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Asymptotics of Discrete MDL for Online Prediction
Jan Poland and Marcus Hutter

Abstract—Minimum description length (MDL) is an important
principle for induction and prediction, with strong relations to op-
timal Bayesian learning. This paper deals with learning processes
which are independent and identically distributed (i.i.d.) by means
of two-part MDL, where the underlying model class is countable.
We consider the online learning framework, i.e., observations come
in one by one, and the predictor is allowed to update its state of
mind after each time step. We identify two ways of predicting by
MDL for this setup, namely, a static and a dynamic one. (A third
variant, hybrid MDL, will turn out inferior.) We will prove that
under the only assumption that the data is generated by a distribu-
tion contained in the model class, the MDL predictions converge to
the true values almost surely. This is accomplished by proving finite
bounds on the quadratic, the Hellinger, and the Kullback–Leibler
loss of the MDL learner, which are, however, exponentially worse
than for Bayesian prediction. We demonstrate that these bounds
are sharp, even for model classes containing only Bernoulli distri-
butions. We show how these bounds imply regret bounds for ar-
bitrary loss functions. Our results apply to a wide range of setups,
namely, sequence prediction, pattern classification, regression, and
universal induction in the sense of algorithmic information theory
among others.

Index Terms—Algorithmic information theory, classification,
consistency, discrete model class, loss bounds, minimum descrip-
tion length (MDL), regression, sequence prediction, stabilization,
universal induction.

I. INTRODUCTION

ALWAYS prefer the simplest explanation for your obser-
vation, says Occam’s razor. In learning and information

theory, simplicity is often quantified in terms of description
length, giving immediate rise to the minimum description
length (MDL) principle [2]–[4]. Thus, MDL can be seen as
a strategy against overfitting. An alternative way to think of
MDL is Bayesian. The explanations for the observations (the
models) are endowed with a prior. Then the model having max-
imum a posteriori (MAP) probability is also a two-part MDL
estimate, where the correspondence between probabilities and
description lengths is simply by a negative logarithm.

How does two-part MDL perform for prediction? Some very
accurate answers to this question have been already given. If the
data is generated by an independent and identically distributed
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(i.i.d.) process, then the MDL estimates are consistent [5]. In this
case, an important quantity to consider is the index of resolv-
ability, which depends on the complexity of the data-generating
process. This quantity is a tight bound on the regret in terms of
coding (i.e., the excess code length). Moreover, the index of re-
solvability also bounds the predictive regret, namely, the rate of
convergence of the predictive distribution to the true one. These
results apply to both discrete and continuously parameterized
model classes, where in the latter case, the MDL estimator must
be discretized with an appropriate precision.

Under the relaxed assumption that the data-generating
process obeys a central limit theorem and some additional
conditions, Rissanen [6], [7] proves an asymptotic bound on
the regret of MDL codes. Here, he also removes the coding
redundancy arising if two-part codes are defined in the straight-
forward way. The resulting bound is very similar to that in [8]
for Bayes mixture codes and i.i.d. processes, where the i.i.d.
assumption may also be relaxed [9]. Other similar and related
results can be found in [10], [11].

In this work, we develop new methods in order to arrive at
very general consistency theorems for MDL on countable model
classes. Our setup is online sequence prediction, that is, the sym-
bols of an infinite sequence are revealed successively
by the environment, where our task is to predict the next symbol
in each time step. Consistency is established by proving finite
cumulative bounds on the differences of the predictive to the true
distribution. Differences will be measured in terms of the rela-
tive entropy, the quadratic distance, and the Hellinger distance.
Most of our results are based on the only assumption that the
data-generating process is contained in the models class. (The
discussion of how strong this assumption is will be postponed to
the last section.) Our results imply regret bounds with arbitrary
bounded loss functions. Moreover, they can be directly applied
to important general setups such as pattern classification, regres-
sion, and universal induction.

As many scientific models (e.g., in physics or biology) are
smooth, much statistical work is focused on continuous model
classes. On the other hand, the largest relevant classes from a
computational point of view are at most countable. In partic-
ular, the field of algorithmic information theory (also known
as Kolmogorov complexity, e.g., [12]–[15]) studies the class
of all lower semicomputable semimeasures. Then there is a
one-to-one correspondence of models and programs on a fixed
universal Turing machine. (Since programs need not halt on
each input, models are semimeasures instead of measures, see,
e.g., [13] for details.) This model class can be considered the
largest one which can be in the limit processed under standard
computational restrictions. We will develop all our results for
semimeasures, so that they can be applied in this context, which
we refer to as universal sequence prediction.

0018-9448/$20.00 © 2005 IEEE
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In the universal setup, the Bayes mixture is also termed the
Solomonoff–Levin prior and has been intensely studied first by
Solomonoff [16], [17]. Its predictive properties are excellent
[18], [15]. Precisely one can bound the cumulative loss by the
complexity of the data-generating process. This is the reference
performance we compare MDL to. It turns out that the predic-
tive properties of MDL can be exponentially worse, even in the
case that the model class contains only Bernoulli distributions.
Another related quantity in the universal setup is one-part MDL,
which has been studied in [19]. We will briefly encounter it in
Section VIII-D.

The paper is structured as follows. Section II establishes basic
definitions. In Section III, we introduce the MDL estimator and
show how it can be used for sequence prediction in at least three
ways. Sections IV and V are devoted to convergence theorems.
In Sections VI and VII, we study the stabilization properties
of the MDL estimator. Section VIII presents more general loss
bounds as well as three important applications: pattern classifi-
cation, regression, and universal induction. Finally, Section IX
contains the conclusions.

II. PREREQUISITES AND NOTATION

We build on the notation of [13] and [15]. Let the alphabet
be a finite set of symbols. We consider the spaces and
of finite strings and infinite sequences over . The initial part
of a sequence up to a time or is denoted by

or , respectively. The empty string is denoted by .
A semimeasure is a function such that

for all (1)

holds. If equality holds in both inequalities of (1), then we have a
measure. Intuitively, the quantity can be understood as the
probability that a data-generating process yields a string starting
with . Then, for a measure, the probabilities of all joint con-
tinuations of add up to , while for a semimeasure, there
may be a “probability leak” (1). Recall that we are interested in
semimeasures (and not only in measures) because of their cor-
respondence to programs on a fixed universal Turing machine
in the universal setup and our inability to decide the halting
problem.

Let be a countable class of (semi)measures, i.e.,
with finite or infinite index set . A (semi)mea-

sure dominates the class iff for every there is a
constant such that holds for all .
A dominant semimeasure need not be contained in .

Each (semi)measure is associated with a weight
, and we require . We may interpret the weights as

a prior on . Then it is obvious that the Bayes mixture

for (2)

dominates . Assume that there is some measure , the
true distribution, generating sequences . Typically,

is unknown. (Note that we require to be a measure: The
data stream always continues, there are no “probability leaks.”)

If some initial part of a sequence is given, the probability
of observing as a next symbol is

if (3)

and, for well-definedness, if (this
case has probability zero). Note that can depend on
the complete history . We may generally define the quantity
(3) for any function ; we call

the -prediction. Clearly, this is not necessarily a probability on
for general . For a semimeasure in particular, the -pre-

diction is a semimeasure on .
We define the expectation with respect to the true probability

: Let and be a function, then

(4)

More general, the expectation may be defined as an integral over
infinite sequences. But since we shall not need it, we can keep
things simple. The following is a central result about prediction
with Bayes mixtures in a form independent of algorithmic in-
formation theory.

Theorem 1: For any class of (semi)measures containing
the true distribution , which is a measure, we have

(5)

This was found by Solomonoff [17] for universal sequence
prediction. A proof is also given in [13] (only for binary al-
phabet) or [15] (arbitrary alphabet). It is surprisingly simple
once Lemma 6 is known. A few lines analogous to (16) and (17)
exploiting the dominance of are sufficient.

One should be aware that the condition is essential
in general, for both Bayes and MDL predictions [20]. On the
other hand, one can show that if there is an element in which
is sufficiently close to in an appropriate sense, then still good
predictive properties hold [9].

Note that although can be interpreted as a prior on the
model class, we do not assume any probabilistic structure for

(e.g., a sampling mechanism). The theorem rather states that
the cumulative loss is bounded by a quantity depending on the
complexity of the true distribution. The same kind of
assertion will be proven for MDL predictions later.

The bound (5) implies that the -predictions converge
to the -predictions almost surely (i.e., with -probability
one). This is not hard to see, since with the abbreviation

and for each , we have

(6)
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Actually, (5) yields an even stronger assertion, since it charac-
terizes the speed of convergence by the quantity on the right-
hand side. Precisely, the expected number of times in which

deviates by more than from is finite and
bounded by , and the probability that the number of

-deviations exceeds is smaller than . (However, we
cannot conclude a convergence rate of from (5),
since the quadratic differences generally do not decrease mono-
tonically.)

Since we will encounter this type of convergence (5) fre-
quently in the following, we call it convergence in mean sum
(i.m.s)

(7)
Then Theorem 1 states that the predictions converge to the

predictions i.m.s., or “ converges to i.m.s.” for short. By
(6), convergence i.m.s. implies almost sure convergence (with
respect to the true distribution ). Note that in contrast, conver-
gence in the mean, i.e.,

only implies convergence in probability.
Probabilities Versus Description Lengths: By the Kraft

inequality, each (semi)measure can be associated with a code
length or complexity by means of the negative logarithm, where
all (binary) codewords form a prefix-free set. The converse
holds as well. We introduce the abbreviation

(8)

for a semimeasure and and
for the Bayes mixture . It is common to ignore the somewhat
irrelevant restriction that code lengths must be an integer.
In particular, given a class of semimeasures together with
weights, each weight corresponds to a description length or
complexity

(9)

It is often only a matter of notational convenience if descrip-
tion lengths or probabilities are used, but description lengths are
generally preferred in algorithmic information theory. Keeping
the equivalence in mind, we will develop the general theory in
terms of probabilities, but formulate parts of the results in uni-
versal sequence prediction rather in terms of complexities.

III. MDL ESTIMATOR AND PREDICTIONS

Assume that is a countable class of semimeasures together
with weights , and is some string. Then the
maximizing element , often called a MAP estimator, is de-
fined as

(10)

In case of a tie, we need not specify the further choice at this
point, just pick any of the maximizing elements. But for con-
creteness, you may think that ties are broken in favor of larger
prior weights. The maximum is always attained in (10) since
for each at most a finite number of elements fulfill

. Observe immediately the correspondence in terms
of description lengths rather than probabilities

Then the MDL principle is obvious: minimizes the joint de-
scription length of the model plus the data given the model1

(see (8) and (9)). As explained before, we stick to the product
notation.

For notational simplicity, let . The two-part
MDL estimator is defined by

So chooses the maximizing element with respect to its argu-
ment. We may also use the version for
which the choice depends on the superscript instead of the argu-
ment. Note that the use of the term “estimator” is nonstandard,
since is a product of the estimator (this use is standard) and
its prior weight. There will be no confusion between these two
meanings of “estimator” in the following.

For each

(11)

is immediate. If contains only measures, we have

for all

so has some “anti-semimeasure” property. If contains
semimeasures, no semimeasure or anti-semimeasure property
can be established for .

We can define MDL predictors according to (3). There are
basically two possible ways to use MDL for prediction.

Definition 2: The dynamic MDL predictor is defined as

That is, we look for a short description of and relate it to
a short description of . We call this dynamic since for
each possible we have to find a new MDL estimator. This is
the closest correspondence to the Bayes mixture -predictor.

Definition 3: The static MDL predictor is given by

1The term MAP estimator is more precise. For two reasons our definition
might not be considered as MDL in the strict sense. First, MDL is often associ-
ated with a specific prior, while we admit arbitrary priors (compare the discus-
sion section at the end of this paper). Second, when coding some data x, one
can exploit the fact that once the distribution � is specified, only data which
leads to this � needs to be considered. This allows for a description shorter than
Kw(� ). Nevertheless, the construction principle is commonly termed MDL,
compare, e.g., the “ideal MDL” in [21].
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Here obviously only one MDL estimator has to be identi-
fied. This is usually more efficient in practice.

We will define another MDL predictor, the hybrid one, in Sec-
tion VI. It can be paraphrased as “do dynamic MDL but drop
weights.” We will see that its predictive performance is weaker.

The range of the static MDL predictor is obviously contained
in . For the dynamic MDL predictor, this holds by

(12)

Static MDL is omnipresent in machine learning and applica-
tions, see also Section VIII. In fact, many common prediction
algorithms can be abstractly understood as static MDL, or rather
as approximations. Namely, if a prediction task is accomplished
by building a model such as a neural network with a suitable
regularization2 to prevent “overfitting,” this is just searching an
MDL estimator within a certain class of distributions. After that,
only this model is used for prediction. Dynamic MDL is applied
more rarely due to its larger computational effort. For example,
the similarity metric proposed in [22] can be interpreted as (a
deterministic variant of) dynamic MDL.

We will need to convert our MDL predictors to measures by
means of normalization. If is any function, then

is a measure (assume that the denominator is different from zero,
which is always true with probability (w.p. ) if is an MDL
predictor). This procedure is known as Solomonoff normaliza-
tion [17], [13] and results in

where

(13)

is the normalizer.
We conclude this section with a simple example.
Bernoulli and i.i.d. Classes: Let , ,

and

with

being the set of all rational probability vectors with any prior
. Each generates sequences of i.i.d.

random variables such that for all and

2There are, however, regularization methods which cannot be interpreted in
this way but build on a different theoretical foundation, such as structural risk
minimization.

. If is the initial part of a sequence and is
defined by , then it is easy to see that

where

is the Kullback–Leibler divergence. If , then is also
called a Bernoulli class, and one usually takes the binary al-
phabet in this case.

IV. DYNAMIC MDL

We may now develop convergence results, beginning with
the dynamic MDL predictor from Definition 2. The following
simple lemma is crucial for all subsequent proofs.

Lemma 4: For an arbitrary class of (semi)measures , we
have

i) and

ii)

for all . In particular, is a semimeasure.
Proof: For all , with we have

The first inequality follows from , and the
second one holds since all are semimeasures. Finally

and

Hence, is a semimeasure.

The following proposition demonstrates how simple it can be
to obtain a convergence result, however, a weak one. Various
similar results have been already obtained in the past, e.g., in
[23], [24].

Proposition 5: For any class of (semi)measures containing
the true distribution , we have

w. p.

Proof: Since is a positive semimeasure by Lemma 4,
is a positive super-martingale. By Doob’s martingale con-

vergence theorem (see, e.g., [25] or [26], or any textbook on
advanced probability theory), it therefore converges on a set of

-measure one. Moreover, converges on a set of measure one,
being a positive super-martingale as well [13, Theorem 5.2.2].
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Thus, must converge on a set of measure one. We denote this
limit by and observe that since everywhere.
On this set of measure one, the denominator of

converges to , and so does the numerator. The whole
fraction thus converges to one, which was to be shown.

Proposition 5 gives only a statement about “on-sequence”
convergence of the -predictions. Indeed, no con-

clusion about “off-sequence” convergence, i.e., for ar-
bitrary , can be drawn from the proposition, not even
in the deterministic case. There, the true measure is concen-
trated on the particular sequence . So for , we have

, and thus, no assertion for can be made.
On the other hand, an off-sequence result is essential for predic-
tion: Even if on the correct next symbol the predictive proba-
bility is very close to the true value, we must be sure that this is
so also for all alternatives. This is particularly important if we
base some decision on the prediction; compare Section VIII-A.

The following theorem closes this gap. In addition, it provides
a statement about the speed of convergence. In order to prove
it, we need a lemma establishing a relation between the square
distance and the Kullback–Leibler distance, which is proven for
instance in [15, Sec.3.9.2].

Lemma 6: Let and be measures on , then

Theorem 7: For any class of (semi)measures containing
the true distribution (which is a measure), we have

That is,

(see (7)), which implies

with -probability one.
Proof: Let . From Lemma 6, we know

(14)

(15)

(16)

Then we can estimate

(17)

since always . Moreover, by setting , using
, adding an always positive max-term, and finally

using again, we obtain (18) at the bottom of the
page. If contains only measures, the max-term is not neces-
sary, since is an “anti-semimeasure” in this case. We proceed
by observing

(19)

which is true since for successive the positive and negative
terms cancel. From Lemma 4 we know

and therefore,

(20)

(18)
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Here we have again used the fact that positive and negative
terms cancel for successive , and, moreover, the fact that is a
semimeasure. Combining (18)–(20), and observing ,
we obtain

(21)

Therefore, (16), (17), and (21) finally prove the assertion.

We point out again that the proof gets a bit simpler if con-
tains only measures, since then (20) becomes irrelevant. How-
ever, this case does not give a tighter bound.

This is the first convergence result “in mean sum,” see (7). It
implies both on-sequence and off-sequence convergence. More-
over, it asserts the convergence is “fast” in the sense that the sum
of the total expected deviations is bounded by .
Of course, can be very large, namely, .
The following example will show that this bound is sharp (save
for a constant factor). Observe that in the corresponding result
for mixtures, Theorem 1, the bound is much smaller, namely,

.

Example 8: Let , , and
. Each is a deterministic measure con-

centrated on the sequence , while the true
distribution is deterministic and concentrated on .
Let for all . Then generates , and for
each we have .
Hence,

(the notation “ ” which is introduced later means “equal within
a multiplicative constant”). In Example 15, we will even see a

case where the model class contains only Bernoulli distributions
and nevertheless the exponential bound is sharp.

The next result implies that convergence holds also for the
un-normalized dynamic MDL predictor.

Theorem 9: For any class of (semi)measures containing
the true distribution , we have

Proof:

i) Define for , then for
we have the equation at the bottom of the page.

Here, , and ,
and have been used, the latter implies also

The last expression in this (in)equality chain, when
summed over is bounded by by
essentially the same arguments (18)–(21) as in the proof
of Theorem 7.

ii) Let and use
to obtain

(22)

Then take the expectation and the sum and pro-
ceed as in 1).
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Corollary 10: For any class of (semi)measures containing
the true distribution , we have

That is, (see (7)).
Proof: For two functions , let

(23)
Then the triangle inequality holds for , since is (pro-
portional to) an Euclidian distance ( -norm). Moreover

by Theorem 7 and . We also have

by multiplying in Theorem 9 ii) with another
. Note , since both ,

, for this holds by (12). This implies

Corollary 11: For almost all , the normalizer
defined in (13) converges to a number which is finite and

greater than zero, i.e., . Moreover, the sum
of the MDL posterior estimates converges to one almost surely

as w. p.

(24)
Proof: Theorem 9 implies that with probability one, the

sum is bounded in , hence converges ab-
solutely, hence also the limit

exists and is finite. For these sequences,
and (24) follows.

V. STATIC MDL

Static MDL as introduced in Definition 3 is usually more ef-
ficient and thus preferred in practice, since only one MDL es-
timator has to be computed. The following technical result will
allow to conclude that the static MDL predictions converge in
mean sum like the dynamic ones.

Theorem 12: For any class of (semi)measures containing
the true distribution , we have

Proof: The equality is proven as in (22). For the inequality,
we proceed in a similar way as in the proof of Theorem 7,
(18)–(20). From Lemma 4, we know

Then

for all . This implies the assertion. Again, we have used
and the fact that positive and negative terms cancel

for successive .

Corollary 13: For any class of (semi)measures containing
the true distribution , we have

and

That is,

and

Proof: Using and the triangle inequality,
we see

With as in (23), using we, therefore, have

according to Theorem 9 ii) and Theorem 12. Then, since
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holds by Corollary 10, we obtain

Theorem 12 also asserts

hence,

follows.

Distance Measures: The total expected square error is not
the only possible choice for measuring distance of distributions
and speed of convergence. In fact, looking at the proof of
Theorem 7, the expected Kullback–Leibler distance may seem
more natural at first glance. However, this quantity behaves
well only under dynamic MDL, not static MDL. To see this,
let contain two Bernoulli distributions, both with
prior weight , and let be the uniform measure. If the
first symbol happens to be , which occurs with probability ,
then the static MDL estimate is . Then ,
hence, the expectation is as well. The quadratic distance
behaves locally like the Kullback–Leibler distance (Lemma 6),
but otherwise is bounded and thus more convenient.

Another possible choice is the Hellinger distance

(25)

and

(26)

Like the square distance, the Hellinger distance is bounded by
both the relative entropy and the absolute distance

and (27)

(28)

The former is, e.g., shown in [15, Lemma 3.11, p. 114], the
latter follows from for any

. Therefore, the same bounds we have proven for the square
distance also hold for the Hellinger distance; they are subsumed
in Corollary 14 below. Although for simplicity of notation we
have preferred the square distance over the Hellinger distance in
the presentation so far, in Sections VIII-A and -C we will meet
situations where the quadratic distance is not sufficient. Then
the Hellinger distance will be useful.

The following corollary recapitulates our results and states
convergence i.m.s (and therefore also w p. ) for all combi-
nations of un-normalized/normalized and dynamic/static MDL
predictions.

Corollary 14: Let contain the true distribution , then

where

and is as in (26).

The following example shows that the exponential bound is
sharp (except for a multiplicative constant), even if the model
class contains only Bernoulli distributions. It is stated in terms
of static MDL, however it equally holds for dynamic MDL.

Example 15: Let and

be a Bernoulli class as discussed at the end of Section III. Let
be Bernoulli with parameter , i.e., the distribution generating
fair coin flips. Assume that all weights are equally . Then
it is shown in [27, Proposition 5] that

So the bound equals within a multiplicative constant.

This shows that in general there is no hope to improve the
bounds, even for very simple model classes. But the situation
is not as bad as it might seem. First, the bounds may be expo-
nentially smaller under certain regularity conditions on the class
and the weights, as [6] and the positive assertions in [27] show.
It is open to define such conditions for more general model
classes. Second, the example just given behaves differently than
Example 8. There, the error remains at a significant level for

time steps, which must be regarded critical. Here, in
contrast, the error drops to zero as for a very long time,
namely, steps, and decreases more rapidly only after-
wards. This behavior is tolerable in practice. Recently, [28], [29]
have proven that this favorable case always occurs for i.i.d., if
the weights satisfy the light tails condition for some

[5]. Precisely, they give a rapidly decaying bound on the
instantaneous error. It is open if similar results also hold in more
general setups than i.i.d. Example 8 shows that at least some ad-
ditional assumption is necessary.

VI. HYBRID MDL

So far, we have not cared about what happens if two or more
(semi)measures obtain the same value for some string

. In fact, for the previous results, the tie-breaking strategy can
be completely arbitrary. This need not be so for all thinkable
prediction methods, as we will see with the hybrid MDL pre-
dictor in the subsequent example.

Definition 16: The hybrid MDL predictor is given by

(compare (10)). This can be paraphrased as “do dynamic MDL
and drop the weights.” It is somewhat in-between static and dy-
namic MDL.

Example 17: Let and contain only two mea-
sures, the uniform measure which is defined by ,
and another measure having and .
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Fig. 1. Construction of a martingale that with high probability converges to oscillating infinitely often.

The respective weights are and . Then, for each
starting with , we have . There-
fore, for all starting with (a set which has uniform mea-
sure ), we have a tie. If the maximizing element is chosen
to be for even and for odd , then both static and dynamic
MDL predict probabilities of constantly

for all . However, the hybrid MDL predictor values
oscillate between and .

If the ambiguity in the tie-breaking process is removed, e.g.,
in favor of larger weights, then the hybrid MDL predictor does
converge for this example. We replace (10) by this rule

Then, do the hybrid MDL predictions always converge? This is
equivalent to asking if the process of selecting a maximizing
element eventually stabilizes. If stabilization does not occur,
then hybrid MDL will necessarily fail as soon as the weights
are not equal. A possible counterexample could consist of two
measures the fraction of which oscillates perpetually around a
certain value. We show that this can indeed happen, even for
different reasons.

Example 18: Let be binary, and
with

and

Then one can easily see that

and converges and oscillates. In fact, each sequence
having positive measure under and contains eventually only
ones, and the quotient oscillates.

Example 19: This example is a little more complex. We as-
sume the uniform distribution to be the true distribution. We
now construct a positive martingale that converges to
with high probability and thereby oscillates infinitely often.

The martingale is defined on strings of successively in-
creasing length. Of course, . If is already defined
for strings of length , we extend the definition on strings
of length in the following way: If , we set

and

This guarantees the martingale property
. If and , then we can

similarly define

and

However, if , we cannot proceed in this way,
since must be positive. Therefore, we set

in this case and call those “dead” strings. Strings that are
not dead will be called “alive.” A few steps of the construction
are shown in Fig. 1. For example, it can be observed that the
string is dead, all other strings in the figure are alive.

It is obvious from the construction that is a martin-
gale, it oscillates and converges to as for all sequences

that always stay alive. The only thing we must show is that
many sequences in fact stay alive.

Claim 20: such that is dead .
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Proof: After the th step, i.e., when has been defined
for strings of length , assumes the value

on a set of measure at most . In the next step , is defined
to

on half of the extended strings. Generally, in the th next step,
is defined to

on a fraction of the extended strings.
The extended strings stay alive as long as

holds. Some elementary calculations show that this is equivalent
to . So, precisely after additional steps, a fraction
of of the extended strings die.

We already noted that for ,
we have . Thus,

and is dead

Hence, one can conclude

such that is dead

which proves the claim.

We now define the measure by

and set the weights to and . Then this provides
an example where the maximizing element never stops oscil-
lating with probability at least .

Both examples point out different possible reasons for failure
of stabilizing. Example 18 works since the measure and are
asymptotically very similar and close to deterministic. In con-
trast, in Example 19, stabilizing fails because of lack of indepen-
dence: The quantity strongly depends on . In particular,
one can note that even Markovian dependence may spoil the sta-
bilization, since only depends on the last symbol of .

VII. STABILIZATION

In the light of the previous section, it is therefore natural to ask
when the maximizing element stabilizes (almost surely). Barron
[24], [7] has shown that this happens if all distributions in are
asymptotically mutually singular. Under this condition, the true
distribution is even eventually identified almost surely.3

The condition of asymptotic mutual singularity holds in many
important cases, e.g., if the distributions are i.i.d. However, one

3In general, stabilization does not imply that the true distribution is identified.
Consider, for instance, a model class containing two measures: the true measure
is concentrated on 0 and has prior weight , the other one assigns probability
�(x = 1) = 2 independently of the past x . Then the maximizing ele-
ment will remain the incorrect distribution � , however with predictions rapidly
converging to the truth.

cannot always build on it.4 Therefore, in this section, we give a
different approach: In order to prevent stabilization, it is nec-
essary that the ratio of two predictive distributions oscillates
around the inverse ratio of the respective weights. Therefore,
stabilization must occur almost surely if the ratio of two pre-
dictive distributions converges almost surely but is not concen-
trated in the limit. This is satisfied under appropriate conditions,
as we will prove. We start with a general theorem which allows
to conclude almost sure stabilization in a countable model class,
if for any pair of models we have almost sure stabilization.

Theorem 21: Let be a countable class of (semi)measures
containing the true measure . Assume that for each two

, the maximizing element chosen from
eventually stabilizes almost surely. Then also the maximizing
element chosen from all of stabilizes almost surely.

Proof: It is immediate that the maximizing element
chosen from any finite subset of stabilizes almost surely.
Now, for all and , define the set by

such that

Then we have

since is a (semi)measure and the set

is prefix free. Let

s.t.

then holds. We arrange the (semi)measures
in an order such that the weights are
descending. For each , we can now find an index and a
set

such that

Defining , we get

For all , can never be the maximizing element.
Therefore, for all , there are only finitely many

having the chance of becoming the maximizing element at

4Here is a simple example: let the true measure be Bernoulli ( ) and an-
other measure be a product of Bernoullis with parameter rapidly converging to

. These distributions are not asymptotically mutually singular, nevertheless al-
most surely stabilization holds, as we will see.
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any time. By assumption, the maximizing element chosen from
the finite set stabilizes almost surely. Thus, we conclude
almost sure stabilization on the sequences in . Since
this holds for all and as , the
maximizing element stabilizes with -probability one.

For the rest of this section, we assume that the model class
contains only proper measures. A measure is called factoriz-
able if there are measures on such that

for all . That is, the symbols of sequences gener-
ated by are independent. A factorizable measure is
called uniformly stochastic if there is some such that at
each time the probability of all symbols is either or
at least . That is,

for all and (29)

In particular, all deterministic measures and all i.i.d. distribu-
tions are uniformly stochastic. Another simple example of a
uniformly stochastic measure is a probability distribution which
generates alternately random bits by fair coin flips and the digits
of the binary representation of

Lemma 22: Let , , and be factorizable and uniformly
stochastic measures, where is the true distribution.

i) The maximizing element chosen from and stabilizes
almost surely.

ii) If is not eventually always preferred over or (in
which case we the maximizing element stabilizes almost
surely by i)), then the maximizing element chosen from
and stabilizes almost surely.

Proof: We will show only ii), as the proof of i) is similar
but simpler. So we assume that both and remain competitive
in the process of choosing the maximizing element, and show
that then maximizing element chosen from and stabilizes
almost surely.

Let , , and . The are inde-
pendent random variables depending on the event . More-
over, both fractions and are martingales (with re-
spect to ) and thus converge almost surely for . We are
interested only in the events in

converges to a value

since otherwise eventually is no longer competitive. So we
assume that , which implies by the
Kolmogorov zero-one-law (see, e.g., [26]). Similarly,

for the analogously defined set . That is,

converges to a value almost surely, and in particular
almost surely.

Now we will use the concentration function of a real-valued
random variable

(30)

This quantity was introduced by Lèvy, see, e.g., [30]. The con-
centration function is nondecreasing in . Moreover, when two

independent random variables and are added, we have [30,
Lemma 1.11]

(31)

We first assume that the following set is unbounded:

i.e., (32)

(33)

We show that then (which converges almost surely) is
not concentrated in the limit. That is, it converges to some given

, in particular to , with -probability zero. This
shows that almost surely it does not oscillate around .

Define independent random variables . Let
and denote its almost everywhere existing limit

by . The assertion is verified under condition (33),
if we can show that the distribution of is not concentrated to
any point since then also is not concentrated
to any point. In terms of the concentration function defined in
(30), this reads . According to (33), for each ,
we find and such that .
Then, because of (ignoring the measure-zero set where
this may fail)

and

is finite. The mapping

is bijective and has derivative at least . Let . Then
by definition of , we have for
and consequently

By the Kolmogorov–Rogozin inequality (see [30, The-
orem 2.15]), there is a constant such that

Thus, for each , we can choose sufficiently large to
guarantee . Then for and as
before. By (31), we conclude

and, consequently, since is nondecreasing. This
proves the assertion under assumption (33).

Now assume that is bounded, i.e., (33) does not hold. Then,
there is such that for all
and . Since the distribution of is a finite convex com-
bination of point measures, for each there is an such
that and thus
for all . Therefore, also holds.
Since is equivalent to , this implies
that there are constants such that

(34)
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Next we argue that if for infinitely many , then either
or is eventually not competitive. To verify this claim, let

and and observe that
holds for sufficiently large , since the sum (34) is

bounded. On the other hand, is uniformly stochastic, so there
are no events of probability , hence

and for sufficiently large . Now for these ,
together with implies the contradiction

. So necessarily requires ,
hence, , since is uniformly stochastic. If this
happens infinitely often, then is eventually not competitive. A
symmetric argument with holds for .

The last paragraph shows that, if both and stay competi-
tive, eventually holds almost surely. In this case,
is eventually constant, which completes the proof.

Corollary 23: Let be a countable class of factorizable and
uniformly stochastic measures, then the maximizing element
stabilizes almost surely.

Proof: Follows from Theorem 21 and Lemma 22.

Lemma 22 and Corollary 23 are certainly not the only or
the strongest assertions obtainable for stabilization. They rather
give a flavor how a proof can look like, even if the distributions
are not asymptotically mutually singular. On the other hand, the
given result is optimal at least in some sense, as shown by the
previous Examples 18 and 19. In Example 18, is not uniformly
stochastic but both and are factorizable, while in Example
19, is uniformly stochastic but is not factorizable.

The proof of Lemma 22 crucially relies on the indepen-
dence assumption, which is necessary in order to use the
Kolmogorov–Rogozin inequality. It is possible to relax this
and require independent sampling only “every so often.” It is
however not clear how to remove this condition completely.

VIII. APPLICATIONS

In the following, we present some applications of the theory
developed so far. We begin by stating loss bounds. After that,
three very general applications are discussed.

A. Loss Bounds

So far, we have only considered special loss functions, like
the square loss, the Hellinger loss, or the relative entropy. We
now show how these results, in particular the bounds for the
Hellinger loss, imply regret bounds for arbitrary loss functions.
(As we will see, square distance is not sufficient.) This paral-
lels the bounds in [31], [9]. The proofs are simplified, in partic-
ular Lemma 24 facilitates the analysis considerably. The reader
should compare the results to the bounds for “prediction with
expert advice,” e.g., [32], [33].

In order to keep things simple, we restrict to binary alphabet
in this section. Our results extend to general al-

phabet by the techniques used in [31]. Consider a binary pre-
dictor having access to a belief probability depending on the
current history, e.g., . Which actual predic-
tion should he output, or ? We can answer this question if we
know the loss function, according to which losses are assigned
to the (wrong) predictions. Consider for example the loss

(also known as classification error loss), i.e., a wrong predic-
tion gives loss of and a right prediction gives no loss. Then we
should predict if our belief is . This may be different
under other loss functions. In general, we should predict in a
Bayes optimal way: We should output the symbol with the least
expected loss

where is the loss incurred by prediction if the true
symbol is . In the following, we will restrict to bounded loss
functions . Breaking ties in the above expres-
sion in an arbitrary deterministic way, the resulting prediction
is deterministic for given and loss function . If is the true
distribution as usual, then let be
the -expected loss of the -predictor. Then, by

we denote the cumulative -expected loss of the -predictor.
With being the variants of the MDL predictor, we will bound
the quantity , i.e., the cumulative regret, by
an expression depending on and .

We admit arbitrary nonstationary loss functions which
may depend on the history. Our analysis considers the worst
possible choice of loss functions and consists of three steps.
First, the cumulative regret bound is reduced to an instanta-
neous regret bound (Lemma 24). Then, the instantaneous bound
is reduced to a bound in terms of special functions of and
(Lemma 25). Finally, the bound for the special functions is given
(Lemma 26).

Lemma 24: Assume that some -predictor satisfies the in-
stantaneous regret bound ,
where is the Hellinger distance of the instanta-
neous predictive probabilities (25). Then the cumulative -re-
gret is bounded in the same way

This and the following lemma hold with arbitrary constants,
the choices and are the smallest ones for which Lemma
26 is true. Note that if the Hellinger distance is replaced by the
relative entropy, then may be replaced by . Thus, normal-
ized dynamic MDL and Bayes mixture admit smaller bounds,
compare [31]. However, this is not true for the other MDL vari-
ants, as we have no relative entropy bound there.

Proof: The key property is the super-additivity of the
bound. A function is said to be super-
additive if

The function satisfies this condition. We now
use an inductive argument. Assume

where the summation starts at and the superscript indi-
cates that the first symbol of the sequence was . Let the same
hold for the first symbol . Writing and using
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, we obtain the equation at the bottom
of the page. Here, the first inequality is the induction hypoth-
esis together with the instantaneous bound, the second bound
is Cauchy–Schwarz’s inequality, and the last estimate is the
super-additivity.

Lemma 25: Assume that some -predictor satisfies
for all , with the Hellinger distance
and the special functions and defined in

the following way, where we slightly abuse notation and abbre-
viate and :

and

if
if
if
if .

Then for arbitrary bounded loss function ,
we have

(35)

Proof: First we show that we may assume
, i.e., we do not incur loss for correct predictions. To

this end, consider the modified loss function

and assume without loss of generality (w.l.o.g.) .
Then it is not hard to see that the regrets under the original and
the modified loss functions coincide, while the expected loss of
the -predictor clearly decreases with the modified loss func-
tion. Thus, (35) holds for if it holds for . Hence, we may
assume . For each possible outcome

, we abbreviate .
Now assume w.l.o.g. . In order to show the assertion,

we need to consider the cases in the definition of separately. We
show this only for the first case, i.e., . Then ,

. We assume that the -predictor outputs and
the -predictor , otherwise, they give the same prediction and
the -predictor has no regret at all. This condition is equivalent
to for some . We consider the worst case
by maximizing , i.e., choosing as large as possible. For this

, we obtain and

showing (35) provided that . The other cases are
shown similarly.

Lemma 3: The bound holds for all
, with the functions as defined in

Lemma 25.

The technical and not very interesting proof of this lemma is
omitted. The careful reader may check the assertion numerically
or graphically, as it is just the boundedness of some function
on the unit square. We remark that the bound does not hold if
the Hellinger distance is replaced by the quadratic distance, not
even with larger constants.

Theorem 27: For arbitrary nonstationary loss function which
is bounded in and known to the MDL predictors, their
respective losses are bounded by

where the constant or , according to which MDL
predictor is used (compare Corollary 14).

Proof: This follows from the preceding three lemmas and
from (Corollary 14).

This shows in particular that, regardless of the loss function,
the average expected per-round regret tends to zero. Again, the
direct practical relevance of the bounds is limited because of the
potentially huge .

B. Classification

Transferring our results to pattern classification is very easy.
All we have to do is to add inputs to our models. That is, we
consider an arbitrary input space and (as before) a finite ob-
servation or output space . A model is now a measure

where

That is, we have a distribution which is conditionalized to the
input. We restrict our discussion to measures, since there is no
motivation to consider semimeasures for classification. The def-
inition of a model does not include history dependence. There
is no loss of generality: We may include the history in the arbi-
trary input space.

Transferring the proofs in the previous sections to the present
setup is straightforward. We therefore obtain immediately the
following corollaries.
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Corollary 28: Let be a countable set of classification
models containing the true distribution . Then for any se-
quence of inputs , we have

(Note that although each single model formally does not depend
on the history, the MDL estimators necessarily do.)

We need not consider the normalized static variant here, since
all models are measures anyway. If there is a distribution over

, the result therefore also holds in expectation over the inputs.
An analog of Corollary 23 is obtained as easily. If the inputs
are i.i.d., which is usually assumed for classification, then the
two conditions of factorizability and uniform stochasticity are
trivially satisfied. Therefore, the true distribution is eventually
discovered by MDL almost surely. Note that in this case, the
distributions are also asymptotically mutually singular, so that
the assertion also follows from Barron’s [24] earlier result.

Note that again, the assumption is essential. In practical
applications, if this is not clear, it may therefore be favorable to
choose a different method having guarantees without this con-
dition, compare [20].

C. Regression

We may also apply our results in the regression setup, that is,
for predicting continuous densities. Our use of the term regres-
sion is a bit nonstandard here, since it normally refers to just
estimating the mean of some prediction, where the distribution
is often assumed to be Gaussian. Again the assumption is
essential, so that in practice some other method not relying on
it might be preferred.

Continuous densities cause some additional difficulties. The
observation space is now . This implies in particular that, like
for the loss bounds, the square distance is no longer appropriate
for our purpose5 (note that our use of the squared error is com-
pletely different from the standard use in regression). So we will
use the Hellinger distance instead, defined similarly to (25) by

(36)
provided that , are integrable. Accordingly

is the cumulative Hellinger distance of two predictive distribu-
tions and . Similarly as in (27) and (28), the Hellinger dis-

5To see this, define distributions f by its density

f =
n

3
�[ ] +

2n

3
�( ]

where� is the characteristic function of an interval. Let ~f (x) = f (�x), then
the quadratic distance is

(f � ~f ) dx =
2n

9
����!1

whereas the relative entropy f ln(f = ~f )dx = is constant.

tance is bounded by the (continuous) relative entropy and ab-
solute distance. This shows in particular that the integral (36)
exists.

We now consider a countable class of models that are func-
tions from to uniformly bounded probability densities on

. That is, there is some such that

and (37)

for all , , and . The MDL estimator is then
defined as the element which maximizes the density

The uniform boundedness condition asserts that the MDL esti-
mator exists. It may be relaxed, provided that the MDL estimator
remains well defined, such as for a family of Gaussian densities
which tend to the point measure.

With these definitions, the proofs of the theorems for static
and dynamic MDL can be adapted. Since the triangle inequality
holds for the Hellinger distance , we obtain the following.

Corollary 29: Let be a countable model class according
to (37), containing the true distribution . Then for any se-
quence of inputs , we have ,

, and .

We may apply this for example to model classes with
Gaussian noise, concluding that the mean and the variances
converge to the true values, see [34] for an example. It is not
immediately clear how to obtain an analog of Corollary 23 for
continuous densities.

D. Universal Induction

Since the assertions on static and dynamic MDL have been
proven generally for semimeasures, we may apply them to
the universal setup. Here is the countable set of all
lower semicomputable ( enumerable) semimeasures on .
So contains stochastic models in general, and in particular
all models for computable deterministic sequences. There is a
one-to-one correspondence of to the class of all programs
on some fixed universal monotone Turing machine , see,
e.g., [13]. We will assume programs to be binary, in contrast
to outputs, which are strings . This relation defines in
particular the complexities and weights of each by

program length for on and
(38)

We call these weights the canonical weights. They satisfy
for all and .

An enumerable semimeasure which dominates all other enu-
merable semimeasures is called universal. The Bayes mixture

defined in (2) has this property. One can show that is equal
within a multiplicative constant to Solomonoff’s prior [16, eq.
(7)], which is the a priori probability that (some extension of)
a string is generated provided that the input of consists of
fair coin flips. That is,

for all
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Here, we use the notations

The MDL definitions in Section III directly transfer to this
setup. All bounds on the cumulative square loss (subsumed in
Corollary 14) therefore apply to . The necessary as-
sumption now reads that must be a recursive ( computable)
measure. Also, Theorem 1 implies Solomonoff’s important uni-
versal induction theorem.

In addition to , we also consider the set of all recursive
measures together with the same canonical weights (38). We
define and . Then and

for all is immediate. It is straightforward

that since . Moreover, for any string
define the monotone complexity

as the length of the shortest program such that ’s output starts
with . The following assertion holds.

Proposition 30: We have .
Proof: We must show that given a string and

a recursive measure (which in particular may be the MDL
descriptor ) it is possible to specify a program of length
at most that outputs a string starting with

, where constant is independent of and .
Consider all strings of length

arranged in lexicographical order. Each has mea-
sure . Let be the cumulated measures: and

. Let be the index of , i.e., . Then, the
interval has measure and therefore con-
tains exactly one -bit number . We
describe with the number , this is known as arithmetic en-
coding (see, e.g., [35]). The coding is injective since
and are disjoint for .

In order to decode , we may descend the -ary tree of all
possible strings , first considering strings of length one, then
of length two, etc. For each possible string , we can determine
its binary code by approximating sufficiently accurately.
Eventually we will find , then we print the current . At this
stage, might be only a prefix of , since an extension of might
have a measure very close to and thus map to the same code

. Therefore, we continue the procedure until all codes starting
with are proper extensions of (which may never be the case,
then the algorithm runs forever). In each step, the appropriate
additional symbol is written on the output tape. The resulting
output will be or some extension of .

This algorithm can be specified in a constant number of
bits. The description of needs another bits. Finally,

has length . Thus, the overall
description has length as required.

It is also possible to prove the proposition indirectly using

[13, Theorem 4.5.4]. This implies that
for all and all recursive measures .

Then, also holds.

So together with the above observations, we have

(39)

On the other hand, there is a deep result in algorithmic infor-
mation theory which states that an exact coding theorem does

not hold on continuous sample space [36].

Therefore, at least one of the above must be proper.

Problem 4: Which of the two inequalities

and is proper (or are both)?

The proof in [36] is very subtle, and the phenomenon is
still not completely understood. There is some hope that by
answering Problem 31, one arrives at a better understanding of
the continuous coding theorem and even at a simpler proof for
its failure.

IX. DISCUSSION

In this last section, we recapitulate the main achievements of
this work and discuss their philosophical and practical conse-
quences. In the first place, we have shown that if two-part MDL
is used for predicting a stochastic sequence, then the predictive
probabilities converge to the true ones in mean sum, provided
that the distribution generating the sequence is contained in the
model class. The two most important implications are almost
sure convergence and loss bounds for arbitrary loss functions.

The guaranteed convergence is slow in general: All bounds
depend linearly on , the inverse of the prior weight of the
true distribution. For large model classes, this number must be
regarded too huge to be relevant for practical applications. Ex-
amples show that this bound is sharp. This is in contrast to
the exponentially smaller corresponding bound for the Bayes
mixture. The latter predictor, however, is often computationally
more expensive to approximate in practice. We believe that this
principally indicates that with MDL, some care has to be taken
when choosing the model class and the prior. Conditions which
are sufficient for fast convergence have been given, for instance,
in [6], [7], [27]. It remains a major challenge to generalize these
results in order to obtain fast convergence under assumptions
that are as weak as possible. In particular for universal induction,
this question is interesting and possibly difficult. Even when
considering only computable Bernoulli distributions endowed
with a universal prior, fast convergence possibly holds for many
environments, but maybe not for all [27]. We also need to dis-
tinguish how the large error cumulates. Either the instantaneous
error remains significant for a long time, which is critical, or the
instantaneous error drops just too slowly to be summable, e.g.,
as , which is tolerable. We have seen instances for both
cases; compare the discussion after Example 15. In this light,
the cumulative error might not be the right quantity to assess
convergence speed.

The main results have been shown under the only assumption
that the data-generating process is contained in the model class.
This condition is essential in general, as [20] shows that in its
absence MDL can fail dramatically. In the universal setup, the
assumption merely requires that the data is generated in some
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(probabilistically) computable way. This is a very weak condi-
tion. Laplace, Zuse [37], and successors argue that nature oper-
ates in a computable way, and consequently, all thinkable data
satisfies the assumption. On the other hand, predicting with a
universal model is computationally very expensive. In partic-
ular, it is provably infeasible if the thesis of computable nature
holds. Despite these practical problems, the theory of universal
prediction is valuable since it explores the limits of computa-
tional induction.
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