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Singularities of improper affine spheres and

surfaces of constant Gaussian curvature

Go-o ISHIKAWA∗ and Yoshinori MACHIDA†

Abstract: We study the equation for improper (parabolic) affine spheres from the view point of contact

geometry and provide the generic classification of singularities appearing in geometric solutions to the

equation as well as their duals. We also show the results for surfaces of constant Gaussian curvature and

for developable surfaces. In particular we confirm that generic singularities appearing in such a surface are

just cuspidal edges and swallowtails.

Dedicated to Professor Tohru Morimoto on his 60th birthday

1 Introduction.

Let f(x, y) be a C∞ function on R2 satisfying the unimodular Hessian equation:

Hess(f) =

∣∣∣∣∣∣∣∣

∂2f

∂x2

∂2f

∂x∂y
∂2f

∂y∂x

∂2f

∂y2

∣∣∣∣∣∣∣∣
= ±1.

Then the graph z = f(x, y) in R3 is an improper affine sphere with the affine normal vector field
∂/∂z [N-S]. In this note we study the equations “Hessian = ±1” and singularities of improper
affine spheres. Also we study the equations of constant Gaussian curvature K = c for surfaces in
R3. We provide the results on singularities of geometric solutions to K = −1 (“pseudo-spherical
surfaces”), K = 1 (“sphere-like surfaces”) and K = 0 (“developable surfaces”).

The importance of the study on singularities comes from the well-known classical results: A
smooth global solution in R3 to Hess = 1 is the graph of a quadratic polynomial function (Jörgens’
theorem [Jr][C][Po], cf. Bernstein’s theorem [B2][N]). Therefore other solutions necessarily have
singularities. Besides we know: A compact surface in R3 with constant positive Gaussian curvature
is a sphere (Liebmann’s theorem[O]). Therefore compact solution surfaces to K = 1 other than
spheres have necessarily singularities. Moreover, there are no complete surface in R3 with constant
negative Gaussian curvature (Hilbert’s theorem[Hi], cf. [Ts]). Therefore solution surfaces to the
equation K = −1 have necessarily singularities.

As well-known, the equations Hess = c and K = c are regarded as Monge-Ampère equations,
and they have been studied from both geometric and analytic aspects. Note that, for a surface

z = f(x, y), we have K =
fxxfyy − f2

xy

(1 + f 2
x + f2

y )2
and the equation K = c turns to be

fxxfyy − f2
xy = c(1 + f 2

x + f2
y )2.
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Then we observe that there are associated to these equations an additional geometric structure,
the structure of Lagrangian pair ([I-Ma]), and based on that, we proceed to detailed study on the
singularities of solutions beyond usually expected.

Consider the equation fxxfyy−f2
xy = c for a surface z = f(x, y) in xyz-space R3. Geometrically

the equation can be written into the differential system

ω = cdx ∧ dy − dp ∧ dq = 0, θ = dz − pdx− qdy = 0,

on xyzpq-space R5, p, q representing zx, zy respectively. Then we have the contact distribution
D = {θ = 0} with the symplectic structure dθ|D in the tangent bundle TR5. Moreover E1 =
{v ∈ D | iv(dx ∧ dy) = 0} and E2 = {v ∈ D | iv(dp ∧ dq) = 0} are Lagrangian subbundles of D,

where iv denotes the interior product by v. In fact E1 (resp. E2) is generated by
∂

∂p
,
∂

∂q
(resp. by

∂

∂x
+ p

∂

∂z
,
∂

∂y
+ q

∂

∂z
). Then the double Legendrian fibration

M = R5

π1 ↙ ↘ π2

W1 = R3 W2 = R3

is induced. The first projection π1 is defined by (x, y, z, p, q) �→ (x, y, z) and the second projection
π2 is defined by (x, y, z, p, q) �→ (p, q, px+ qy − z).

The differential system associated to the equation K = c in the Euclidean 3-space R3 is defined
on the unit tangent bundle R3 × S2 of R3 by the 2-form

ω = c(y1dx2 ∧ dx3 + y2dx3 ∧ dx1 + y3dx1 ∧ dx2) − (y1dy2 ∧ dy3 + y2dy3 ∧ dy1 + y3dy1 ∧ dy2),

and the contact form θ = y1dx1 + y2dx2 + y3dx3. Here (x1, x2, x3; y1, y2, y3) is the system of
coordinates on R3 × R3 restricted to R3 × S2. We set D = {θ = 0} ⊂ T (R3 × S2), and two
Lagrangian subbundles of D:

E1 = {v ∈ D | iv(y1dx2 ∧ dx3 + y2dx3 ∧ dx1 + y3dx1 ∧ dx2) = 0}
=

{
v = η1

∂

∂y1
+ η2

∂

∂y2
+ η3

∂

∂y3

∣∣∣∣ v is tangent to S2

}
,

E2 = {v ∈ D | iv(y1dy2 ∧ dy3 + y2dy3 ∧ dy1 + y3dy1 ∧ dy2) = 0}
=

{
v = ξ1

∂

∂x1
+ ξ2

∂

∂x2
+ ξ3

∂

∂x3

∣∣∣∣ ξ1y1 + ξ2y2 + ξ3y3 = 0
}
.

Then we have the double Legendrian fibration

M = R3 × S2

π1 ↙ ↘ π2

W1 = R3 W2 = R× S2,

where π1(x, y) = x, π2(x, y) = (x · y, y) for (x, y) ∈ R3 × S2 ⊂ R3 × R3, and x · y is the inner
product (the height function).

In general, let M be a contact manifold of dimension 2n + 1 with a contact structure D ⊂
TM . A Monge-Ampère system on M is an exterior differential system M generated locally by
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a contact form θ for D and an n-form ω on M . The geometric formulation of Monge-Ampère
systems, originally due to T. Morimoto [M1][M2] and V.V. Lychagin [L], naturally and intrinsically
generalizes the classical Monge-Ampère equations, and describes several fundamental equations in
geometry, analysis and physics. As explained above, we have Monge-Ampère systems associated
to the equations Hessian = c and K = c respectively.

An immersion f : Nn →M from a manifold N of dimension n is called a Legendrian immersion
if f∗(TN) ⊂ D(⊂ TM), where f∗ : TN → TM is the differential of f . A Legendrian immersion
f : N → M is called a geometric solution of a Monge-Ampère system M if f ∗M = 0. If M is
given by a contact form θ and an n-form ω, then the condition reads f ∗θ = 0, f∗ω = 0.

We lift any solution surface z = f(x, y) to Hess = c uniquely to a geometric solution to Hess = c
in R5, by setting p = fx, q = fy. Then the π2-projection of the lifting is nothing but the affine
dual of the original surface. Also we lift any surface in R3 with K = c with a fixed co-orientation,
uniquely to a geometric solution to K = c in R3 × S2, by using the Gauss map (unit normals).
The π2-projection of the lifting is the pedal surface in R × S2 ∼= R3 \ {0} of the original surface.
To describe singularities of solution surfaces, we start to study geometric solutions and then the
both π1 and π2-projections of them.

In this paper we show the following result:

Theorem 1.1 A generic geometric solution to Hess = 1 (resp. to Hess = −1, K = 1, or K = −1)
has only cuspidal edges and swallowtails as singularities. More strictly, any geometric solution
N2 → M5 = R5 or R3 × S2 to Hess = 1 (resp. to Hess = −1, K = 1, or K = −1) can be locally
approximated near each point in N in C∞ topology by a geometric solution f : U → M such
that, for any x0 ∈ U , one of the following assertions (i), (ii), (iii), (iv) holds, with respect to the
Legendrian fibrations π1 : M →W1 = R3 and π2 : M →W2 = R3 or R × S2:

(i) π1 ◦ f : (U, x0) →W1 is an immersion at x0, and π2 ◦ f : (U, x0) →W2 is an immersion at
x0.

(ii) π1 ◦ f has the cuspidal edge at x0, and π2 ◦ f has the cuspidal edge at x0.
(iii) π1 ◦ f has the swallowtail at x0, and π2 ◦ f has the cuspidal edge at x0.
(iv) π1 ◦ f has the cuspidal edge at x0, and π2 ◦ f has the swallowtail at x0.

The significance of Theorem 1.1 is twofold.
First, Theorem 1.1 is a collection of four theorems: Four results are independent to each other,

since four equations have different properties to each other and we need to analyze geometric
solutions for each equations. Neverthless we get the same list of generic singularities as a result.

Note also that the equation Hess = c(c > 0) (resp. Hess = c(c < 0)) is equivalent to Hess = 1

(resp. Hess = −1), by the contactomorphism (x, y, z, p, q) �→ (
√|c|x,√|c|y, z, 1√|c|p,

1√|c|q).
Similarly the equation K = c(c > 0) (resp. K = c(c < 0)) is equivalent to K = 1 (resp. K = −1)
by the contactomorphism (x, y) → (

√|c|x, y).
Second, the classification result of Theorem 1.1 differs from that for generic Legendrian sub-

manifolds:

Proposition 1.2 For a generic Legendrian immersion N2 → R5 (not necessarily a geometric
solution), one of the following holds:

(a) π1 ◦ f is an immersion, and π2 ◦ f is an immersion at x0.
(b) π1 ◦ f is the cuspidal edge, and π2 ◦ f is an immersion at x0.
(c) π1 ◦ f is an immersion, and π2 ◦ f is the cuspidal edge at x0.
(d) π1 ◦ f is the cuspidal edge, and π2 ◦ f is the cuspidal edge at x0.
(e) π1 ◦ f is the swallowtail, and π2 ◦ f is an immersion at x0.
(f) π1 ◦ f is an immersion and π2 ◦ f is the swallowtail at x0.
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Note that Proposition 1.2 is a straightforward result from ordinary Legendrian singularity
theory ([A-G-V][Z]). In fact the result is described by the generic combination of two stratifications
on the plane by A3, A2, A1-singularities via two Legendrian fibrations π1 and π2 respectively.

Contrary to Proposition 1.2, we observe the simultaneous occurrence of singularities of π1 and
π2-projections generically, in Theorem 1.1. For example, the property of the equation Hess = 1
affects it. In fact from the equations ω = dx ∧ dy − dp ∧ dq = 0, θ = dz − pdx − qdy = 0, we see
π1 ◦ f is immersive at x0 if and only if π2 ◦ f is immersive at x0, therefore π1 ◦ f is singular at x0

if and only if π2 ◦ f is singular at x0.

Remark 1.3 In [K-R-S-U-Y], it is shown that the generic singularities on flat surfaces in the
hyperbolic 3-space H3 are cuspidal edges and swallowtails, based on the representation formula
obtained in [K-U-Y]. Also a useful criterion on singularities is established in [K-R-S-U-Y], so called
“KRSUY” criterion. To show Theorem 1.1, we analyze by means of power series expansions and
transversality arguments, in each case Hess = 1,Hess = −1,K = 1,K = −1 and Hess = 0(K = 0)
on R3. To finish up the classification in each case, we apply the “KRSUY” criterion.

For the improper affine spheres, the global complex representation is given in [F-M-M]. More-
over the notion of improper affine maps is introduced in [Mar] in connection with special Lagrangian
immersions, and improper affine spheres with singularities are considered. Furthermore the classifi-
cation of singular improper affine spheres can be reduced to the classification of singular flat fronts
in H3 as shown in [K-R-S-U-Y]. This is communicated to the first author by M. Umehara and
K. Yamada. Note that Theorem 1.1 gives the classification of singularities not only for improper
affine spheres, but also for their affine duals as well.

It seems to be natural to conjecture that the generic singularities on surfaces of constant
negative Gaussian curvature should be cuspidal edges and swallowtails. (See [Mc] for the pictures
of singularities appearing on surfaces of constant negative curvature). Moreover, by numerical
experiments, it can be conjectured that also the generic singularities on surfaces of constant positive
Gaussian curvature should be cuspidal edges and swallowtails([Kob]). Theorem 1.1 answers the
conjectures affirmatively.

Remark 1.4 Theorems 1.1 describes generic singularities for both π1 and π2-projections. Note
that it is most natural to classify geometric solutions under the equivalence preserving the structure
of double fibration, namely, by posing that the contactomorphism onM should be taken in common
for π1 and π2. However, then it is hopeless to expect a finite list of classification as in Theorem
1.1, since such classification has functional moduli in general.

Now recall the fundamental notions appeared in Theorem 1.1.
Let π : (R2n+1, 0) → (Rn+1, 0) be a Legendrian fibration. Two Legendrian immersions

f, g : (Rn, 0) → (R2n+1, 0) are called Legendre equivalent if there exist a contactomorphism
Φ : (R2n+1, 0) → (R2n+1, 0), a diffeomorphism σ : (Rn, 0) → (Rn, 0) and a diffeomorphism
ϕ : (Rn+1, 0) → (Rn+1, 0) such that the following diagram commutes:

(Rn, 0)
f−→ (R2n+1, 0) π−→ (Rn+1, 0)

σ ↓ Φ ↓ ϕ ↓
(Rn, 0)

g−→ (R2n+1, 0) π−→ (Rn+1, 0).

Let π : (R5, 0) → R3 be a germ of Legendrian fibration with respect to the contact form
θ = dz− pdx− qdy. A Legendrian immersion f : (R2, 0) → (R5, 0) is called a cuspidal edge (or A2

briefly) with respect to π, if f is Legendre equivalent to

(x, y, z, p, q) = (u, v2,
2
3
v3, 0, v).

In this case we say that π ◦ f has the cuspidal edge at 0. A Legendrian immersion f : (R2, 0) →
(R5, 0) is called a swallowtail (or A3 briefly) with respect to π, if f is Legendre equivalent to

(x, y, z, p, q) = (u, v3 + uv,
3
4
v4 +

1
2
uv2,−1

2
v2, v).
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In this case we say that π ◦ f has the swallowtail at 0.
The immersion can be called “A1-singularity”.

Example 1.5 Let f : (R2, 0) → R5 be a map-germ defined by

x = u
y = 2uv + 3u2v − v3

z =
1
3
u3 + uv2 +

1
4
u4 +

3
2
u2v2 − 3

4
v4

p = u2 − v2 + u3 − 3uv2

q = v.

Then f is a geometric solution to Hess = 1. Moreover π1 ◦ f = (x, y, z) has the swallowtail at 0
and π2 ◦ f = (x, y, px+ qy − z) has the cuspidal edge at 0. See Figure 1. Note that

z̃ = px+ qy − z =
2
3
u3 +

3
4
u4 − 3

2
u2v2 − 1

4
v4.

Figure 1: An improper affine sphere with the swallowtail singularity (left) and with the cuspidal
edge singularity (right) in its dual.

The solution surfaces to the equation Hess = 0 or K = 0, in the case c = 0, are so called
“developable surfaces” [Is]. Then we face a different situation with respect to dual surfaces from
the cases c �= 0. Actually we have the following classification result:

Theorem 1.6 A generic geometric solution to Hess = 0 (resp. K = 0) has only cuspidal edges
(A2) and swallowtails (A3) as singularities with respect to π1, while it collapses to a generic im-
mersed space curve by π2.

Note that the same classification result for generic singularities of developable surfaces has been
given in [Iz], with respect to the topology on the space of tangent developables to space curves.

Also we have a result on the geometric solutions which are not necessarily immersions; gener-
alized geometric solutions. We call a C∞ mapping f : Nn → M2n+1, which is not necessarily an
immersion, an integral mapping if f∗(TN) ⊂ D(⊂ TM). If D = {θ = 0}, then the condition means
that f∗θ = 0. An integral mapping is called a generalized geometric solution to a Monge-Ampère
system M generated by a contact form θ and an n-form ω if f ∗θ = 0, f∗ω = 0.

An integral map-germ f : (R2, 0) →M5 is called an open umbrella if f is contactomorphic to

(u, v) �→ (x, y, z, p, q) = (u, v2, uv3, v3,
3
2
uv),

by a contactomorphism not necessarily preserving the Legendre fibrations. The open umbrella
appears as the Legendre lifting of the tangent developable surface to a space curve where the
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curvature does not vanish and the torsion simply vanishes ([Is]). Therefore the open umbrella is a
generalized geometric solution to Hess = 0 (resp. K = 0) ([I-Mo]).

Then we show the following:

Proposition 1.7 An open umbrella cannot be a generalized geometric solution to Hess = c(c �= 0)
(resp. K = c(c �= 0)).

In the next section, we recall the criterion of cuspidal edges (A2) and swallowtails (A3) estab-
lished in [K-R-S-U-Y]. In §3, we deal with geometric solutions to the equations Hess = ±1, in
connection with the classical solutions to the Laplace equation and to the wave equation, and show
Theorems 1.1 for them. In §4, we treat geometric solutions to the equations K = ±1, by means of
the method of Cauchy-Kovalevskaya’s type to complete the proof of Theorem 1.1. In §5, we give
the proofs of Theorem 1.6 and Proposition 1.7.

2 A criterion for cuspidal edges and swallowtails.

In the recent paper [K-R-S-U-Y], a simple criterion is established for cuspidal edge singularities
and swallowtails singularities of wave fronts. The criterion is very easy to handle, and we are
going to use them effectively for our classification results in the following sections. We modify the
criterion slightly according to the situation to which we are going to apply.

Let f : (R2, (u0, v0)) → R5 be a germ of Legendrian immersion,

f(u, v) = (x(u, v), y(u, v), z(u, v), p(u, v), q(u, v)),

for the standard contact form θ = dz−pdx−qdy on R5 with the Legendrian fibration π : R5 → R3,
π(x, y, z, p, q) = (x, y, z). Set g = π ◦ f . Suppose (u0, v0) is a singular point, namely a non-

immersive point, of g. We call the singular point (u0, v0) non-degenerate if ∆ = det
(
xu, xv

yu, yv

)
:

(R2, (u0, v0)) → (R, 0) is submersive. Note that gu×gv = ∆ · (−p,−q, 1) so that the singular locus
of g is given by ∆ = 0 on (R2, (u0, v0)).

Suppose a singular point (u0, v0) of g is non-degenerate. Then the singular locus can be
parametrized by an immersed curve γ : (R, 0) → (R2, (u0, v0)). Moreover we see g has rank 1
along γ(t) near t = 0. Then the kernel field of g∗ is generated by a non-vanishing vector field
η : (R, 0) → TR2 along γ so that (gγ(t))∗(η(t)) = 0.

Then the criterion is given as follows:

Proposition 2.1 (Proposition 1.3 of [K-R-S-U-Y]) Let p is a non-degenerate singular point of
g = π ◦ f : (R2, (u0, v0)) → R3 for a Legendrian immersion f : (R2, (u0, v0)) → R5. Then
f is a cuspidal edge at (u0, v0) with respect to π if and only if det(γ′(0), η(0)) �= 0. On the
other hand, f is a swallowtail at (u0, v0) with respect to π if and only if det(γ′(0), η(0)) = 0 and
∂

∂t
det(γ′(t), η(t))|t=0 �= 0.

Example 2.2 Just to make sure, let us check that our normal form (x, y, z, p, q) = (u, v2,
2
3
v3, 0, v)

of the cuspidal edge satisfies the criterion. In this case, we have ∆ = 2v. We can set γ(t) = (t, 0)
and η(t) = (0, 1). Therefore det(γ ′(0), η(0)) = 1.

For the normal form (x, y, z, p, q) = (u, v3 + uv,
3
4
v4 +

1
2
uv2,−1

2
v2, v) of the swallowtail at

(u0, v0) = (0, 0), we have ∆ = 3v2 + u. Then η(t) = (0, 1). For any immersion γ(t) = (u(t), v(t))
which parametrizes {∆ = 0}, we have 3v(t)2 + u(t) = 0, and u′(0) = 0. Moreover, since v(0) =

0, v′(0) �= 0, we have
∂

∂t
det(γ′(t), η(t))|t=0 = u′′(0) = 6v′(0)2 �= 0.
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3 Singularities of improper affine spheres and their duals.

We observe the fact that the ellipticity of the equation Hess = 1 implies the “rigidity” of solutions,
controlled by holomorphic or harmonic functions, while the hyperbolicity of the equation Hess = −1
implies the “softness” of solutions, controlled by C∞ functions.

Then the key point of the proof of Theorem 1.1 lies on the fact that even in elliptic cases there
exist enough solutions implying the validity of a transversality theorem.

Before starting the detailed analysis, we remark that our objects are homogeneous: Consider

the group G of equi-affine transformations preserving the vector field
∂

∂z
. Then G acts transitively

on R5, on R3, and the dual R3 in the natural way. Moreover π1 : R5 → R3 and π2 : R5 → R3 are
G-equivariant. Furthermore the differential system ω = 0, θ = 0 on R5 is G-invariant. Throughout
this section, we use the homogeneity for simplifying the calculations.

First, let us consider the equation Hess = 1 on R5.
Let f : (R2, 0) → R5 be a germ of a geometric solution to Hess = 1. We assume f is an

immersion, and f∗θ = 0 for the contact form θ = dz − pdx − qdy and f ∗ω = 0 for the 2-form
ω = dx ∧ dy − dp ∧ dq. Set

f(u, v) = (x(u, v), y(u, v), z(u, v), p(u, v), q(u, v)).

First we observe the following:

Lemma 3.1 Suppose either (π1 ◦ f)∗ : T0R2 → T0R3 or (π2 ◦ f)∗ : T0R2 → T0R3 is injective.
Then both (π1 ◦ f)∗ and (π2 ◦ f)∗ are injective.

Proof : Since f∗(dz − pdx − qdy) = 0, the condition that (π1 ◦ f)∗ : T0R2 → T0R3 is injective is
equivalent to that (π1 ◦ f)∗(dx∧ dy) �= 0 at 0. Similarly, since f∗(d(xp+ yq− z)− xdp− ydq) = 0,
the condition that (π2 ◦ f)∗ : T0R2 → T0R3 is injective is equivalent to that (π2 ◦ f)∗(dp∧ dq) �= 0.
On the other hand, 0 = f ∗(dx ∧ dy − dp ∧ dq) = (π1 ◦ f)∗(dx ∧ dy) − (π2 ◦ f)∗(dp ∧ dq), we see
(π1 ◦ f)∗(dx ∧ dy) = (π2 ◦ f)∗(dp ∧ dq). Thus we have the result. �

Moreover we have:

Lemma 3.2 Suppose both (π1 ◦ f)∗ and (π2 ◦ f)∗ are not injective at 0. Then (π1 ◦ f)∗ has rank
1 and (π2 ◦ f)∗ has rank 1 at 0.

Proof : Assume that (π1 ◦ f)∗ is not injective and dose not have rank 1. Then (π1 ◦ f)∗ has rank 0,
which means that f∗(T0R2) is contained in E1. Since (E1)f(0) projects to T(π2◦f)(0)R3 injectively
by (π2)∗, we see (π2 ◦ f)∗ must be injective. Thus we see (π1 ◦ f)∗ has rank 1. By the symmetric
argument, we have also that (π2 ◦ f)∗ has rank 1. �

Furthermore we have:

Lemma 3.3 Suppose both (π1◦f)∗ and (π2◦f)∗ are not injective at 0. Then we have (x◦f, q◦f)∗ :
T0R2 → T0R2 is isomorphic or (y ◦ f, p ◦ f)∗ : T0R2 → T0R2 is isomorphic.

Proof : By Lemma 3.2, we see d(x ◦ f)(0) �= 0 or d(y ◦ f)(0) �= 0. Let d(x ◦ f)(0) �= 0. Since f
is a Legendrian immersion, we see (x, p), (x, q), (y, p) or (y, q) composed with f is a local diffeo-
morphism. Assume d(x ◦ f) and d(p ◦ f) are linearly independent at 0. Since f ∗(dθ) = 0, we see
0 �= d(p◦f)∧d(x◦f) = −d(q◦f)∧d(y◦f) at 0. Therefore d(q◦f)(0) and d(y◦f)(0) must be linearly
independent. Besides, we are supposing that d(x ◦ f)(0) and d(y ◦ f)(0) are linearly dependent.
Therefore we have that d(x ◦ f)(0) and d(q ◦ f)(0) are linearly independent. If d(y ◦ f)(0) �= 0,
then similarly we have d(y ◦ f)(0) and d(p ◦ f)(0) are linearly independent. �
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Now suppose either (π1 ◦ f)∗ : T0R2 → T0R3 or (π2 ◦ f)∗ : T0R2 → T0R3 is not injective. By
Lemmata 3.1, 3.2, 3.3, we may assume x = u, q = v by a coordinate transformation of (R2, 0) and
by the isomorphism (x, y, z, p, q) �→ (y, x, z, q, p) of the system. Thus we set

f(u, v) = (u, y(u, v), z(u, v), p(u, v), v).

By the condition dz = pdu+ vdy, we have that dp ∧ du+ dv ∧ dy = 0. Then we have

∂p

∂v
= −∂y

∂u
.

Also by the condition ω = dp ∧ dv − du ∧ dy = 0, we have

∂p

∂u
=
∂y

∂v
.

Thus we obtain the Cauchy-Riemann equation. Therefore we see the complex valued function
p+

√−1y : (R2, 0) → C is holomorphic with the complex coordinate u+
√−1v.

Remark 3.4 Consider a contact transformation L : R5 → R5 defined by L(x, y, z, p, q) = (x, q, z−
yq, p,−y), which is called a partial Legendre transformation. Then L∗(dp ∧ dy − dq ∧ dx) =
−(dx∧dy−dp∧dq) = −ω. Therefore, as well known, the equation Hess = 1 is contactomorphic to
the Laplace equation zxx + zyy = 0. Similarly, we see the equation Hess = −1 is contactomorphic
to the wave equation zxx − zyy = 0. Thus the “nonlinear” equation Hess = ±1, or rt− s2 = ±1 in
the classical Goursat’s notation, is equivalent to the “linear” equation r± t = 0. Actually we have
used this procedure of Legendrian transformation, and naturally we have got the Cauchy-Riemann
equation (resp. the wave equation). However note that the Legendrian transformation L does not
preserve the structure of the Lagrangian pair, and also that the Cauchy-Riemann equation we have
got is not over the xy-plane but rather over the uv-plane, the parameter plane of the geometric
solution.

Thus we have:

Proposition 3.5 Let f : (R2, 0) → R5 be a germ of a geometric solution of the Monge-Ampère
system associated to the equation Hess = 1. Then there exists a germ of a holomorphic function
h = p +

√−1y : (R2, 0) = (C, 0) → (C, 0) of u +
√−1v such that f is Legendre equivalent to

fh = (u, y(u, v), z(u, v), p(u, v), v), up to a diffeomorphism on (R2, 0) and a contactomorphism on
R5 preserving (M, E1, E2), defined by the line integral

z(u, v) =
∫ (u,v)

(0,0)

(
p(u, v) + v

∂y

∂u

)
du+ v

∂y

∂v
dv.

Example 3.6 Consider the holomorphic function

h = (u+
√−1v)2 = u2 − v2 +

√−1(2uv).

Set p = u2 − v2 and y = 2uv. Then we have fh = (u, 2uv,
1
3
u3 + uv2, u2 − v2, v). For the function

h =
√−1(u+

√−1v)2 we have fh = (u, u2 − v2,−2
3
v3,−2uv, v).

More generally, for a holomorphic function

h = (a1 +
√−1b1)(u+

√−1v) + (a2 +
√−1b2)(u+

√−1v)2 + (a3 +
√−1b3)(u+

√−1v)3 + · · · ,
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we have fh = (x, y, z, p, q) with

x = u
y = a1v + b1u+ a2(2uv) + b2(u2 − v2) + a3(3u2v − v3) + b3(u3 − 3uv2) + · · ·
z = a1(

1
2
u2 +

1
2
v2) + a2(

1
3
u3 + uv2) + b2(−2

3
v3)

+a3(
1
4
u4 +

3
2
u2v2 − 3

4
v4) + b3(−2uv3) + · · ·

p = a1u− b1v + a2(u2 − v2) + b2(−2uv) + a3(u3 − 3uv2) + b3(−3u2v + v3) + · · ·
q = v.

This example parametrizes all geometric solutions to Hess = 1 with projection singularities,
up to the equivalence and up to their 3-jets. Namely, for any geometric solution, its germ at each
point can be represented as above for some coordinates u, v centered at the point.

To be precise, the argument goes as follows: Let U be an open subset in the uv-plane R2. We
identify the 3-jet space J3(U,R3) with the submanifold of J3(U,R5) consisting of 3-jets j3f(x0)
with a form

f(u, v) = (u, y(u, v), z(u, v), p(u, v), v).

Moreover we identify J3(2, 3) with the submanifold of J3(2, 5) = {j3g(0) | g : (R2, 0) → (R5, 0)}
consisting of 3-jets j3g(0) with x ◦ g = u and q ◦ g = v. Consider the submersion

Φ : J3(U,R5) → J3(2, 5)

by Φ(j3f(u0, v0)) = j3(f̄(0)), where f̄ : (R3, 0) → (R5, 0) is defined by f̄(u, v) = f(u + u0, v +
v0) − f(u0, v0). Then Φ maps J3(U,R3) onto J3(2, 3). So, the submersion

Φ : J3(U,R3) → J3(2, 3)

is induced. Let G = GU be the 3-jet space of geometric solutions (U, (u0, v0)) → R5 with a form

f(u, v) = (u, y(u, v), z(u, v), p(u, v), v).

Moreover we identify R6 with the submanifold in J3(2, 3) consisting of j3(fh)(0) described as
above. Then we have seen Φ−1(R6) = G. Thus we see G is a manifold of dimension 11 and
Φ : G → R6 is a submersion.

Now the proof of Theorem 1.1 for the equation Hess = 1 is achieved as follows: Consider the fam-
ily of 3-jets of geometric solutions of the above form parametrized by parameters a1, a2, a3, b1, b2, b3.

The singular locus of π1 ◦ f is described by

∆ = yv = a1 + 2a2u− 2b2v + 3a3(u2 − v2) − 6b3uv + · · · = 0,

while also the singular locus of π2 ◦ f is described by

∆ = pu = pv = a1 + 2a2u− 2b2v + 3a3(u2 − v2) − 6b3uv + · · · = 0.

Consider the hypersurface {a1 = 0} in R6. Then Φ−1({a1 = 0}) ⊂ G is also a hypersurface.
Let fh : U → R5 be the geometric solution to Hess = 1 defined by a holomorphic function h :

U(⊂ R2 = C) → C. Consider the mapping Ψ(h) : U → G defined by Ψ(h)(u0, v0) = j3fh(u0, v0).
Then, by a small perturbation h̃(z) = h(z)+αz+βz2+γz3 by a complex polynomial (α, β, γ ∈ C),
we can make Ψ(h̃) : U → G transverse to Φ−1({a1 = 0}). Then the locus {a1 = 0} is a smooth
curve in U .

If (i) a1 �= 0, then both π1 ◦ f and π2 ◦ f are immersive.
Moreover by a perturbation of h if necessary, we may suppose, along the curve {a1 = 0}, there

occurs only three cases: (ii) a1 = 0, a2 �= 0, b2 �= 0, (iii) a1 = 0, a2 �= 0, b2 = 0, a3 �= 0, or (iv)
a1 = 0, a2 = 0, b2 �= 0, a3 �= 0.
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We apply the criterion Proposition 2.1 to our case to verify the singularity type of π1 ◦ f (resp.
π2 ◦ f).

The singularities are non-degenerate since (a2, b2) �= (0, 0).
Now suppose (iii) a1 = 0, a2 �= 0, b2 = 0, a3 �= 0. Then we have

x = u,
y = b1u+ a2(2uv) + a3(3u2v − v3) + b3(u3 − 3uv2) + · · · ,
z = a2(

1
3
u3 + uv2) + a3(

1
4
u4 +

3
2
u2v2 − 3

4
v4) + b3(−2uv3) + · · ·

p = −b1v + a2(u2 − v2) + a3(u3 − 3uv2) + b3(−3u2v + v3) + · · ·
q = v.

Then we have, for (u0, v0) = (0, 0),

yv = 2a2u+ 3a3(u2 − v2) − 6b3uv + · · · .
Take a parametrization γ(t) = (u(t), v(t)) of the singular locus {yv = 0} of π1 ◦ f satisfying
γ(0) = (0, 0), γ′(0) �= (0, 0). Then we see u′(0) = 0 u′′(0) �= 0 if and only if a3 �= 0. Since we can

take η(t) = (0, 1) as a kernel field, we have det(γ ′(0), η(0)) = u′(0) = 0 and
∂

∂t
det(γ′(t), η(t))|t=0 =

u′′(0) �= 0. On the other hand, for a parametrization γ(t) = (u(t), v(t)) of the singular locus
{pu = 0} of π2 ◦ f ,

pu = 2a2u+ 3a3(u2 − v2) − 6b3uv + · · · ,
we have u′(0) = 0, so v′(0) �= 0. Since we can take η(t) = (1, 0) as a kernel field for π2 ◦ f , we have
det(γ′(0), η(0)) = v′(0) �= 0

Therefore, by Proposition 2.1, π1 ◦ f is the swallowtail and π2 ◦ f is the cuspidal edge in the
case (iii).

In the case (iv) a1 = 0, b1 = 0, a2 = 0, b2 �= 0, a3 �= 0, we see, similarly to the case (iii), π1 ◦ f
is the cuspidal edge and π2 ◦ f is the swallowtail. Moreover in the case (ii) a2 �= 0, b2 �= 0, we see
both π1 ◦ f and π2 ◦ f are the cuspidal edges.

Thus the proof of Theorem 1.1 for the equation Hess = 1 is completed.

Next we consider the equation Hess = −1. In this case we set

θ = dz − pdx− qdy, ω = dx ∧ dy + dp ∧ dq.
Let f : (R2, 0) → R5 be a germ of an geometric solution to M = 〈θ, ω〉. Then up to equivalence,
we can write

f(u, v) = (u, y(u, v), z(u, v), p(u, v), v),

and we have the equation:
∂p

∂v
= −∂y

∂u
,

∂p

∂u
= −∂y

∂v
.

For this wave equation, we get

y = ϕ(u+ v) + ψ(u− v), p = −ϕ(u+ v) + ψ(u− v),

for smooth functions ϕ, ψ.
If

ϕ = ϕ1t+ ϕ2t
2 + ϕ3t

3 + · · · ,
ψ = ψ1t+ ψ2t

2 + ψ3t
3 + · · · ,

where ϕi, ψj are real numbers, then we have the expansions

y = ϕ1(u+ v) + ψ1(u− v) + ϕ2(u+ v)2 + ψ2(u− v)2 + ϕ3(u+ v)3 + ϕ3(u− v)3 + · · ·
p = −ϕ1(u+ v) + ψ1(u− v) − ϕ2(u+ v)2 + ψ2(u− v)2 − ϕ3(u+ v)3 + ϕ3(u− v)3 + · · · ,
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up to 3-jets. Moreover we have

z =
∫ (u,v)

(0,0)

pdx+ qdy

=
1
2
ϕ1(−u2 + v2) +

1
2
ψ1(u2 − v2) +

1
3
ϕ2(−u3 + 3uv2 + 2v3) +

1
3
ψ2(u3 − 3uv2 − 2v3)

+
1
4
ϕ3(−u4 + 6u2v2 + 8uv3 + 3v3) +

1
4
ψ3(u4 − 6u2v2 + 8uv3 − 3v3) + · · · .

Then we see Theorem 1.1 holds for the Monge-Ampère system of Hess = −1 by the same way.

Remark 3.7 To describe the jets of solutions to Hess = −1, we can also expand as a “split
holomorphic function”

p− jy = (a1 + jb1)(u+ jv) + (a2 + jb2)(u+ jv)2 + (a3 + jb3)(u+ jv)3 + · · · ,

using the split complex number u+ jv, where j2 = 1, not j2 = −1, and u, v are real numbers, so as

p = a1u+ b1v + a2(u2 + v2) + b2(2uv) + a3(u3 + 3uv2) + b3(3u2v + v3) + · · · ,
y = −a1v − b1u− a2(2uv) − b2(u2 + v2) − a3(3u2v + v3) − b3(u3 + 3uv2) + · · · . .

In fact the coefficients are related by ak = −ϕk + ψk, bk = −ϕk − ψk. Nevertheless we have to
remark that the equation Hess = −1 admits infinitely flat nonzero perturbations of geometric
solutions, while “the theorem of identity” holds for solutions to Hess = 1.

4 Singularities of surfaces of constant Gaussian curvature
and their duals.

Now we turn to study on geometric solutions to the equation K = c (c �= 0) in R3 × S2.
Recall that an immersion f : N → R3 × S2,

f(u, v) = (x1(u, v), x2(u, v), x3(u, v), y1(u, v), y2(u, v), y3(u, v)),

is called a geometric solution to K = c if f satisfies the conditions f ∗θ = 0, f∗ω = 0 and of course
y2
1 + y2

2 + y2
3 = 1, where

θ = y1dx1 + y2dx2 + y3dx3,
ω = c(y1dx2 ∧ dx3 + y2dx3 ∧ dx1 + y3dx1 ∧ dx2)

−(y1dy2 ∧ dy3 + y2dy3 ∧ dy1 + y3dy1 ∧ dy2).

First we remark that the Euclidean group G on the Euclidean space R3 acts also on the unit
tangent bundle R3 ×S2 and R×S2 transitively such that π1 : R3 ×S2 → R3 and π2 : R3 ×S2 →
R × S2 are both G-equivariant. Moreover the Monge-Ampère system associated to the equation
K = c is also G-invariant. For each (x0, y0) ∈ R3 × S2, the quotient mapping π : G → R3 × S2,
π(g) = g·(x0, y0), is a C∞ fibration. Then there exists a local C∞ section S = S(x0, y0; ·, ·) : V → G
over a neighborhood V of (x0, y0). Note that S(x0, y0, x, y) ∈ G transforms (x0, y0) to (x, y) for
any (x, y) ∈ V .

Let f : (N, x0) → R3 × S2 be a germ of a geometric solution to K = c. Take a system of
coordinates (u, v) centered at x0 of N , and fix a g0 ∈ G transforming f(x0) to b = (0, 0, 0; 1, 0, 0) ∈
R3 × S2. Then, for each (u0, v0) near (0, 0), we define f̄u0,v0 : (R2, (0, 0)) → (R3 × S2, b) by

f̄u0,v0(u, v) = g0 · S(f(0, 0); f(u0, v0))−1 · f(u+ u0, v + v0).

Thus, by the homogeneity of the equationK = c, we may suppose that f(x0) = b = (0, 0, 0; 1, 0, 0).
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Set p = −y2/y1, q = −y3/y1. Then we have

ω = y1{c(dx2 ∧ dx3 − pdx3 ∧ dx1 − qdx1 ∧ dx2) − y2
1dp ∧ dq},

and y2
1 =

1
1 + p2 + q2

. Then the Monge-Ampère system for K = c is locally given by




c(dx2 ∧ dx3 − pdx3 ∧ dx1 − qdx1 ∧ dx2) − 1
1 + p2 + q2

dp ∧ dq = 0,

dx1 − pdx2 − qdx3 = 0.

Setting x1 = z, x2 = x, x3 = y, we have
{
c(1 + p2 + q2)2dx ∧ dy − dp ∧ dq = 0,
dz − pdx− qdy = 0.

Then, for some local coordinates on R3 and R×S2, π1 and π2 are given by π1(x, y, z, p, q) = (x, y, z)
and π2(x, y, z, p, q) = (xp+ yq − z, p, q) respectively.

As in the case Hess = c, we may suppose the mapping (u, v) �→ (x(u, v), q(u, v)) is a local
diffeomorphism. So we assume x = u and q = v.

Now, we consider the partial Legendre transformation

L(x, y, z, p, q) = (x, q, z − yq, p,−y),

and its inverse
L−1(x, y, z, p, q) = (x,−q, z − yq, p, y)

(cf. Remark 3.4). Then L ◦ f : (R2, 0) → (R5, 0),

L ◦ f(u, v) = (u, v, Z, P,Q)

satisfies the equation {
c(1 + P 2 + v2)2dQ ∧ du− dP ∧ dv = 0,
dZ − Pdu−Qdv = 0.

Note that

Z(u, v) = z ◦ f(u, v) − (y ◦ f(u, v))v, P (u, v) = p ◦ f(u, v), Q(u, v) = −y ◦ f(u, v).

Then we have
c(1 + P 2 + v2)2Qv + Pu = 0, P = Zu, Q = Zv,

so we have the Monge-Ampère equation

Zuu + c(1 + Z2
u + v2)2Zvv = 0 (∗),

on a function Z = Z(u, v) with Z(0, 0) = 0, Zu(0, 0) = 0, Zv(0, 0) = 0. Thus we reduce the problem
on geometrical solutions (with projection singularities), via a Legendrian transformation, to the
problem on classical solutions to another Monge-Ampère equation.

We compute the “prolongations” of the equation (*) to obtain the Taylor expansion of Z. We
have, by setting (u, v) = (0, 0),

Zuu(0, 0) + c Zvv(0, 0) = 0.

By differentiating by u (resp. by v) of both sides of (*) and by setting (u, v) = (0, 0), we have

Zuuu(0, 0) + c Zuvv(0, 0) = 0, Zuuv(0, 0) + c Zvvv(0, 0) = 0.
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By differentiating by u or v of both sides of (*) twice and by setting (u, v) = (0, 0), we have

Zuuuu(0, 0) + 4c Zuu(0, 0)2Zvv(0, 0) + c Zuuvv(0, 0) = 0,
Zuuuv(0, 0) + 4c Zuu(0, 0)Zuv(0, 0)Zvv(0, 0) + c Zuvvv(0, 0) = 0,
Zuuvv(0, 0) + 4c(Zuv(0, 0)2 + 1)Zvv(0, 0) + c Zvvvv(0, 0) = 0.

If we set

Z(u, v) =
1
2
Au2 +Buv +

1
2
Cv2 +

1
6
Du3 +

1
2
Eu2v +

1
2
Fuv2 +

1
6
Gv3

+
1
24
Hu4 +

1
6
Iu3v +

1
4
Ju2v2 +

1
6
Kv3 +

1
24
Lv4 + · · · ,

then we have

A+ cC = 0, D + c F = 0, E + cG = 0,
H + 4cA2C + c J = 0, I + 4cABC + cK = 0, J + 4c(B2 + 1)C + c L = 0.

Therefore we have

A = −cC, D = −c F, E = −cG,
I = 4c2BC2 − cK, J = −4c(B2 + 1)C − c L, H = −4c3C3 + 4c2(B2 + 1)C + c2L.

Thus we have

Z(u, v) = − c

2
Cu2 +Buv +

1
2
Cv2 − c

6
Fu3 − c

2
Gu2v +

1
2
Fuv2 +

1
6
Gv3

+
c2

24
(−4cC3 + 4(B2 + 1)C + L)u4 +

c

6
(4cBC2 −K)u3v

− c

4
(4B2C + 4C + L)u2v2 +

1
6
Kv3 +

1
24
Lv4 + · · · .

Note that the original f is given by

x = u, y = Zv, z = Z − Zvv, p = Zu, q = v.

The above procedure gives us all formal solutions to the equation (*). In fact, the famous
theorem of Cauchy-Kovalevskaya ([Jh]) says that the formal solution Z(u, v) is uniquely determined
when the initial conditions Z(0, v) and Zu(0, v) are given. In fact, the coefficients of the Taylor
expansion of Z up to degree r is determined as explicit polynomials by those of Z(0, v) and Zu(0, v)
up to degree r. Moreover, if the initial data Z(0, v) and Zu(0, v) are an analytic function, then the
solution Z should be an analytic function.

Let Z(u, v) be a C∞ solution to (*) corresponding to a germ of a geometric solution f to K = c.
By taking Taylor polynomials of Z(0, v) and Zu(0, v) of arbitrarily high degree, as initial conditions,
we get an approximation Z̃(u, v) of Z(u, v) in C∞ topology, which is an analytic solution to (*).

By considering f̄u0,v0 : (R2, 0) → (R3 × S2, b) defined as above and by considering the Taylor
expansion of the Z-component of L ◦ f̄u0,v0 , we get a C∞ map-germ Φ(f) : (N, x0) → R6,

(u0, v0) �→ (B(u0, v0), C(u0, v0), F (u0, v0), G(u0, v0),K(u0, v0), L(u0, v0)).

Because we can control the coefficients B,C, F,G,K,L freely in the approximation precess, we
can perturb f into f̃ such that Φ(f̃) is transverse to a given stratification (or a locally finite family
of submanifolds) of R6.

Now consider a stratification of R6 with coordinates (B,C, F,G,K,L):

W 0 = {C �= 0}, W 1 = {C = 0, F �= 0, G �= 0}, W 2
1 = {C = 0, F �= 0, G = 0, L �= 0},
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W 2
2 = {C = 0, F = 0, G �= 0, L �= 0}, W 3

1 = {C = 0, F = 0, G = 0, L �= 0},
W 3

2 = {C = 0, F = 0, G �= 0, L = 0}, W 3
3 = {C = 0, F �= 0, G = 0, L = 0},

W 4 = {C = 0, F = 0, G = 0, L = 0}.
Note that W 3

1 ,W
3
2 ,W

3
3 are of codimension 3 and W 4 is of codimension 4.

Suppose Φ(f̃) is transverse to the stratification, namely, transverse to every W i
j in R6. The

transversality condition implies that the image of Φ(f̃) does not touch the subset W 3
1 ∪W 3

2 ∪W 3
3 ∪

W 4, so that it is contained in W 0 ∪W 1 ∪W 2
1 ∪W 2

2 . Then the uv-plane is divided into

(i) C �= 0, (ii) C = 0, F �= 0, G �= 0,
(iii) C = 0, F = 0, G �= 0, L �= 0, (iv) C = 0, F �= 0, G = 0, L �= 0.

Now the singular locus of π1 ◦ f is given by

Qv = Zvv = C + Fu+Gv +
1
2
Ju2 +Kuv +

1
2
Lv2 + · · · = 0.

We apply Proposition 2.1 to π1◦f at (0, 0). If C �= 0, then π1◦f is an immersion at (0, 0). If C = 0,
then π1 ◦ f is singular at (0, 0). In the case C = 0, π1 ◦ f is non-degenerate at (0, 0) if and only if
(F,G) �= (0, 0). Let γ(t) = (u(t), v(t)) parametrize the singular locus of π1 ◦ f with γ(0) = (0, 0).
Then we have Fu′(0) + Gv′(0) = 0. We set η(t) = (0, 1). Then we have det(γ′(t), η(t)) = u′(t).
Suppose G �= 0. Then u′(0) �= 0. Hence π1 ◦ f is a cuspidal edge at (0, 0). If C = 0, G = 0,
then we see u′(0) = 0. Moreover, if u′(0) = 0, then u′′(0) �= 0 provided L �= 0. Therefore, if
C = 0, G = 0, F �= 0, L �= 0, then we see π1 ◦ f is a swallowtail at (0, 0).

Similarly we apply Proposition 2.1 to π2 ◦ f . The singular locus of π2 ◦ f is defined by

Pu = Zuu = A+Du+Ev +
1
2
Hu2 + Iuv +

1
2
Jv2 + · · · = 0,

while η(t) = (1, 0). Now recall that c �= 0. Then we see that, if C �= 0, then π2 ◦ f is an immersion
at (0, 0). If C = 0, G �= 0, π2 ◦ f is a cuspidal edge at (0, 0). If C = 0, F = 0, G �= 0, L �= 0, then
π2 ◦ f is a swallowtail at (0, 0).

Therefore in the case (i), both π1 ◦ f and π2 ◦ f are immersions. In the case (ii), both π1 ◦ f
and π2 ◦ f are cuspidal edges. In the case (iii), π1 ◦ f is a swallowtail and π2 ◦ f is a cuspidal edge.
In the case (iv), π1 ◦ f is a cuspidal edge and π2 ◦ f is a swallowtail.

Thus we have Theorem 1.1 for K = ±1.

Remark 4.1 For the case K = c > 0, the equation

Zuu + c(1 + z2
u + v2)2Zvv = 0

is elliptic. Therefore, by Bernstein’s theorem, any solution is analytic ([B1][B2][Ho][Pe]). Hence
the method of Cauchy-Kovalevskaya provides all geometric solutions.

In the hyperbolic case K = c < 0, we can describe all C∞ geometric solutions to K = c (c < 0)
locally as follows.

Set
ω = c(1 + p2 + q2)2dx ∧ dy − dp ∧ dq, θ = dz − pdx− qdy.

Then we have two decompositions

−ω +
√−cdθ = (

√−c(1 + p2 + q2)dx+ dq) ∧ (
√−c(1 + p2 + q2)dy − dp),

−ω −√−cdθ = (
√−c(1 + p2 + q2)dx− dq) ∧ (

√−c(1 + p2 + q2)dy + dp).

(These decompositions are also used in the proof of Lemma 5.3).
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Assume f : (R2, 0) → (R5, 0) is a geometric solution to K = c (c < 0). Moreover we assume
f∗dx(0) and f∗dq(0) are linearly independent. Then we have

f∗(
√−c(1 + p2 + q2)dx+ dq) ∧ f∗(√−c(1 + p2 + q2)dy − dp) = 0,

f∗(
√−c(1 + p2 + q2)dx− dq) ∧ f∗(√−c(1 + p2 + q2)dy + dp) = 0,

f∗(
√−c(1 + p2 + q2)dx + dq)(0) �= 0 and f∗(

√−c(1 + p2 + q2)dx − dq) �= 0. Thus we have two
foliation F ,F ′ on the uv-plane defined by the equation f ∗(

√−c(1 + p2 + q2)dx ± dq) = 0. Each
leaf of F is an integral curve to the differential system D :




√−c(1 + p2 + q2)dx + dq = 0,√−c(1 + p2 + q2)dy − dp = 0,
dz − pdx− qdy = 0,

and each leaf of F ′ is an integral curve to the diferential system D′ :



√−c(1 + p2 + q2)dx − dq = 0,√−c(1 + p2 + q2)dy + dp = 0,
dz − pdx− qdy = 0.

on the xyzpq-space. Thus the geometric solution f is generated by a one-parameter family of
integral curves to D (resp. D′). The differential systems D and D′ are called the Monge char-
acteristic systems. Compare our conclusion with the classical Monge-Ampère-Goursat theorem
stating that any classical solution is obtained by a one-parameter family of integral curves to the
Monge characteristic system D (resp. D ′) ([Go] Ch.2, [Mat]). Note that the differential system
D ⊂ TR5 (resp. D′ ⊂ TR5) has the growth vector (2, 3, 5), namely, D is of constant rank 2,
D(2) = D + [D,D] is of constant rank 3 and D(3) = D(2) + [D,D(2)] = TR5 (cf. [Mon]). Two
foliations (F ,F ′) on the uv-plane form the Chebyshev net on the image of π1 ◦ f in R3, which
consists of asymptotic lines. Note that π1◦f restricted to each characteristic curve is an immersion,
and therefore each asymptotic line is an immersed curve beyond the singular locus. Of course, the
angle ψ (the Chebyshev angle) of asymptotic lines tends to 0 or π on the singular locus.

Then f is described, via a Bäcklund transformation, by a classical solution ψ = ψ(t, s) to the
sine-Gordon equation ψts = −c sinψ (cf. [P-T] Ch.3). Here t (resp. s) is the arclength coordinate
of the characteristic curves of D (resp, D′). Note that the system of coordinates (t, s) on R2 may
be different from the system of coordinates (u, v) satisfying x = u, q = v. Then, as classically
well-known, the solution ψ is determined by two initial data α(t) = ψ(t, 0), β(s) = ψ(0, s) with
α(0) = β(0) ([Go][Mat]). Thus we have an alternative method for the construction of transversal
approximations of geometric solutions to K = c (c < 0). For the recent progress on the initial value
problem of sine-Gordon equations and the representation formula for surfaces with K = c (c < 0)
related to integrable systems, see [To1][To2] for instance.

5 Singularities of developable surfaces.

First we show Theorem 1.6. We will show that, for a generic geometric solution

f(u, v) = (x(u, v), y(u, v), z(u, v), p(u, v), q(u, v))

to Hess = 0 (or equivalently, K = 0), π◦f has as singularities only cuspidal edges and swallowtails.
First note that π2 ◦ f is of rank ≤ 1. Thus we see π1 ◦ f is of rank ≥ 1. Suppose π1 ◦ f is

singular at a point (u0, v0). Then π1 ◦f is of rank 1 at (u0, v0), so that π2 ◦f is of rank 1 at (u0, v0)
as well. Then, up to equivalence at each such a point, we may suppose

f(u, v) = (u, y(u, v), z(u, v), p(u, v), v).
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Though we can show Theorem 1.6 for K = 0 by the same calculations as in the previous section
by setting c = 0, here we will give its proof in a rather direct manner.

From dz = pdx+ qdy = pdu+ vdy and dp ∧ dq = dp ∧ dv = 0, we have

pv + yu = 0, pu = 0.

From the condition pu = 0, we set

p = p(v) = A+ Bv +
1
2
Cv2 +

1
6
Dv3 + · · · .

Then, from the condition yu = −pv, we set

y(u, v) = −Bu− Cuv − 1
2
Duv2 − · · · + Ã+ B̃v +

1
2
C̃v2 +

1
6
D̃v3 + · · · .

Then we have

z(u, v) = ˜̃A+Au− 1
2
Cuv2 − 1

3
Duv3 − · · · + 1

2
B̃v2 +

1
3
C̃v3 +

1
6
D̃v4 + · · · ,

and
z̃ = px+ qy − z = − ˜̃A+ Ãv +

1
2
B̃v2 +

1
6
C̃v3 + · · · .

The singular locus of π1 ◦ f is given by

yv = −Cu−Duv − · · · + B̃ + C̃v +
1
2
D̃v2 + · · · = 0.

If B̃ �= 0 we see π ◦ f is immersive at (u, v) = (0, 0). Suppose B̃ = 0. Then f is non-degenerate if
and only if (C, C̃) �= (0, 0). Let γ(t) = (u(t), v(t)) parametrize the singular locus. Set η(t) = (0, 1).
Then det(γ′(t), η(t)) = u′(t). If B̃ = 0, C̃ �= 0, C �= 0, then det(γ′(0), η(0)) = u′(0) �= 0. Then, by
Proposition 2.1, we see π1 ◦ f is a cuspidal edge. If B̃ = 0, C̃ = 0, C �= 0, then we have u′(0) = 0.
Since u′′(0) = (D̃/2C)v′(0)2, we see u′′(0) �= 0 if and only if D̃ �= 0.

As seen above, the geometric solution f is determined by two functions p(u, v) = p(v) and
y(u, v) + pv(v)u of one variable v. From a pair of two functions (ϕ(v), ψ(v)) we get a geometric
solution

f(u, v) = (u, ψ(v) − ϕv(v)u,
∫

(ϕ− vϕv)du+ v(ψv − uϕvv)dv, ϕ(v), v)

to Hess = 0. We define a mapping from a neighborhood of (u0, v0) to R4 by

(u, v) �→ (B̃, C̃, C, D̃) = (ψv(v) − ϕvv(v)u, ψvv(v) − ϕvvv(v)u, ϕvv(v), ψvvv(v) − ϕvvvv(v)u).

For a generic (ϕ(v), ψ(v)), we have that ϕvv vanishes at a finite number of points, where
ψv(v) �= 0. Therefore (B̃, C) �= (0, 0). Moreover two vectors

(ψv(v), ψvv(v), ψvvv(v)) and (ϕvv(v), ϕvvv(v), ϕvvvv(v))

are linearly independent for any v. Then, if B̃ = ψv(v) − ϕvv(v)u = 0 for some (u, v), then
(C̃, D̃) = (ψvv(v) − ϕvvv(v)u, ψvvv(v) − ϕvvvv(v)u) �= (0, 0).

Thus only the following cases occur on the uv-plane for a generic geometric solution:

(i) B̃ �= 0, (ii) B̃ = 0, C̃ �= 0, C �= 0, (iii) B̃ = 0, C̃ = 0, C �= 0, D̃ �= 0.

In the case (i), π ◦ f is an immersion, in the case (ii), π1 ◦ f is a cuspidal edge, and, in the case
(iii), π1 ◦ f is a swallowtail. Thus we have Theorem 1.6.

To show Proposition 1.7, we recall Lemma 11 of [I-Mo]:
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Lemma 5.1 Let f : (R2, 0) → M be an open umbrella and H : (M, f(0)) → (R, 0) a smooth
function-germ. Suppose dH(f(0)) �= 0 and H ◦ f = 0. Then the kernel of dH(f(0)) : Tf(0)M → R
coincides with the contact hyperplane in Tf(0)M .

An integral mapping f : (R2, 0) → M is called full if it has the property in Lemma 5.1.
An integral mapping f is called formally full if, for any formal complex valued function Ĥ at
f(0) in M , the conditions Ĥ ◦ f̂C = 0 and dĤ(0) �= 0 imply that the kernel of dĤ(f(0)) :
Tf(0)M ⊗ C → C coincides with the complexification of the contact hyperplane in Tf(0)M . Here
f̂C is the complexification of the formal Taylor series of f at 0 in R2. If f is full, then it is formally
full.

For our treatment including the elliptic cases (c > 0), we need a slightly strict result than
Lemma 5.1:

Lemma 5.2 An open umbrella f : (R2, 0) →M is formally full of rank one.

Proof : By the contact invariance of the assumption and conclusion, we may suppose

f = (u, v2, uv3, v3,
3
2
uv) : (R2, 0) → (R5, 0)

with respect to the contact form θ = dz − pdx− qdy. Set

Ĥ(x, y, z, p, q) = Ax+By + Cz +Dp+Eq + F (x, y, z, p, q),

where A,B,C,D,E are complex numbers and F is a formal power series starting from second
order terms. The assumption means that A,B,C,D,E are not all zero, and that

Au+Bv2 + Cuv3 +Dv3 +E
3
2
uv + F (u, v2, uv3, v3,

3
2
uv) = 0,

as a formal power series of u and v. Then we see A = 0, B = 0, D = 0, E = 0. Thus the kernel of
dĤ(0) coincides with {θ = dz = 0} at 0 in R5. �

Then Proposition 1.7 follows from the following:

Lemma 5.3 Let f : (R2, 0) −→M be an integral map-germ. Suppose f is a generalized geometric
solution to Hess = c, c �= 0, (resp. K = c, c �= 0), of rank ≥ 1. Then f is never formally full.

Proof : First we consider the case Hess = c, c �= 0. By the assumption we have f ∗θ = 0, f∗ω = 0,
where θ = dz − pdx− qdy, ω = cdx ∧ dy − dp ∧ dq. Now consider the complex valued 2-forms

(
√−cdx+ dq) ∧ (

√−cdy − dp) = −cdx ∧ dy + dp ∧ dq +
√−c(dp ∧ dx+ dq ∧ dy)

= −ω +
√−cdθ,

and

(
√−cdx− dq) ∧ (

√−cdy + dp) = −cdx ∧ dy + dp ∧ dq −√−c(dp ∧ dx+ dq ∧ dy)
= −ω −√−cdθ.

Then we see f∗(
√−cdx+ dq) ∧ f∗(√−cdy − dp) = 0 and f ∗(

√−cdx− dq) ∧ f∗(√−cdy + dp) = 0,
near 0 on R2. On the other hand, since f is of rank ≥ 1, we see

(f∗dx)(0), (f∗dy)(0), (f∗dp)(0), (f∗dq)(0)

are not all zero. Therefore

f∗(
√−cdx+ dq), f∗(

√−cdy − dp), f∗(
√−cdx− dq), f∗(

√−cdy + dp)
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are not all zero at 0 in R2. Suppose, for instance, f ∗(
√−cdx+dq)(0) �= 0. Then, regarding

√−cx+q
as a formal power series with complex coefficients, we have (

√−cx+ q) ◦ f̂C = au+ bv+ · · · , with
(a, b) �= (0, 0). Since f∗(

√−cdx + dq) ∧ f∗(√−cdy − dp) = 0, we see there exists a formal power
series Ĥ1 of

√−cx+q,
√−cy−p satisfying Ĥ1((

√−cx+q)◦f̂C, (
√−cy−p)◦ f̂C) = 0 and dĤ(0) �= 0.

Then we may set Ĥ(x, y, z, p, q) = Ĥ1(x +
√−cq, y −√−cp). Therefore f is not formally full.

In the case K = c, c �= 0, as seen in the previous section, we have f ∗θ = 0, f∗ω = 0, where

θ = dz − pdx− qdy, ω = c(1 + p2 + q2)2dx ∧ dy − dp ∧ dq.

Since also in this case we have similar decompositions into two ways

(
√−c(1 + p2 + q2)dx + dq) ∧ (

√−c(1 + p2 + q2)dy − dp) = −ω +
√−cdθ,

and
(
√−c(1 + p2 + q2)dx − dq) ∧ (

√−c(1 + p2 + q2)dy + dp) = −ω −√−cdθ,
we have a formal complex valued function Ĥ(x, y, z, p, q) with Ĥ ◦ f̂C = 0, dĤ(0) �= 0, {dĤ(0) =
0} �= Df(0), the complexified contact hyperplane in Tf(0)M ⊗ C. Therefore f is not formally full.
�

Remark 5.4 In general, for a hyperbolic Monge-Ampère system {θ, ω} on R5, there exist in-
dependent 1-forms ω1, ω2, ω3, ω4 such that ω ≡ ω1 ∧ ω2 ≡ ω3 ∧ ω4 mod.dθ. Even in an elliptic
case, we have similar decompositions into formal 1-forms in the complex category. See for instance
[I-L][B-G-H]. Thus the same proof as in Lemma 5.3 works to conclude the assertion: If an integral
map-germ f : (R2, 0) → (R5, 0) is formally full and of rank 1, then f can not be a generalized
geometric solution to any hyperbolic nor any elliptic Monge-Ampère system on R5.
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