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Abstract 

We developed computer codes to synthesize seismograms near a finite fault 
system with the discrete wave-number method. Besides we synthesized seismograms 
in two dimensional space, formulations in three dimension are also provided. The 
discrete wave-number method which regarded circular wave from epicenter as a sum 
of plane waves propagating any direction is useful in introducing a rectangular fault 
source and a stratified medium. 

1. Introduction 

GPS (the Global Positioning System) observation with one-second sampling 

have been recently able to bear to a practical use. If any analytical method of 
GPS data is modified suitably, these data can be used as ultra long-period 
displacement seismograms (Miyazaki et aI, 1997). On the other hand, theoreti­

cal studies for the solutions of a static deformation of DC component have been 
also advanced (e.g., Okada, 1985; 1992)_ Inelastic post seismic behavior will be 
decoupled precisely by proceeding synthetic seismograms with DC component. 
Additional importance of synthetic seismograms near a finite fault system is the 
retrieval of detailed fault motions during large earthquakes. Inversions with 
teleseismic long-period body waves (e.g., Kikuchi and Kanamori, 1996) have 

been used to reproduce features of fault motions. However, these studies have 
determined far-field source-time functions and synthesized seismograms to 
match them with observed waveforms, and they can't sufficiently take into 
consideration the finiteness of a fault system. Related to high-frequency seismic 
wave radiation, it is important to obtain relations between rupture propagation 
and surface displacement. In this study, we formulated seismic waves radiated 
by a finite fault system in a stratified medium by the discrete wavenumber 
method of Bouchon and Aki (1972) and Bouchon (1979), with some examples of 
computations. 
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2. Potentials due to a point-source 

In the Cartesian coordinate system, the displacement vector D can be 
decomposed into a scaler displacement ¢ and a vector potential cP = (iJ;x, iJ;y, iJ;z) 
by 

(1) 

¢ and cP are the solutions of wave equations 

'r72d, _ 1 ;iiJ; \i'2J:. _ 1 (lcP 
v 'f' -« at2' 'f' - (32 at2, (2) 

where a and (J are the compressional and shear wave velocities, respectively. 
When we assume that they have a simple harmonic solution, ¢ and cP can be 
written as the following plane waves, 

¢ = A expCikAx-xo) + iky(y-Yo)+ i))(z-zo)) z>zo, 

¢' = A' exp(ikx(x-xo)+iky(Y-Yo)-i))(z-zo)) z<zo, 

cP = 13 exp(ikAx-xo)+iky(Y-Yo)+iy(z-zo)) z>zo, 

cp' = 13' expCikxCx-xo)+iky(Y-Yo)-iy(z-zo)) z<zo, 

where ))2=k~-k;-k; (Im))>O) and y2=k~-k;-k'; (Imy>O). ka=!!2.. and kp= 
a 

p are the wave-numbers for P and S waves respectively and W = Wr + iWi 

(Wi >0) is the angular frequency. Considering boundary conditions at Z=Zo, 

coefficients A, A', 13, and 13' are obtained. Since seismic waves decrease as 
they go away from plane z= 0 for inhomogeneous waves (i.e., k;+ k; > ka), 1m)) 

(imaginary part of ))) > 0 so as Imy > O. The discrete wave number method used 
in this study represents seismic waves as the sum of these plane waves. Though 
such a plane-wave approximation has some disadvantage in terms of the 
number of integrals, it is useful when we calculate seismic waves radiated from 
a finite fault and affected by the free surface and horizontal interfaces. The 
potentials are represented in the form 

¢(i, t) = (2;')3 1: dkx 1: dky 1: dw 

A(kx, ky; w)exp(ikxz(x - Xo) + iky(Y-Yo)+ i))Jz- ZoJ- iwt), (3) 

and cP(i, t) in a similar manner. 

2.1 Single force 

We shall first derive the expressions for the displacement potentials radiat-
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ed by pulse type point source. We consider the effect of a periodic vertical 

force of amount F exp (ikxx + ikyy) per unit area acting on the plane z= 0, which 
is equivalent to the boundary conditions of traction at z=o ; 

<1zx(Z=+O) = <1ZX(Z=-O), 
<1zy(z=+O) = <1ZY(Z=-O) , 
<1ZZ(Z=+O) + F exp i(kxx + kyy) = <1ZZ(Z=-O). 

Continuity of displacements at z=o is expressed as 

O(z= +0) = O(z= -0). 

Thinking over these boundary conditions and 'ij. ¢=O, we obtain 

AZ=-A'z=~ 
2/lk/' 

B Z - B'z - - ky A _ - F ky 
I - I - r - 2/lk/ r' 

B Z - B'z - kx A _ ~ kx 
2 - 2 - r - 2/lkp

2 r' 
B{ = B;z = 0. 

Then, potentials for the vertical single force F are expressed as. follows; 

¢z = Sg~(~-:~)F (00 (00 exp i(kx(x - xo) + kiy - Yo)+ 1I1z- zol)dkxdky, 
7[ /l p } -oo}-oo 

¢{ = 8 -;~ 2 (00 (OOky exp i(kx(x-xo)+ky(y-yo)+rlz-zol)dkxdky, 
7[ /l p }-oo}-oo r 

¢3Z = 0. 

Applying this manner to the effect of forces directing in the x or y direction, 
we also obtain representation of each potentials. Potentials by a force direct· 
ing in yare 

¢Y = 8 r k 2 (00 (00 k
y 

exp i(kx(x - xo)+ kiy - Yo) + 1I1z- zol)dkxdky, 
7[ /l p } -oo} -00 1I 

¢IY = s~n(;k ~o) (00 (00 exp i(kix - xo)+ ky(y - Yo) + rlz- zol)dkxdky, 
7[ /l p } -oo}-oo 

¢l = 0, 

¢l = 8 -; ~ 2 (00 (00 exp i(kx(x - xo) + kiy - Yo) + rlz- zol)dkxdky, 
7[ /l p }-oo}-oo 

and potentials by a force directing in x are 
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¢/ = s r k 21°O1°O'&' exp i(kx(x- Xo) + ky(y- Yo)+ lJlz- Zoi)dkxdky, 
7r f.1 p -00 -00 lJ 

r/ljX = 0, 

I/J2X = -s~n~zk~o)F 1°01°Oexp i(kx(x- Xo)+ ky(y- yoh rlz-zoi)dkxdky, 
7r f.1 p -00 -00 

2.2 Coupled force 

Next, we consider displacement potentials radiated from a coupled point 
source. To do this, we differentiate potentials obtained in the previous section. 

(See Fig. la.). For a double-couple point source (i.e., shear dislocation) located 

at (xo, Yo, zo), the displacement potentials rjJ and rjJ can be expressed as functions 
of the potentials radiated by the point force F with the seismic moment Mo. 
For instance, considering a right-lateral fault with the strike in the y direction 
(Fig. lb), potentials are obtained by 

rjJ = Mo (orjJy + orjJX) 
F oXo oYo' 

;j = Mo (o;jy + o;jX). 
F oXo oYo 

We represent the above force systems as Myx + Mxy. The general represen­
tations of potentials for Mij are as follows; 

[Potentials of Mxx] 

rjJx = 0, 

rjJy = sgn~z-;- Z;)2Mxx 100100 

ikx exp i(kx(x - Xo) + ky(y - Yo) + rlz- Zoi)dkxdky, 
7r f.1 p -00 -00 

[Potentials of Mxy] 

rjJ = S-2M;:21°01°O ikxky exp i(kx(x- xo)+ky(y- Yo)+ lJlz-zoi)dkxdky, 
7r f.1 p -00 -00 lJ 

rjJx = 0, 

rjJy = sgn~z-;- Z;~Mxy 100100 

iky exp i(kx(x - Xo) + ky(y - Yo) + rlz- Zoi)dkxdky, 
7r f.1 p -00 -00 
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single force 

F6(x - Xo) 

coupled force 

M~6(x -:-:0) 
d:-:o 

________ -- -------7 X 

__ -_-_-_-_...,.._...,.._:-:6-=-=-=--,- - - -7 x 

x = Xo 

y 

x = Xo 

Fig. lao Single force and coupled force. 

x 

y 

Fig. lb. Example of a double couple model. 

[Potentials of Mxz] 

x 

A. - -sgn(z-zo)Mxz f=f= ·k ·(k ( ) + k ( ) + I 
'f' - 8;r2 f.lk/ _= _= 1 x exp 1 x X - X 0 y y - Yo v z 

- zol)dkxdky, 

rPx = 0, 

rPy = 8 ¥xk 21001= ir exp i(kx(x- Xo)+kiy-yo)+ rlz-zol)dkxdky, 
;r f.l p -00-00 

,I. - - sgn(z- Zo)Mxz 100100 

·k ·(k ( ) + k ( ) 'f'z - 8;r2f.lk/ -00 _00 1 yexp 1 x X-Xo y y- Yo 

+ rlz- zo\)dkxdky. 

[Potentials of Myx] 

¢ = 8-2M/:21=1°Oikxky exp i(kix-xo)+kiy-yo)+vlz-zo\)dkxdky, 
7f f.l p -00 -00 v 
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"'x = -sgn(z-zo)Myx ("" ("" 'k '(k ( )+k ( ) 
'f' 87[2fJ.k/ )_"")_",,l x eXP I xX-Xo yy-Yo 

+ rlz- zoi)dkxdky, 
cf;y = 0, 

cf;z = 8 Aty'" 2 (00 ("" ikx
2 

exp i(kx(x - Xo) + ky(y - Yo) + rlz- zoi)dkxdky. 
7[ fJ. p )-00)-"" r 

[Potentials of Myy] 

¢ = 8-2M;2 ("" (""ik/ exp i(kx(x-xo)+ky(y-yo)+vlz-zoi)dkxdky, 
7[ fJ. p )-00)-"" v 

_/, - -sgn(z-zo)Myy ("" (""'k '(k ( )+k( ) 'f'x - 87[2fJ.k/ )_"")_,,,,1 yexp 1 x X-Xo y y-Yo 

+ rlz- Zol)dkxdky, 
cf;y = 0, 

cf;z = 8 -2M; 2 (00 (00 ikxky exp i(kx(x - Xo) + kiy - Yo)+ rlz- zoi)dkxdky. 
7[ fJ. p )-00)-00 r 

[Potentials of Myz] 

'" - -sgn(z-zo)Myz foofoo 'k '(k ( ) + k ( ) + I 
'f' - 87[2 fJ.k/ -00 -00 1 y exp 1 x X - X 0 y y - Yo v z 

- zol)dkxdky, 

cf;x = 8-2M"z2 (00 (OOirexp i(kx(x-xo)+kiY-Yo)+rlz-zoi)dkxdky, 
7[ fJ. p )-00)-00 

cf;y = 0, 

cf;z = sgn~z~ t~Myz (00 (00 ikx exp i(kx(x - Xo) + ky(y - Yo)+ rlz- zoi)dkxdky. 
7[ fJ. p )-00)-00 

[Potentials of Mzy] 

'" - -sgn(z-zo)MzxfOOfoo 'k i(kx(x-xo)+ky(y-yo)+vlz 
'f' - 87[2 fJ.k/ -00 -00 1 x exp 

- zoi)dkxdky, 

cf;x = 8 Atz," 2 ("" (00 ikxky exp i(kx(x - xo) + kiy - Yo)+ rlz- zol)dkxdky, 
7[ fJ. p )-00)-00 r 

cf;y = 8 -2Mz{ 2 J'~'.oof~oo ik} exp i(kx(x - xo) + ky(y - Yo)+ rlz- zol)dkxdky, 
7[ fJ. p r 

cf;z = O. 

[Potentials of Mzy] 

'" - -sgn(z-zo)MZyfOOfoo'k i(kx(x-xo)+ky(y-yo)+vlz 
'f' - 87[2 fJ.k/ -00 -00 1 y exp 

- zol)dkxdky, 
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rpz = o. 
[Potentials of Mzz] 

cP = 8 -2M;; 2 (00 (00 i)) exp i(kx(x- xo)+ ky(y - Yo)+ ))Iz- zol)dkxdky, 
7[ fJ. fi }-oo}-oo 

617 

rpx = sgn~z;-~~Mzz (OOl°Oikxexp i(kx(x-xo)+ky(y-yo)+/Iz-zol)dkxdky, 
7[ fJ. fi )-00 -00 

,I.y = -sgn(z-zo)Mzz 1°01°O'k '(k ( )+k ( ) 
'I' 8 2 k2 z xexpz xX-Xo yy-Yo 

7[ fJ. fi -00 -00 

+ /Iz- zoi)dkxdky, 
rpy = O. 

The moment tensors are related to fault parameters (box 4.4 of Aki and 
Richards (1980» by 

Mxx = - Mo(sin (J cos A sin 2cPs+sin 2(J sin A sin2 cPs), 

Mxy = Mo(sin (J cos A cos 2cPs+ ~ sin 2() sin A sin2cPs), 

= Myx, 

Mxz = - Mo(cos (J cos A cos cPs+cos 2(J sin A sin cPs), 
= Mzx, 

Myy = Mo(sin (J cos A sin 2cPs-sin 2() sin A cos2 cPs), 

Myz - = Mo(cos (J cos A sin cPs-cos 2(J sin A cos cPs), 
= Mzy, 

Mzz = Mo sin 2() sin A. 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

The seismic moment Mo is given by Mo=fJ.DS, where fJ. is the rigidity in the 
medium, S is the area of the displacement discontinuity and D is the average 
slip over the fault. The fault geometry is illustrated in Fig. 2. Rupture front 
propagates in the direction of L with a constant velocity V r . 

3. Potentials due to a finite fault 

Next, we integrate potentials for coupled forces distributed along a fault 
segment to introduce a finite fault source. As shown in Fig. 2, s represents the 
direction of rupture propagating and TJ is the other direction of the fault 

segment, with the reference point (xo, Yo, zo). Using the transformation of 
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Z 
(Depth) 

x X (North) 

y (strike) 

Y (East) 

Fig. 2. Geometry of the fault. L, W, "'s, 0 and A are Length, Width, strike, dip and 
rake of the fault, respectively (after Aki and Richards (1980)). 

coordinate 

~::) 
C32 C33 

(

sin ¢s cos 0 cos A -cos ¢s sin A 
= -cos ¢s cos a cos A-sin A sin ¢s 

-sin a cos A 

sin ¢s cos 0 sin A + cos ¢s cos A 
-cos ¢s cos 0 sin A +sin ¢s cos A 

-sin 0 A 

sin ¢s sin 0 ) 
-cos ¢s sin 0 . 

cos 0 

(10) 

where ¢s, A and 0 represent strike, rake and dip, respectively, we can express a 

posotin on the fault (xo, Yo, zo) as 
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(
X) (Cll C

12 
C13) (T}) (XO) Y = C21 C22 C23 ~ + Yo . 

Z C31 C32 C33 0 Zo 

After the above operation, we integrate potentials as follows; 

lL lwexp i (:,. ~- kx( CllT} + CI2~) - ky( C21 T} + C22~) ± v( C31T} + C32~) )dT}d~. 

Then we can obtain the expressions of potentials radiated from a finite fault (see 
Chin (1992» by 

¢± = 2L:fykj A± exp i(kx(x- xo) + ky(y- Yo)+= v(z- zo», 

. {{exp iW( - Cllkx- C21ky± C31 V)-l} 
(- Cllkx-C21 ky± C31V)i 

exp iL(W/Vr- Cr2kx- C22ky± C32v)-I} 
. (W/Vr- Cl2kx- C22ky± C32V)i 

= Cp ± exp (+=iViZ) 

rpsv± = 2L:fykj Bsv± exp i(kx(x - xo) + ky(y - Yo) += y(z- zo», 

· {exp iW(-Cllkx-C21ky±C31y)-I} 
(- Cllkx- C21 ky± C31 y)i 

· {exp iL(W/Vr-Cr2kx-C22ky±C32y)-I} 
(W/Vr- Cl2kx- C22ky± C32 y)i 

(11) 

= Csv± exp (+= iYiZ) (12) 

rpSH± = 2L:fykj B Sh ± exp i(kx(x- xo)+ ky(y- Yo) += y(z- zo», 

exp iW( - Cllkx- C21 ky± C31y)-I} 
• -Cllkx-C21ky±C31y)i 

{exp iL(W/Vr- Cl2kx- C22ky± C32y)-I} 
• (W/Vr- Cl2kx- C22ky± C32y)i 

= CSH ± exp (+= iYiZ) (13) 

where 

211 211 
kx = Lx' nx , ky = L y ' ny, 

A±= - k'1: Mxx - 2kxky Mxy±2kxMxz- k~ Myy±2kyMyz- vMzz, (14) 
v v v 

B - -+ ki M +- 2kxky M + kx(kj-2k
2
) M -+ k~ M 

n±- k = k D ~ D k » 

- ky(kj-2k
2
) M +kM (15) yk yz- zz, 
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B - kxky M + kx2_k; M +k M + kxky M -k M sh+- --- xx xy- y xz -- yy+ x yz, - y y y 
(16) 

The plus and minus signs in the above equations correspond to upward and 

downward propagating potentials, respectively. In the next section, in order to 

introduce a finite fault buried in a layered medium, we need to consider 
reflection and transmission coefficients in each layer and at a surface. In such 
a case, it is reasonable that P-SV and SH motions are separated by making use 

of the cylindrical symmetry of the medium. For every horizontal wave-number 
pair (kx, ky), let us define a new coordinate system (X', Y', Z') with the X' axis 

oriented from the source to an observer. In the new coordinate, the horizontal 
wave-number vector k=kxx + kyy, where i and yare the unit vectors in the x 
and y directions, respectively (Fig. 3). The displacements in the X and Z 

directions are for P and SV waves, while in the Y direction for SH wave in the 
new coordinate. The potentials decoupled into these two kinds of shear waves 
are then 

,I, _ kx ,I, ky ,I, 
'f'SV - Ii 'f'Y-1i 'f'X, 

rPSH = rPz, 

where k is the absolute value of horizontal wave-number, that is, k 2 = ki+ k;, 

X 

" 
kx • _. _. _. -

" 

X' 
:" 

--~----~----------~Y 

" 

" 

" 

" 

Y' 
Fig. 3. Horizontal wave-number vector R, propagating in the X' direction. 
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and CPsv and CPSH represent the SV and SH displacement potentials, respectively. 

4. Layered structure 

Since the propagator matrix method was introduced in seismology by 
Haskell (1964), several numerical methods for synthetic seismograms in a layer­
ed medium are formulated and developed (e.g., Dunkin, 1965; Fuchs, 1968a; 
Luco and Apsel, 1983). In this study, we use the recursive algorithm of general­

ized transmission and reflection coefficients (called the reflection matrix method) 
introduced by Kennett and Kerry (1979) in the first, later reformulated by Luco 
and Apsel (1983). The relationship between displacement-stress vectors and 

displacement potentials, CPt cP±s~ and CP±sk, in the i_th layer is given in P-SV case 

by 

C) (U;(Z)) = (n N2) cp1~- (17) 
(j ;(z) Iii Ii2 CPt ' 

¢~v+ 

( m 
-iYi ik ",) (n N2 iVi ik ik 

H2) = -2kviJ-l.i 
-IVi 

(18) 
Iii -liJ-l.i 2kviVi -liJ-l.i ' 

liJ-l.i -2kYiJ-l.i liJ-l.i 2kYiJ-l.i 

(19) 

(20) 

Each displacement potential matrix can be decoupled to the following two 
parts; 

(21) 

where E!jz) and E~(z) are, in P-SV case, 

E!jz) = (eXP(iVi(Z- Zi-I)) 0 ) 
o exp(iYi(Z-Zi-I)) , 

(22) 



622 R. Honda and K. Y omogida 

E~(z) = (exp( - ilJOb- Zi)) 0 ) 
exp(-iY;(Z-Zi)) , 

(23) 

and in SH case, 

E~ = exp(iy;(z- Zi-l)) , E~ = exp( - iYi(Z- Z-i)). (24) 

Amplitudes of seismic waves radiated from a source are given, in SV case, 

and in SH case, 

S~(z) = CsH-exp(iYlzl-l), 
S~(z) = CSH+exp( - iYIZI). 

(25) 

(26) 

The coefficients Cp±, Csv± and CSH± are the source potentials derived from 
equations (11)-(16). 

4.1 Modified Reflection and Transmission Coefficients 

The 2 x 2 (1 x 1 in SH case) matrices, R~ and R~, represent the modified 
reflection coefficients for waves incident through the i _ th interface from below 

and above, respectively, as shown in Fig. 4. The terms TJ and TJ represent the 
corresponding modified transmission coefficients. The down-going amplitude 

vector 7J~+1 in the (i + It th layer must be equal to the transmission field TJ7J~ 

ni ni Rj nj Ti ni~l 
zi-l 

= + 
(i_th layer) 

d u u 

a {3. 
1 1 

p. 
1 

z· 

{3 i+l 
1 

a i+l Pi+l 

( i+ I_layer) n i+l 
u ni~l = Ti n i 

d d + Ri n i+l 
u u 

zi+l 

Fig. 4. Modified reflection and transmission coefficients. 
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from the upper i _ th layer plus the reflected field R~7J~+1 from the (i + It th layer, 

as shown in Fig. 4. So for the up-going wave field 7J~, as illustrated in Fig. 4. 
Amplitude vectors are related to reflection and transmission coefficients by 

( 7J~+I) = (TJ m) ( 7J~). 
7J~ R~ T~ 7J~+1 

(27) 

From the continuity of both displacement and stress at each boundary, the 
boundary conditions are given by 

U; = Ui+I, at Z = Z;, 

and 

rJ; = rJ;+I, at Z = Z;, 

Equation (21) can be expanded as, 

IliE/i.z;) 7J~+ II~E~(z;)7j~ = Iii+! E~+I(Z;) 7J~+1 + II~+l E~(Zi) 7J~+!, 
IAEiz;)7JH U2E~(z;)7J~ = IA+ I E~+I(Z;) 7J~+! + If/I E~(z;) 7J~+\ 

(28) 

(29) 

where E~(z;) = E~+I(Z;) = I and I is the identity matrix. The above expressions 

can be rewritten as 

Comparing equation (27) with equation (30), we obtain the expression for 

modified coefficient matrices as (defined by Luco and Apsel, 1983) : 

In the above equations, the modified coefficient matrix is a function of density, 
P-, S-wave velocities and rigidity, and the matrices Eiz;) and E~+!(z;) are 
related to the thicknesses of the i _ th and (i + lUh layer, respectively. There­
fore, the modified reflection and transmission coefficient matrices can be 
calculated for a given horizontal wave-number k, at any (th interfaces, given 
layer parameters such as ai, /3;, f-/.i and thickness hi. We derive the reflection 
coefficient at the free surface. At the free surface, applying the free-stress 
boundary condition, rJI(Z=O)=O, we obtain 

I21E~(z=0) 7J~(0) + I2~E~(z=0) 7J~(0) =0, (32) 

where E~(z=O)=I and the wave field reflected at the surface is, 

7J~ = R~7J~(O). (33) 
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Comparing the above expression with equation (32), we obtain the reflection 
coefficient at the free surface in P-SV case by 

HZ = -(J.A)-IIi2E~(z=O) 

( 

-(2k2_k~I)2+4k2Y!l/1 iv,z, 
Fl e 

- -4klll(2k2- kpi) iv,z, 
Fl e 

(34) 

where Fl =(2k2- kpI)2+4k2/,ll.lj is the Rayleigh function in the first layer, and in 
SH case, 

(35) 

4.2 Generalized Reflection and Transmission Coefficients 

We denote f~, the generalized transmission coefficients, from Chin (1992) 
(same as Luco and Apsel (1983)). Using this coefficient, the total of up-going 
fields in the i _ th layer TJ~ equals the transmitted field from the (i + lUh layer 
denoted by f~TJ~+I. The physical interpretation of the generalized reflection 

and transmission coefficients is illustrated in Fig. 5. Down-going wave field TJ~ 

in this medium can be obtained by multiplying TJ~ by R~-l. R~-l represents the 
generalized reflection coefficient in the (i-lUh interface as follows, 

TJ~ = f~TJ~+1 = f~+l ... fJ- 1 TJ~(ZI-I), 
TJ~ = R~-ITJ~ = R~-lf~f~+l ... fJ-ITJ~(ZI-I) (i=l, 2, ... , l-1). 

(36) 

From equations (27) and (36), we obtain the following recurrence relations: 
f~ = (I - mR~-I)-1 T~, 

R~=R~+TJR~-lf~ (i=I,2, ... ,l-I). 

Similarly, for layers below the source, 

TJ~ = fJ-ITJ~-I= fJ-1 fJ-2 " .. fJTJ~(ZI)' 
TJ~ = R~TJ~ = R~fJ-lfJ-2"". fJTJ~(ZI) (i=N+l,""", l+I), 

(37) 

(38) 

where N indicates the total number of layers above the half-space. Therefore, 

once the downwardly amplitude vector TJ~ZI) at the source layer is determined, 
then after the sequential multiplication of transmission coefficients fJ, we can 
obtain the amplitude vector TJ~ and TJ~ in the i_th medium by 

fJ = (I - R~R~+I)-ITJ, 

R~ = R~+ T~R~+lfJ (i=N,""", I). 
(39) 

Recurring the calculation of equation (37) from the first layer (i = 1) to the (i-It 
th layer, we can obtain generalized reflection and transmission coefficients in 
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Fig. 5. Interpretation of the generalized reflection and transmission coefficients 
(reproduced from Chin, (1992)). 
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each layer above the source. Similarly, R~ (i = N + 1, ... , l) can be obtained 
through the recursive procedure (39). Both 7J~(ZI-l) and 7J!t(ZI) can be derived 
from the wave field in the source layer. In the medium containing the source 
(i = I), the upwardly fields 7J~(ZI-l) can be separated into three terms, namely, the 

up-going source wave fields S~(ZI-l)' the down-going source fields R~S~(ZI) 

reflected at the lower interface Zl, and R~TJ!t(ZI-l)' There is reflected down­
going wave field 7J~= R~-l7J~-l(ZI_l) at Z/. Thus 
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Similarly, 7JJ(ZI) is expressed by 

7JJ(ZI) = S~(ZI) + R~-I S~(ZI-I) + RJ- I RJ7JJ(ZI). 

Finally, the above equations become 

7J~(ZI-I) = (I - RJR~-I)-I[ S~(ZI-I) + RJSJ(ZI)], 
7JJ(ZI) = (I - R~-IRJ)-I[ SJ(ZI) + R~-I S~(ZI-I)], 

(40) 

(41) 

where the source terms SJ(ZI) and S~(ZI-I) have been derived in equations (25) 
and (26). The displacement and stress vectors in the i th medium can be 
calculated by expanding equation (21) as 

( 
Ui(Z») = (JiJEd(Z) 7Jd(Z) + fl:2E~(z) 7J~(z») 
o"/z) IiI Ed(z) 7JdCz) + f2zE~(z) 7J~(z) 

The surface displacements in P-SV case are given by 

( U(z=O) ) I I( ) I( ) I I( ) I W(z=O) = fllEd z=O 7Jd z=O + fl2Eu z=O 7Ju 

= (i~ -iYI) (1 0) I 

ZJ) ik 0 1 7Jd 

and in SH case 

V(Z=O) = f l lEiz=O)7JH fllE~(z=O)7J~ 
= (ik) 7J~+ (ik )exp( iYlzl) 7J~. 

o ) I . 7Ju, 
exp(mzl) 

(42) 

(43) 

(44) 

All the calculations in this section are done in frequency domain. Time-domain 

solutions are obtained by the fast Fourier transformation after obtaining solu· 
tions in frequency domain. 

5. Synthetic Seismograms 

Employing the scheme explained in the previous section, we compare our 

results with those published in previous studies in order to confirm the accuracy 
of our computer codes. 

5.1 Two -Dimensional Half-space 

First, we calculate synthetic seismograms with a two dimensional model, 
radiated from a single line fault whose configuration given in Fig. 6a. The slip 

time function is a step function. The rupture starts in the bottom of the fault 
with rupture velocity of 2 km/s and compressional and shear wave velocities of 
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Fig. 6a. One dimensional fault source. 

Pacoima dam 
8km 

14km 

Fig.6b. Fault plane geometry used for the San Fernando earthquake, with two fault 
planes. 
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the medium are 5.6 km/s and 3.2 km/s, respectively. Computed seismograms 
are shown in Fig. 7. Two pulses radiated from the points of rupture nucleation 
and rupture termination at both ends of the fault are observed. SP indicates an 
evanescent P wave propagating along the free surface (Lay and Wallace, 1995). 

The SP wave have been studied in detail in some papers (e.g., Pekeris and 
Lifson, 1957; Bouchon, 1978). Our results show good agreement with those of 
Bouchon (1979). Next, we try to reproduce the exact solution of Niazy (1973) 

which represents the record at Pacoima dam during the 1972 San Fernando, 
California, earthquake. A considered model is illustrated in Fig. 6b. A rupture 
initiates in the bottom of the fault with constant velocities 2.5 km/s and 1.5 km/ 
s on the lower and the upper segments of the fault. P and S wave velocities are 
same as those in the previous example. A numerical solution solved by 
Bouchon and Aki (1977) is shown at the lower part of Fig. 8, while our results are 
shown at the upper part. In addition to the starting and stopping phases, waves 
propagate from the break point in the middle of two segments are recognized. 
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Fig. 8. Synthetic seismograms of model configured in Fig.6b. 
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Fig. 8 also shows good agreement again between our results and Bouchon's. 
The single difference between our results and Bouchon's is static of DC compo­
nent. This corresponds to the zero frequency. The choice of the artificial 
imaginary part of the angular frequency Wi for the stability of computations 
may be affected because we must apply the filter of exp( - wd) in the final 
process of calculation of time-domain seismograms. The effect of Wi as well as 

other parameters such as 13k should be studied in detail to obtain accurate static 
deformations in further studies. 

5.2 Two-Dimensional Layered Medium 

We use the reflection matrix method, introduced by Kennett and Kerry 
(1979), to calculate wave field in a layered medium. As expressed by equations 
(17) and (19) and shown in Fig. 3, potentials propagating in a layered medium are 
calculated in a new coordinate (X', Y', Z). We can therefore use the same sub­
routine for a 3-D case if calculations in 2-D are successful. To check the 
accuracy of our sub-routine which includes the effect of a layered medium, we 
assume a point source buried in a layered medium. The model configuration is 
shown in Fig. 9. p- and S-wave velocities are 6.0 km/s and 3.5 km/s in the 
upper medium, and are 8.2 km/s and 4.7 km/s in the lower, respectively. 
Synthetic seismograms are shown in Fig. 10. We can recognize P and S waves 
which arrive from the source to the observer directly, followed by phases of P 

and S waves reflected multiply at the free surface and/or the interface of the 
two layers. Travel times of these phases can be explained by those estimated 
by geometrical ray theory, as shown by red and blue broken lines in Fig. 10. It 
is clear that the interaction of a simple surface layer in this example produces 
extreme complexity in seismograms. 

50km 

Fig. 9. A point source buried in layered medium. Density of each medium are 2.8 g/ 
cm3 and 3.3 g/cm3

, respectively. The dip angle is 45 degree. 
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Fig. 10. Synthetic seismograms due to the model illustrated in Fig. 9. Pd and Sd 

indicate direct P and S waves. Subscripts p and m show that waves were 
reflected at upper or lower surface at first, and numbers show how many times 
reflected that waves were. 

6. Conclusions 

We synthesized seismograms in 2-D homogeneous isotropic half-space and 
a layered medium and results have good agreement with those of other 
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researches such as Bouchon (1979) and Chin (1992). But we found a little 
difference of static components. Synthetic seismograms radiated from a point 
dislocation source in a layered medium show direct P and S waves followed by 
multiply reflected P and S waves. As the next step, we must study in detail 

about parameters which relate to static components such as Lx, L y and 11k in 
order to estimate static deformation accurately. In addition, we develop 3-D 
computer codes to calculate more realistic seismograms near a finite fault 
system. 
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