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Abstract 

The periodic motion in a lake, known as the seiche, is studied comparing the 
numerical calculation with the observation. Considering this motion systematically, 
the effect of the lake basin shape on the motion can quantitatively be evaluated. 

The characteristics of the motion are numerically investigated, using the 
two-dimensional model with typical lake shapes which have flat floors to 
evaluate the shore effect and have uneven bottoms to evaluate the bathymetric 
effect. Based on the numerical calculations, obtained are general formulas to 
evaluate the effect of the lake basin shape on the period. Generally, the shoreline 
effect including existence of islands prolongs a uninodal seiche period than that 
calculated in the rectangular lake model, but the bottom topography effect 
shortens that than that calculated using the mean depth. Comparing the periods 
estimated by these formulas with the observed ones in natural lakes, the character­
istics of the basin shape effect become evident systematically regarding the 
periodic motion of lake water. 

The flow patterns accompanying the periodic motion are considered in various 
typical lake shapes. The small irregularity of the lake shore hardly affects the 
motion, while an island or a peninsula changes the flow direction. These lake 
basin effects became clear quantitatively regarding the flow pattern of lake 
water. Considering these results, when the period is obtained by the general 
formulas, the flow pattern will be determined using the same lake rriodel as the 
estimation. 

Affected by the lake basin shape and the Coriolis force, the position of the 
nodal line changes unsteadily with time. However, the changes occur in almost 
the same place, so the position of the nodal line can be determined by a general 
formula. The calculated results approximately agree with the observations and 
the experimental studies by the writer and other investigators. 

Considering the deflecting force of the earth's rotation, the periodic motion 
is hardly affected the period and the flow pattern by it except very large lakes 
such as a few hundred kilometers in length. Therefore, the deflecting flow of lake 
water is mainly controlled by the lake basin shape. 

As a result, it is concluded that the seiche in a lake is not such a simple 
reciprocating motion as having been to date treated for calculations, but is the 
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periodic motion with the complex flow pattern affected by the lake basin shape. 
In other words, it is necessary to consider the factors as having been to date 
neglected for investigating this motion. And the general formulas are successful to 
evaluate the effect of the lake basin shape for various instances. 

1. Introduction 

If, in a lake, water piles up at the one end of it, water mass will flow to 

restore to the former water level. The flow, however, will not lose its energy 
when the surface becomes the flat stage, but will continue pilling water at the 
other end. It will cause a new flow in the opposite direction of the former. 
Thus, the lake water moves periodically, when it sets going by such external 
forces as the wind, the barometric pressure, and the earthquake. A flow 
system in a lake constitutes a periodic motion of water level, and this period 
depends on the dimension of the lake. The stationary oscillations of water 

level are known as seiches. This phenomenon has been recognized since 
early times. Chrystal (1905b) drew up a list of books and memoirs dealing 

with the seiche, extending from 1755 to 1905. And the earlier studies were 
largely summarized by Hutchinson (1957). 

Now, taking x and y horizontal axes such that x is directed towards the 
east, y is directed towards the north. Here, 12 denotes the depth below the 
mean water level at z=O, 'Y) denotes the displacement of water, and u and v 

denote respectively the x and the y components of the flow. Then the 

equation of continuity is 

o(hu) o(hv) 07) 
--+--+-=0. 

ox oy at (1) 

The equations of motion are 

au au au o'Y) 02U 
- +u--+ v-=/v-g- + y--

M ~ ~ ~ ~ 

(2) 
au ov ov 07) 02V 
-+u-+v-=-/u-g- +y-at ox oy oy OZ2 ' 

where f is the parameter of deflecting force of the earth's rotation (Coriolis 
parameter), g is the acceleration of gravity, and v is the eddy viscosity. In the 

simplest case, water flows in the x direction of a rectangular lake with 

constant depth, while the frictional force, the geostrophic froce, and the 
horizontal acceleration are neglected. The differential equations become 
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au (7) 
-=-g-at ox (3) 

h~=-~. ox at (4) 

The ends of the lake are given by x=o and x=L. 
The flow velocity is put in the following, 

. 7(X . 27(t 
u = C SIll --SIll--

L Tl' 
(5) 

where C is the constant speed, and Tl is a period. This equation satisfies 
the conditions of u=O at x=o and x=L. On sUbstituting the equation (5) 

into the equation (4), and integrated, 

Tlh 7(X 27(t 
7) = -- C cos -- cos --

2L L T 1 ' 

It follows from the equations (3), (5), ann (6) that 

2L 
T 1 = Ygh ' 

(6) 

(7) 

which is known as "Merian's formula" for a uninodal seiche. Although the 
basin of a natural lake largely deviates from the rectangular form, the 

period calculated by Merian's formula, using the lake length for L and the 

mean depth for h, approximately agrees with the observed one. 
Many investigators have more elaborately treated the seiches in various 

cross sections of lake basins (e.g. Chrystal, 1904, 1905a, 1905b; Terada, 1906; 
Proudman, 1915; Defant, 1918; Jeffreys, 1925; Lamb, 1932; Hidaka, 1932a, 

1932b, 1936, 1937; Ertel, 1933; Tuboi, 1936; Neumann, 1944a, 1944b; 

Clarke, 1971), some of them were summarized by Defant (1961), but most of 
their treatments were limited to one-dimensional methods or simple lake 
models such as a circular basin and a symmetric longitudinal section. 

Until recently, many investigators have reported the seiches in various 

lakes using numerical calculations (e.g. Imasato, 1971, 1972; Platzman, 1972; 
Kanari, 1974; Kodomari, 1975, 1978; Hamblin, 1976; Rao and Schwab, 1976; 

Schwab and Rao, 1977). The useful information has been got through 
them, but their studies confined themselves to examine the periodic motion for 
particular lakes. The effect of the lake basin shape on this motion was not 

generally evaluated yet. 
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To investigate the motion, the period will be determined. The reason is 

because the period has much information about the motion, moreover, this 
can be observed more easily and exactly than the velocity of the flow. On the 
other hand, the amplitude of the seiche depends on the lake basin shape also 

on the energy that generates the motion, so the amplitude is very variable and 

is not suitable to investigate the motion. 
When the numerical calculation was carried out in a natural lake, it confined 

itself to the particular lake. But various conditions and various lake models 

can easily be chosen to standarize the lake basin effect. For this reason, the 

numerical calculations have been performed, and general formulas for period 

have been sought. The results estimated by the general formulas have 

been compared with the periods obtained by observations, and the periodic 

motion has been considered according to those results. 

In a previous paper (Kodomari, 1976), the island effect on the seiche period 

was investigated. The effect of the lake basin shape on the periodic motion 

will be investigated in this study. 

2. Method 

2.1 Procedure of the numerical calculation 

Since the vertical acceleration IS negligibly small compared with 
the horizontal one, the one-layer model is used in this study. The 

Coriolis force is taken into consideration. The bottom stress and the inertia 

terms which will affect the motion in shallow areas of a lake are incorporated 

into the equations of motion. 

Integrating the equations of (1) and (2), the equations of continuity and 

motion become as follows: 

(8) 

I (9) 
oQy o~ 

- = -g(h+~) - +A ot oy y' 

Q" and Qy are the quantities defined by the equations 
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h 

Q" = J udz = (h+1]) u (10) 
-~ 

h 

Qy = f v dz = (h+1]) V, (11) 
-~ 

and 

T,,, Tbx ( OU
2 

OUV ) 
A,,=~-~+fQ -(h+TJ) -+-

Pw Pw y ax oy (12) 

A = T,y _ ~ _ _ jQ -(h ) ( ouv OV2) 
Y Pw Pw " + 1] ax + a y , (13) 

where T, is the wind stress at the water surface, Tb is the bottom stress, and 

Pw is the density of water (1.0 g/cm3). The surface wind stress is given by 

the equation 

T, = Pa Ya 2 WI WI, 

where Pa is the density of air (0.0012 g/cm3), W is the wind speed over the 

water surface, and Ya 2 is the drag coefficient of air. Ya 2 was given in this 
calculation the same value of 0.0013 after Imasato (1971). Hence, the 
equation becomes in the following, 

T, = 1.56x 10-6 WI WI . (14) 

The bottom stress is written according to Imasato (1971), 

Tb = 2.6X 10-3 VIVi -T" (15) 

where V is the velocity vector of water. 
Carried out the calculation, the wind field over the lake is adopted such 

a simple model as the wind blows uniformly (7 m/sec) during 20 minutes 

in the direction of the longitudinal lake axis. The initial condition is that 

the lake is at rest, namely, 1]=u=v=O everywhere. The normal components 
of the velocity are zero at the shoreline as the boundary condition. The 
derivatives in the equations (8)-(13) have been replaced with the central dif­

ferences individually. 

To determine the seiche period, the spectrum of 1] is calculated by Fourier 

transform of the calculated time series ranged from 300 to 1000 minutes of 

duration in each lake model. 
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2.2 Application of the numerical calculations to natural lakes 

Before the calculations were carried out in lake models, they were done 
in some natural lake models to estimate the effect of the lake basin shape on 
the seiche period. The uninodal seiche is exclusively examined in each lake. 

The periodic motion in Lake Suwa, Nagano Prefecture in Japan, was 
calculated about four cases shown in Fig. 1. In these cases, a mesh interval is 
500 m and a time interval is 5 seconds. The observed period is 20.8 min 
(Tanaka, 1911). The calculated periods are arranged around the observed ODe 
from 20.7 min in the case of the smallest lake area approximation (S-3) to 24.2 
min in that of the largest lake area (S-I). 

Fig. I Calculated areas of Lake Suwa. Calculated period (at point x) is shown under 
the case number. 

Fig. 2 shows the cases of Lake Yamanaka, Yamanashi Prefecture in Japan. 
A mesh interval is 250 m and a time interval is 2 seconds in these cases. In 
this lake, the observed period is 15.61 min (Nakamura and Honda, 1911). The 
calculated results show that the north-eastern part of the lake has the 
effect considerably on the seiche period, and this effect may not be shown in a 
rectangular model of Lake Yamanaka. 

The lake has three basins in the southern part of Lake Towada, Aomori 
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V-1 

>-------i 

1 km 

v- 2 

Fig. 2 Calculated areas of Lake Yamanaka. Calculated period is shown over 
the each lake model. 
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Prefecture in Japan, as shown In Fig. 3. The numerical calculations were 
carried out about two cases with a mesh interval of 1 km and a time interval 

of 5 seconds. The one (Tw-l) was calculated with all the effects of three 
basins, and the other (Tw-2) was done being neglected the effect of N aka-no­

umi (middle of the three basins). The seiche is calculated as the period of 
17.4 min .in the case of Tw-l and 17.5 min in Tw-2. These values agree 
well with the observation of 17.33 min (Honda et aI., 1913). Accordingly, 
it is concluded that the effect of Naka-no-umi on the uninodal seiche is 

negligibly small. 
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Fig. 3 Calculated areas of Lake Towada. 

In Lake Toya, Hokkaido in Japan, the periods of 11.6 and 9.8 min were 
previously obtained by the numerical calculation with a mesh interval of 1 km, 
while the observed periods were 11.0 and 9.0 min (Kodomari, 1978). On a 
mesh interval of 500 m, the calculated periods are 11.1 and 9.1 min. Those 
agree better with the observed ones than the case of 1 km mesh interval. On 
the other hand, the different mesh intervals (500 m and 1 km) gave the same 
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calculated period of the longitudinal seiche in Lake Kutcharo, Hokkaido 
in Japan (Kodomari, 1975). This result, such that the calculated period 

with a certain mesh interval sometimes differs from the value with a 
different mesh interval, is probably attributed to the lake bottom topography. 

Namely, when the lake depth suddenly changes in comparison with a mesh in­

terval, the calculated period may not indicate the suitable value. The fact 
of the difference between calculated periods with various mesh intervals has 

tendency to be happened in such a lake that the depth suddenly changes near 

the lake shore region. 
In the numerical calculations, the seiche periods were changed with given 

lake models. Namely, the way of approximations of the shoreline and the 

lake bottom influences the seiche period. Therefore, it must be estimated 

the effect of the lake basin shape on the seiche period. 

3. Numerical calculations in lake models and the general 
formulas for the seiche period 

The numerical calculations have been carried out in various lake models. 

Table 1 shows the models of lakes. X indicates the longitudinal lake length, 
Y is the transverse one, and Ax is a mesh interval. Time interval is 5 

seconds in the models of M-13 and M-14, and it is 10 seconds in the others. 

The Coriolis parameter is given as O.OOOI/sec. When it is necessary to consider 

Table 1 Models of lakes 

Model X (km) Y (km) .4x (km) 

M-l 15 9 1 
M-2 15 13 1 
M-3 7 7 1 
M-4 15 6 1 
M-5 9 9 1 
M-6 19 7 1 
M-7 23 19 1 
M-8 15 15 1 
M-9 15 7 1 
M-I0 15 4 1 
M-ll 13 9 1 
M-12 11 9 1 
M-13 11. 5 9.5 0.5 
M-14 15.5 14.5 0.5 

X; longitudinal lake length, Y; transverse lake length, 
.4%; mesh interval. 



194 S. Kodomari 

the particular cases of various conditions, other models are used in calculations 

to the comparison. 
Firstly, the longitudinal uninodal seiche is examined. 

3.1 Effect of the shoreline 

To estimate the shoreline effect, the seiche periods were numerically 

calculated using typical lake models with complicated shorelines and 
constant depths of 10 m. These results were compared with the rectangular 
lake model (fundamental model) which had the same length and width as 
the complicated lake models. Some examples are shown in Fig. 4. The 
length of a projection (irregularity of the shoreline) in the direction of Y-axis 
is equivalent to a mesh interval of the model. When the shoreline effect is 

negligible small, T/To is nearly equal to 1.0, and it becomes larger over 1.0 as 
the effect increases. As shown in this figure, when the ratio of Ax to Y is small 
(in the case M-14), the T/To value of 1.02 does not change with c,S/So' When 
the ratio is large (in the case M-I), T/To changes with c,S/So and the period of 
a complicated model is more prolonged than the rectangular model. 

From these results, it is concluded that the effect of the small irregularity 
in the lake shore can be neglected on the seiche period. Next, to estimate the 
effect of the large irregularity in the lake shore on the seiche period, the 
peninsula effect will be considered in typical lake models. 

'/" 

1.2

C
_I:15kmX9km 

: :- ." (4X=lkm) 

1.0 

50 
M-7.23kmxI9km 

(4X=lkm) 
M-13· II.Skmx9.Skm 

,.2

1 1.0 1-. -'o--!".-l~~::""''''''''-:---------

L---~~--~5~----

(dX= O.S km) 

"1 
M -14: IS.S km x ".Skm 

(AX = O.S km) 

loi:. ===========5::0===========~-'--';\0 
c·s/s. 

Fig. 4 Relation between the seiche period and the shoreline. T is a calculated 
period in the complicated lake model, To is a period in a rectangular lake model, 
c shows the number of corners in the lake, 5 shows the area of the complicated 
lake model, and 50 shows the area of the rectangular lake model. 
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3.2 Effect of peninsulas 

Two various lake models, having a peninsula, are shown in Fig. 5. 

In these models, band d indicate the longer distances between the peninsula 
and the lake shore in the X- and V-directions respectively. The same 
relation about the periodic motion is also established in the contrary case 

(b~a or c2:d), because this motion moves back and forth in the lake. 

x 

x(p) r y(p) 

t-+----a---->--!r -- -I-+----
b
------.---!, 

1: £ x(p) 

Iy(p) 

-.:-r-r---J 
d 
! 

x 

b~a.d~c 

y 

y 

Fig. 5 Schematic models of the lake having a peninsula. 

Th~ relation between x(P) and TjTo (in the model M-l) is shown in Fig. 6. 

The period has a maximum at a certain value of x(P), and it increases with 

larger y (P). 
Subsequently, considered was the effect of the peninsula position on the 

period. Fig. 7 shows the relation between the position and the period (in 
the model M-l). The peninsula effect in the middle region of the lake is larger 

than that in the corner of the lake. Because the water mass can not easily 

move in such a narrow region between the lake shore and the peninsula near 
the corner of the lake, the peninsula effect near the corner becomes smaller 
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Fig. 6 Relation between the seiche period and the peninsula size (in the model M-I). 

~T.~ • 

10j 

b _Q 

"_1 

I 
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Fig. 7 Relation between the seiche period and the position of a peninsula (I). Both 
the length and the width of the peninsula are 3 km (in the model M-l). 

101-1 

Y(p)= 3 km 

1.1 T/T·l 
1.0 +-~--.-----~ 

iii 

10 km 
X(p) 

Fig. 8 Relation between the seiche period and the position of a peninsula (II). The 
peninsula exists at a corner in the lake model (in the model M-l). 
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than that in the middle region of the lake. When the peninsula is at a corner of 

a lake, the period changes more complicatedly. Fig. 8 shows an example in 
the model M-l. When x(P) is small, the peninsula affects the periodic 

motion to shorten the lake length, so the period is shortened than a fundamental 

one. When x(P) becomes larger, the water mass flows along this peninsula so 
that the period is more prolonged than the fundamental one. But, when x(P) 
becomes larger still more, the water mass between the lake shore and the 
peninsula becomes hard to move, so the period gradually approaches the 
fundamental one. 

From these facts stated above, considering the corelation by the each 
factor, general formulas are derived in the following. Non-dimensional 

variables are given as follows: 

Xl = x(P)/X , 

Xa = Y/X, 

X4 = (b-a)/X , xs=c/(Y-y(P)) , 

where y(P)* Y. The variables of Xl and x2 are regarding the size of the 

peninsula, X3 is the ratio of the transverse lake length to the longitudinal one, 
and the variables of X4 and X5 are regarding the position of the peninsula. 

Here To denotes the calculated period, the general formulas are given by 

where 

and 

To = T O{1.0+PI(1.0+QI)} 

(when a*O or c*O) 

= TO{1.0+PI(1.0+QI)(1.0+Q2)} 

(when a=O and c=O) , 

To=2X/ V gh 

P" = AT/To 

Q" = AP/PI 

(n = 1,2,3) 

(n= 1,2,3,4) , 

PI = (Xl+X2Xa)(1.0-Xl)/{2(1.0-x2)} 

Ql = -X42_X5 

(16) 

(17) 

(18) 

(19) 

(20) 

The equation (18) is equal to the equation (7). P" is the ratio of a period 

increment (AT) to a fundamental period (To), Q" is the correction term of PI' 
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PI is the term on the peninsula size, and QI and Q2 are the correction terms on 
the position of the peninsula. 

Fig. 9 shows the relation between the periods estimated by the general 
formulas and those obtained by the numerical calculations. The estimated 

values almost agree with the numerically calculated ones. 

T (min.) 

100 

50 

I 
50 

oM -1 

x M - 5 

Tc (min) 

Fig. 9 Comparison between the period estimated by the general formulas (T.) 
and that obtained by the numerical calculation (T). 

In natural lakes, it is considered that the irregularity of the shoreline can 
be expressed as some peninsulas. Here, the numerical calculations are 
carried out with lake models in which there are two or three peninsulas. As a 
result of these calculations, it can be obtained the following conclusions. 
When two peninsulas exist close by each other, such that the length in the y­
direction of the larger one is longer than the distance between them, two 
peninsulas may be considered to be one peninsula which is equal in size to 
two peninsulas put together. When the one is extremely larger than the 
others, it is sufficient to consider only the larger one. When two peninsulas 
face each other in the Y -direction, the variables of x2 and X5 must differently be 
understood, that Y is replaced by Y' which is narrowed by the another 
peninsula. In other cases, it is considered that the effect of the peninsulas 
is expressed as the summation of every ones. Fig. 10 shows the results of 
estimations in lake models having plural peninsulas. The estimated values 
agree well with the numerically calculated ones. Therefore, the general 
formulas can be applied to lake models there are plural peninsulas in. 

Peninsulas in natural lakes are not rectangular shapes. It is necessary 
to consider the varied shapes of peninsulas in the numerical calculations. 
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T/T. 

'.5 

1.0 . . 

I. 0 

I 
,.5 

M-·' 

N. P . 
• : 2 
0: 3 

Te/T. 
Fig. 10 Comparison between the period ratio estimated by the general formulas 

(Tc/To) and that obtained by the numerical calculation (T/To). In these lake 
models (in the model M-l), there are plural peninsulas. Solid circle shows the 
case of two peninsulas, and open circle shows that of three ones. 

M - 1 

T = 80 min T = 80 m in 

C-l I::I~ 
U _____ .u U_~_.U 

M - 1 

"G3JGiJ ,-, b:J G:J 
,-,w~,-,~ 0 

,.............. 
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Fig. 11 Relation between the seiche period 
and the shape of the peninsula (1). T is 
a calculated period. 

,.............. 
o 5 km 

Fig. 12 Relation between the seiche 
period and the shape of the penin­
sula (II). 
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Some examples are shown in Figs. 11 and 12 (in the model M-l), in which 
the left side examples show the rectangular peninsulas and the right side 
ones show the more complex shapes. When a peninsula has a cove in the 
middle part of it (case C-I in Fig. 11), the period does not vary the value 
which is calculated in the model with a rectangular peninsula. The 
physical meaning is considered that the water mass in the cove becomes dead 
water and stagnates during the motion, so there is no effect on the period. 
This phenomenon is seen in Lake Towada (shown in Fig. 3). The estimation in 
this case, therefore, can be made in the same way as the case of the rectangular 
peninsula. When a peninsula has a cove on the side of it (case C-2 in Fig. 11) 
or has a embayment at near the corner of a lake (case C-4 in Fig. 12), the 

period becomes longer than that in the rectangular peninsula model, because 
the reverse flow occurs in the cove or the embayment. In the case of cutting 
off the corner of a peninsula (cases C-3 in Fig. 11 and C-S in Fig. 12), the 
period becomes shorter than that in the rectangular peninsula model. In this 
case, the lake water smoothly flows along that corner. For other special 
cases, the numerical calculations were also performed using various models in 
which there was a triangular peninsula at a corner of the lake. Fig. 13 shows 
the relation between the period ratio (TfTo) and the length of a peninsula in 
the X-direction. The period variance, accompanying the length change of 
the triangular peninsulas, varies with each lake model. Generally, the 
effect of a triangular peninsula is smaller than that of the rectangular one, 

because the lake water smoothly flows along the oblique side of the peninsula. 

T/T. 
1.5 

1.0 

M-l 

o 0 

~:j .' :."' 
1.0~ 

o 5 x(km) 

x (km) 

TiT. M-2 

1.5 

1.0 

10 

T~T~ i M-4 

1.0~ 

o 5 x(km) 

X(km) 

X:R 

o:T 

Fig. 13 Relation between the seiche period and the shape of the peninsula (III). Cross 
shows the case of a rectangular peninsula, open circle indicates that of a triangular 
one, and x is the length of the peninsula in the X-direction. 
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From the facts described above, the general formulas (16) and (17) are 
corrected as follows: The schematic lake model is changed as shown in Fig. 

14. Following non-dimensional variables are obtained, using the new variables 
in this figure. 

X6 = BjA, 

X9 = x(t)jX , 

x7 = (D-C)jY , 

X10 = y(t) jY . 

X8 = (A-B)/X, 

The variables regarding the peninsula shape are x6' x7' and x8' the variables 
regarding the size of a triangular peninsula are X9 and X 10• The correction 
terms affected by the peninsula shape are given in the following, 

Q3 = -(1.0-X6) X7, 

x 

v 

, 
: ... , --A-----> D>C 

I 
I 
I 

B , c/ 
~, , 

1 ___ -

x 

D 
v 

~-----,~----------~ 
'....--' D>C 
, A ' 

x 

y(tT-: 
__ -+ _ -,~, ---------------' 

'<--+' 
'x(t)' 

v 

Fig. 14 Schematic models of the lake having an unsquared peninsula. 
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A term of P a in regard to the size of the triangular peninsula is indicated by 

the equation, 

P a = (xaxu-O.5) XUxIO-xo2(xo-2xa/3) . 

The calculated period is given by 

To = T O{l.O+P1(l.O+Ql)(l.O+Qa)} 

(when a=l=O or C=I=O) 

= T O{l.O+P1(l.O+Ql)(l.O+Q2)+P2} 

(when a=O and c=O) 

= To(l.O+Pa) 

(when a=O and c=O, triangular peninsula). 

(21) 

(22) 

(23) 

Fig. 15 shows the relation between the value of To/To and the value of T/To 
calculated in the model M-l. The estimated periods coincide well with the 
numerically calculated ones. 

2.0 

T/T.(ml 

1.5 

1.0 

1.0 

o 

00 • 

., . 

M -1 

o : N.C. 

X : c . 

1.5 2.0 

1;IT.(c) 

Fig. 15 Comparison between the period ratio estimated by the general formulas 
(ToiTo (c)) and that obtained by the numerical calculation (TITo (m)) (in the 
model M-l). Cross shows the case of a peninsula existing at a corner, and 
open circle shows that in other position. 

The periods in natural lakes are estimated by the general formulas, and 
the results are shown in Fig. 16. The ordinate is the ratio of an observed 

period (Tobs) to a fundamental one (To), and the abscissa is an estimated value 
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using the general formulas (T./To(c)). The periods estimated by the general 

formulas differ consideringly from the observed ones, it is possibly because of 
the calculation using the mean depth regardless of the bottom topography. 

The bottom effect will be evaluated in the latter section. 

r ... /r. 

1.2 

1.0 

0.8 

O. e 

00 

o 

o S 0 

1.0 1.2 1.4 

./T.(C) 

Fig. 16 Comparison between the period ratio estimated by the general formulas 
(T.fTo(c)) and that obtained by the observation (TobsfTo) in the natural lake. 

3.3 Effect of islands 

It is known that m a lake having an island the seiche period becomes 
longer than the case of no island (Kodomari, 1975, 1976). In the previous 

paper (Kodomari, 1976), the general formulas had been obtained. They are 
rewritten using the non-dimensional variables in the preceding section. 

Fig. 17 shows a schematic lake model having an island. The effect of the 

island shape on the seiche period is formularized in the same form as the 

equations PI and Q3 of the peninsula. The equation representative of the 

island location is slightly different from the equation Q1 of the peninsula. Now, 
a non-dimensional variable of Xu regarding the island location is shown in 

the following, 

Xu = (b-a)j(X-x(P)) (where X*x(P)) , 

and a correction term for the island location is given in the following, 

Q4 = -Xn
2

- X 5
2 

x 3 · 
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Then, the equation of the period is 

To = T O{1.0+Pl(1.0+Q4)(1.0+Qa)} (24) 

(when a=l=O and C=I=O) . 

This formula is the same form as the equation (9) in the previous paper 

(Kodomari, 1976), excluding the term of Qa. The equation (24) is applied to 
natural lakes, and the estimated results are shown in Table 2. On comparing 

(T/To)obs with (TjTolca/, there is respectable difference between them, because 
the fundamental period was calculated by Merian's formula assuming that the 
lake had a rectangular shape and a constant depth. Performed already in 

x 

cI 

a prP) b , , y 

b~a.d~c 

Fig. 17 Schematic model of the lake having an island. 

Table 2 Comparison between the ratio of the observed period to the fundamental 
one and the period ratio estimated by the general formulas in the natural 
lake having islands. 

Lake I Tobs(min) I To (min) I Authors I (T/To)obs I (T/To)cal 

Lake Baikal 278 270 Proudman (1953) 1. 03 1. 07 
Biwa-ko 229.8 113** Imasato et al. (1973) 2.03 1.04 
Chiemsee 41 31. 6** Endros (1906a) 1. 30 1. 07 
Lake Erie 863 1008 Platz man and Rao (1964) 0.86 1. 01 
Kawaguchi-ko 22.98 20.1 Nakamura and Honda (1911) 1.14 1. 06 
Kutcharo-ko 30 25.8 Kodomari (1975) 1. 16 1.17 
Lake Lappajarvi 93 86 Simojoki (1961) 1. 08 1.16 
Lake Pyhii.jarvi 101 116 Simojoki (1961) 0.87 1. 02 
Toya-ko 11.0 10.6** Kodomari (1978) 1. 04 1.20 
Lake Vetter 178.99 203** Bergsten (1926) 0.88 1. 05 
Lake Winnipeg 780* 774 Einarsson and Lowe (1968) 1. 01 1. 07 

* Seiche in northern basin ** Calculated by Kodomari 
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the previous paper (Kodomari, 1976), on the calculations including the effect of 
the lake basin shape to a certain extent the differences were smaller than the 

present results in some lakes. 

3.4 Effect oj the bottom topography 

In the preceding sections, the models were supposed with the constant 

depth of 10 m, and the periods in natural lakes were calculated using the mean 

depths. But the estimated periods were little coincident with the observed 
ones. 

Though the mean depth is equal to each of all cases as shown in Fig. 18, the 

seiche periods are different from one another. For instance, when the values 
are used as 10 m, 20 m, and 7.5 km for h, h', and L respectively, the each 
period is 44, 38, and 41 min from the left to the right in this figure respectively. 

The physical meaning is considered that the period varies inversely as the 

velocity of the motion such as formularized in the equation (7), so the region 

being deeper than the mean depth affects the period to shorten it and the 

shallower region prolongs the period. Because the water in narrow deep can 
not easily come out, the narrow deep does not affect too much the periodic 
motion. The water on the shallower region except the longshore region 
moves with the periodic motion, so the shallower region considerably affects 

the seiche period. The seiche period is depended on these effects together. 

:--. ___ ----1I.)h.h'0 
I::, 

! 

:,-, --2L-~: 

Fig. 18 Simple lake models having the same mean depth. 

The numerical calculations were performed in various lake models with 

various bottom topographies, and a general formula was obtained taking 
note of the flat region of the lake floor such as the deep and the shallow 

possessing a certain extent. A schematic lake model is shown in Fig. 19. Non­
dimensional variables are given as follows: 

Yl=X'jX, 

Y3= YjX, 

Y4 = (b' -a')jX , Ys = (d' -c')jY. 
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The variables of Yl and Y2 have regard to the size of the deep (or shallow), 
Ya is the ratio of the transverse lake length to the longitudinal one, and the 
variables of.Y4 and'ys have regard to the location of the deep (or shallow). 

v 

1, 

1 
; .: , : ,: 
:+-o-"':<l:-----Y ~:oof:----b~: 
:' 'I 

': :: , , 

~------x--------~ 

b' ~ , _ a d ' <!" ' , _ c 

Fig. 19 Schematic model of the lake 
with uneven bottom floor. 

T 

50 

(min.) 

o M-1 

• M- 5 

'---...---,----r---...---r- T.· 
50 

(min.) 

Fig. 20 Comparison between the period 
estimated by the general formula (T M') 
and that obtained by the numerical 
calculation (T). 

Indicating the mean depth with hm and the depth of the deep (or shallow) 
with h', an increment of the depth (Ah) is given by 

Ah = (h",-h') YIY2(1.0- .YaY4) (1.0- Y5) , 

and the corrected depth (h*) is given by 

h* = h",-Ah. 

Then the fundamental period is formularized in place of the equation 
(18) in the following, 

(25) 

Fig. 20 shows the relation between the period estimated by the equation 
(25) and that obtained by the numerical calculation using the model with 
uneven bottom floor. The close agreement between them is obtained. 

Table 3 shows the corrected values for the mean depths in natural lakes. 
As a result, it is considered that the value of the mean depth requires 5,.....,15% 
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Table 3 Corrected values of the depth in natural lakes 

Lake 

Ammersee 42.6 4.2 0.10 
Aoki-ko 29.0 2.5 0.09 
Ashi-no-ko 18.8 3.2 0.17 
Lake Baikal 680 26 0.04 
Lake Balaton 3.0 0.0 0.0 
Biwa-ko 41.2 4.3 0.10 
Lake Brienz 174 19 0.11 
Chiemsee 24.5 -2.6 0.11 
Chuzenji-ko 94.6 5.1 0.05 
Lake Constance 100.0 2.5 0.03 
Loch Earn 60.0 1.4 0.02 
Lake Erie 18.2 0.0 0.0 
Lago di Garda 136.1 18.5 0.14 
Lake Geneva 152.7 4.7 0.03 
Goldberger See 2.0 0.1 0.05 
Great Bear Lake 75.4 1.8 0.02 
Green Lake 33.1 4.6 0.14 
Lake Huron 60 4 0.07 
Inawashiro-ko 51.4 4.0 0.08 
Kasumi-ga-ura 4.0 0.3 0.08 
Kawaguchi-ko 9.8 0.1 0.01 
Kizaki-ko 17.9 2.5 0.14 
Kutcharo-ko 28.4 2.8 0.10 
Kuttara-ko 105 10 0.10 
Lake Lappajarvi 7.5 0.0 0.0 
Madiisee 18.7 2.8 0.15 
Lake Mendota 12.1 0.7 0.06 
Lake Michigan 85.3 2.0 0.02 
Lough Neagh 10.5 0.5 0.05 
Loch Ness 133 16 0.12 
Nojiri-ko 21.0 1.6 0.08 
Lake Ontario 79 13 0.16 
Lake Pyhiijarvi 5.5 0.0 0.0 
Shikotsu-ko 256 31 0.12 
Starnberger See 52 3.8 0.07 
St. Wolfgang'.See 47.1 -3.7 0.08 
Lake Superior 146 14 0.10 
Suwa-ko 4.1 0.4 0.10 
Lake Tahoe 313 32 0.10 
Lake Tanganyika 572 127 0.22 
Tazawa-ko 280.0 26.3 0.09 
Towada-ko 56 4 0.07 
Toya-ko 122 8 0.07 
Loch Treig 63.2 8.0 0.13 
Lake Vetter 38.9 4.0 0.10 
Waginger-Tachinger-Sees 12.8 -0.7 0.05 

(Waginger-See 15.0 1.4 0.09) 
(Tachinger-See 9.6 

I 
0.2 0.02) 

Lake Wakatipu 200 34 O. 17 
Yamanaka-ko 9.2 I 0.4 0.04 

h",; mean depth, dh; increment of the depth 
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correction for calculating the seiche period. And the maximum value of the 

correction is 22% in Lake Tanganyika. In this table, the signs of the increment 
are reversed in three lakes. Extended about a quarter of whole basin of 
Chiemsee, the region which surrounds the islands is shallower than the mean 
depth of this lake, so the sign of the increment is reversed. In St. Wolfgang 
See and Waginger-Tachinger-Sees, because they consist of two basins con­
nected by shallower channels, the effects of these channels reverse the signs of 
the increment. On the other hand, Lakes Balaton, Erie, Lappajarvi, and 
Pyhajarvi have roughly flat lake floors being nearly equal to the mean depths, 

so the increment is zero in each lake. 
The increment values are mostly negative in natural lakes as shown in 

Table 3, so that these corrections generally act to shorten on the seiche 
periods. 

3.5 Application of the general formulas to natural lakes 

The general formulas were used to estimate the seiche periods in natural 
lakes. Firstly, Lakes Kutcharo and Toya are used as examples. Fig. 21 

shows three outlines of Lake Kutcharo. The rectangular model in the case of 
K-l differs from that in the case of K-2 in the length and the width, and also 
differs in the shapes of the island and the peninsulas being surrounded by the 
broken and the solid lines, but two models have almost the same lake outline. 
On the other hand, the north-eastern cove in this lake is neglected in the 
case of K-3. The period in K-l is estimated by the general formulas at 
30.3 min the same as it in K-2 and it is 28.3 min in K-3, while the observed 
one is 30 min after Kodomari (1975). Therefore, it is concluded that the 

uninodal seiche is occurred over the whole basin in this lake. 

o 5 km 

Fig. 21 Calculated areas of Lake Kutcharo. 

In Lake Toya, the two predominant periods were observed as 11.0 and 9.0 
min by Kodomari (1978). The former value is the period resulting from the 
flow in the E-W direction, and the latter is that in the N-S direction. 
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Fig. 22 Calculated areas of Lake Toya. 
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Fig. 23 Lake Toya. A: bathymetric map, Band C: vibration patterns of aluminum 
powder on the surface in a model, D: limnogram taken at Muko-Toya. (After 
Nakamura and Honda) (According to Hutchinson, 1957). 
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Supposing the case of E-W direction, the period is estimated at 11.2 min in the 
model of T-l as shown in Fig. 22. In the model of T-2, the estimated period 

supposing the E-W direction is 11.2 min and the same as that in T -1. A 

similar value of 11.3 min is estimated supposing the N -S direction in the model 
of T -2. Lake Toya has a nearly circular basin, so, when the periodic motion 
occurs extensively over the whole basin, the seiches may have almost the 

same period for all directions. The periodic motion in the N-S direction will 
be divided into two basins and the flow will be predominant in each basin, 
because the lake is almost symmetric as shown in Fig. 23. Furthermore, it is 
supported by Nakamura and Honda (1911) with the model experiment in which 
the periodic motion in the N -S direction is individually occurred in two basins. 

This flow pattern is shown as C in Fig. 23. When the lake is divided into two 
basins in the model of T-2 as shown in Fig. 22, the estimated period in the 
west basin is 9.2 min and that in the east basin is 9.1 min. They are almost 
equal to the observed one. 

As a result, if outlines of a lake are almost the same no matter what the 
rectangular models of the lake differ in the length and the width each other, 
it may be concluded that their periods will almost coincide. 

In natural lakes, the seiche periods were estimated in this way. The 
relation between the estimated and the observed periods are shown in Fig. 

24. The left side diagram in this figure shows shorter periods (under 35 

T. (min) 

T.= Tc 

T. (min) 

30 

500 

20 

10 

a 10 20 30 a 500 

T, (min) T, (min) 

Fig. 24 Comparison of the estimated period (Tel with the observed one (Tol in the 
natural lake. The values are shown in Table 4. 
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Tably 4 The estimated and the observed seiche periods in natural lakes. 

Lake 

Ammersee 
Aoki-ko 
Ashi-no-ko 
Lake Baikal 
Lake Balaton 
Biwa-ko 
Lake Brienz 
Chiemsee 
Chuzenji-ko 
Lake Constance 
Loch Earn 
Lake Erie 
Lago di Garda 
Lake Geneva 
Goldberger See 
Great Bear Lake 
Green Lake 
Lake Huron 
Inawashiro-ko 
Kasumi-ga-ura 
Kawaguchi-ko 
Kizaki-ko 
Kutcharo-ko 
Kuttara-ko 
Lake Lappajarvi 
Madiisee 
Lake Mendota 
Lake Michigan 
Lough Neagh 

Loch Ness 
Nojiri-ko 
Lake Ontario 
Lake Pyhajarvi 
Shikotsu-ko 
Starnberger See 
St. Wolfgang See 
Lake 'Superior 
Suwa-ko 
Lake Tahoe 
Lake Tanganyika 
Tazawa-ko 
Towada-ko 
Toya-ko 
Loch Treig 
Lake Vetter 
Waginger-

Tachinger-Sees 
(Waginger-See 
(Tachinger-See 

Lake Wakatipu 
Yamanaka-ko 

I 
Observed I 

period (min) 

24 
3.745 

15.38 
280 

600-720 
229.8 

9.8 
, 41 

7.77 
55.8 
14.52 

863 
42.92 

73.5-74.2 
24-26 
330 

26.0 
400 

19.11 
140-160 

22.98 
6.117 

30 
2.0-2.4 

93 
35.5 
25.8 

538 
96 

31. 5 
8.9 

300 
101 

8.05 
25 
32 

474 
20.8 
19.0 

270 
3.5 

17.33 
11.0 
9.18 

178.99 
62 

16.8 
12.56 
52.0 
15.61 

Authors 
I 

L (km) I ES.timate.d 
penod (mm) 

Endros (1934) 15.1 24.2 
Tanaka (1930) 1.8 3.8 
Nakamura and Honda (1911) 6.4 16.0 
Sudol'skiy (1975) 590 270 
Cholnoky (1897)* 76.6 697 
Imasato et al. (1973) 57.3 246 
Sarasin (1895)* 13.5 9.8 
Endros (1906a) 14.0 40.8 
Nakamura and Honda (1911) 6.8 7.6 
Forel (1893)* 46.7 55.5 
Chrystal (1908)* 10.5 14.4 
Platzman and Rao (1964) 376 852 
Defant (1908) 52.2 42.5 
Bircher (1954)** 65.2 73.7 
Klinker and Karbaum (1966) 3.9 24.5 
Johnson (1975) 272 330 
Stewart (1964) 12.1 26.2 
Mortimer and Fee (1976) 330 399 
Honda et al. (1911/1912) 13.8 19.1 
Shio (1977) 29.0 156 
Nakamura and Honda (1911) 5.2 23.2 
Tanaka (1930) 2.42 6.0 
Kodomari (1975) 12.4 30.3 
Tanakadate (1925) 2.45 2.5 
Simojoki (1961) 22.2 90.6 
Halbfass (1902, 1903)· 15.3 35.5 
Bryson and Kuhn (1952) 8.0 25.9 
Mortimer and Fee (1976) 475 530 
Darbyshire and 30.0 95.4 

Darbyshire (1957) 
Chrystal (1910)* 35.5 31. 6 
Tanaka (1926) 3.2 8.6 
Rao and Schwab (1976) 279 300 
Simojoki (1961) 25.1 101 
Kusakabe et al. (1917) 12.2 7.8 
Ebert (1900) 19.0 25.2 
Endros (1906b) 10.7 31. 6 
Mortimer and Fee (1976) 567 473 
Tanaka (1911) 4.6 20.8 
Fee and Bachmann (1968) 36.4 19.2 
Servais (1957)*** 610 275 
Honda (1915) 6.4 3.6 
Honda et al. (1913) 9.4 17.4 
Kodomari (1978) 10.9 11.2 
Chrystal (1910)* 7.9 9.4 
Bergsten (1926) 118.9 180 

9.4 61. 3 

Endros (1905) 5.7 16.9) 
3.4 12.6) 

Heath (1975) 55.0 53.6 
Nakamura and Honda (1911) 4.75 15.6 

* According to Hutchinson (1957) 
*** According to Defant (1961) 

** According to Mortimer (1979) 
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min), and the right side one shows longer periods. The estimated values 

coincide well with the observed ones. Their values are shown in Table 4. 
The length (L) in this table is that of a fitted lake model, so it does not 
necessarily coincide with the length of the longitudinal lake axis. 

4. Flow characteristics of the periodic motion 

4.1 Flow pattern 

Fig. 25 shows the lake model in which a rectangular peninsula sites III the 
central region. The depth has a constant value of 10 m in each model. The 
water flows mainly from the east to the west arround the peninsula in the 
lower case. In the upper case, the water flows mainly from the south (or the 
north) to the north (or the south) in the half basin divided by the peninsula. 
Generally, a large peninsula will divide a lake into two basins, and the flow 

will occur in each basin. 

+ • 

-...... ~----- -
'I I~\' 

\ \ , , ~ 
1 i 
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I \ \ 
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~m 
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I "" 

Fig. 25 Flow patterns in lakes (I). Broken line indicates the nodal line, 
and arrow shows the velocity vector. 

Other flow patterns are numerically calculated as shown in Fig. 26. These 
lake models are supposed the constant depth of 10 m and the peninsula at the 
corner. In the case of the triangular peninsula, the water flows more smoothly 

than the case of the rectangular one. 
Fig. 27 shows flow patterns at the time interval of five minutes in a lake 

model with the constant depth of 10 m. In this case, the water moves back 
and forth along the basin shape between two opposite lake shores. In the 
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Fig. 26 Flow patterns in lakes (II). 

M-5 

T = 31 min 

213 

Fig. 27 Flow patterns in lakes (III). Flow patterns at the time interval of five 
minutes (in the model M-5). T is the period of the uninodal seiche. 

case of a lake in which the bottom floor is uneven as shown in Fig. 28, the 
water moves back and forth in the central region of the lake, but at the long­
shore region it flows to only one direction each time step. In other words, the 

periodic motion in a natural lake may move not only back and forth, but also 
in one direction along the shore. As an example, calculated numerically (case 
Y-6 in Fig. 2), the water in the central region flows to the opposite direction 

of the longshore regions in Lake Yamanaka as shown in Fig. 29. 
As described above, the water flows parallel to the lake basin shape, so 

stream lines in natural lakes may be estimated as follows: The fitted lake 
model is chosen, comparing the period estimated by the general formulas to the 
observed one. Consequently, stream lines are drawn parallel to the lake 



214 

" -. 

~~mmJ ~~II 

T '"' 46 min 

S. Kodomari 

+-Fig.28 Flow patterns in lakes (IV). Flow 
patterns at the time interval of five 
minutes (in the model M-l). Upper 
figure indicates the deep area in the 
lake. 

250 m ...... 
1 cm/s 

Fig. 29 Flow patterns in lakes (V). Case 
of the numerical calculation in Lake 
Yamanaka (case Y-6 in Fig. 2). 

shore of this model. Because the periodic motion moves back and forth in 
the central region of the lake, moreover the flow direction is dependent on the 
direction of a given external force, the direction of the stream lines can not be 

determined. Figs. 30 and 31 show examples. Fig. 30 shows the estimated 
stream lines and the flow pattern which was numerically calculated in Lake 

Suwa (case S-3 in Fig. 1). The stream lines approximately agree with the flow 
pattern. Fig. 31 shows stream lines in Lake Nojiri, Nagano Prefecture in 
Japan. N-A and N-B are the cases estimated from the fitted lake models, 

and the stream lines in (A) and (B) were obtained with the model experiments 
by Tanaka (1926). The stream lines in N-A and N-B correspond to (A) and (B) 
respectively. These stream lines show very similar patterns. The period 
in the case of N-A is 8.6 min, in N-B is 6.7 min, in (A) is 8.81 min, and in (B) 
is 6.13 min. The observed periods are 8.9 and 6.5 min (Tanaka, 1926). 

They coincide well respectively. 
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Fig. 30 Flow patterns in lakes (VI). Case in Lake Suwa. Left: stream lines esti­
mated from the fitted lake model, Right: flow pattern obtained by the numerical 
calculation (case S-3 in Fig. 1). 

(S) 

Fig. 31 Flow patterns in lakes (VII). Case in Lake Nojiri. N-A and N-B: stream 
lines estimated from the fitted lake models, (A) and (B): stream lines obtained 
by the model experiments (After Tanaka, 1926). 

It is concluded that the estimated models give some information not only 
about the periods, but also about the flow patterns in natural lakes. 

4.2 Position of the nodal line 

As shown in Fig. 28, the position of the nodal line moves counterclockwise 
through each time step. This phenomenon had already been pointed out 
in some large lakes (e.g. Defant, 1953; Hamblin, 1976; Rao and Schwab, 1976). 

The phase distribution of water level changes, calculated numerically, is 

shown in Fig. 32 by the solid lines in increments of 45°. The phase lines converge 
into the central part of the lake, so the distribution pattern of these phase lines 
is similar to the case having one nodal line. The fluctuation of water level at 
the central region is so small that the site of the nodal line is hardly found. 
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From these results, it can be considered that the nodal line locates itself 
about the fixed region .. 

Fig. 33 shows a schematic lake model. In this figure, L is the lake length, 
and x is the distance between the nodal line and the lake shore. Here, LlTR 
denotes a period increment affected by the right side geometry of the lake, 
and LIT L denotes an increment affected by the left side geometry. Being 
analogized from the balance, an equation for the position of the nodal line 
is given in the following, 

then 

L-x To/2 + LlTR 
-x - = -----=.'-------T- (== A), 

To/2+LI L 

L 
x=---. 

l+A 
(26) 

This equation was applied to the model case as shown in Fig. 32. In Fig. 
34, the broken line shows the estimated nodal line, and its position coincides 
with the model case. 

M -, 

t 
Fig. 32 Calculated structure of the first mode for a lake model (in the model M-I). 

Phase progression is shown by solid lines (45 0 intervals). 

Fig. 33 Schematic model of the lake. Broken line shows the center line of the lake, 
and solid line shows the nodal line. 
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t 
Fig. 34 Position of the nodal line (I). Broken line shows the estimated nodal 

line, and solid lines show the same lines as shown in Fig. 32. 

Lake Superior 
Lake Ontario 

p 
BiWQ - ko 

Lake Huron 

lake Michigan 

Fig. 35 Position of the nodal line (II). Solid line shows the nodal line obtained 
by the numerical calculation, and broken line shows that estimated using the 
equation (26). 

Applying to natural lakes, the results are shown in Figs. 35, 36, and 37. 
In these figures, the different reduced scale is used on each lake. The 
nodal lines obtained by the numerical calculations and the equation (26) are 
shown in Fig. 35. In these cases, the numerical calculations using the two­
dimensional models were performed in Lake Biwa by Imasato (1971), in 
Lake Michigan by Rao et al. (1976), in Lakes Ontario and Superior by Rao 
and Schwab (1976), and in Lake Huron by Schwab and Rao (1977). The 
nodal lines estimated by the equation (26) approximately agree with the 
numerically calculated ones in Lakes Huron, Superior, and Biwa, while those 
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Chi~msee 
.\ 

\ 

Lake Vetter 

Fig. 36 Position of the nodal line (III). 
Solid line shows the observed and cal­
culated nodal line, and broken line 
shows the estimated one using the 
equation (26). 

Fig. 37 Position of the nodal line (IV). -+ 

Solid line shows the nodal line obtained 
by the model experiment (After Naka­
mura and Honda, 1911), and broken 
line shows the estimated one using the 
equation (26). 

Kawaguchi - ko 

Yamanaka - ko 

separate mutually at a short distance in the others. Fig. 36 shows the 

observed and calculated nodal line (solid line) and the estimated one (broken 
line). The calculations and the observations were done in Loch Earn by 
Chrystal and Wedderburn (1905), in Chiemsee by Endri:is (1906a), and in Lake 

Vetter by Bergsten (1926). Two nodal lines coincide in Loch Earn, and they 
slightly differ in Lake Vetter, but they separate at a short distance in Chiemsee. 
Fig. 37 shows the nodal lines obtained from model experiments (solid line) 
and those estimated by the equation (26) (broken line). The model experi­
ments were made by Nakamura and Honda (1911). Two nodal lines coincide 
in Lakes Yamanaka and Ashi-no-ko, Kanagawa Prefecture in Japan, but they 
separate at a short distance in Lake Kawaguchi, Yamanashi Prefecture in 

Japan. 
As described in section 3.5, fitted lake models have almost the same 

period in spite of the different rectangular models. The nodal lines in these 
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cases will be examined. In Lake Kutcharo, the nodal lines estimated by the 
equation (26) are shown in Fig. 38, according to the cases of K-l and K-2 
shown in Fig. 21. The solid circle indicates the observation point of water level, 
the fluctuation of the uninodal seiche could not observed at this point (Ko-

Fig. 38 Position of the nodal line (V). Case in Lake Kutcharo. K-l and K-2 
correspond to the cases as shown in Fig. 21. Solid circle shows the observa­
tion point of water level. 

A(mm) 

Fig.39 Position of the nodal line (VI). Case in Lake Toya. T-l and T-2 correspond 
to the cases in Fig. 22, and the other solid lines are the nodal lines for the 
transverse seiche in the model of T-2. Solid circles show the observation points 
of water level. The amplitude spectra at these points are shown (After Ko­
domari, 1978). 
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domari, 1975). Both the nodal lines exist at just position. The case of Lake 
Toya is shown in Fig. 39, the observation points of water level and the 
amplitude spectra at these points are shown (after Kodomari, 1978). The 
predominant period at the west shore is 11.0 min, while this at the north 
shore is 9.0 min. On the other hand, the period of 9.0 min is hardly seen at 
the west shore, and the period of 11.0 min is slightly found at the north 
shore. Because the observation points exist near the nodal lines, the 
periods according to the motions having these nodal lines are not confirmed 
at these points. Therefore, the estimated nodal lines in the cases of T-1 

and T -2 locate themselves about good positions. 
From the facts described above, it is concluded that the positions of the 

nodal lines can be estimated using the equation (26) in various lakes. 

5. Effect of the Coriolis force 

The Coriolis force deflects a flow direction to the right in the Northern 
Hemisphere and to the left in the Southern Hemisphere, looking in the direction 
of propagation. Therefore, the Coriolis force may act to deflect the flow of the 
periodic motion. 

Generally, to consider the effect of the Coriolis force on the water motion, 
the Rossby number (R) is evaluated. It is defined in the following, 

U 
R=­

fL ' 
(27) 

where U is the velocity of water, f is the Coriolis parameter, and L is the length 
of the motion. 

For the special case of R<l, the Coriolis force considerably affects the 
water motion. When the values are taken in the following, U = 1 m/sec and 
f=O.OOOl/sec, a lake needs the length more than a few hundred kilometers 
to satisfy the condition of R<l. This condition is satisfied only in some 

large lakes in the world. Several investigators have considered the effect of 
the Coriolis force in the Great Lakes (e.g. Platzman and Rao, 1964; Rao 
and Schwab, 1976; Schwab and Rao, 1977). They have concluded that the 

earth's rotation usually caused small increase in the seiche period of only 
the lowest mode, and the increment of the period was smaller than 1%. As 
a result, the effect of the Coriolis force on the seiche period is negligibly small 
in the natural lake. 

Two model lakes with the constant depth of 10 m are shown in Fig. 40 
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(in the model M-5) , where the left side figures ((A)) show the cases of no 
Coriolis force and the right side ( (B) ) show the flow patterns considering the 

Coriolis force. These flow patterns of (A) are nearly equal to those of (B), but 
the position of the nodal line is slightly different from each other. Because the 

island and the peninsula deflect the flow direction, the effect of the Coriolis 

force on the flow pattern is apparently negligibly small. 

r 
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Fig. 40 Flow patterns in lakes (VIII). The effect of the earth's rotation on the 
flow pattern (in the model M-5). (A): the case of no Coriolis force, (B): the case 
considering the Coriolis force. 

Excluding the Coriolis force, the numerical calculation was carried out 

in the same lake model as shown in Fig. 32. The calculated nodal line is shown 
in Fig. 41. In this model, the uninodal seiche has standing nature with a 
nodal line which is fixed in space all the time, but the position of it is nearly 

equal to the case considering this force as shown in Fig. 32. Namely, 

though the Coriolis force makes the nodal line to move with an amphidromic 
point, the phase lines converge into the nodal line in the case of no Coriolis force. 
When it is considered the position of the nodal line to fix, there is little dif­
ference between the case including the Coriolis froce and that excluding this 

force. For examples, the differences are little in Lakes Ontario, Superior (Rao 
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and Schwab, 1976), and Michigan (Rao et al., 1976). From the facts described 
above, the effect of the Coriolis froce on the position of the nodal line is 

negligibly small in appearance. 
Consequently, it is concluded that the flow of the periodic motion 

generally depends only on the lake basin shape, because the effect of the 

Coriolis force is negligibly small. In other words, to investigate the periodic 
motion, it is sufficient to consider mainly the effect of the lake basin shape. 

Fig. 41 Position of the nodal line (VII). The case of no Coriolis force. 
The lake model is the same as the case in Fig. 32. 

6. Conclusions 

The periodic motion in a lake was systematically considered, using the 
numerical calculations in typical lake models. As a result of investigating 
lots of models and comparing to the observations, it is concluded as follows: 

(1) The general formulas to evaluate the effect of the lake basin shape on 
the period are obtained, and they are successful for various instances. 

(2) Comparing the periods estimated by these formulas to the observed 
ones in natural lakes, the characteristics of the lake basin shape effect became 
evident systematically for the periodic motion of lake water. 

(3) Generally, the effect of the lake basin shape including the existence of 
islands prolongs the seiche period than that calculated in the rectangular lake 
shape, but the effect of the bottom topography shortens that than that 
calculated using the mean depth. The reasons are considered as follows: 
The lake water is turned the flow direction by the existence of islands or 
peninsulas, it becomes sometimes dead water so that stagnates in an embay­
ment region and becomes sometimes reverse flow in a cove. These flow 
patterns prolong the seiche period. The lake water below the mean depth 

affects the seiche period, and the effect generally acts to shorten it. 
(4) The effect of the bottom topography can be evaluated considering the 
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increment of the depth, and the increment values are about 5,.....,15% of the 
mean depths in natural lakes. 

(5) Comparing the estimated period to the observed one, the flow pattern 
in a lake can be estimated. The stream lines can be drawn parallel to the 
lake basin shape in the fitted lake model. When the estimated flow pat­

terns are compared to those obtained by the numerical calculations and 
the model experiments, they coincide well as shown in Figs. 30 and 31. 

(6) The position of the nodal line changes unsteadily with time. How­

ever, these positions are at almost the same place and can be determined by 
the general formula of (26). The estimated positions approximately agree 

with the observations and the experimental studies by many investigators. 

(7) The effect of the Coriolis force on the seiche period and the flow pat­
tern is negligibly small in the natural lake. Therefore, the periodic motion is 
generally controlled by the lake basin shape. 

(8) Finally, the seiche in a lake is not such a simple reciprocating motion 
as having been treated for calculations, but is the periodic motion with the 

complex flow pattern affected by the lake basin shape. 
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