisy reaction-diffusion medium. It is naturally expected that waves
would propagate without decay when the noise is sufficiently weak, while this would
be impossible when the noise is too strong. Thus, there should be a critical strength
of noise somewhere in between, and if we want this could be located through numer-
ical simulation.12) Note, however, that such critical condition would depend on the
wavelength of the phase wave under consideration. In particular, we expect that the
critical noise strength would be larger for longer wavelengths because their stability
is usually higher and therefore should be more robust against noise also. The most
stable waves should therefore be uniform waves, which corresponds to uniform os-
cillations of the system as a whole. After all, the onset of persistent propagation of
waves in noisy oscillatory media is closely related to the onset of collective oscillation
in the same media. Thus, if we could formulate a corresponding bifurcation theory,
then we could find a wavenumber-dependent critical condition for wave propaga-
tion. In what follows, a brief sketch will be given on a theory on this type of phase
transition making full use of the mean-field idea.

It would be difficult, however, to apply the mean-field theory directly to our
three-component reaction-diffusion system. Therefore, we will go back to the spirit
of reduction described in the previous section, and take the two reduction steps by
which Eqs. (2·7) and (2·8) are contracted to the form of Eq. (2·4) via Eqs. (2·5) and
(2·6). Since the external noise can easily be incorporated into these reduction steps,
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we obtain the following non-locally coupled phase model with noise.

∂

∂t
φ(r, t) = ω +

∫
dr′G(r − r′)Γ (φ(r, t) − φ(r′, t)) + ξ(r, t), (3.2)

where the noise ξ is again Gaussian and delta-correlated in space and time, i.e.,

〈ξ(r, t)〉 = 0, 〈ξ(r, t)ξ(r′, t)〉 = 2γδ(r − r′)δ(t − t′). (3.3)

For the limiting case of global coupling, for which the function G is a constant, the
above stochastic phase equation was analyzed long ago.6) Its details are not repeated
here, but the main idea is the following. Since statistical correlation between the
oscillators is absent due to the mean-field nature of the system, our stochastic phase
equation can be transformed to a nonlinear Fokker-Planck equation obeyed by the
phase distribution for a single oscillator. Since this equation involves a mean-field
parameter which itself is a function of one-oscillator phase distributions, what we are
working with is a nonlinear Fokker-Planck equation. This equation of course rep-
resents a deterministic and dissipative dynamical system, and therefore a standard
stability analysis and the center-manifold reduction can be applied to it. In par-
ticular, the trivial constant solution which corresponds to the absence of collective
oscillation becomes unstable and gives way to an oscillating solution when the noise
intensity decreases across a certain threshold. Near the onset of collective oscillation,
a small-amplitude equation is obtained in the conventional form

dA

dt
= (γc − γ + iΩ)A − g|A|2A, (3.4)

where A is a complex amplitude whose modulus is proportional to the amplitude
of the collective oscillation and is also identical with a suitably defined mean field.
The frequency at criticality has been denoted by Ω. The critical value γc of the
noise intensity equals the imaginary part of the first Fourier component of the phase
coupling function Γ , where the Fourier components Γl have been defined by

Γ (ψ) =
∞∑

l=−∞
Γle

ilψ. (3.5)

γc must be positive for the existence of a transition. This is equivalent to the
condition that the coupling is the in-phase type or dΓ (ψ)/dψ|ψ=0 < 0. In terms
of Γl the complex constant g is given by

g =
Γ1(Γ2 + Γ−1)

2=Γ1 − i<Γ1 + iΓ2
. (3.6)

The sign of <g depends on the form of the phase-coupling function Γ (ψ). In what
follows, we will restrict ourselves to the case of positive <g, i.e., the case of super-
critical Hopf bifurcation.

Coming back to the case of nonlocal coupling, the idea remains almost the same
as for the case of global coupling. The small-amplitude equation obtained is also
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very similar,5) except for the appearance of a diffusion term. Thus, we obtain a
complex Ginzburg-Landau equation

dA

dt
= (γc − γ + iΩ)A − g|A|2A + d∇2A, (3.7)

where the complex diffusion constant d is determined, similarly to g, only by the
phase-coupling function through

d = −iΓ1. (3.8)

Note that the original non-locality in coupling has disappeared. This is because
the characteristic wavelength becomes sufficiently longer than the coupling radius
near the critical point, thus allowing to use the diffusion-coupling approximation to
the non-local coupling. As is well known, Eq. (3·7) admits a family of plane wave
solutions, and the conditions for their existence and stability are easy to find. In
this way, our original purpose of finding a wavelength-dependent critical condition
for coherent wave propagation has been achieved.

Such results may not sound very exciting; it may seem that there is little progress
beyond the theory on globally coupled oscillators with noise developed 20 or more
years ago. However, the above space-dependent generalization tells one non-trivial
thing at least. This is the fact associated with the so-called Benjamin-Feir instability,
namely, the instability of the uniform oscillation leading to phase turbulence.6) The
condition for this instability depends on the two complex coefficients d and g, and
is given by

1 +
=d=g

<d<g
< 0. (3.9)

It is clear that the Benjamin-Feir instability condition depends entirely on the nature
of the phase-coupling function. When Eq. (3·9) is satisfied, the uniform oscillation
becomes unstable, and the mean field becomes turbulent. It would therefore be
interesting to examine whether or not this instability condition is satisfied for some
representative forms of the coupling function Γ . For example, one may ask how
about the case of the sine coupling including parameter α. Remember that our
theory is meaningful only for the case of in-phase type coupling, because otherwise
the system would be unable to behave coherently even in the absence of noise. The
condition for the coupling to be in-phase type is given by

|α| < π/2. (3.10)

Under this restriction, it is found that the system still becomes Benjamin-Feir un-
stable provided the condition

tan2 α > 2 (3.11)

is satisfied. Thus, there is a finite range of α given by

0.9553 · · · < |α| <
π

2
, (3.12)

satisfying these two inequalities simultaneously. This type of instability and the re-
sulting turbulence for the mean field could never occur in the original phase equation
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if there is no noise. Therefore, the turbulence of this sort may be called noise-induced
turbulence. Noise-induced turbulence is something quite independent of the small
fluctuations in the mean field directly caused by the random noise. In fact, such
fluctuations should be completely negligible due to the cancellation among a large
number of oscillators within the coupling range, and this is the very basic fact which
the mean-field theory relies upon. Thus, the only possible interpretation for our
noise-induced turbulence is that the noise changes effective deterministic dynamics
in such a way that the condition for the occurrence of spatio-temporal chaos becomes
satisfied.

Incidentally, we will make a Benjamin-Feir stability test for another form of the
phase coupling function of some practical interest, namely, the coupling function cor-
responding to the so-called leaky integrate-and-fire neural oscillators with pulsatile
coupling. In this model,13) each oscillator is described with only one variable u. This
quantity is governed by the equation u̇ = a− u (a > 1) supplemented with an extra
dynamical rule that each time u attains the level u = 1, then it is immediately reset
to the zero value where its evolution is restarted. Thus, the oscillation pattern of u
is simply given by a repetition of exponential decays toward the level u = a within
the interval 0 ≤ u ≤ 1. Note that the natural frequency ω of this oscillator is given
by

ω =
2π

| ln(1 − a−1)|
. (3.13)

Let such oscillators be coupled mutually. Consider a coupled pair of such oscillators
and name them oscillator A and oscillator B. In a simplest model, oscillator A is
assumed to receive a signal from oscillator B in the form of a delta pulse which
occurs precisely at the moment of resetting of oscillator B. By omitting the details,
it is known that, under the condition of sufficiently weak coupling, the dynamics of
u can be transformed to the standard form of the phase dynamics14)

dφ

dt
= ω + Γ (φ − φ′), (3.14)

where the phase variable φ is defined by a certain nonlinear transformation of u.
The phase-coupling function Γ (φ) is simply given by an exponential function in the
interval 0 ≤ φ < 2π. Since Γ is a 2π-periodic function, it has a discontinuity at φ = 0
or 2π. Many of such oscillators are now coupled non-locally and symmetrically, and
weak noise is added. We then apply the mean-field theory and the center-manifold
reduction such as described above, and examine the Benjamin-Feir criterion. The
condition for the Benjamin-Feir instability in this particular case turns out extremely
simple, and is determined only by the natural frequency:

ω <
√

2. (3.15)

In terms of a, this condition is expressed as

1 < a < (1 − e−
√

2π)−1 = 1.0119 · · · . (3.16)

Thus the possibility of turbulence is limited to an extremely small region of a. How-
ever, the above argument assumes the coupling through delta pulses. More generally,
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Fig. 1. Numerical results obtained from Eq. (4·1) with 512 oscillators over the unit length with

periodic boundary conditions. Parameter values are α = 1.457 and κ = 4.0. (a) Instantaneous

spatial distribution of the phases. (b) Distribution of the actual frequencies ω̄ of the oscillators,

where ω̄ is defined by a long-time average.

the coupling is often modeled with the so-called α-function with a finite width which
gives rise to an effect similar to introducing time delay in coupling. Although no
details are shown here, the corresponding phase coupling function is so changed as
to make the stability of the complete phase synchronization of the mean field low-
ered. This conclusion seems consistent with our knowledge that introducing delay
in coupling generally favors the instability of phase-synchronized states in noise-free
systems.

§4. Chimera states

We will proceed to the second topic which is the chimera state in no-locally cou-
pled systems. The existence of this peculiar state was first noticed by Battogtokh15)

while doing a numerical analysis of a simple non-locally coupled phase oscillator
model of the form

∂

∂t
φ(x, t) = ω − K

∫
dx′G(x − x′) sin(φ(x, t) − φ(x′, t) + α) (4.1)

with G(x) = exp(−κ|x|). He found the following. Under a certain condition, the
system produces a set of numerical data as shown in Fig. 1. In the numerical sim-
ulation, the above continuum model was replaced with a densely distributed array
of oscillators over an interval of unit length with periodic boundary conditions, and
the coupling range κ−1 was set to 0.25. The system is Benjamin-Feir stable, that is,
a uniform phase pattern which is running upward with a constant velocity is stable.
However, under different initial conditions, a phase pattern as displayed in Fig. 1(a)
appears, and once created such a pattern persists indefinitely. The pattern looks al-
most stationary except for a steady drift. Here the term stationary has been used in
a statistical sense, because in the central domain of the system the actual frequencies
of the oscillators are distributed, and therefore they are running independently with
their respective velocities. How the actual frequencies are distributed is shown in
Fig. 1(b). The distribution of the frequencies itself is quite systematic. The quantity
ω̄ represents a long-time average of the instantaneous frequencies of the individual
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Fig. 2. (a) Spatial profile of a long-time of the order-parameter amplitude R(r), showing that the

inner domain satisfying R < Rc corresponds to phase randomized oscillators. (b) Spatial profile

of a long-time average of the order-parameter phase. Parameter conditions are the same as in

Fig. 1.

oscillators. In contrast to the large central domain, the oscillators near the bound-
aries have identical frequencies, which means that they are mutually synchronized
there.

At first, we were puzzled with such patterns, and could not figure out their
origin. Some time after, however, the following was noticed. Similarly to what we
usually do for globally coupled oscillators, one may define a complex order parameter
with modulus R and phase Θ through

R(x, t)eiΘ(x,t) ≡
∫

dx′G(x − x′)eiφ(x′,t), (4.2)

that is, the order parameter is given by a spatial average of the quantity exp(iφ)
weighted by the coupling strength G in the convolution form. Thus, this complex
order parameter may also be called the mean field, the one experienced at the spatial
point x. In terms of R and Θ, our phase equation can be re-expressed in the form

∂

∂t
φ(x, t) = ω − R(x, t) sin(φ(x, t) − Θ(x, t) + α). (4.3)

Note that the equation above has a form of a single oscillator dynamics under external
forcing, although the forcing comes actually from the mean field. Depending on the
amplitude R of the forcing, the oscillator may or may not be synchronized with it.
Thus, what we want to know next is how the spatial pattern of R looks. This is easily
computed numerically and the result is shown in Fig. 2(a). We see that R is given
by a symmetric curve with a single minimum at the center. Since the dot pattern of
the phases of the oscillators is stationary (though only statistically as noted above),
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the spatial profile of R should also be stationary. The spatial profile of the mean
field phase Θ, which is shown in Fig. 2(b), is also stationary except that it is rigidly
drifting upward at a constant speed Ω or the frequency of the collective oscillation.
It would therefore be convenient to separate Θ into two parts, i.e., the stationary
part Θ0(x) and Ωt as

Θ(x, t) = Θ0(x) + Ωt. (4.4)

Coming back to the pattern of R, we see that it is smaller toward the center of the
system, which means that the oscillators there are likely to fail to synchronize with
the mean-field motion. This implies at the same time that mutual synchronization
may also be broken there. In contrast, near the boundaries, the forcing amplitude
seems larger enough for the oscillators to be synchronous and behave coherently.
There should be a critical forcing amplitude Rc which defines the boundary between
coherence and incoherence. Thus, the next question is how such qualitative interpre-
tation can be formulated in a mathematical form and how it is possible to determine
the mean field pattern in a self-consistent manner. As we see below, this can be
answered almost in parallel with Kuramoto’s 1975 theory of synchronization tran-
sition where also the whole population consisted of two subpopulations, namely, a
coherent subpopulation and an incoherent subpopulation.

The outline of the theory is the following.7) The set of equations to start with
are Eqs. (4·3) and (4·2) or, with the use of Eq. (4·4),

∂

∂t
φ(x, t) = ω − R(x, t) sin(φ (x, t) − Θ0(x) − Ωt + α) , (4.5)

R(x, t)ei(Θ0(x)+Ωt) ≡
∫

dx′G(x − x′)eiφ(x′,t). (4.6)

It would be more convenient to eliminate the explicit time-dependence appearing in
the above equations through Ωt. Thus, we work with a new phase variable ψ defined
in a frame of reference co-moving with the mean field phase, i.e.,

ψ(x, t) = φ(x, t) − Ωt, (4.7)

and rewrite Eqs. (4·5) and (4·6) as

∂

∂t
ψ(x, t) = ω − Ω − R(x, t) sin(ψ(x, t) − Θ0(x) + α), (4.8)

R(x, t)eiΘ0(x) ≡
∫

dx′G(x − x′)eiψ(x′,t). (4.9)

In the above representation, if the solution ψ turns out constant in time, then it is
implied that the corresponding oscillator is synchronized with the mean field motion,
while if ψ drifts, then the oscillator fails to synchronize. Thus, what should be done
next is to solve Eq. (4·8) for the individual oscillators as a function of the mean field,
which is easy, and then substitute these solutions into Eq. (4·9). In this way, the
mean field should be expressed in terms of the mean field itself.

It is clear that the solution of Eq. (4·8) may differ qualitatively depending on
the value of R. If R(x) is greater than the critical value |ω − Ω| at a given spatial



138 Y. Kuramoto, S. Shima, D. Battogtokh and Y. Shiogai

point x, then we have a stable fixed point, implying that the oscillator there is in a
synchronized state. In contrast, if R(x) is below this critical value, then we have a
drifting solution, implying that the corresponding oscillator is unable to synchronize.
In deriving a self-consistency equation for the mean field, it is therefore convenient
to restrict the unknown function R(x) to a class of symmetric functions with a
single minimum, by taking advantage of the facts suggested from the numerical
simulation. It is also assumed that the curve of R(x) crosses the level of its critical
value at x = ±xc, by which the boundaries between coherence and incoherence
are defined. Correspondingly, the spatial integral in Eq. (4·9) defining the mean
field is divided into two domains. For the outer domain, where the oscillators are
synchronized, we substitute the fixed-point solutions ψequil(x), while for the inner
domain we substitute the drifting solutions ψdrift(x, t). Thus,

R(x, t)eiΘ0(x) =
∫
|x′|>xc

dx′G(x − x′)eiψequil(x
′) +

∫
|x′|≤xc

dx′G(x − x′)eiψdrift(x
′,t).

(4.10)
In this way, as was desired, the right-hand side of Eq. (4·9) becomes a functional of
the mean field.

However, there is still a final step which is crucial. This step is necessary to
resolve a seeming contradiction. What looks contradictory is that the drifting so-
lutions have an explicit time-dependence by definition, which are inserted into the
right-hand side of Eq. (4·9), while the left-hand side of the same equation has been
assumed time-independent. How to resolve this seeming dilemma is the following.
The time-dependence of the individual drifting solutions does not necessarily imply
time-dependence of an integral of the effects over all drifting solutions. In fact, the
time-dependence is expected to cancel statistically after integration over infinitely
many drifting solutions. This suggests that we may replace the exponential factor
appearing in the first integral on the right-hand side of Eq. (4·10) with its statistical
average. In calculating the statistical average, we of course need to know the one-
oscillator probability distribution function p(ψ, x). It is clear, almost by definition,
that for a given drifting oscillator, the probability density is inversely proportional
to the drift velocity. Thus, we can use the following expression for p(ψ, x).

p(ψ, x) = C[ω − Ω − R(x) sin(ψ − Θ0(x) + α)]−1, (4.11)

where the right-hand side is proportional to the inverse of the right-hand side of
the phase equation Eq. (4·8), and C is the normalization constant. In this way, we
finally arrive at a functional self-consistency equation

R(x)eiΘ0(x) = H[R(x′), Θ0(x′), α], (4.12)

which however could only be solved numerically. This equation still involves an
unknown parameter Ω, i.e., the collective frequency, and the solution of this equation
exists only for a particular value of Ω. Thus, we are working with a non-linear
eigenvalue problem. This problem can be solved numerically, and the results agree
perfectly with our numerical simulation.7)
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Fig. 3. Spiral pattern obtained from a two-dimensional version of Eq. (4·5) with α = 0.3, and a

blowup of the structure near the core. For details, see Ref. 9).

Recently, Abram and Strogatz carried out a deeper analysis of the same chimera
state.8) While our study was limited to the case of fixed values of the parameters,
chimera states may disappear and reappear when some parameters are changed.
This can be studied through a global bifurcation analysis, which was what these
authors did.

The chimera state we have discussed above seems rather special. Its relevance to
the real-world phenomena may seem questionable, particularly because it is a one-
dimensional pattern and the boundary effects are crucial there. Therefore, it would
be interesting to seek the possibility of chimera states in a more realistic setting, e.g.,
in two-dimensional space with large spatial extension. Within the same model of non-
locally coupled phase oscillators, two-dimensional chimera do exist at least in the
form of rotating spiral waves.9) We know well a possible objection against speaking
of spiral waves in terms of a phase oscillator model. The objection is that spiral
patterns must involve a phase singularity, whereas the phase model presupposes a
well-defined phase everywhere in the system. Our claim is that the phase description
of spiral waves does not imply contradiction once spatial continuity has been lost.
Loss of spatial continuity can actually occur in reaction-diffusion systems if diffusion
is absent for some chemical components involved. We will come back to this issue
later.

In Fig. 3 we see a chimera spiral obtained from the same non-local phase model
as used above except that the spatial dimension is now two.

The picture shows the pattern of the phases, or more precisely, the pattern
of cos φ. There seems nothing unusual as long as we look at the overall pattern.
However, if we look closely into the central part of the pattern, there is something
very strange. We find there a circular domain with a sharp boundary in which the
oscillators are completely randomized in phase. The size of this incoherent domain is
comparable with the size of the spiral core, and their linear dimension is comparable
with the coupling radius. If we look at the pattern in terms of the mean field, and not
in terms of the states of the individual oscillators, then there is nothing anomalous.
This is clear from Fig. 4 where the radial profile R(r) of the mean-field amplitude R
about the center of rotation is shown. There is definitely a phase singularity in the
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Fig. 4. Instantaneous radial profile of the mean field amplitude R about the center of rotation for

the spiral pattern shown in Fig. 3.
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Fig. 5. Spiral pattern obtained from the reaction-diffusion model given by Eqs. (2·9)–(2·13) (left), a

blowup of the structure near the center of rotation (right), and the corresponding phase portrait

projected onto the X-Y plane (bottom). Parameter values are k = 10.0, a = 1.0, b = 0.2, ε = 0.1

and D = 1.0.

mean field. We confirmed that R(r) is isotropic except for a very small anisotropic
distortions due to the boundary effects. The picture of R(r) also implies that near the
center of rotation the mean-field forcing would be too weak to entrain the individual
oscillators, while in the outer domain, where the mean-field forcing is strong, the
condition for entrainment could be satisfied. The situation is thus quite similar to
that of the one-dimensional chimera.

Since the theory of chimera spiral can be formulated completely in parallel with
the case of one-dimensional chimera, we will not give its detailed account. See Ref. 9)
for details. We obtain again a functional self-consistency equation for the mean field,
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Fig. 6. The same as Fig. 5 except that k = 2.0.

and its numerical solution reproduces perfectly the simulation results.
We now come back to the previous question as to whether or not the phase model

can be used in describing spiral waves. Without answering this question directly, we
first show some results of numerical simulation which was carried out for the three-
component reaction-diffusion model given by Eqs. (2·9)–(2·13). Note that diffusion
is absent for the first two components X and Y , and therefore spatial continuity of
their pattern is not guaranteed. The important parameter is the coupling constant k.
For sufficiently strong coupling, e.g., k = 10, spiral pattern is completely normal, as
we see from Fig. 5. There is no sign of incoherence even near the center of rotation.
The corresponding phase portrait is shown in the same figure. This object is actually
suspended in a three-dimensional phase space, but we are looking at its projection
onto the XY plane. The phase portrait shows a well-known feature characteristic to
spiral patterns. That is, it is given by a simply connected object containing a phase
singularity somewhere in it.

In contrast, when the coupling constant becomes smaller, perfect coherence be-
comes impossible. The most fragile part of the pattern in this respect is the center of
rotation from which the oscillators start to behave independently. It seems that pre-
cisely at the onset of individual motion of such oscillators, the corresponding phase
portrait starts to lose its simple connectedness. This is signified by the appearance
of a small hole somewhere in the phase portrait. The size of the hole grows as the
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coupling becomes weaker. Creation of a hole implies that the mapping between
the two-dimensional physical space and the phase plane is no longer homeomorphic,
namely, a neighborhood in the physical space does not always correspond to a neigh-
borhood in the phase space. This is an unmistakable sign of spatial discontinuity of
the pattern.

When the coupling becomes even smaller, the hole in the phase portrait becomes
so large that the latter may look rather like a closed loop (see Fig. 6). The ribbon
forming this loop becomes thinner and thinner, and the shape of the loop comes to
trace approximately the limit-cycle orbit of an isolated oscillator. The situation here
is such that the individual oscillators oscillate with almost full amplitude, implying
that the only relevant variable is the phase. Thus, we should be allowed to use
the phase description, and this fact is consistent with the expected fact that the
phase reduction becomes exact in the weak-coupling limit. Application of the phase
reduction method to our reaction-diffusion model leads, as usual, to a non-locally
coupled phase oscillator model. In this way, we come back to the beginning of the
story. Of course, the phase-coupling function appropriate for the present reaction-
diffusion model is no longer a simple sine function but its form is much more complex,
but this difference would only be secondary to our immediate concern.

§5. Concluding remarks

In relation to the two topics discussed in this paper, there are still a number
of questions to be answered. Two of them would be the following. As for the first
topic, what we studied were noisy systems. It may be wondered whether or not the
case of frozen randomness, especially when the natural frequencies are distributed,
can be treated analytically. The answer is not clear, but we suspect that such a
theory might be possible, e.g., by extending the sophisticated center-manifold re-
duction of Crawford16) developed for globally coupled phase oscillators to non-local
cases. Regarding the second topic, we hope to collect more examples of chimera
patterns. The two examples discussed in this paper represent an ideal case in the
sense that the collective dynamics is simply time-periodic. There should exist more
general chimera states exhibiting complex collective dynamics for which the bound-
aries between coherence and incoherence would be unsteady and therefore more or
less obscured.

Although analytically solvable examples may be limited in each topic, the mean-
field picture itself, namely the one-oscillator picture under the control of the internal
field in a self-consistent manner, will remain useful for qualitative understanding of
complex dynamics of large assemblies of coupled oscillators.
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