| Title            | THE EFFECTS OF LEAD ON MECHANICAL AND ELECTRICAL RESPONSES IN SMOOTH MUSCLE OF THE CHICK PROVENTRICULUS |
|------------------|---------------------------------------------------------------------------------------------------------|
| Author(s)        | KUBOTA, Kazufumi                                                                                        |
| Citation         | Japanese Journal of Veterinary Research, 40(1), 40-40                                                   |
| Issue Date       | 1992-05-29                                                                                              |
| Doc URL          | http://hdl.handle.net/2115/2373                                                                         |
| Туре             | bulletin (article)                                                                                      |
| File Information | KJ00002377565.pdf                                                                                       |



## THE EFFECTS OF LEAD ON MECHANICAL AND ELECTRICAL RESPONSES IN SMOOTH MUSCLE OF THE CHICK PROVENTRICULUS

## Kazufumi KUBOTA

Department of Pharmacology Faculty of Veterinary Medicine Hokkaido University, Sapporo, 060, JAPAN

- 1. The effects of lead on contractions induced by vagal stimulation (VS), transmural simulation (TMS) and acetylcholine (ACh) were investigated using a vagus nervesmooth muscle preparation isolated from the chick proventriculus.
- 2. The contractions induced by VS (0.5Hz) and ACh (0.18  $\mu$ M) were inhibited by lead at concentrations of over 3  $\mu$ M. The inhibitory effect of lead on VS-induced contractions was larger than that on ACh-induced contraction.
- 3. The frequency-dependent contraction induced by TMS (0.5, 2, 10, 50Hz) was also inhibited by lead.
- 4. Lead (5, 10,  $20 \,\mu\text{M}$ ) inhibited the contraction induced by cumulative application of ACh ( $10^{-8}$  to  $10^{-3}\text{M}$ ). The lower the concetration of ACh was, the greater the inhibitory effect of lead.
- 5. Single TMS (pulse duration time 0.2, 0.5, 1.0msec) induced depolarization and contraction. Spike potentials were superimposed on the depolarization. Lead (50  $\mu$ M) caused inhibitions of the spike potentials and contraction. The inhibitory effect by lead developed much earlier and was greater on the contraction than on the spike potentials.
- 6. ACh in low concentrations such as  $10^{-7}$  and  $10^{-6}$ M failed to change the membrane potentials. The depolarization and contraction induced by  $10^{-4}$ M ACh were insensitive to lead.
- 7. In rat gastric smooth muscle cells, after blockade of K current with Cs, depolarizing pulses produced inward Ca currents, which were abolished by nifedipine  $(1 \mu M)$  and enhanced by BayK8644  $(1 \mu M)$ . Lead  $(5, 50 \mu M)$  inhibited the Ca currents.
- 8. These results suggest that lead has inhibitory effects on the autonomic neurotransmitter, ACh release and contractions of smooth muscle in the chick proventriculus.