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Aftershocks and Earthquake Statistics (IV) 

-- Analyses of the Distribution of Earthquakes in Magnitude, 
Time, and Space with Special Consideration to Clustering 

Characteristics of Earthquake Occurrence (2) --

Tokuji UTSU 

(Received Aug. 28, 1972) 

Abstract 

The first step in the analysis of the time distribution of earthquakes is to test 
the hypothesis that a given series of earthquake data are samples from a Poisson 
process. There are many independent methods for this test, e.g., the methods 
based on i) the time interval between events, ii) the number of events in a unit 
time interval, iii) the ratio of variance to mean of the number of events, iv) the 
autocorrelation, v) the spectrum, and many others. These tests have been 
applied to series of shallow and deep earthquakes in and near Japan and shallow 
earthquakes in the world. The results show that for series of shallow earth­
quakes from which aftershocks had been removed and for a series of deep 
earthquakes, the Poisson hypothesis can not be rejected by most of the methods. 
For series of shallow earthquakes including aftershocks, the Poisson hypothesis is 
rejected at very small significance levels. 

Instead of the Poisson process, the branching Poisson process (first used in 
seismology by Vere-Jones and Davies in 1966) has been adopted. Comparisons of 
the data with the theoretical curves for the distribution of time intervals, the 
variance/mean ratio, and the spectrum indicate that this model is a suitable 
approximation. An important parameter for this model L~ can be evaluated 
from the variance/mean ratio and the spectrum. The values from the both 
methods agree well. L ~ is related to the mean A and the variance V of the total 
number of aftershocks triggered by a main shock by the equation 

L ~ = 1 for Poisson processes only. If the spectrum is defined by 

N 2/ <1>("') = I I: eiwtk I N 
k=l 

where tk is the origin time of the kth earthquake, <1>(00) tends to Lro and 1 when 00--> 
o and "'->00 respectively. 

Schuster's criterion for significance of spectral amplitudes is inadequate, if 
the data contain aftershocks, as pointed out by Jeffreys. Fisher's test for 
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significance of the maximum spectral amplitude has a property of compensating 
the effect of aftershocks. A significance test used by Matuzawa and others is 
closely related to the test based on the present model. The data examined here 
show no significant periodicities. Reccurrence of large earthquakes from the 
same source region at intervals of several tens to hundreds of years is recognized 
in some island arc areas. A simple model for this is proposed. The branching 
Poisson process may be considered as the superposition of such simple reccurrence 
of mainshock-aftershock sequence system in each source region. 

14. Distribution of earthquakes in respect to time 

14.1 Statistical tests for stationary random occurrence of earthquakes in time 

The most simple and fundamental model for a series of events occurring 
III time is the Poisson process, in which all points representing the events 
are distributed completely at random along the time axis. In most cases 
investigated hitherto the occurrence of earthquakes does not fit a simple 
Poisson process. The most common reason for this may be the clustering 
of events due to the existence of aftershocks. In some earthquake series, 
however, the Poisson model seems to be adequate as a first approximation. 
These series usually contain few aftershock sequences or swarms. In many 
papers dealing with the statistical properties of earthquake occurrence in 
time, goodness-of-fit tests to the Poisson process have been performed. There 
are many independent methods for these tests, some of which have been 
applied to aftershock sequences in Chapter 8. In the present section, we 
consider several methods and apply them to the following sets of. earthquake 

data. 
(I) All shallow earthquakes (depth :::;:60 km) of magnitude 6.0 and 

larger which occurred in and near Japan (the region defined in Figure 1 of 
the author's paper!») during 1926-1969 (44 years). 

(II) All shallow earthquakes (depth :::;:60 km) of magnitude 5.5 and 
larger which occurred in and near Japan during 1959-1970 (12 years) (Tables 
1 and 23). 

(III) All deep earthquakes (depth 2140 km) in and near Japan of 
magnitude 5.0 and larger listed in Katsumata's table368 ) (with additions by 

Katsumata) during 1951-1969 (19 years). 
(IV) All shallow earthquakes (depth :::;: 100 km) in the whole world with 

magnitude 7.0 and larger listed in Duda's table348 ) during 1915-1964 (50 
years). 

Hereafter these data will be called data I, data II, etc. Data I' and II' 
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refer to those obtained from data I and II respectively by excluding all 
foreshocks, aftershocks, and shocks in swarms (except the largest one in each 
swarm). Thus data I' and II' represent the sreies of main shocks (including 

single shocks) only. 

Table 23. Continued from Table 1. 

No.1 Origin Time (GMT) jl_E_p_ice,-nt_er_1 h km I Mo IDI =:. ID. =:. I 
d h m oN °E Mo Ml Mo Ml 

262 1969 Feb. 21 03 05 40.3 144.1 30 5.6 a 
263 Apr. 15 17 31 39.8 143.9 20 5.9 a 

* 17 04 56 39.6 143.8 70 5.6 a 
264 21 07 19 32. 1 132.1 10 6.5 4.7 4.6 
265 2206 11 39.8 143.4 60 5.9 a 

266 June 1205 41 40.3 144.0 40 5.6 a 
267 20 15 38 40. 7 142.4 40 5.6 a 
268 July 12 19 16 39.7 143.9 10 5.6 a 
269 23 13 14 37.2 141. 7 40 5.5 
270 Aug. 11 21 28 42. 7 147.6 30 7.8 6.2 5.9 

271 12 03 34 42.9 147.7 60 5.5 a 
272 0926 42.9 147.2 10 5.5 a 
273 1308 32 43.5 147.9 50 5. 7 a 
274 14 14 19 42.9 147.2 0 6.2 a 
275 15 04 32 42.8 147.4 10 5.6 a 

276 16 15 15 42.9 147.4 60 5.9 a 
277 17 14 52.9 147.6 60 5.5 a 
278 Sept. 3 1620 30. 7 140.5 60 6.2 
279 4 21 13 43.5 147.1 10 5.6 a 
280 905 15 35.8 137.1 0 6.6 4.9 4.8 

* 13 11 52 43.1 147.7 70 5.6 a 
281 17 18 41 30.9 131. 7 0 5.9 5.5 
282 18 51 31.2 131.1 0 5.5 a? 
283 Oct. 31 07 00 37.0 142.5 60 5.5 
284 1970 Jan. 20 17 33 42.4 143.1 50 6. 7 4.8 4.5 

285 Mar. 90050 39.5 143.7 40 5.5 a 
286 May 27 19 05 40.1 143.2 30 6.2 a 
287 22 36 40.2 143.2 30 6.0 a 
288 2356 40.3 143.1 20 5.8 a 
289 June 22 2133 43.1 147.5 0 5.8 a 

290 July 2522 41 32.1 132.0 10 6.7 6.1 1.8 
291 2607 10 32.1 132.1 10 6. 1 a 
292 Sept. 14 09 45 38.7 142.3 40 6.2 4.7 4.6 
293 Oct. 82336 42.3 147.6 60 5.6 a 
294 14 21 14 43.1 146.9 40 5. 7 a 

295 1605 26 39.2 140.8 0 6.2 4.9 4.0 
296 Nov. 20 13 48 43.1 146.9 40 5.6 a 
297 Dec. 70521 41. 7 143.8 50 6.1 

Tl I Mark 
d h m 

03 40 

2 1651 

112 47 

10 

19 26 

829 

1301 13 

523 
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i) Time interval between successive events 

A Poisson process is characterized by only one parameter, the rate of 
occurrence of events v. For a Poisson process the time interval r between 
successive events has an exponential distribution of parameter v (Chapter 

8) 
cf>(r) = ve-VT 

• (40) 

Since Terada's paper454) in 1918, several tens of papers which discuss the 
distribution of time intervals between earthquakes have been published. For 
some earthquake series, the data fit the exponential distribution reasonably 
well. Some authors have concluded in these cases that the earthquakes 
occur randomly and independently in time, but it is not logically correct, 
since the exponential distribution of r is a necessary but not a sufficient 
condition for a Poisson process. Similar comments may be made for other 
tests for Poisson processes described later. 

Frequency distributions of time intervals between successive earthquakes 
are shown in Figure 140-145 for data I, I', II, II', III, and IV using semi­

logarithmic scales. Open circles represent frequencies of r in the interval of 
length Lfr shown in each figure, and solid circles represent the cumulative 

. . 
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1926 - 69 All shallow shocks 

'" 00 coo o 0 

. . . ... . 

0\1.---1._....1...._-'----''----'-_-:'-::----' 
o 0·2 0·4 0·6 

't( yrl 

Fig. 140. 

In and near Japan M?: 6·0 

1926-69 Aftershocks removed 
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o 0·2 OJ. 't:(yr) 0·6 

Fig. 141. 

Fig. 140. Distribution of time intervals between successive events for data I (..:17"=0.01 
year). 

Fig. 141. Distribution of time intervals between successive events for data I' (..:17"=0.01 
year). 
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In and naor Japan M jJ 5·5 In and near Japan M~5·5 

1959 -70. All shallow shocks 
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Fig_ 142. 
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Fig. 143. 

Fig. 142. Distribution of time intervals between successive events for data II (odT=0.005 
year). 

Fig. 143. Distribution of time intervals between successive events for data II' (odT=0.005 
year). 
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Fig. 145. 

Fig. 144. Distribution of time interval between successive events for data III (odT=0.01 
year). 

Fig. 145. Distribution of time intervals between successive events for data IV (odT=O.Ol 
year). 
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frequencies, i.e. the number of time intervals T and larger. In Figures 141 
and 143 the plotted data are well represented by a straight line, whereas in 
other figures concave curves like curve A in Figure 146 fit the data rather 
closely. 

These results together with the results from many previous investigations 
are summarized as follows: 

(1) The distribution of time intervals deviates from the exponential 
distribution usually in the sense shown in Figure 146 (A).15),151),274),455)-459) 

logNI~) 

Time intervals 

, , , 

Numbers 

c , , , bc
varjance/L~ean E::: .... :~.ctrum 

L E 11-) G 

1 ---------- 1 ------------

o ~t 0 Lbtlw)b 
1 ---F---- 1 - ----------

o .t 0 

Fig. 146. Schematic representation of the deviation from the Poisson process (indicated 
by broken lines). The upper diagrams represent the case for the trigger modeL 

(2) It is most likely that such a deviation is caused by either the ex­
istence of aftershock sequences or other clusters of earthquakes in the data 
or the variation of the rate of occurrence with time. The latter effect, pointed 
out by Terada454 ) and later workers is clearly observed in the statistics of T 

for aftershock sequences and swarms as discussed in Chapter 8. The former 
effect can be evidenced by the fact that the removal of aftershocks from the 
original series makes the distribution nearly exponentiaI455 ),458),460) (Figures 

141 and 143). 
(3) The distribution is nearly exponential for deep earthquakes which are 

generally followed by no aftershocks.17),461) , 462) In data III (Figure 144), 

however, the plotted points fit two straight lines of different slope. This 
may suggests weak clustering different in nature from aftershock sequences. 

(4) In a few cases deviations from exponential distribution in the 
opposite sense as shown in Figure 146 (B) have been reported. 454),461) A 

decrease in probability of occurrence of the next shock after the occurrence 

of a shock may cause such an effect, but in some cases this effect may be 
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attributed to the missing of closely separated events in time by overlapping 
of seismograms. Both causes have been pointed out by Terada454 ) and later 
workers. 

(5) For some relatively dense series of small earthquakes such as data 

shown in Figure 147 (the Matsushiro earthquakes), the deviation from the 
exponential distribution is rather small. This is probably due to the effect 
illustrated in Figure 148, which is reproduced from the author's paper in 
1962.228) Indeed, almost all series of randomly distributed events may be 
considered as a result of the superposition of non-random series of events in 

each elementary region (Si in Figure 148) . 

........ 
......... .... 

'0 

'" ........... .... 

KlO 

..... ........... ..... 

40 

. . 

'00 

Motsushiro Swarrn 

Dec. 9 - 18. 1965 

............. 
.......... .... ...... ......... 

60 80 .,.." 

Nov. I - 25, li66 

. .. 

300 400 min. 

Fig. 147. Distributions of time intervals between successive events for two periods of the 
Matsushiro earthquake swarm. 
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Fig. 148. Superposition of series of events yields more random distribution of events. 

ii) Number of events in a unit time interval 

For a Poisson process the number of events n occurring in a time interval 
of length Jt has a Poisson distribution of parameter vJt (Chapter 8). 

p(n) = (vJt) e-v!>.tjn! (39) 

At least 30 papers have been written dealing with the distribution of number 
of events. The first paper known to the author is the one by Nakamura463) 

in 1920. 
For data I, I', II, II', III, and IV, frequency distribution of number of 

events per specified interval of time are shown in Figures 149-154 respect-

30 

20 

10 I 

I 
I 

o 

(/\ I n and near Japan M ;16·0 

I " \ 1926-69 All shallow shocks 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

5 

\ 
\ 
\ 

n 

Fig. 149. 

15 

I 
I 

20 ! 

PIn) 

10 

o 

In ond near Japan 

M ,,6·0 1926-69 

Aftershocks 

removed 

n 

Fig. 150. 

Fig. 149. Distribution of numbers of erthquakes per 1/3 year for data I. The broken 
line represents the corresponding Poisson distribution. 

Fig. 150. Distribution of numbers of earthquakes per 1/3 year for data I'. 
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n n 

Fig. 151. Fig. 152. 

Fig. 151. Distribution of numbers of earthquakes per 1(3 year for data II. 
Fig. 152. Distribution of numbers of earthquakes per 1/3 year for data II'. 
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/ .... _, 

1951 - 69 
Warld M ~ 7·0 1915-64 

/ \ 
20 

/ All shallow shocks 
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f 
i 10 

J 

n o 5 10 15 

Fig. 153. Fig. 154. 

Fig. 153. Distribution of numbers of earthquakes per 1/3 year for data III. 
Fig. 154. Distribution of numbers of earthquakes per 0.5 year for data IV. 

ively. In Figures 150, 152, and 153, the plotted points fit the corresponding 
Poisson distributions indicated by broken lines fairly well, whereas in other 
figures systematic deviations are appreciable. 

These results as well as the results reported in many previous investiga­
tions show similar characteristics to the results for the distribution of time 
intervals. In series of earthquakes from which aftershocks have been removed 
and in series of deep earthquakes, the number of events are approximately 
Poisson-distributed.17),460),464),465) Deviations from Poisson distributions in 

the sense as illustrated in Figure 146 (C) are generally observed for relatively 
small shallow earthquakes.232),395),456),457),466)-469) These are caused by the 
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temporal variation of the rate of occurrence or the existence of aftershocks in 
the data. 

iii) Variance-to-mean ratios 

Theoretically, the variance V(n) of the number of events n for a Poisson 
process is equal to its mean E(n) =vJt, independently of the interval length 

Jt. For random samples from a Poisson process the ratio 

L = V(n)JE(n) (224) 

has a certain distribution around 1. It is known that if L is obtained from 
the counts of events in N non-overlapping intervals of length At, X02 (=NL) 

has a X2-distribution with N -1 degrees of feedom (Chapter 8). For large values 

of N (N)about 30), VL is approximately normally distributed with a mean 

ofE(VL)=V1-3/(2N) and a varance of V(VL)=I/(2N). L is called the 
Poisson index of dispersion or Lexis' ratio. Since the distribution of NL is 
known, the hypothesis of Poisson process can be tested using this distribution, 
too. Actually this test is the same as the X2-test for a uniform distribution 
of the number of events n. For most non-Poisson processes, the value of L 
differs significantly from 1, and usually depends on the length of At as 
illustrated in Figure 146 (E, F). The L vs At curve represents a statistical 
property of the process. 

The variation of the number of earthquakes with time are shown in 
Figures 155-160 for data I, I', II, II', III, and IV using appropriate lengths 
of At. Figures 161-164 show graphs of L plotted against At for these data. 

30 
In and near Jllpan M ~6·0 

All shallow shocks 

20 

10 

0~L1L9~30-L---J---4LO---------5LO--~~~U6LO~---L~~70 

Fig. 155. Variation of frequency with time for data I (..1t= 1/3 year). 
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10~ In and near Japan M~6·0 
Aftershocks removed 

o ~NMMJ~}y1 
1930 40 50 60 70 

Fig. 156. Variation of frequency with time for data I' (.4t= 1/3 year). 

] In and near Japan M ~5·5 1 All shallow shacks 

20 

10 

OL-~--______________ L-______________ ~ ___ 
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Fig. 157. Variation of frequency with time for data II (.dt= 1/3 year). 

In and near Japan !vi ~ 5·5 
10 Aftershocks removed 

0L-~1~9~60~--------------L----------------7~0----

Fig. 158. Variation of frequency with time for data II' (.dt= 1/3 year). 

In and near Japan M ~ 5·0 Deep shocks 

Fig. 159. Variation of frequency with time for data III (.4t= 1/3 year). 
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20 World M ~7·0 All shallow shocks 
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Fig. 160. Variation of frequency with time for data IV (Jilt=0.5 year). 

Fig. 161. 

Fig. 162. 
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Fig. 163. Variation of L( = VIE) with .It for data III . 
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Fig. 164. Variation of L(= VIE) with .It for data IV. 

13 

For data I, II, and IV, and the data given by Takahasi470) in 1937 and later 
investigators,15),16),313),380),458) it is seen that the value of L is usually larger 

than unity and has a tendency to increase with .dt. Takahasi470) pointed out 
that the clustering of events or the temporal variation of the rate of occur­

rence caused the values of L larger than 1. For data I', II', and III, the 
value of L is close to 1. Increase of L with .dt is observed for data I' and 
II', but the hypothesis of L=l is not rejected at a significance level of 0.05. 

iv) Autocorrelation 

If the period of investigation is divided into N intervals of length .dt, and 

the number of earthquakes in the ith interval is denoted by nt' the autocor­
relation function of the number of earthquakes is defined by 

N-k 
L: (ni-n) (n;+k -n) 
i-I 

rk = ------------- (225) 
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N 
n = :E n;jN = vilt . 

;-1 
(226) 

In some literature somewhat different definition is given, but here we use 
equation (225).471) 

For a Poisson 

are independent. 

process the numbers of events in two different intervals 
Therefore, for k =1= 0, 

(227) 

and for large N, rk IS approximately normally distributed with a mean of 0 
and a variance of 

(228) 

provided that n is not very small. 
For the time interval r between successive events, we can define the 

autocorrelation function in a similar way. For a Poisson process, or in 
general for a renewal process in which all the time intervals are independently 

and identically distributed, E(rk)=O for k=l=O. 

Figure 165-168 represent autocorrelation functions rk (k=O, 1, .... , 30) 
for numbers of events and time intervals between events for data II and II'. 
Since the distribution of r is far from the normal distribution, approximate 

normalization is made by putting r' =log (r+0.2jv) to calculate rks. Similar 

In and near Japan M ~ 5.5 I n and near Japan M ~ 5·5 

1959-70 All shallow shocks 1959-70 Aftershocks removed 

0·5 0·5 

Or--'T-f+f----\;H-t--I--t----+--t-

20 30 o 10 20 
k k 

Fig. 165. Fig. 166. 

Fig. 165. Autocorrelation of numbers of counts for data II (At=0.110 year). 
Fig. 166. Autocorrelation of numbers of counts for data II' (At=0.110 year). 

30 
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k 

Fig. 167. 
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Fig. 168. 

Fig. 167. Autocorrelation of time intervals between successive events for data II. 
Fig. 168. Autocorrelation of time intervals between successive events for data II'. 

graphs have been prepared for other data, but they are not shown here. 
These graphs indicate that for series of earthquakes from which aftershocks 
have been removed (data I' and II'), the values of fk for both rand n are 
not significantly different from O. For data I and II, the values of fk for n 

are also nearly o. The autocorrelation function of the number of counts does 
not seem to be a sensitive quantity for testing the Poisson hypothesis. On 
the other hand, the values of fk for time intervals are significantly larger than 
zero for first several terms. 

v) SPectra 

The power spectrum for a series of earthquakes (considered as a point 
process) is defined here by 

I
N '2 

q,(ro) = :E eiwtk!1 IN 
k=l 

(229) 

where ro is the angular frequency, tk is the time of occurrence of the kth 
earthquake, and N is the total number of earthquakes. For a Poisson 
process, it is well known that 

E[q,(ro)] = 1 (230) 

and 2q,(ro) is approximately z2-distributed with two degrees of freedom. 
Therefore the probability that q,(ro) exceeds a certain value cp is e-'P. This 

property has been used for a test of the periodicity in earthquake occurrence 
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by Schuster472) in 1897 and by later investigators (e.g., see Davison473»). The 
problem of periodicity will be discussed in a later section. 

Power spectra of the data I, I', II, II', III, and IV have been calculated 

for w=2n:/(kT) (T: the length of the whole period and k=l, 2, 3, .... ) and 
plotted in Figures 169-174. In these figures, a horizontal line marked by 

10 

In and near Japan M ~ 6·0 

1926-69 All shallow shocks 

1++----++--lf--++iI--jf-I.-+H+H---'--H---tl--+t---i Ex. 
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O· 2 

f (c.y,·') 

Fig. 169. Power spectrum for data I. The broken curve represents the theoretical 
spectrum for the trigger model with L~=4, p=1.3, and c=0.3 day. 
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Fig. 170. Power spectrum for data I'. 
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Ex. indicates the expectancy and a level marked by 0.5 indicates the 
median of spectral values for the Poisson process. Marks 0.01 and 0.001 

mean that the probability of the oc;currence of spectral value larger than these 
levels is less than 0.01 and 0.001 respectively for the Poisson process. These 
graphs and the results of spectral analyses by other investigators15),268),443),458), 

474) indicate that a significant increase in spectral values towards lower 

10 
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frequencies (sometimes called "reddening") occurs in many cases (e.g., 
Figures 169, 171, and 174). For some series of deep earthquakes and of 
shallow earthquakes from which aftershocks have been removed, the spectral 

values show no systematic frequency-dependence (e.g., Figures 170, 172, and 

173). Thus the main cause of the reddening seems to be the departure from 
the Poisson process due to the inclusion of aftershocks. 

10 I n and near Japan M;;' 5·0 
-0.001 

1951 - 69 All deep shocks 
-0·01 

1-0 IttfHHtt-lt---tt-tftH-f++t:--frI-t-rt+H-I\--t\-Prtt-t Ex. 

0·1 

o 

50 r 

10 

o ·1 
o 

2 4 
f (c.y") 

Fig. 173. Power spectrum for data III. 

World M ~7·0 

1915 - 54 All shallow shocks 

~ !I 1\ r ~ 
- _ll ';L - - - - -

~ 
~ 

1\ I 

f (c.y,-') 

Fig. 174. Power spectrum for data IV. 

0·5 

-
-

I 

~ 

I 

0·001 

0·01 

2 



Aftershocks and Earthquake Statistics 19 

vi) Other tests for Poisson process 

(1) Time differences beween two events: Takahasi370), 374) prepared a 

graph showing the frequency distribution of time difference T;f between the 
ith and the jth events in a series of large earthquakes in Japan since 1500 for 

all combinations of i and j (i < j) except forT;f larger than 80 years. Based 

on this graph he discussed persistence and periodicity in earthquake occur­
rence. If the frequency OfT;; falling between '/ and T+L1T is denoted by 
f(T)ilT, the mean and the variance of f(T) for a Poisson process of parameter 

v are approximately given by 

E [f(T)] = V[f(T)] = vN (231) 

where N is the total number of events. In Figures 175-177 graphs of f(T) 
ilT are shown for data I, I', II, II', III, and IV. Horizontal lines indicate 

the expectancy given by (231). It is recognized that the frequency of T;; 

increases with decreasing T forT smaller than about 0.3 years in the case of 

data I, II, and IV. In the other cases plotted points scatter around their 

expected values in the whole range of T studied. 

(2) Use of runs: Several methods for testing the randomness in 

earthquake occurrence by use of the theory of runs have been described.225 ) 

Here the one which seems to be most sensitive is applied to the data. Let 
'II' T 2, • ••. , TN be the series of time interval between successive events (total 

number of events is N + 1). All T;S are replaced by a + or a - sign according 
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Fig. 177. Distribution of time intervals between events for data III (solid circles) 
and for data IV (open circles). 

as they are larger than or smaller than a certain fixed value f. The theory of 
runs says that the number of runs R for the series of + and - signs is approx­
imately normally distributed with the mean and variance given by equation 
(60) and (61) (Chapter 8, p. 227) for the Poisson process. Table 24 contains 

the results of the test. 0.5/v is used as the value for f. The hypothesis of 
Poisson process is rejected for data I and II. 

(3) Grouping index: This index has been defined by equation (62) 

(Chapter 8, p. 227, hereafter we use a notation G instead of u in equation (62) ). 
For a Poisson process G is approximately normally distributed with the 
expectancy and variance of 



Aftershocks and Earthquake Statistics 

Table 24. Test for Poisson process by use of the number of runs of time 

intervals between events. rr(R) =V V(R) . 

Data I n+ n R E(R) rr(R) 
E(R)-R 

rr(R) 
Prob. 

I 

I 

I I 188 
I 

'233 178 209.1 I 10.1 3.08 0.001 
I' 152 110 133 128.6 7.9 -0.56 0.57* 

II 137 158 96 147.8 8.5 6.07 0.0000 
II' 74 67 72 70.3 5.9 -0.29 O. 77* 

III 182 141 154 I 159.9 8.8 0.67 0.50* 
IV 417 355 363 I 384.5 13.8 1. 56 0.06 

I I 

(* two-sided) 

21 

E(G) = 1-e-2~ (232) 

(1- e-2") e-2~ 
V(G) = (233) 

No 

if 1)=0.5, E(G) = 0.6321 and u(G)=VV(G) =0.4822/V No. The grouping 
indexes (1)=0.5) calculated for the data are listed in Table 25. For data I, II, 

and IV remarkable grouping is recognized. 

Table 25. Test for Poisson process by use of the grouping index (7/=0.5). 

Data C 

I 422 I 0.763 I I' 263 0.665 , 

II 296 O. 753 
II' 142 0.697 

III 324 0.673 
IV 773 J.693 

rr(C) 

0.023 
0.030 
0.028 
0.040 
0.027 
O. J17 

C-E(R) 

rr(C) 

5.59 
1.12 
4.29 
1. 62 
1. 52 
3.54 

I 

I 

I 

Prob. 

0.0000 
0.26* 
0.0000 
0.053 
0.064 
0.0002 

(* two-sided) 

(4) Uniformity: Since the Poisson process is a stationary point process, 
the statistical properties are uniform in time. For example, if there is a trend 
in the rate of occurrence, the process is not a Poisson process. The existence 

of a linear trend can be tested by testing the hypothesis that the regression 
coefficent of the number of events in unit time intervals against time is zero. 
Reyment476 ) tested the exponential trend in volcanic eruptions by a method 
described in Cox and Lewis. 477) Kitagawa et al. 478) and Utsu225 ) applied 

Pitman's test to earthquake data in Japan. 
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14.2 Effects of aftershocks - the trigger model 

The previous examples of tests for Poisson processes and a review of 
earlier investigations suggest that the occurrence of earthquakes in time has 
two main statistical properties: randomness and clustering. Which property 
is more prominent depends on the selection of data. In some series of 
earthquakes the Poisson hypothesis is not rejected by several statistical tests. 

This is of course not a proof that the earthquakes occur as a Poisson process, 
but it may be natural to consider that the Poisson process is an adequate 
model for such series. This by no means indicates that the earthquakes are 
essentially independent events. It is quite possible that the randomness in 
time is resulted from the superposition of many non-random processes 
(Figure 148). Actually there is evidence for large earthquakes in limited 

regions to occur intermittently at intervals of a few tens to hundreds of years 
or more. 

We consider here some stochastic models for earthquake occurrence. 
(1) Poisson process: As mentioned above this model may be an 

adequate approximation in some cases (e.g., data I', II', and III), but it is 
apparently inapplicable to other cases (e.g., data I, II, IV). 

(2) Time-dependent Poisson process: This is the case in which the 
parameter v of the Poisson process is a function of time. In chapter 8 this 
model is discussed in relation to the temporal distribution of shocks in after­
shock sequences (the rate of occurrence of aftershocks was denoted by n(t)). 

(3) Branching Poisson process (or trigger model): In this model there 
is a series of primary events (main shocks) distributed completely at random in 
time. Each of these primary events may generate a secondary series of 
events (aftershocks) as shown in Figure 178. It is assumed that the 

temporal distribution of aftershocks (of magnitude above a certain level) 
triggered by a main shock at time to is represented by 

n(t) = A ).,(t-to) , 

n(t) = 0, 

-Time 

Fig. 178. I Schematic::: representation of the trigger model. 

(234) 
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where "\(t) is a normarized function, i.e., 

r :\'(t) dt = 1 . (235) 
o 

This model of earthquake occurrence has first been discussed by V ere-Jones 
and Davies15) in 1966 using earthquake data from New Zealand. This model 
is compatible with a model for the distribution of magnitude described in 
Section 13.7, where A is the total number of shocks triggered by a main shock. 
In this model for magnitude distribution, A has an inverse power type 
distribution (equation (194)). In the present section, however, the functional 
form of f(A) will not be specified. The mean and the variance of A are denoted 

by :Ii and V respectively, as in Section 13.7. 
A generalized Poisson model discussed by Shlien and Toksoz458 ) is a 

special case of the trigger model, in which .\(t) is a delta function centered at 
t=to. This means that more than one shock occur at an instant of time. 

(4) Renewal process: This process is defined as a series of events in 
which the time intervals between successive events are independently and 
identically distributed. The Poisson process is a special renewal process in 
which time intervals have an exponential distribution. A renewal process 
with a non-exponential distribution of intervals will be discussed in a later 
section as a model for recurrence of large earthquakes in the same source 
region. 

More comp1ciated models, such as superposition of branching renewal 
processes, can be constructed, but models with too many parameters may be of 
little practical use. We first discuss some properties of a branching Poisson 

process (trigger model introduced by Vere-J ones and Davies15») in some detail. 

i) Time intervals between events in the trigger model 

For the branching Poisson process (trigger model), the number of time 
intervals between successive events T and larger plotted in the semi-logarithmic 
coordinates has a form shown in Figure 146 (A). For large T the curve tends 

to a straight line assymptotically. Since this line represents roughly the 
cumulative distribution of time intervals between primary events, the total 

number of the primary events is approximately equal to N m + 1, where N m is 
the ordinate of the line at T =0. Thus, if a straight line can be fitted to the 
right side part of the cumulative frequency plots of time intervals, we can 
find the approximate value for 
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Hoo=N/(N",+l)=l+A (236) 

without counting the number of primary events. However, if primary events 
occur very frequently, the cumultative frequency curve will be concave 
throughout and the staight line will be difficult to find. Equation (236) is also 
inapplicable, if the process is not stationary. 

Rough estimates of Hoo-values for data I,!', II, II', III, and IV are listed 

in Table 26. For data III (Figure 144), two straight lines can be fitted. If 
line B is adopted, H oo~ 1.82. This value seems too high. Two staight lines 
may be resulted from non-stationarity of the series. For data I, II, and IV, 

Hoo~1.7, i.e., A~0.7. We note that A rarely exceeds 1.0 (see Figure 134). 

Table 26. Rough estimates of H ~ and L ~ values. 

Data I I' II II' III IV 

H~ 1. 68 1.15 1. 69 1.0 1. 0* 1.7 
L~ (from VIE plots) 4 1 13 1 1 1O? 
L ~ (from spectra) 4 1. 5? 15? 1 1 5?-15? 

• From line A in Fig. 134 

ii) Variance to mean ratios for the trigger model 

For the branching Poisson process (trigger model), if the rate of occurrence 
of primary events is denoted by fh' the rate of occurrence of all events is 
fh(1 +A). The mean and the variance of the number of events n in the time 
interval of length L1t is given by 

E(n) = fh(l +A) L1t , (237) 

and /;.1 

V(n) = fh(1 +A) L1t+2 J (L1t-u) C(u) du (238) 
o 

where C(u) is the auto covariance function of the process expresssed by 

C(u) = fhAA.(u) + fh r r AA.(t)· (A -1) A.(t+u)· f(A) dA dt 
o 0 

= fhAA.(u) + fh(A2+ V -A) r A.(t) A.(t+u) dt (239) 
o 

for u>O. Thus V(n) depends on the functional form of '\'(t). 
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It is verified that for Llt-'>CXJ, the variance-to-mean ratio L(=V(n)/E(n)) 

tends to a certain value Loa given by 

- V Leo = 1 + A + ---- . 
I+A 

(240) 

Equation (240) can be derived from equations (237), (238), and (239)15), but 

here a different proof313) will be given. 
If the interval length Llt is very large, each interval includes many primary 

events, and almost all secondary events triggered by them occur in the same 

'interval. In this case the number of events in the time interval of Llt can be 

approximated by a compound Poisson distribution. The probability generating 

function of this distribution is given by 

h(k) = exp (-fl+flg(k)) (241) 

where g(k) is the probability generation function of the number of secondary 

events triggered by each primary event plus one (see, e.g., Feller479»). It 

follows that 

g'(l) = l+A, (242) 

g"(l) = V -g'(l) +(g' (1))2 = V +A 2+A , (243) 

h'(l) = flh(I) g'(l) =fl(l+A) , (244) 

h"(l) = flfh'(l) g'(l) +h(l) g"(l)} , (245) 

E(n) = h'(l) = fl(1 +A) , (246) 

V(n) = h"(l) +h'(1)-(h'(1))2 = fl(1 +2A + A 2 + V) . (247) 

The ratio of V(n) and E(n) given above leads to equation (240). 

On the other hand, if Llt is very small, most intervals contain no events 
at all, and other intervals contain only very small number of events. This 

is almost similar to a Poisson process having a mean of nearly zero. There­

fore, it is evident that for Llt-'>O, L-'> 1. 

In Table 26 rough estimates of Loa from L vs Llt plots for data I to IV 

shown in Figures 161-164 are listed. 
The expression of L as a function of Llt is not simple, if '\'(t) takes the form 

A.(t) = (P-l)cH/(t+c)p (t > 0) (248) 

satisfying the modified Omori formula (11). However, for 

A.(t) = pe-pt , (t > 0) (249) 
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L is given by 

( V) ( 1 e-pc.t) 
L = 1 + A + 1 + A 1 - ~Jt . (250) 

It is easy to find that for Jt-H)O, L-'>-LoO , and for Jt-'>-O, L-l. 

iii) SPectra for the trigger model 

For the branching Poisson process (trigger model), the spectrum given 

by equation (229) is a decreasing function of W as shown in Figure 146 (G). 

If we put 4>(w)-4>o (W-40) , and 4>(w)-4CPoo (W-400) , it is shown15) that 

- V 
4>o=l+A+-

A
- =Loo , 

1+ 

4>00 = 1 . 

(251) 

(252) 

These equations can be derived directly from an expression of the spectrum 

4>(W) = r C(u) eiwu dujv , 
-00 

(253) 

but another proof will be given below. 
In a two-dimensional random walk with steps of variable length, the 

distance R from the origin reached after W steps is approximately distributed 
as 

2R ( R) p(R) = --=- exp -~ 
Wa2 Wa2 

(254) 

for large W, where a2 is the mean squared step-length. Then 

(255) 

If W-40, the period 27tjw becomes far larger than the time spread of secondary 

events generated by each primary event. In this case 1 I: eiwt k 12 can be 

regarded as the square of the distance from the origin reached by random walk 

of ftT steps (T is the length of the whole period) whose mean squared length 

is equal to E[(1+A)2], since a group of a primary event and its subsidiary 

events can be regarded as a step of length 1 +A. Therefore 

4>0 = E(I I: eiwtkJ 2)",_ojN = ftTE [(1+A)2]jN 

= ft(1+2A+A2+ V)j ,u(l+A) = Loo. (256) 
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On the other hand, for CO--400, each events can be regarded as a unit step of 
random walk, then 

(257) 

If '\'(t) has a form given by equation (249), the spectrum is expressed by 

«1>(CO) = 1+ (/1 + 1:/1) p2~C02 . (258) 

It is obvious that «1>(co)--4Loo (CO--40) and «1>(co)--41 (CO--4oo). If .\,(t) is an inverse­

power type given by equation (248), the spectrum can not be expressed by 
a simple form. In this case we can calculate the spectral values numerically 

by the following equation. 

«1>(CO) - 1 Loo-1 Joo e e-~ d~ 
- + r(p-l) 0 ~2+(cco)2 (259) 

Figure 179 shows spectral cruves for the trigger model with equation (248) 
for various p and Len values. If the standard aftershock sequence (d. Chapter 
8) is adopted, the abscissa at the bottom of the figure (c=0.3 day) must be 
used with curves for p = 1.3. It is seen that for the standard aftershock 
sequence the spectral values are more than 50% higher than those expected 
from the Poisson process at frequencies 365 c/yr (= 1 c/day) for Loo21O. 

Comparison of the observed spectral curves such as shown in Figure 169, 
171, 174 etc. with Figure 179 indicates that the remarkable increase in 
spectral values can be explained by the use of the trigger model. A broken 
line in Figure 169 represents the theoretical spectral curve for the trigger 
model with P=1.3, c=0.3 day, and Loo=4. This Loo value is equal to that 
estimated from the L vs Jt curve (Table 26). For Figures 171 and 174 the 
theoretical curve for p = 1.3 and c =0.3 day fits the data less well. Theoretical 

curves with larger c value or smaller p value fit the data better. 

14.3 Periodicity in earthquake occurrence 

i) Definition 

The problems connected with periodicities in earthquake occurrence 
have been discussed by many seismologists since the last century. However, 
critical review of these studies suggests that if there is any periodicity, it is 
usually so weak that it may be detected only by careful statistical analysis. 
In such discussions the term "periodicity" must first be defined clearly. 
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Many authors have considered that the periodicity IS established if a 
peak amplitude of the spectral curve calculated for a series of earthquake data 
exceeds a certain threshold value determined by assuming a Poisson process. 
In this case an implicit definition of periodicity is given by using a criterion for 
spectral amplitudes. However, the argument against such a definition is that 
the Poisson process is not the only process that has no periodic structure. 
For some non-Poisson processes without periodic structure (e.g., the trigger 
model), the above-mentioned threshold values may be higher than those for 
the corresponding Poisson processes. The spectral amplitude is of coruse a 
sensitive quantity to the periodicity, but the rejection of the Poisson process 
on the basis of the spectral amplitude does not provide a proof for the exist­
ence of the periodicity. 

Generally speaking, it is possible to know whether a stochastic process 
defined mathematically has some periodic structure or not. Examples of non­
periodic point processes are the Poisson process, renewal processes in which the 
distribution of time intervals is a monotonically decreasing function, and 
branching Poisson processes in which the rate of occurrence of subsiderary 
events is a monotonically decreasing function. Examples of periodic point 
processes of period T are renewal processes in which the distribution of time 
intervals has a peak at T =T and time-dependent Poisson processes in which 
the occurrence rate varies with time periodically such as 

v(t) = vO+vI sin 2; t (260) 

where V o, and VI are constants. 
The objects of our discussions are not the stochastic process itself, but 

series of actual earthquake data of finite size. It is impossible to prove that 
such empirical data are samples from a certain specified stochastic process. 
We can test the hypothesis that the data are samples from a given stochastic 
process by various independent methods, but the results do not lead to the 
conclusion about the presence or absence of the periodicity in the data. If the 
hypothesis of a non-periodic process is rejected, it does not necessarily mean 
that the data are periodic, because there are possibilities that the data are 
samples from another non-periodic process. If this hypothesis is not rejected, 
it never mean that the hypothesis is accepted and the data are non-periodic. 
If the hypothesis of a periodic process is rejected, it does not necessarily mean 
that the data are non-periodic, because there are possiblities that the data are 
samples from another periodic process. If this hypothesis is not rejected, it 
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never means that the hypothesis is accepted and the data are periodic. 
Considering such conditions, it seems to impossible to give a perfect 

definition of periodicity. We must seek some practical methods for discussing 
the periodicity. The following procedure is one of such practical methods. 

ii) Statistical tests for periodicity 

First we must realize which of the next two cases we are going to 

discuss. 
Case 1: To test the existence of the periodicity of some suspected period 

T for some geophysical reasons. For example, one day or one year period due 
to astronomical causes. 

Case 2: To discover the periodicity of some period which is unknown 
before the analysis. 
(1) Tests for the Poisson process. 

In case 1, the spectral value 1>(0)) for 0>=27t/T is calculated from equation 
(229). This value is tested against the Poisson model by Schuster's method, 
i.e., if 1>(0)) is larger than cp given in Table 27, the Poisson model is rejected 
at a signfiicance level smaller than p. The rejection of the Poisson process 
does not provide a proof for the existence of the periodicity of period T. 

Table 27. Schuster's criterion for the Poisson 
process. p=e-'I'. 

p rp 

0.1 2.30 
0.05 3.00 
0.01 4.61 
0.001 6.90 
0.0001 9.21 

In case 2, the spectral values are calculated for O>k=2:7t/Tk' Tk=To/k (k=l, 
2, .... , m) where To is the length of the whole period of investigation. If 
the largest spectral value among the m spectral values is denoted by 1>1> this 
value is tested against the Poisson hypothesis by Fisher's method. Fisher 480) 

obtained the probability PI (m, g) that G1( =1>1/ I: 1>(O>k)) exceeds g for the 
k-l 

Poisson process. The g values have been tabulated by e.g., Nowroozi481) for 

various values of m and P1(m, g). If GI is larger than g, the Poisson model is 

rejected at a significance level smaller than PI (m, g). Similarly, for the sth 
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largest spectral values tPs (s=2, 3, .... ), the probability P s (m, g) that Gs (= 
m 

tP s / L: tP(rok)) exceeds g has been obtained for the Poisson process and g values 
k=l 

have been tabulated by Shimshoni482 ) for various values of s, m, and Ps(m, g). 
It should be noted that there is an essential difference between case 1 

and case 2. It is not adequate to use Schuster's criterion in case 2. 

Shimazaki483 ) pointed out this in a discussion to the 69-year periodicity of 
destructive earthquakes in southern Kwanto. 484 ) 

(2) Tests for the trigger model. 
Since the increase of spectral values due to the existence of aftershocks is 

a general feature of series of shallow earthquakes, this effect must be considered 

in the discussion of periodicity as J effreys39) first pointed out in 1938. At 
present, the trigger model with '\(t) of the type given by equation (248) 
seems to be the most adequate one to the approximation of the occurrence of 

shallow earthquakes in a relatively simple form. This model has no 
periodic structure. If this model with appropriate parameters is not rejected 
on the basis of the spectral amplitudes, the existence of periodicity can not be 
concluded even if the spectral amplitude test rejects the Poisson process. 

To test the observed spectral values for the trigger model, the theoretical 
spectrum W(ro) for the trigger model must first been calculated using appropriate 
values for the parameters Loa, p, and c. A rough estimate of the theoretical 
spectrum can be obtained by drawing a smooth concave curve similar to those 

in Figure 179 which fits the observed spectral curve. Since the ratio of the 
observed and the theoretical spectra tP(ro)/1]1(ro) has approximately the same 
distribution as the spectrum for the corresponding Poisson process, the same 
procedure for the tests for Poisson process described before can be applied 
to this spectral ratio. If the trigger model is rejected on the basis of the 
spectral amplitude at period T, we may say that there is evidence for the 
periodicity of period T, as long as no other adequate non-periodic model is 
proposed. Several examples are given below. 

Example 1. Data I (Figure 169). Spectral values have been calculated 
for 100 frequencies or 100 periods from Tl =44 years to T100 =0.44 year. 
Spectral values for 81 frequencies exceed 1 (the expectancy for the Poisson 
process). This is very unusual if the Poisson process is assumed. Further­
more, for 14 frequencies the values exceed 6.9 (probability level of 0.001). The 
maximum spectral value is 22.2 at T k =1.913 years (k=23). If this value is 
tested by Schuster's method, the probability of the occurrence of this value 
is extremely low, e-22.2=1O-9.6. However, if this value is tested by Fisher's 
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100 
method, G1 =P1( I: P(COk) =22.2(356.3=0.062. From the table of Nowroozi 

k=l 

it is found that PI (100, 0.0674) =0.1. Thus the probability of the occur-
rence of P1=22.2 is larger than 0.1, and the periodicity of T 23 =1.913 years is 

not accepted at all. The theoretical spectral value for this period according 
to the trigger model is !P'(co23)~3.5 (see broken line in Figure 169). Then 1>(co23)( 

!P'(W23) =6.3. This value is also insignfiicant according to Fisher's criterion. 
Spectral amplitude at 2nd, 3rd, .... peaks are also insignificant according 
to the extended Fisher test. In conclusion, no significant periodicities are 
found from these data. 

Example 2. Data II (Figure 171). The highest peak at T3=4.0 years 

has the amplitude of 1>1=30.60. Then G1=30.6(534 =0.057. This value is 
smaller than GI for data 1. For the second peak, 1>2=25.22 at T 23 =0.429 year, 
and G2=0.047. From Shimshoni's table, P 2 (100, 0.0543) = 0.05. After all, 
no significant periodicities are found for data II. The same conclusions are 
obtained for data I', II', III, and IV except TI =50 years for data IV. 

Example 3. Remarkable spectral peaks at 1.000 c/day (local time) have 
been found by Morgan et al. 485) and Haubrich474) for different sets of world­

wide data. In Figure 3 of Haubrich's paper, the spectral amplitude at 1.000 
c(day is by about 6 db higher than the average spectral level around this 
frequency. If this average level is assumed to represent an approximate 
theoretical spectral value, the difference of 6 db is not large enough to 
reject the random occurrence according to Schuster's test. In Figure 5 of the 

paper by Morgan et aI., the squared amplitude at 1.000 c/day is about four 
times the average level around this frequency. This amplitude is significant 

at a significance level of about 0.03. Morgan et al. also found a more 
evident yearly peak in the same data. Haubrich suggested the possibility 
that yearly and daily periodicities were resulted from changes in the detection 
threshold due to the variation in the seismic noise rather than from the actual 

changes in the occurrence of earthquakes. 
Example 4. Shimshoni486 ) also found significant periodicity of one 

day using 15325 events reproted from NOAA for 1968-1970. The expectancy 
of the power spectrum for the Poisson process is 4 X 15325(242= 106.4 in the 
unit of his paper. The observed squared amplitude is 50.22, which is about 24 
times of the expectancy. The effect of aftershocks may not be small, but the 
increase of expectancy due to aftershocks may be less than four times (estimat­

ed by using Figures 134 and 179). If the theoretical spectral amplitude is 
assumed to be 400, the observed amplitude is still six times as large as the 
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theoretical amplitude. Therefore Schuster's test rejects the trigger model, 

provided the effect of the daily variation of seismic noise is not so strong. 
Since 1936 Matuzawa and his colleagues78 ) , 487)-489) examined periodicities 

of one year, half year, one day, one luner month, etc. for earthquakes occur­

ring in various regions of the world and of Japan. In these studies they 
applied a special method for significance in harmonic amplitudes. Many 

papers on periodicities of earthquakes in Japan have been published by the 
later workers221 ),456),490)-497) using the same method. This method is closely 

connected with the test based on the trigger model as described below. 
Now we are going to test the periodicity of period T for events distributed 

in the time interval of length mT (m: interger). If the rth interval of length 
T (r=l, 2, .... , m) is divided into n sub-intervals of length Jt=Tjn, and the 

number of events in the sth sub-interval is denoted by x s" the harmonic 

analysis gives the values for the coefficients ao" aIr, bl " .... in the equation 

21l' . 21l' 
X" = ao, +~, cos T sJt+bl , SlD T sJt+ .... (s = 1,2, .. " n) 

(261) 
If 

(262) 

m 
1m2 = L: Ic,2J!m, 

r-l 
(263) 

and 
m 

cm
2=1 L:c,2Ijm, 

r-l 
(264) 

the criterion used by Matuzawa is based on the condition that the probability 

that 

(265) 

exceeds a value cp is w=e-'P for non-periodic processes. 

The spectrum in the complex form (the power spectrum is the square of 
its absolute value) for the rth interval of length T is given by 

where N, is the total number of events in the rth interval. The spectrum for 

the whole interval of length mT becomes 
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provided that N,=Njm for r=l, 2, " .. "' m. If we consider that the 
theoretical power spectrum W(w) for the trigger model is approximated by the 

average of the power spectra Icp,(w) 12 (r=l, 2, ... "' m), i.e., 

m 
W(w) ~ ~ I cp,(w) 12jm = N Ie, 12j(4m2) , 

r-l 
(268) 

the probability that tP(w)fW(w) exceeds a value cp is e-'P from Schuster's criterion 

for the trigger model. Since 

m m 
tP(w) jW(w) = I cp(w) 12jW(W) = I ~ e, 12j ~ Ie, 12 = em 2/lm 2 (269) 

r=l r~l 

the both approach is the same under the assumption expressed by equations 

(267) and (268). Both assumptions seem to be reasonable for stationary 

processes. 

The results of analyses by Matuzawa et al. and later investigators 

indicate that in most cases no periodicities are confirmed, but in a few cases 
the probability w is very small suggesting the existence of periodicity. For 
example, Matuzawa et al. 489). reported w=0.018 for the half luner-month 
period in the world earthquakes of 1921-1930. Matuzawa et al. 488) examined 

the yearly periodicities for earthquakes occurring each of 69 regions in and 

near Japan. Of 69 regions only eight regions have the probability w for 

yearly periodicity of less than 0.1. The smallest one is 0.00044 for a region 

near Amami-Oshima, but recalculation yields w =0.08. The next smallest 
one is w=0.009. It is natural that a probability of about 0.01 is obtained 

by chance in 69 trials, if there is no periodicity at all. 

Many other papers have been published dealing with periodicities of 

earthquakes, the results of which will not be discussed here. For reviews of 
some of these studies, see, for example, Conrad,498) Davison,473) Aki272) and 

Lomnitz. 499 ) 

The correlations between earthquake occurrence and some periodic pheno­

mena, such as the position of the sun or the moon, the ocean tides, the earth 

tides, etc. have been reported for various regions of the world (e.g., references 
65),239),472),500)-520»). Some authors consider such phenomena as secondary 

causes of earthquakes. The author has not checked the statistical significance 

of these reports, but it should be mentioned that the consideration to the 
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effects of aftershocks is needed in some of these discussions. Tests against the 

hypothesis of Poisson process only often leads to a misleading conclusion. 

There is another type of misleading conclusions in statistical seismology. 

Burr521) criticized a paper522) which contained this type of error. Tamrazyan 

wrote more than twenty papers dealing with the relations between earth­

quakes and the astronomical positions of the sun and the moon. In a 

paper523) on the synodic ages of Japanese destructive earthquakes he says 

"14 destructive earthquakes in Japan since 1700 accompanying the deaths 

of 1000 persons or more occurred in the half month from the 20th to the 5th 

day of the synodic month. Only two of such earthquakes occurred in the 

other half month." If the earthquakes occur randomly in time, the pro­

bability that the 14 earthquakes out of 16 ones fall in a half month specified 

beforehand (e.g., 20th to 5th) is very low, about 0.002. However, the pro­

bability that 14 events out of 16 events fall in any unspecified half month is 

not very low, about 0.04. Moreover, six earthquakes in Japan with deaths 

of more than 1000 should be added to his list. (Imamura's list to which he 

referred was incomplete.) Including these, 16 events out of 22 events fall 

in the above mentioned half month. The probability for this is about 0.3, if 

the half month is not specified. Thus in this case no relation is established 

between destructive earthquakes and the moon, though the existence of such 

a relation is not improbable. 

iii) Reccurrence of large earthquakes in the same source regwn 

It has been pointed out by several seismologists524)-531) that great 

earthquakes (e.g., M:;:::S) originate repeatedly from the same source region 

at intervals of several tens to hundreds of years in some island arc areas 

(Japan, Kurile-Kamchatka, Aleutian-Alaska, South America, etc.). This seis­

mic process may simply explained by gradual accumulation of strain energy 

and sudden release of it by an earthquake. If the rate of energy supply is 

constant for a long time, repetition will occur, but the interval length between 

earthquakes may fluctuate owing to the probabilistic nature of the fracture. 

The most simple mechanical model for this process 

spring and a slider connected in series (Figure 126, center). 

of slip fl is related to the stress (T in the spring by 

and if (T increases linearly with time 

is a system of a 

If the probability 

(99) 
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CT = kt, (270) 

the rate of slip (hazard function) is given by 

fl(t} = AeBt 
, B = (3k. (271) 

In this case the probability that a slip takes place between t and t +dt (t is 
measured from the time of the last slip) is expressed by 

t 

q(t} = fl(t} exp ( - f fl(t) dt) (94) 
o 

(272) 

and the probabilty that the slip takes place at a time later than t (reliability 
function) becomes 

P(t) = q(t)!fl(t) = exp\ ~ (I-eBI
)). (273) 

The mean, the median, and the mode of times to slip are given by 

00 1 A 
1 = J P(t) dt = - B {eA1B Ei (- B)I, 

o . 
(274) 

t = -In 1 + - In 2 - 1 ( B ) 
B A ' 

(275) 

(276) 

respectively, where Ei( -x) represents the exponential integral. 

Figure 180 is a plot of P(t) (=1-P(t)) against tIt for various values of 
B'( =Bl). Sufficient historical data are not available for determining the 
values of parameters for this model. The data on large earthquakes in the 
Hokkaido-Southern Kurile region give a rough estimate of B' of 3 to 5. 530 ) 

This model is quite different from the trigger model discussed before. 
However, it is most probable that the trigger model is resulted from superpo­

sition of such reccurrence processes of main shock-aftershock sequence systems 
in many source regions. 
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P(!l 

0.5 

o tiT 
Fig. 180. Curves for P(t) plotted against til for several values of B'. The curve of 

B' = 0 corresponds to the Poisson process. 

15. Distribution of earthquakes in respect to space 

This chapter had been scheduled to be published in the next number of 
this journal. However, the schedule has changed as the author has transferred 
from Hokkaido University. It will be published elsewhere as an independent 

paper. 

16. Summary 

Aftershock sequences are one of the most remarkable phenomena 
connected with the occurrence of earthquakes. They have unique statistical 
properties and the physical explanation of these is of great importance in 
understanding the processes of earthquake generation. In statistical studies 
of earthquake occurrence in general, the effect of aftershock sequences and 
other clusters must be considered properly. Statistical significance tests under 
the assumption that all earthquakes are mutually independent events some­
times yield misleading results. 

In Part I of the present study, some results from investigations of the 
statistical properties of aftershock sequences have been presented. Several 
parameters characterizing an aftershock sequence have been evaluated for 
many Japanese aftershock sequences, and the interrelations between these 
parameters have been investigated. There are slight correlations between 
some parameters, such as P (Utsu, 1957), c (Omori, 1894), Dl (=Mo-Ml) 
(Utsu, 1957), b (Gutenberg-Richter, 1944), etc. In Part II, on the basis of 
abundant examples of the multiple occurrence of simple sequences in relatively 
short intervals of space and time, a new classification of earthquake sequences 
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(an extention of that of Mogi, 1963) has been proposed. As a result of this 
calssification, earthquake swarms are classified into two types. This calssifica­
tion is helpful in the interpretation of some statistical properties of earthquake 

swarms. A model for aftershock occurrence has been proposed on the basis 
of the known statistical properties and the new classification. Ordinary 

aftershocks are caused by delayed fracture in some parts of the source 
region of the main shock where stress redistribution occur at the time of the 
main shock. 

Part III and IV discuss the distributions of general earthquakes in 
magnitude and time, the effects of aftershocks being considered. Discussions 
on the space and space-time distributions will be published elsewhere. In 
Part III, b-values have been redetermined for more than toO groups of 
earthquakes using the maximum likelihood method (Utsu, 1965), and the 

difference in b-value between some groups has been tested. The spatial or 
temporal variation of b-values has been found in only a few cases. A model 
for the magnitude distribution of earthquakes has been proposed. In Part 
IV, the temporal distribution of earthquakes has been investigated by testing 
the hypothesis of Poisson process. The Poisson process seems to be a good 
approximation only for series of earthquakes from which all aftershocks have 
been removed or for series of deep earthquakes followed by few aftershocks. 

Applying a branching Poisson process (Vere-Jones and Davies, 1966), the 
parameters for the process have been estimated from the distribution of time 
intervals between events, the variance/mean curve, and the spectra. It is 
found that this model explains the data reasonably well. The periodicities 

in the occurrence of earthquakes have been tested on the basis of this model. 
No significant periodicities are found in most of the data analysed. 

Acknowled~ements: I with to express my thans to staff members of the 
Department of Geophysics, Hokkaido University for their helpfulness 

throughout this stUdy. Most of the figures were drafted by Miss. R. Yashiro 
and some by Miss. 1. Sanjo. Computations were performed on the NEAC 
2201 and the FACOM 230-60 computers at the Computing Center of Hokkaido 
University. 



Aftershocks and Earthquake Statistics 39 

References * 
454) TERADA, T.: On the frequency of earthquake and allied phenomena. Proc. 

Tokyo Math.-Phys. Soc. (ii), 9 (1918), 515-522. 
455) SHLANGER, A.B.M.: Some consequences of earthquake statistics for the years 

1918-1955. Gerl. Beitr. Geophys., 69 (1960), 68-72. 
456) IIDA, K.: Observations sur les seismes enregistres par Ie microsismographe 

construit dernierment (2). Bull. Earthq. Res. Inst., 17 (1939), 741-782 (in 
Japanese with French summary). 

457) ICHIKAWA, M.: Tremblements de terre du district du Kwanto (1933-1952). 
Quart. J. Seism., 21 (1956), 113-123 (in Japanese with French summary). 

458) SHLIEN, S. and TOKsi:iz, M.N.: A clustering model for earthquake occurrence. 
Bull. Seism. Soc. Am., 60 (1970), 1765-1787. 

459) FRANCIS, T.J.G. and PORTER, LT.: A statistical study of mid-Atlantic ridge 
earthquakes. Geophys. J., 24 (1971), 31-50. 

460) WANNER, E.: Zur Statistik der Erdbeben, I. Gerl. Beitr. Geophys., 50 (1937), 
85-99; II. ibid, 223-228. 

461) GAISKrl, V.N.: On the similarity of earthquake series, the relationship 
between them, and the "tendency" toward periodicity. Bull. Acad. Sci. USSR, 
Phys. Solid Earth, (1967), 432-437 (English translation). 

462) YAMAGUTI, S.: World distribution of deep earthquakes. Bull. Earthq. Res. 
lnst., 15 (1937), 170-178. 

463) NAKAMURA, S.: On the frequency of earthquakes in Tokyo. Kishoshushi, 
39 (1920), 79-82 (in Japanese). 

464) GAISKrl, V.N.: Some features of the seismic process from a study of earth­
quakes in Tadzhikistan. Bull. Acad. Sci. USSR, Ser. Geophys., (1961), 368-
371 (English translation). 

465) KNOPOFF, L.: The statistics of earthquakes in southern California. Bull. 
Seism. Soc. Am., 54, (1964), 1871-1873. 

466) INOUYE, "V.: Statistical investigation on earthquake numbers. Bull. Earthq. 
Res. lnst., 10, (1932), 43-54 (in Japanese with English summary). 

467) ISHIMOTO, M.: Etudes statistiques sur les seismes observes Ii Tokyo depuis 
1876. Bull. Earthq. Res. lnst., 14 (1936), 610-615 (in Japanese with French 
summary). 

468) TAKEHANA, M.: Statistics of felt earthquakes in Japan in the last 30 years. 
Quart. J. Seism., 10 (1940), 95-146 (in Japanese). 

469) FERRAS, S.G.: Test of Poisson process for earthquakes in Mexico City. J. 
Geophys. Res., 72 (1967), 3741-3742. 

470) TAKAHASI, K.: On the statistical properties of frequency of earthquakes. 
Kishoshushi (ii), 15 (1937), 7-16 (in Japanese). 

-471) JENKINS, G.M. and WATTS, D.G.: Spectral Analysis and Its Application, 
(1968), Holden-Day, San Francisco. 

472) SCHUSTER, A.: On luner and solar periodicities of earthquakes. Proc. Roy. 
Soc., 61 (1897), 455-465. 

473) DAVISON, C.: Studies in the Periodicity of Earthquakes. (1938), T. Murby, 
London. 

* See Part I, II, and III of this series for references 1)-193), 194)-311), and 312)-453) 
respectively. 



40 T. UTSU 

474) HAUBRICH, RA.: Spectra of earthquake time series. EOS, 50 (1969), 409-
410. 

475) TAKAHASI, K.: On analysis of random fluctuation, persistence, and periodicities 
and some application to meteorological and geophysical phenomena. Geophys. 
Mag., 11 (1937), 237-268. 

476) REYMENT, RA.: Statistical analysis of some volcanologic data regarded as 
series of point events. Pure Appl. Geophys., 74 (1969), 57-77. 

477) Cox, D.R. and LEWIS, P.A.: The Statistical Analysis of Series of Events, 
(1966), Methuen & Co, London. 

478) KITAGAWA, T., HURUYA, S., and YAMADA, T.: The probabilistic analysis of 
the time series of rare events,!. Mem. Fac. Sci. Kyushu Imp. Univ. Ser. A, 
2 (1941), 152-204. 

479) FELLER, W.: An Introduction to Probability Theory and Its Applications, 
Vol. 1, 2nd Ed., (1957), John Wiley & Sons, New York. 

480) FISHER, RA.: Test of significance in harmonic analysis. Proc. Roy. Soc., 
A 125 (1929), 54-59. 

481) NOWROOZI, A.A.: Table for Fisher's test of significance in harmonic analysis. 
Geophys, J., 12 (1967), 517-520. 

482) SHIMSHONI, M.: On Fisher's test of significance in harmonic analysis. 
Geophys. l, 23 (1971), 373-377. 

483) SHIMAZAKI, K.: Hidden periodicities of destructive earthquakes at Tokyo. 
Zisin (J. Seism. Soc. Jap.), ii, 25 (1972), 21-32, (in Japanese with English 
summary). 

484) KAWASUMI, H.: Proofs of 69 years periodicity and imminen.ce of destructive 
earthquake in southern Kwanto district and problems in the countermeasures 
thereof. Chigaku-Zasshi, 79 (1970), 115-138, (in Japanese with English 
summary). 

485) MORGAN, W.J., STOVER, J .0., and DICKE, R.H.: Periodicity of earthquakes 
and the invariance of the gravitational constant. J. Geophys. Res., 66 (1961), 
3831-3843. 

486) SHIMSHONI, M.: Evidence for higher seismic activity during the night. 
Geophys. J., 24 (1971), 97-99. 

487) MATUZAWA, T.: Remarks on the statistical study of earthquake frequencies. 

488) 
Zisin (J. Seism. Soc. Jap.) i, 8 (1936), 16-23, (in Japanese). 
MATUZAWA, T., NAKAMATI, H., NISHIKAWA, Y., and 
Jahresschwankung der Erdbebenhaufigkeit in Japan. 
15 (1937), 711-784. 

YOSIMURA, Y.: Uber die 
Bull. Earthq. Res. lnst., 

489) MATUZAWA, T., HAYAKAWA, M., HATTORI, Y., KANEKO, T., and MIYAMURA, S.: 
Erdbebenhaufigkeit in Bezug auf die SteHung der Sonne und des Mondes. Bull. 
Earthq. Res. lnst., 18 (1940), 265-280. 

490) KISHlNOUYE, F.: On the diurnal periodicity of felt earthquakes. Bull. Earthq. 
Res. lnst., 14 (1936), 604-609. 

491) SHINOHARA, S.: On the diurnal variation in earthquake frequencies. Kenshin­
jiho (Quart. J. Seism.), 9 (1937), 272-277, (in Japanese). 

492) KINOSHITA, l: Statistical study of earthquakes occurring in the west side 
of the Kii Peninsula. Zisin (J. Seism. Soc. Jap.), i, 10 (1938), 129-150, (in 
Japanese). 

493) KISHlNOUYE, F.: Statistical investigation of monthly numbers of earthquakes 
felt at Tokyo. Bull. Earthq. Res. lnst., 26 (1948), 73-79. 



Aftershocks and Earthquake Statistics 41 

494) IlDA, K.: Observations sur les seismes enregistres par microsismographe (3). 
Bull. Earthq. Res. Inst., 18 (1940), 575-674, (in Japanese with French 
summary). 

495) HOMMA, S. and KOMIYA, T.: Investigations of the diurnal variation of earth­
quake occurrence in Japan, Part 1, Ibaragi Prefecture and vicinity. Kenshin­
jiho (Quart. J. Seism.), 12 (1942). 56-64, (in Japanese). 

496) NAGAMUNE, T.: Investigation of the diurnal variation of earthquake occurrence 
in Japan, Part 2, the Nansei Islands. Kenshinjiho (Quart. J. Seism.), 14 (No. 
3-4). 18-23 (in Japanese). 

497) FURUMOTO, A.S.: Some statistical investigations of Hawaiian voleanic erup­
tions and earthquakes 1. Kazan (J. Vole. Soc. Jap.) ii, 2 (1957), 26-36, (in 
Japanese with English summary). 

498) CONRAD, V.: Die zeitlich Folge der Erdbeben und bebenaus163ende Ursachen. 
Handbuch der Geophysik, 4 (1932), 1007-1185, 

499) LOMNITZ, C.: Statistical prediction of earthquakes. Rev. Geophys., 4 (1966), 
377-393. 

500) IMAMURA, A.: Synodic-monthly variation of seismic frequency in Japan. Pub. 
Earthq. Inv. Comm., 18 (1904), 41-71. 

501) OMORI, F.: Note on the luner-daily distribution of earthquakes. Pub. Earthq. 
Inv. Comm., 18 (1904), 27-40. 

502) NAKAMURA, S.: On the effect of tides on the occurrence of earthquakes in 
Kwanto district. Jap. J. Astro. Geophys., 4 (1927). 139-165. 

503) YAMAGUTI, S.: Relation between tidal phases and the earthquakes. Bull. 
Earthq. Res. Inst., 8 (1930), 393-403. 

504) TAKAYAMA, T. and SUZUKI, T.: On the relation between the sunspot number 
and the destructive earthquakes in Japan. Bull. Earthq. Res. Inst., 8 (1930), 
364-374, (in Japanese with English summary). 

505) FUKUTOMI, T. and KAWASE, J.: Relation of earthquake occurrence and 
volcanic eruption to tides. Zisin (J. Seism. Soc. Jap.) i, 3 (1931), 484-498 (in 
Japanese). 

506) STETSON, H.T.: The correlation of deep focus earthquakes with lunar hour 
angle and declination. Science, 82 (1935), 523-524. 

507) TAGUCHI, T.: On the recent seismic activities near Kii. Kenshinjiho (Quart. 
J. Seism.), 8 (1935). 139-145. 

508) ALLEN, M.W.: The luner triggering effect on earthquakes in SO:lthern 
California. Bull. Seism. Soc. Am., 26 (1936). 147-157. 

509) STETSON, H.T.: Correlation of frequency of seismic disturbances with the 
hour angle of the moon. Proc. Am. Phil. Soc., 78 (1937), 411-424. 

510) MORITA, M.: Relation between aftershocks of the Karenko-oki earthquake of 
June 14, 1925 and the tide. Kenshinjiho (Quart. J. Seism.), 9 (1937), 265-271, 
(in Japanese). 

511) MCMURRY, H.: Periodicity of deep-focus earthquakes. Bull. Seism. Soc. Am., 
31 (1941), 33-82. 

512) 

513) 

TANAKA, Y.: Volcanic earthquakes triggered 
J. Seism.), 26 (1961), 7-15, (in Japanese with 
DIX, C.B.: Triggering of some earthquakes. 
410-415. 

by tides. Kenshinjiho (Quart. 
English summary). 

Proc. Jap. Acad., 40 (1964), 

514) KNOPOFF, L.: Earth tides as a triggering mechanism for earthquakes. Bull. 
Seism. Soc. Am., 54 (1964), 1865-1870. 



42 T. Ursu 

515) BERG, E.: Triggering of the Alaskan earthquake of March 28, 1964 and major 
aftershocks by low ocean tide loads. Nature 210 (1966), 983-896. 

516) SIMPSON, J.F.: Earth tides as a triggering mechanism for earthquakes. Earth 
Planet. Sci. Lett., 2 (1967), 473-478. 

517) SIMPSON, J.F.: Solar activity as a triggering mechanism for earthquakes. 
Earth Planet. Sci. Lett., 3 (1967). 417-425. 

518) TAMRAZYAN, G.P.: Earthquakes of Nevada (USA) and the tidal forces. J. 
Geophys. Res., 73 (1968), 6013-6018. 

519) TAMRAZYAN, G.P.: Principal regularities in the distribution of major earth­
quakes relative to solar and luner tides and other cosmic forces. Icarus, 9 
(1968), 574-592. 

520) MOGI, K.: Monthly distribution of large earthquakes in Japan. Bull. Earthq. 
Res. lnst., 47 (1969). 419-427. 

521) BURR, E.J.: Earthquakes and Uranus: Misuse of a statistical test of 
significance. Nature, 186 (1960), 336--337. 

522) TOMASCHEK, R.: Great earthquakes and the astronomical positions of Uranus. 
Nature, 184 (1959), 177-178. 

523) TAMRAZYAN, G.P.: On the synodic age of destructive earthquakes in Japan. 
Zisin (J. Seism. Soc. Jap.) ii, 24 (1971), 67-68 (in Japanese). 

524) IMAMURA, A.: Reccurrence of great earthquakes in Kwanto and Kinki 
districts and phenomena forerunning great earthquakes. Zisin (J. Seism. Soc. 
Jap.) i, 1 (1929). 4-16, (in Japanese). 

525) FEDOTOV, S.A.: Regularities of the distribution of strong earthquakes of 
Kamchatka, the Kurile Islands, and northeastern Japan. Trudy Inst. Phys. 
Earth, Acad. Sci. USSH., 36 (1965), 66-93, (in Russian). 

526) FEDOTOV, S.A., DOLBILKINA, N.A., MOROZOV, V.N., MYACHIKIN, V.I., PREOBRA­
ZENSKY, V.B., and SOBOLEV, G.A.: Investigation on earthquake prediction in 
Kamchatka. Tectonophys., 9 (1970), 249-258. 

527) MATSUDA, T.: Active faults and large earthquakes. Kagaku, 39 (1969). 
398-407, (in Japanese). 

528) KELLEHER, J.: Space-time seismicity of the Alaska-Aleutian seismic zone. 
J. Geophys. Res., 75 (1970), 5745-5756. 

529) SYKES, L.R.: Aftershock zones of major earthquakes, seismicity gaps, and 
earthquake prediction for Alaska and the Aleutians. J. Geophys. Res., 76 
(1971), 8021-8041. 

530) UTSU, T.: Large earthquakes near Hokkaido and the expectancy of occur­
rence of a large earthquake off Nemuro. Rep. Coordinating Comm. Earthq. 
Predic., 7 (1972), 7-13, (in Japanese). 

531) KELLEHER, J.A.: Rupture zones of large south American earthquakes and 
some predictions. J. Geophys. Res., 77 (1972), 2087-2103. 


