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Abstract

Eisenstein series for G2 and the symmetric cube Bloch–Kato conjecture

Samuel Mundy

The purpose of this thesis is to construct nontrivial elements in the Bloch–Kato Selmer group of

the symmetric cube of the Galois representation attached to a cuspidal holomorphic eigenform F of

level 1. The existence of such elements is predicted by the Bloch–Kato conjecture. This construc-

tion is carried out under certain standard conjectures related to Langlands functoriality. The broad

method used to construct these elements is the one pioneered by Skinner and Urban in [SU06a]

and [SU06b].

The construction has three steps, corresponding to the three chapters of this thesis. The first

step is to use parabolic induction to construct a functorial lift of F to an automorphic representation

Π of the exceptional group G2 and then locate every instance of this functorial lift in the cohomology

of G2. In Eisenstein cohomology, this is done using the decomposition of Franke–Schwermer [FS98].

In cuspidal cohomology, this is done assuming Arthur’s conjectures in order to classify certain CAP

representations of G2 which are nearly equivalent to Π, and also using the work of Adams–Johnson

[AJ87] to describe the Archimedean components of these CAP representations. This step works

for F of any level, even weight k ≥ 4, and trivial nebentypus, as long as the symmetric cube

L-function of F vanishes at its central value. This last hypothesis is necessary because only then

will the Bloch–Kato conjecture predict the existence of nontrivial elements in the symmetric cube

Bloch–Kato Selmer group. Here this hypothesis is used in the case of Eisenstein cohomology to

show the holomorphicity of certain Eisenstein series via the Langlands–Shahidi method, and in the

case of cuspidal cohomology it is used to ensure that relevant discrete representations classified by

Arthur’s conjecture are cuspidal and not residual.



The second step is to use the knowledge obtained in the first step to p-adically deform a certain

critical p-stabilization σ(Π) of Π in a generically cuspidal family of automorphic representations of

G2. This is done using the machinery of Urban’s eigenvariety [Urb11]. This machinery operates

on the multiplicities of automorphic representations in certain cohomology groups; in particular, it

can relate the location of Π in cohomology to the location of σ(Π) in an overconvergent analogue

of cohomology and, under favorable circumstances, use this information to p-adically deform σ(Π)

in a generically cuspidal family. We show that these circumstances are indeed favorable when the

sign of the symmetric functional equation for F is −1, either under certain conditions on the slope

of σ(Π), or in general when F has level 1.

The third and final step is to, under the assumption of a global Langlands correspondence

for cohomological automorphic representations of G2, carry over to the Galois side the generically

cuspidal family of automorphic representations obtained in the second step to obtain a family of

Galois representations which factors through G2 and which specializes to the Galois representa-

tion attached to Π. We then show this family is generically irreducible and make a Ribet-style

construction of a particular lattice in this family. Specializing this lattice at the point correspond-

ing to Π gives a three step reducible Galois representation into GL7, which we show must factor

through, not only G2, but a certain parabolic subgroup of G2. Using this, we are able to construct

the desired element of the symmetric cube Bloch–Kato Selmer group as an extension appearing in

this reducible representation. The fact that this representation factors through the aforementioned

parabolic subgroup of G2 puts restrictions on the extension we obtain and guarantees that it lands

in the symmetric cube Selmer group and not the Selmer group of F itself. This step uses that F is

level 1 to control ramification at places different from p, and to ensure that F is not CM so as to

guarantee that the Galois representation attached to Π has three irreducible pieces instead of four.
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Introduction

Let p be a prime number, and write GQ for the absolute Galois group of Q. Let n be a positive

integer, and let ρ : GQ → GLn(Qp) be a continuous Galois representation. We assume ρ is geometric

in the sense of Fontaine–Mazur, and for simplicity we also assume that ρ is irreducible and that

n ≥ 2.

Attached to ρ are two objects, one of an analytic nature, and one of an arithmetic nature. On

the analytic side one has the L-function of ρ, written L(s, ρ). This is a holomorphic function which

conjecturally has an analytic continuation to the entire complex plane. And on the arithmetic

side one has the Bloch–Kato Selmer group H1
f (Q, ρ∨(1)), where ρ∨ denotes the dual of ρ and

ρ∨(1) denotes the twist of that by the cyclotomic character. This Selmer group is the group of all

cohomology classes in H1(Q, ρ∨(1)) which are unramified at all primes ` 6= p and crystalline at p.

Then the Bloch–Kato conjecture predicts the following relationship between these two objects:

ords=0 L(s, ρ) = dimQp
H1
f (Q, ρ∨(1)).

This conjecture is extremely far-reaching, and at the same time, extremely difficult. It is a sweeping

generalization of the conjecture of Birch and Swinnerton-Dyer, and progress has only been made

towards it in little pieces thus far.

So, what are the methods available to tackle a conjecture like this? How can one bridge the gap

between two objects both from such distant mathematical worlds? Well, in some sense, there are

two main methods to do this which work in opposite directions: There is the Euler system method,

which can be used in special cases to establish inequalities like

ords=0 L(s, ρ) ≥ dimQp
H1
f (Q, ρ∨(1)),
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and there is what one might call the modular method, which can be used in special cases to establish

inequalities in the other direction,

ords=0 L(s, ρ) ≤ dimQp
H1
f (Q, ρ∨(1)).

Much progress has been made recently in using the Euler system method pioneered by Thaine,

Kolyvagin, Rubin and others. For ρ coming from a modular form, the work of Kato [Kat04]

constructs an Euler system which is able to be used to establish implications of the form

L(0, ρ) 6= 0 =⇒ H1
f (Q, ρ∨(1)) = 0.

Here, ρ has been normalized so that the central critical point of its L-function is located at s = 0.

Much more recently, for Galois representations attached to certain automorphic representations

of GSp4, there is also the work of Loeffler, Zerbes, and their collaborators, which ultimately cul-

minated in [LZ20]. There, they establish an implication as above, but for ρ coming from certain

automorphic representations of GSp4. Both these works also succeed in establishing the corre-

sponding inclusions in the Iwasawa main conjecture for these Galois representations.

On the other hand, the modular direction, which was pioneered in the paper of Ribet [Rib76]

where the converse to Herbrand’s theorem is proved, has also seen progress recently. Besides the

work of Mazur–Wiles [MW84] and Wiles [Wil90], which establish Iwasawa’s main conjecture for

Q and for totally real fields respectively, there is the work of Skinner–Urban [SU14]. There they

prove the Iwasawa main conjecture for modular forms under certain hypotheses. But before this,

Skinner and Urban [SU06a] proved implications converse to the one above for modular forms; so

if again ρ is the Galois representation attached to a modular form, normalized so that the central

critical point of its L-function is located at s = 0, then Skinner and Urban prove under certain

hypotheses that

L(0, ρ) = 0 =⇒ H1
f (Q, ρ∨(1)) 6= 0.

In work yet unpublished (though see [SU06b]) Skinner and Urban also prove the same implication

for Galois representations attached to certain automorphic representations of unitary groups of

mixed signature.
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The broad method used in the works [SU06a] and [SU06b] is roughly the same, and we will call

it the Skinner–Urban method. This thesis should be viewed as another instance of this method, and

we will establish an implication like the one just above, for a particular family of representations ρ,

under certain assumptions. But before we come to this, let us describe now how the Skinner–Urban

method works in general.

The method

Let M now be a reductive group over Q. For simplicity, we assume M is split, although

the method can work for nonsplit groups as well. Let π be an automorphic representation of

the adelic points M(A) of M , and assume π is “nice” enough to have attached to it a p-adic

Galois representation ρπ. We will not be too precise about what this means here, but, this Galois

representation should be a continuous representation

ρπ : GQ →M∨(Qp),

where M∨ is the dual reductive group of M . The behavior of ρπ, when restricted to a decomposition

group GQ` at a prime `, should be determined by the local nature of the automorphic representation

π at `.

Now let R be a representation

R : M∨ → GLn

of the dual group M∨. Then R ◦ ρπ should, in particular, be geometric, and therefore we may

expect that a suitable version of the modular method mentioned above might yield a proof of the

following implication towards the Bloch–Kato conjecture for R ◦ ρπ:

L(s0, π,R) = 0 =⇒ H1
f (Q, (R ◦ ρπ)∨(−n0 + 1)) 6= 0.

Here, s = s0 is the central point for the L-function L(s, π,R), and n0 is an integer such that

L(s+ s0, π,R) = L(s+ n0, R ◦ ρπ),

3



which we assume does exist.

The Skinner–Urban method is an incarnation of the modular method which, under certain fa-

vorable circumstances, can prove implications like the one just above. It may be described by the

following diagram, whose pieces we explain just below.

The Skinner–Urban method

We first explain the groups on the outer edges of this diagram. Although the target implication

makes no use of any groups other than M and M∨ (and GLn, though this is just part of the data of

the representation R) the Skinner–Urban method, and indeed any version of the modular method,

must pass though a larger reductive group G. So we fix another reductive group G and assume that

we can embed M as the Levi of some maximal parabolic subgroup P ⊂ G. Then M∨ occurs as a

Levi subgroup of a maximal parabolic subgroup, which we denote P∨, in the dual group G∨ of G;

if P is given by omitting one node of the Dynkin diagram for G, say corresponding to a simple root

γ, then P∨ is the parabolic subgroup of G∨ which is obtained by omitting the node corresponding

to the coroot γ∨ from the Dynkin diagram for G∨. We write N∨ for the unipotent radical of P∨.

Then bottom row of the diagram is the process described above; we assume we can use some

version of the global Langlands correspondence to attach to π the Galois representation ρπ. Now

we must describe how to traverse the diagram by taking the arch above the bottom row.

The first step is to construct a functorial lift Π of π from M to G. This lift Π will be an

automorphic representation of G(A) obtained from π via some process of parabolic induction. A

natural way to obtain such a Π is through Langlands’s theory of Eisenstein series, and this is why

the corresponding arrow is labelled “Eisenstein.”

From here we must make a p-adic deformation of the functorial lift Π in a family E of auto-

morphic representations which is generically cuspidal. This is often accomplished using tools from
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the p-adic theory of automorphic forms, such as the eigenvariety; this is why the family is labelled

E . This is also usually where the hypothesis that L(s0, π,R) = 0 is used; one usually needs this to

know that Π has nice enough properties at the archimedean place to show that Π can be p-adically

deformed.

Each cuspidal member of E should have attached to it a Galois representation, again by some

version of the global Langlands correspondence, and these Galois representations should fit into a

p-adic family of Galois representations, denoted ρE in the diagram. In practice, this usually means

there is an affinoid algebra A over some p-adic field which parametrizes the family E , and ρE is a

Galois representation

ρE : GQ → G∨(Frac(A))

into the points of G∨ over the fraction field of A. The representation ρE should be continuous in a

certain sense, and should specialize to the Galois representation of Π at the point of E corresponding

to Π. We note that the Galois representation attached to Π is just the composition ρπ with the

inclusion of M∨ into G∨, due to the functorial nature of the Langlands correspondence.

The final step is to traverse the arrow labelled “Ribet” in the diagram. This is done by choosing

a specific lattice L in ρE and specializing that lattice at the point of E corresponding to Π. If

done correctly, this specialization ρL will only give back the Galois representation of Π up to

semisimplification, and will factor in a nontrivial way through the parabolic subgroup P∨, but not

through the Levi subgroup M∨. The failure for ρL to factor through M∨ should be measured by

a cocycle σ, which should provide a nontrivial element in the Bloch–Kato Selmer group

H1
f (Q, (R ◦ ρπ)∨(−n0 + 1)),

as desired.

Now we have not actually explained yet how the representation R fits into this picture. We

need certain pieces of “numerology” to be satisfied by the objects at play here, and one of them is

the following.

The Levi M∨ acts on the unipotent radical N∨ of P∨ by the adjoint action. Under this action,

the Jordan–Hölder filtration breaks N∨ into graded pieces N∨1 , . . . , N
∨
r , each a representation of

5



M∨. As part of the aforementioned numerology, we must require that the center N∨1 of N∨ is

one-dimensional, and that N∨r
∼= R as representations of M∨. This requirement is what allows the

Skinner–Urban method to see the representation R.

Perhaps the most basic instance of the Skinner–Urban method is when M = GL1 × GL1 and

G = GL2. Then one can prove the now classical implication

ζ(−m) = 0 =⇒ H1
f (Q,Qp(m+ 1)) 6= 0,

for even integers m > 0. This is done by constructing an Eisenstein series E for GL2, and the

hypothesis that ζ(−m) = 0 implies that E is holomorphic, as the nonholomorphic part of its con-

stant term will be a multiple of ζ(−m) and will therefore vanish. Therefore one can put a critical

p-stabilization of E in a Coleman family E , and the criticality implies this family is generically

cuspidal. Correspondingly, on the Galois side, one has a family of Galois representations ρE . Con-

structing a particular lattice L in ρE and specializing at the point corresponding to the Eisenstein

series E gives a representation ρL given in matrix form by

ρL ∼
(
χcyc ∗

0 χ−mcyc

)
.

with ∗ nonzero. One then shows that this ∗ is the desired cocycle in H1
f (Q,Qp(m + 1)). The

(unpublished) notes of Skinner [Ski09] for the 2009 CMI summer school contains this argument in

detail.

Notice that, if we let P be the upper triangular Borel of GL2, then we can identify M = M∨ =

GL1×GL1, as well as GL2 = GL∨2 and P = P∨. Then the representation ρL above factors through

P∨, and the nontriviality of ∗ says exactly that it does not factor further through M∨.

Another instance of this method was carried out by Skinner–Urban in [SU06a], where M =

GL2×GL1 is embedded in G = GSp4 as the Levi of the Siegel parabolic subgroup. There they use

Saito–Kurokawa lifts instead of Eisenstein series, and they obtain results towards the Bloch–Kato

conjecture for a modular form.

As mentioned above, yet another instance of this method is carried out by Skinner–Urban in

unpublished work, though see [SU06b]. There, M is (up to center) a unitary group of mixed
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signature (a, b) and G is a unitary group of signature (a+ 1, b+ 1). The group M is not split over

Q, and correspondingly, the Galois representations and Selmer groups thereof are defined over an

imaginary quadratic field K.

In all three of these cases, the representation of the Levi M∨ is the standard one.

This thesis

This thesis carries out the Skinner–Urban method for the first time in a particular case where

the representation R is not the standard one. The setting is as follows.

Let F be a cuspidal holomorphic eigenform of level 1 and weight k. Then F gives rise to a

cuspidal automorphic representation π of GL2(A). So our group M will be GL2. Therefore M∨ is

also GL2. Now the representation R here will be a symmetric cube representation of GL2; More

precisely, we let R be the representation

Ad3 = Sym3(Std)⊗ det−1,

where Std is the standard representation of GL2. We will then take G to be the exceptional group

G2, and we will apply the Skinner–Urban method when GL2 is embedded as the Levi of the long

root parabolic subgroup of G2.

Now it follows from the hypothesis that F is level 1 that the L-function L(1/2, π,Ad3) = 0

always. Here s = 1/2 is the central point for this L-function. Let ρF be the Galois representation

attached to F . The main theorem of this thesis is the following, and is proved via the Skinner–Urban

method; see Theorem 3.5.3.3

Theorem. Under Arthur’s conjectures and a version of the global Langlands correspondence for

G2, the Bloch–Kato Selmer group

H1
f (Q, (Ad3 ρF )∨(k/2))

is nontrivial.

The twist k/2 is the correct one to correspond to the central point of the L-function L(s, π,Ad3).

We remark here that there has been a lot of interest lately in these symmetric cube Selmer
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groups. For example, there is the recent work of Haining Wang [Wan20] and the work of Loeffler–

Zerbes [LZ20]. Both of these papers work in the Euler system direction, establishing upper bounds

on the ranks of the symmetric cube Selmer groups that they study, as opposed to this thesis which

works in the modular direction.

We will describe in more detail how the method of Skinner–Urban works in our case momentarily,

including the difficulties encountered which lead to the assumptions made in the hypotheses of the

theorem. But before we come to that, we should say how this thesis will be organized.

Organization of this thesis

The proof of the above theorem can be separated into three main steps. The first step creates

a functorial lift Π of F to G2 and locates every instance of Π in the cohomology of the locally

symmetric spaces attached to G2. The second step chooses a critical p-stabilization σ(Π) of Π

and p-adically deforms σ(Π) in a generically cuspidal family. The third step carries this family to

the Galois side and constructs a lattice in the Galois representation attached to this family whose

specialization at the point corresponding to Π gives the desired cocycle in the correct Bloch–Kato

Selmer group.

These three steps were originally written as three different papers, and were incorporated into

this thesis each as one of the three chapters. As such, each chapter more or less stands alone, with

a minimal amount of reference between them. Thus enough redundancy is built into the exposition

that the reader can choose to read any one of these chapters without having read the others.

We now introduce the contents of each of these chapters.

Chapter 1, on cohomology

For the first chapter we can be less restrictive with our modular form F . So we let F be

a cuspidal holomorphic eigenform with level N not divisible by the prime p, with even weight

k ≥ 4, and with trivial nebentypus. Then associated with F is a unitary cuspidal automorphic

representation πF of GL2(A).

Now the group G2, being a simple group of rank 2, has two simple roots. They are of different

lengths, and we denote the long simple root by α and the short simple root by β. We let Pα be

the long root parabolic subgroup of G2; by definition, this is the parabolic subgroup whose Levi
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factor Mα contains the long root α. Then we have Mα
∼= GL2, and we may view πF as a cuspidal

automorphic representation of Mα(A).

We then consider the parabolic induction

Ind
G2(A)
Pα(A)(πF ⊗ δ

1/10+1/2
Pα(A) ),

and we let Π = Lα(πF , 1/10) denote the Langlands quotient of this parabolic induction; it is the

unique irreducible quotient of this induction. This representation Π will be the functorial lift which

we will use in carrying out the Skinner–Urban method.

Let us explain briefly why we take this particular choice of Π as our functorial lift. The parabolic

induction spaces of the form

Ind
G2(A)
Pα(A)(πF ⊗ δ

s+1/2
Pα(A)),

with s a complex variable, allow us to build Eisenstein series. And through the lens of the

Langlands–Shahidi method, these Eisenstein series see the L-function L(s, πF ,Ad3). A little more

precisely, in the constant term of such an Eisenstein series one finds the expression

L(5s, πF ,Ad3).

So specializing to s = 1/10, one finds the L-value L(1/2, πF ,Ad3) and hence an opportunity to

apply the hypothesis that this L-value vanishes. This explains roughly why we must consider this

induction space, and we must consider its Langlands quotient to have a maximally unramified ir-

reducible automorphic representation to work with.

To motivate what we are going to do with Π in this chapter, we jump ahead a little and remark

that the ultimate goal on the automorphic side is to p-adically deform a critical p-stabilization of Π.

Doing this requires computing a certain cuspidal overconvergent multiplicity, and we will explain

this in more detail when we discuss the second chapter of this thesis. But the upshot is that, in

order to get a handle on the cuspidal overconvergent multiplicity of a critical p-stabilization of Π,

we must first locate every instance of Π in the cohomology of the locally symmetric spaces for G2.

This is the purpose of this first chapter.

Now we fix an irreducible, finite dimensional representation E of the complex group G2(C).
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This gives rise to compatible local systems on the locally symmetric spaces attached to G2. The

cohomology groups of these local systems form a direct system whose direct limit is an admissible

representation of the group of finite adelic points G2(Af ). By work of Franke [Fra98], this repre-

sentation can be constructed in the following way.

Let g2 denote the complexified Lie algebra of G2, and fix a maximal compact subgroup K∞

in the group real points G2(R). One can define a certain space AE(G2) of automorphic forms

for G2 using E, in a way which we will not be precise about in this introduction. But it is a

G2(Af )× (g2,K∞)-module, making its cohomology

H∗(g2,K∞;AE(G2)⊗ E)

a G2(Af )-module. By a conjecture of Borel, which was proved by Franke in his paper [Fra98], this

module is exactly the direct limit discussed in the previous paragraph. Therefore, our goal will be

to locate Π in the cohomology space displayed above.

Let AE(G2)cusp be the space of cusp forms in AE(G2). It has a natural complement AE(G2)Eis

which is built, in a way which can be made precise, from Eisenstein series, and the decomposition

AE(G2) = AE(G2)cusp ⊕AE(G2)Eis

is a decomposition of G2(Af )× (g2,K∞)-modules. We therefore get a decomposition

H∗(g2,K∞;AE(G2)⊗ E) = H∗(g2,K∞;AE(G2)cusp ⊗ E)⊕H∗(g2,K∞;AE(G2)Eis ⊗ E)

as G2(Af )-modules. The first of these factors is called the cuspidal cohomology and the second is

the Eisenstein cohomology. We then have the following result, which is a consequence of Theorem

1.5.3.3 of this thesis.

Theorem. For the modular form F of level N , even weight k ≥ 4, and trivial nebentypus, assume

L(1/2, πF ,Ad3) = 0. Then there is one and only one representation E, which is of highest weight

k−4
2 (2α + 3β), for which the finite part Πf = Lα(πF , 1/10)f of our Langlands quotient appears as
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a subquotient of the Eisenstein cohomology

H∗(g2,K∞;AE(G2)Eis ⊗ E).

It appears exactly once in this cohomology space, in (middle) degree 4, with multiplicity one.

There are two steps to establishing this result. First, one must actually construct the represen-

tation Πf as a subquotient of Eisenstein cohomology. This is made possible by a deeper analysis

of the Eisenstein space AE(G2)Eis as follows. For Q another parabolic subgroup of G2, Franke and

Schwermer [FS98] have defined an equivalence relation on the cuspidal automorphic representa-

tions of the Levi of Q. Let ϕ denote one of these equivalence classes. Then Franke and Schwermer

construct a subspace

AE,Q,ϕ(G2) ⊂ AE(G2)Eis

out of Eisenstein series induced from the representations in ϕ, along with their residues and deriva-

tives. (Actually Franke–Schwermer work much more generally on an arbitrary reductive group.)

There is a decomposition

AE(G2)Eis =
⊕
Q

⊕
ϕ

AE,Q,ϕ(G2),

where the first sum is over a fixed set of parabolic subgroups which represent the associate classes

of proper parabolic subgroups of G2.

If none the Eisenstein series arising in the construction of the space AE,Q,ϕ(G2) have a pole,

then the space AE,Q,ϕ(G2) has a very nice and explicit G2(Af ) × (g2,K∞)-module structure as

a parabolically induced module. We can then compute the (g2,K∞)-cohomology of this module

explicitly in terms of a representation parabolically induced from the finite part of a representation

in ϕ.

If ϕ(πF , 1/10) is the class for P which contains the representation πF ⊗ δ1/10
Pα(A), where πF is the

same as above, and E is the representation in the above theorem, then it turns out that none of

the Eisenstein series appearing in the construction of AE,P,ϕ(πF ,1/10)(G2) has a pole, and we can

find Πf as a quotient of the cohomology

H∗(g2,K∞;AE,P,ϕ(πF ,1/10)(G2)⊗ E).
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This is where we use the hypothesis that L(1/2, πF ,Ad3) = 0; this vanishing allows us, via an

examination of the constant term of our Eisenstein series, to conclude that these Eisenstein series

do not have poles at s = 1/10.

This describes the first of the two steps we need to prove the above theorem. The second of

these steps is to show that no other summand AE,Q,ϕ(G2) of the decomposition above, besides the

summand for Q = P and ϕ = ϕ(πF , 1/10) just studied, contains any copy of Πf in its cohomology.

To do this, we need to study the cohomology of these summands in a way which is explicit enough

to rule out an appearance of Πf .

One runs into a problem here, as we only know the explicit structure of the space AE,Q,ϕ(G2) as

a parabolic induction when the Eisenstein series involved in its construction have no poles. But it

may well be the case that certain Eisenstein series induced from ϕ do have poles. Luckily, following

Franke [Fra98], Grobner [Gro13] has defined a filtration on these spaces whose graded pieces are

parabolically induced modules whose cohomology can be explicitly studied.

So one just needs to show that Πf doesn’t appear in the cohomology of these graded pieces.

To do this, we distinguish Πf from the representations appearing in the cohomology of the graded

pieces by assigning to them `-adic Galois representations for a fixed prime `. These Galois repre-

sentations are only powerful enough to distinguish between near-equivalence classes of automorphic

representations, that is, to tell them apart outside a set of finitely many primes. But actually this

is enough for our purposes because we can appeal to strong multiplicity one theorems for the Levis

of G2.

The next thing to do would be to compute the multiplicity of Πf in the cuspidal cohomology.

This requires knowledge about the classification of CAP forms which are nearly equivalent to our

Langlands quotient Π. However, not enough about such things is known unless we assume some

standard conjectures related to those of Arthur. So this is what we do.

As explained by Gan and Gurevich [GG09], assuming such conjectures, under the hypothesis

still that L(1/2, πF ,Ad3) = 0, precisely two kinds of CAP representations Π′ with Π′f
∼= Πf should

be able to appear in AE(G2)cusp, depending on the sign ε of the symmetric cube functional equation

for πF . They will appear with multiplicity one in either case. If ε = 1, then Π′∞
∼= Π∞, and hence

this appears in cuspidal cohomology exactly once in each of degrees 3 and 5. But Gan and Gurevich

do not describe Π′∞ when ε = −1. So we must do this ourselves.
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One of the things which Gan and Gurevich explain, however, is that there is an Arthur param-

eter ψ for G2(R) whose associated Arthur packet should consist of the two possible representations

which can occur as Π′∞. Upon examination of the parameter ψ, one sees that the one corresponding

to ε = 1 must indeed be Π∞ = Lα(πF , 1/10)∞, but Arthur’s conjectures do not immediately tell

us anything about the representation corresponding to ε = −1.

However, for certain types of Arthur parameters ψ, Adams and Johnson have been able to

construct packets AJψ which satisfy the conclusion of Arthur’s conjectures for real groups. We

show that our parameter ψ is of this special type, and we explicitly compute AJψ. We find the

following, which is the content of Theorem 1.6.4.4 in this thesis.

Theorem. The Adams–Johnson packet AJψ contains the representation L(πF , 1/10)∞ and the

quaternionic discrete series representation of G2(R) of weight k/2, in the terminology of Gan–

Gross–Savin [GGS02].

Thus if ε = −1, it follows that our CAP representation Π′ should again be cohomological,

appearing in the cuspidal cohomology of E exactly once in middle degree 4. Thus, in this case,

Πf appears in cohomology of E exactly twice, once in Eisenstein cohomology, and once in cuspidal

cohomology, and both times in degree 4.

As a bonus, our methods also apply (even unconditionally) to GSp4 in place of G2. While not

needed for the main results of this thesis, we carry this out in detail in this first chapter as well.

Chapter 2, on the p-adic deformation

We continue with our modular eigenform F of level N , even weight k ≥ 4, and trivial nebenty-

pus, as well as its associated automorphic representation πF of GL2(A), and the Langlands quotient

Π on G2(A). We assume p does not divide N , and we now fix a root αp of the Hecke polynomial

of F at p.

We would now like to p-adically deform a critical p-stabilization σ(Π) of Π in a generically

cuspidal family of cohomological automorphic representations of G2(A). In the absence of a G2-

Shimura variety, our options for doing this are limited to the methods present in the paper [Urb11]

of Urban on eigenvarieties for reductive groups with discrete series.

Making a p-adic deformation of a noncritical p-stabilization of an automorphic representation is
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not too difficult with Urban’s methods, but when the p-stabilization is instead critical, this becomes

significantly harder. And we do need to use a critical p-stabilization of Π in order to have in place

certain pieces of numerology on the Galois side, as will be explained below when we discuss the

third chapter.

Now the techniques in Urban’s paper which allow us to make this p-adic deformation go through

his theory of multiplicities. Urban defines certain local systems on the locally symmetric spaces

of a reductive group with discrete series whose cohomology contains a subspace which can be con-

sidered a space whose constituents are overconvergent p-adic automorphic representations. If a

p-stabilized automorphic representation appears in this space with a nonzero multiplicity, then it

can be p-adically deformed.

There is furthermore a variant of this notion of multiplicity which allows us to detect when

a p-stabilization of an automorphic representation deforms in a generically cuspidal family, as we

would like to be the case for our Π. On the one hand, this cuspidal overconvergent multiplicity, as

we call it, can be expressed as a difference between the overconvergent multiplicity just described

and other overconvergent multiplicities coming from smaller Levi subgroups. On the other hand,

Urban also relates the location of an automorphic representation in the classical cohomology of

arithmetic groups to the (noncuspidal) overconvergent multiplicity of a p-stabilization of it and

various “Weyl twists” of this p-stabilization.

In the first chapter of this thesis, we will have located Π in classical cohomology under the

assumption that L(1/2, πF ,Ad3) = 0, and under Arthur’s conjectures. This gives a “classical

multiplicity” for the critical p-stabilization σ(Π) of Π which we will relate to the overconvergent

multiplicities just mentioned. Then we will relate these overconvergent multiplicities to certain cus-

pidal overconvergent multiplicities of σ(Π) by computing explicitly the “Eisenstein” multiplicities

which come from smaller Levi subgroups. Compiling these computations gives the following result,

a precise version of which appears as Theorem 2.3.1.11.

Theorem. Assume the weight k of F is sufficiently large with respect to the p-adic valuation vp(αp).

Assume also that ε(1/2, πF ,Ad3) = −1. Then under Arthur’s conjectures, we have that the cuspidal

overconvergent multiplicity of the critical p-stabilization σ(Π) of Π is at least 3. In particular, σ(Π)

has a p-adic deformation in a generically cuspidal family.
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The dependency of this theorem on Arthur’s conjectures simply comes from the same depen-

dency of the results about cuspidal cohomology from the first chapter on these conjectures.

The hypothesis that ε(1/2, πF ,Ad3) = −1 seems to be necessary. In fact, we expect that the

cuspidal overconvergent multiplicity of σ(Π) is always exactly 1 more than the classical multiplicity

of Π, due to a certain overconvergent Eisenstein multiplicity. By the results of the first chapter

of this thesis, this classical multiplicity is 2 when ε(1/2, πF ,Ad3) = −1 because Π appears once

in degree 4 in Eisenstein cohomology and once in degree 4 in cuspidal cohomology. But when

ε(1/2, πF ,Ad3) = +1 but L(1/2, πF ,Ad3) = 0, then instead Π appears in degrees 3 and 5 in cuspi-

dal cohomology. The multiplicities we are dealing with are alternating sums over the cohomological

degree. So if ε(1/2, πF ,Ad3) = +1, we find that the classical multiplicity becomes −1, cancelling

with the overconvergent Eisenstein multiplicities which contribute.

In any case, we will specialize now to the case when F has level 1. This assumption will be

more important on the Galois side, but it also helps us improve the above result in this case. When

F is level 1, we always have ε(1/2, πF ,Ad3) = −1, and we get the following result, which is made

more precise in Theorems 2.3.2.1 and 2.3.2.3.

Theorem. Assume F has level 1. Then under Arthur’s conjectures, σ(Π) admits a p-adic defor-

mation in a generically cuspidal family.

Unlike the theorem stated before it, the theorem above has no assumption on the slope vp(αp).

It is proved by putting F in a Coleman family F and constructing representations analogous to

σ(Π) for the classical members of F . For members which have sufficiently high weight, these

representations will lie on Urban’s eigenvariety and admit σ(Π) as a limit point. Therefore, σ(Π)

lies on the eigenvariety as well.

The assumption that F has level 1 is used to ensure the other members of the Coleman family

F also have level 1, and therefore the signs of their Ad3-functional equations are all −1 as well.

We remark here that we have attached an appendix to this thesis that explains the results of

[Urb11] on eigenvarieties which we need to use. It also corrects an error in that paper, and the

correction of this error leads to a slight modification of some of the main results. We explain this

as well in the appendix.
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Chapter 3, on Galois representations

We retain the assumption that our form F has level 1. This implies in particular that F is not

CM, and this will ensure that the Galois representation attached to F has big enough image.

Now let us deform our Langlands quotient Π in a p-adic family in accordance with the results

of the second chapter of this thesis. This p-adic deformation is parametrized by a rigid analytic

space V over Qp, and this space V is finite over a space X of p-adic weights. For sufficiently regular

classical weights λ, the specialization of V at a point y in V above λ gives a cuspidal automorphic

representation πy of G2(A) of hyperspecial level.

We now must assume some version of the global Langlands correspondence for cohomological

automorphic representations of G2(A). Then πy has attached to it a p-adic Galois representation

which is unramified at all primes ` 6= p and crystalline at p. As G2 is self dual as a reductive group,

these Galois representations should factor through G2(Qp), and we assume this.

Now our Langlands quotient Π has attached to it the following Galois representation. Let

ρF : GQ → GL2(Qp) be the usual Galois representation attached to F . We view the target group of

ρF as Mβ(Qp), where Mβ is the Levi subgroup of the short root parabolic Pβ. Since passage to the

dual switches the long and short roots of G2, the Galois representation attached to Π should factor

through Mβ(Qp) since Π was induced from the long root parabolic Pα(A) of G2(A). In fact, the

Galois representation attached to Π is given by the composition of ρF (−(k−2)/2) : GQ →Mβ(Qp)

with the inclusion of Mβ into G2. We call this representation ρΠ.

In this third chapter, we use the theory of pseudocharacters of Lafforgue [Laf18] to interpolate

the G2 Galois representations ρy from above. We specialize to the rigid analytic curve Z in V

containing Π and cut out by an appropriate line L in weight space. Then the theory of pseu-

docharacters gives us a Galois representation ρZ : GQ → G2(Frac(O(Z))), where O(Z) is the ring

of analytic functions on Z.

At this point we would like to construct a lattice in ρZ, but this isn’t so meaningful for a

representation of the Galois group into anything other than GLn. So we compose ρZ with the

smallest fundamental representation of G2, which is 7-dimensional. We denote it by R7. This gives

us a Galois representation R7 ◦ ρZ which, after a series of reductions, we assume takes values in

GL7(O(Z)). It specializes at Π to a representation with semisimplification given by the following
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block-diagonal matrix: ρF (−(k − 2)/2) 0 0
0 Ad2 ρF 0
0 0 ρF (−k/2)

 .

This is just the Galois representation attached to Π composed with R7. Here Ad2 = Sym2(Std)⊗

det−1 denotes the usual three dimensional adjoint representation of GL2.

Now we can construct our lattice, which we call L. It is constructed so that its specialization

L at Π will have unique irreducible quotient ρF (−k/2) as long as R7 ◦ ρZ is irreducible; if it is

reducible, we show it breaks into a 4-dimensional piece and a 3 dimensional piece. Thus L has one

of the following shapes:

L ∼

ρF (−(k − 2)/2) ∗3 ∗2
0 Ad2 ρF ∗1
0 0 ρF (−k/2)

 ,

with ∗1 and ∗2 nontrivial, or

L ∼

Ad2 ρF ∗3 ∗1
0 ρF (−(k − 2)/2) ∗2
0 0 ρF (−k/2)

 ,

again with ∗1 and ∗2 nontrivial, or, if R7 ◦ ρZ is reducible,

L ∼

ρF (−(k − 2)/2) 0 ∗2
0 Ad2 ρF 0
0 0 ρF (−k/2)

 ,

with ∗2 nontrivial. We must then rule out these latter two cases.

To do this, we use that R7 ◦ ρZ factors through G2. It turns out that G2 is the stabilizer in

GL7 of a certain kind of alternating trilinear form, and we use this to put a nontrivial alternating

trilinear form of a certain shape on L. We can then make some serious computations involving

matrix coefficients using this trilinear form, along with some p-adic Hodge theory, to rule out the

second and third cases above.

In a little more detail, in the second and third cases, the representation L would admit as a

quotient a nontrivial extension E of the form

E ∼
(
ρF (−(k − 2)/2) ∗2

0 ρF (−k/2)

)
.
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We obtain enough information about the alternating trilinear form on L in order to put strong

restrictions on the possible entries ∗2 that can occur. In particular, we show that the exterior

square ∧2E admits as a subrepresentation an extension of the form

(
χcyc ∗′2

0 1

)
,

with ∗′2 nontrivial if and only if ∗2 is nontrivial. So to rule out the extension the second and third

cases above, it is enough to show ∗′2 must be zero.

To do this, we show it is crystalline, for then it would give a nontrivial cohomology class in the

Bloch–Kato Selmer group

H1
f (Q,Qp(1)),

which is a trivial group. This kind of argument is ubiquitous in the Skinner–Urban method, and

appears in both [SU06a] and [SU06b], as well as [Urb13b], when showing that their lattices have

the correct shape.

Here there is a small problem. We would like to use a Lemma of Kisin (Lemma 3.3.1.2 in this

thesis) to obtain a certain crystalline period in Dcrys(∧2E) which is interpolated from those of the

representations ∧2ρy for classical points y in Z with sufficiently regular weight. However, it turns

out that Kisin’s Lemma provides the wrong period. We would like to have a period with crystalline

Frobenius eigenvalue 1, but Kisin’s lemma only gives one period and it is not this one. But there is

a way to work around this. We first prove the following result, which is made precise in Proposition

3.3.2.5 and Corollary 3.3.2.3 in this thesis.

Proposition. Any extension E0 of GQp-representations fitting into an exact sequence

0→ ρF (1)→ E0 → ρF → 0

is semistable. Furthermore, the possible filtered (φ,N)-modules that can occur as Dst(E0) can be

explicitly described.

Applying Kisin’s lemma to the extension E above, and to its dual, actually puts enough restric-

tions on the monodromy operator NE for Dst(E) to show that Dst(E)φ=1 is in the kernel of the
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monodromy operator N∧2E for ∧2E. Therefore Dst(E)φ=1 consists of crystalline periods, forcing E′

to be crystalline and forcing ∗2 to be trivial, thus ruling out the second and third possible shapes

of L above.

Therefore,

L ∼

ρF (−(k − 2)/2) ∗3 ∗2
0 Ad2 ρF ∗1
0 0 ρF (−k/2)

 ,

and we even have at this point that ∗3 is nontrivial as a by-product of the matrix coefficient

computations that were necessary to rule out the other two shapes of L. Being in this case, one

can then obtain enough information about the trilinear form on L to show that L factors through

G2 as well. It must even factor through Pβ because of its block upper triangular shape. Then we

are almost there, since the unipotent radical Nβ of Pβ has Ad3 as a Jordan–Hölder constituent.

This will mean that ∗3 gives an extension of Qp by the appropriate twist of (Ad3 ρF )∨; a priori, ∗3

gives an extension of Qp by

ρF (−(k − 2)/2)⊗ (Ad2 ρF )∨ ∼= (Ad3 ρF )∨(k/2)⊕ ρF (−k/2).

But the factorization of L through G2 shows that the factor of this which is an extension of Qp by

ρF (−k/2) is trivial. So it is only a matter of showing that ∗3 is crystalline.

At this point, we would like to use Kisin’s lemma to L to obtain a certain crystalline period

with appropriate Frobenius eigenvalue. However, once again, the lemma gives the wrong period.

But we make do with the period it does provide and show that it suffices to give the crystallinity

of ∗3 as long as this period does not occur in Fil0(Dcrys(Ad2 ρF )). But, if it does happen to occur

here, there is the following trick: We can switch our choice of root αp of the Hecke polynomial of

F at p on which this entire construction depended, and we can repeat the construction and show

that for the other choice of αp, the crystalline period provided by Kisin’s lemma does not occur in

Fil0(Dcrys(Ad2 ρF ))! From here it follows that ∗3 is crystalline and we finish the construction of

the appropriate element of our Bloch–Kato Selmer group.

At the beginning of each chapter below, we will summarize the contents of each section, and

also the notation that will be in play throughout the chapter. We have tried to be as consistent as

possible about the notation throughout each of the chapters, but the reader should keep in mind
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that the chapters are written to be more or less independent.
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Chapter 1: Multiplicity of Eisenstein series in cohomology and applications to

GSp4 and G2

This chapter is organized as follows. The first three chapters are devoted to a very general

setup, working mostly for an arbitrary reductive group, and they will be used to make the main

computations in Sections 1.4 and 1.5.

In Section 1.1, we review facts about Eisenstein series and the spaces they comprise, recalling

the Franke–Schwermer decomposition and some facts about the Franke filtration. In Section 1.2,

we compute the cohomology of some of these spaces of Eisenstein series. In Section 1.3, we explain

what we mean when we say an automorphic representation has attached to it an `-adic Galois

representation.

Section 1.4 is then devoted to applying the tools set up in the first three sections to compute

the cohomological multiplicity of certain Langlands quotients for GSp4. Some of the results in this

chapter were originally stated by Urban in [Urb11], Example 5.5.3. However, he made an error in

that example which we take the opportunity to correct (see Remark 1.4.4.2 in this chapter).

Section 1.5 then makes the same kind of computations for G2, and although a lot of the argu-

ments there are completely analogous to the GSp4 case, this section is written in such a way that

the reader can read it without having read Section 1.4.

What is not completely analogous between these two sections is that for GSp4, the CAP forms

we need have been completely classified, and so the computation of the cuspidal multiplicity in the

GSp4 case is unconditional. As we mentioned in the introduction, this is not the case for G2, and

Section 1.6 is devoted to the computation of a particular Adams–Johnson packet which makes our

conditional results reasonable.

Notation and conventions

We now set the notation that will be used throughout the rest of this chapter.
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Groups and Lie algebras

In Sections 1.1 and 1.2, G will denote a reductive group over the field Q of rational numbers.

In Section 1.3, G will furthermore be split over Q. In Section 1.4, we will specialize to the group

GSp4 and, in Section 1.5, to G2. In Section 1.6, we will be working primarily with a real reductive

Lie group, and we will denote that group by G.

In general, our convention is to use uppercase roman letters to denote groups over Q, such as G,

to use uppercase boldface letters to denote real Lie groups, such as G, and to use the corresponding

lowercase fraktur letters to denote complex Lie algebras. So for example, g will always denote the

complexified Lie algebra of either the Q-group G or the real Lie group G. There will be a few

exceptions to this convention, however. For example, when we have fixed a reductive Q-group G,

unless otherwise noted, we will simply write G(R) for the real Lie group consisting of its R-points.

When working with the group G, we will often fix a parabolic subgroup P of G along with a

Levi decomposition P = MN . In this decomposition, M will always denote the Levi factor and N

the unipotent radical. If we have another parabolic subgroup with fixed Levi decomposition, then

we use subscripts on the notation for its fixed Levi factor and its unipotent radical to distinguish

them from those of P ; so if Q is another parabolic subgroup, we will write Q = MQNQ for its Levi

decomposition.

For any parabolic Q as above, the notation AQ will denote the maximal Q-split torus in the

center of the Levi MQ of Q. This applies in particular to P and G; we use AG to denote the

maximal Q-split torus in the center of G, and AP that of M .

Now we have the complexified Lie algebras g, p, q, m, mQ, n, nQ, aP , and aQ of, respectively,

G, P , Q, M , MQ, N , NQ, AP , and AQ. We let g0 = [g, g], the self-commutator of g, and more

generally, we write mQ,0 = [mQ,mQ], or m0 = [m,m]. We also write q0 = q∩ g0 and aQ,0 = aQ ∩ g0,

and similarly for p0 and aP,0. Then there are decompositions

q = mQ,0 ⊕ aQ ⊕ nQ,

and

q0 = mQ,0 ⊕ aQ,0 ⊕ nQ.
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When P and Q are fixed along with their respective Levi decompositions, we will write W (P,Q)

for the set equivalence classes of elements w ∈ G(Q) such that wMw−1 = MQ. where w and w′

are considered equivalent if w−1w′ centralizes M .

We will always write ρQ for the character ρQ : aQ,0 → C given by

ρQ(X) = Tr(ad(X)|nQ), X ∈ aQ,0,

and similarly for ρP .

Points of groups

When v is a place of Q, we write Qv for the completion of Q at v. Then R = Q∞. The group

of Qv-points of any affine algebraic group over Q is always given the usual topology induced from

Qv.

We write A for the adeles of Q and Af for the finite adeles. The groups of A-points or Af -points

of any affine algebraic group over Q are also given their standard topologies.

When P = MN is fixed as above, we will often consider the associated height function HP .

This is a function

HP : G(A)→ aP,0.

To define it, we must fix a maximal compact subgroup K ⊂ G(A). We assume K = KfK∞

where K∞ is a fixed maximal compact subgroup of G(R) and Kf =
∏
v<∞Kv is a maximal

compact subgroup of G(Af ) which we assume to be in good position with respect to a fixed minimal

parabolic inside P . (Here the groups Kv are maximal compact subgroups of G(Qv).) In particular,

the Iwasawa decomposition holds for P (A) and K.

Write 〈·, ·〉 for the natural pairing

〈·, ·〉 : aP,0 × a∨P,0 → C
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given by evaluation, where a∨P,0 = HomC(aP,0,C). Write X∗(M) for the group of algebraic charac-

ters of M . Then HP is defined first on the subgroup M(A) by requiring

e〈HP (m),dΛ〉 = |Λ(m)|, m ∈M(A), Λ ∈ X∗(M),

where dΛ denotes the restriction to aP,0 of the differential at the identity of the restriction of Λ to

AP (R), and | · | is usual the adelic absolute value. Then HP is defined in general by declaring it to

be left invariant with respect to N(A) and right invariant with respect to K.

If R is one of the rings Qv, A, or Af , we use the notation δP (R) to denote the modulus character

of P (R), and similarly for other parabolics.

Automorphic representations

We take the point of view that an “automorphic representation” of G(A) is (among other things)

an irreducible object in the category of admissible G(Af )× (g,K∞)-modules. We often even view

automorphic representations as G(Af )× (g0,K∞)-modules by restriction. We let A(G) denote the

space of all automorphic forms on G(A).

If Π is an automorphic representation of G(A) and v is a place of Q, we will denote by Πv the

local component of Π at v. If v is finite, then this is an irreducible admissible representation of

G(Qv), and if v =∞, then this is an irreducible admissible (g,K∞)-module.

Galois theory

We will write GQ for the absolute Galois group of Q, and for any place v of Q, we will similarly

write GQv for the absolute Galois group of Qv. If v is finite, we always view GQv as a subgroup of

Q via by fixing a decomposition group at v.

Galois representations for us will always be into the Q`-points of a fixed algebraic group. We

always identify Q` with C via a fixed isomorphism.

For p a prime, Frobp always denotes a fixed geometric Frobenius element at p in GQ. If χcyc

denotes the `-adic cyclotomic character, then our conventions will be such that twists by | · | on the

automorphic side correspond to twists by χcyc on the Galois side; | · | sends p ∈ Q×p to p−1, and

χcyc also sends Frobp to p−1.
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Duals

We use the symbol (·)∨ in various ways. If a is an abelian Lie algebra, a∨ will denote the

characters of a. If R is a complex representation of a group, then R∨ is the usual dual representation

over C. Similarly, if ρ is an `-adic Galois representation, then ρ∨ is the usual dual representation

over Q`. If G is our reductive Q-group, then G∨(C) or G∨(Q`) will denote the dual group over

either of the algebraically closed fields C or Q`, respectively. Similarly, if G is a real reductive Lie

group, G∨(C) will denote its dual group.

1.1 Eisenstein series and spaces of automorphic forms

This section will be devoted to studying spaces of automorphic forms in the style of Franke

[Fra98] and Franke–Schwermer [FS98]. We will state the Franke–Schwermer decomposition and

study the structure of its pieces using the Franke filtration. But first, we recall some of the theory

of Eisenstein series.

1.1.1 Review of Eisenstein series

Let P ⊂ G a parabolic Q-subgroup of our reductive group G (see the section on notation in

the introduction) with fixed Levi decomposition P = MN . In this section, we will recall how

to use automorphic representations of M(A) to construct Eisenstein series, and we will explain

how to study these Eisenstein series using parabolically induced representations and intertwining

operators.

Eisenstein series and their constant terms

We start with a cuspidal automorphic representation π of M(A) with central character χπ, and

we assume χπ is trivial on AG(R)◦. So if

L2(M(Q)AG(R)◦\M(A), χπ)
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denotes the space of functions on M(Q)AG(R)◦\M(A) which are square integrable modulo center

and which transform under the center with respect to χπ, then π occurs in the cuspidal spectrum

L2
cusp(M(Q)AG(R)◦\M(A), χπ) ⊂ L2(M(Q)AG(R)◦\M(A), χπ).

Write dχπ : aP,0 → C for the differential of the restriction of χπ to AP (R)◦/AG(R)◦. The

character dχπ is an element of a∨P,0. Then we consider the automorphic representation

π̃ = π ⊗ e−〈HP (·),dχπ〉.

The representation π̃ is a unitary automorphic representation. If π is realized on a space of functions

Vπ ⊂ L2
cusp(M(Q)AG(R)◦\M(A), χπ),

then π̃ is realized on the space

Vπ̃ = {e−〈HP (·),dχπ〉f | f ∈ Vπ},

which is a subspace of L2
cusp(M(Q)AP (R)◦\M(A)).

Now we let WP,π̃ be the space of smooth, K-finite, C-valued functions φ on

M(Q)N(A)AP (R)◦\G(A)

such that, for all g ∈ G(A), the function

m 7→ φ(mg)

of m ∈M(A) lies in the space

L2
cusp(M(Q)AP (R)◦\M(A))[π̃].
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Here, the brackets denote an isotypic component.

The space WP,π̃ lets us build Eisenstein series. In fact, let φ ∈ WP,π̃. We define, for λ ∈ a∨P,0

and g ∈ G(A), the Eisenstein series E(φ, λ) by

E(φ, λ)(g) =
∑

γ∈P (Q)\G(Q)

φ(γg)e〈HP (g),dχπ+ρP 〉.

This series only converges for λ sufficiently far inside a positive Weyl chamber, but it defines a

holomorphic function there in the variable λ which continues meromorphically to all of a∨P,0; see

[Lan76], [MW95], or more recently [BL20], where the proof has been greatly simplified.

For each fixed φ and for each fixed λ at which E(φ, λ) does not have a pole, the Eisenstein series

E(φ, λ) is an automorphic form on G(A). It will be important for us in our examples of GSp4 and

G2 to study when and how certain Eisenstein series have poles. The general theory which explains

how to do this, as developed for instance in [Lan71] and [Sha10], goes through two steps. First, one

reduces to studying the constant terms of Eisenstein series, and second, one computes the constant

terms using local calculations involving intertwining operators.

This first step is relatively easy to explain. Let Q ⊂ G be another parabolic subgroup, this time

with Levi decomposition Q = MQNQ. The constant term of E(φ, λ) along Q is, as usual, defined

by

EQ(φ, λ)(g) =

∫
NQ(Q)\NQ(A)

E(φ, λ)(ng) dn.

It is meromorphic in λ. Furthermore, the Eisenstein series E(φ, λ) has a pole at a point λ = µ if

and only if there is a proper parabolic subgroup Q such that EQ(φ, λ) has a pole at λ = µ.

Next, to proceed and compute the constant terms of Eisenstein series using local computations,

we first need to express the space WP,π̃ in terms of local pieces.

Induced representations

The space WP,π̃ is a parabolic induction space. In fact, let us view π̃ as acting on the subspace

Vπ̃ of L2
disc(M(Q)AP (R)◦\M(A)). The pair (π̃, Vπ̃) is an M(Af ) × (m0,K∞ ∩ P (R))-module, and

we extend this structure to a P (Af )× (p0,K∞ ∩ P (R))-module structure via the trivial action by

27



the unipotent radical. We consider the parabolic induction functor

Ind
G(Af )×(g0,K∞)

P (Af )×(p0,K∞∩P (R))

and, for λ ∈ a∨P,0, we write

Ind
G(A)
P (A)(π̃ ⊗ e

〈HP (·),λ〉) = Ind
G(Af )×(g0,K∞)

P (Af )×(p0,K∞∩P (R))(π̃ ⊗ e
〈HP (·),λ〉),

for short. The space above is an unnormalized induction, and we can normalize it by writing

ι
G(A)
P (A)(π̃, λ) = Ind

G(A)
P (A)(π̃ ⊗ e

〈HP (·),λ+ρP 〉).

Then there is an isomorphism of G(Af )× (g0,K∞)-modules

ι
G(A)
P (A)(L

2
cusp(M(Q)AP (R)◦\M(A))[π̃], λ) ∼= e〈HP (·),λ+ρP 〉WP,π̃,

where the space on the right hand side is just defined by

e〈HP (·),λ+ρP 〉WP,π̃ = {e〈HP (·),λ+ρP 〉f | f ∈WP,π̃}.

Therefore, elements of the induction ι
G(A)
P (A)(π̃, λ) can also be used to define Eisenstein series as above.

Intertwining operators

We now need to define the intertwining operators, which will let us access the constant terms

of Eisenstein series.

Given another parabolic subgroup Q = MQNQ of G, let given w ∈ W (P,Q), let us identify

w with an element of G(Q). For λ, λ′ ∈ a∨P,0 and φλ ∈ ι
G(A)
P (A)(π̃, λ), define a new element φλ′ ∈

ι
G(A)
P (A)(π̃, λ

′)

φλ′ = φλe
〈HP (·),λ′−λ〉.
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We say that this assignment λ 7→ φλ is a flat section of the induction.

Now define (formally) for φλ varying in a flat section, the intertwining operator M(w, ·) by

M(w, φ)wλ(g) =

∫
(wNw−1∩NQ)(A)\NQ(A)

φλ(w−1ng) dn.

When convergent, this defines a map of G(Af )× (g0,K∞)-modules,

ι
G(A)
P (A)(π̃, λ)→ ι

G(A)
Q(A)(π̃

w, wλ),

where if σ is an automorphic representation of M(A), then σw denotes the automorphic represen-

tation of MQ(A) defined by σw(m) = σ(w−1mw). It is a fact that the integral defining M(w, ·)

does converge for λ in a certain cone in a∨P,0 and is holomorphic in λ there, and that it continues

meromorphically to all of a∨P,0.

We can use the intertwining operators to describe the constant term. The following theorem is

due to Langlands. See Section 6.2 of the book by Shahidi [Sha10].

Theorem 1.1.1.1. Let Q = MQNQ be a parabolic Q-subgroup of G. Then

EQ(φ, λ) =
∑

w∈W (P,Q)

M(w, φ)wλ,

which is an equality of functions of g ∈ G(A) varying meromorphically in λ.

Local study of intertwining operators

Now we make a local study of the intertwining operators in order to incorporate the theory of

L-functions into our considerations. To do this, we first write the automorphic representation π̃ in

terms of its local components as usual as

π̃ ∼=
⊗′

v

π̃v,

where the restricted tensor product is over all places v of Q; the representation π̃v is a smooth,

admissible representation of M(Qv) if v is finite, and it is an admissible (m0,K∞ ∩ P (R))-module

is v =∞.
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If v is finite, λ ∈ a∨P,0, and σ is a smooth admissible representation of M(Qv), let us write

ι
G(Qv)
P (Qv)(σ, λ) = Ind

G(Qv)
P (Qv)(σ ⊗ λ)

for the usual smooth, Kv-finite parabolic induction, where λ is being viewed as a character of

M(Qv) via the canonical identification a∨P
∼= X∗(M)⊗C and the inclusion a∨P,0 ↪→ a∨P . Similarly if

σ is instead an admissible (m0,K∞ ∩ P (R))-module, let us write

ι
G(R)
P (R)(σ, λ) = Ind

(g0,K∞)
(p0,K∞∩P (R))(σ ⊗ λ)

for the usual archimedean parabolic induction, where this time λ is being viewed as a character

of p0 by letting it act trivially on m0 and n. Then via the decomposition of π̃ above, we have an

isomorphism

ι
G(A)
P (A)(π̃, λ) ∼=

⊗′

v

ι
G(Qv)
P (Qv)(π̃v, λ).

Let Q = MQNQ again be another parabolic Q-subgroup of G. For any w ∈ W (P,Q) and any

place v, there are also local intertwining operators

Mv(w, ·)wλ : ι
G(Qv)
P (Qv)(σ, λ)→ ι

G(Qv)
Q(Qv)(σ

w, wλ),

defined by integrals analogous to the global intertwining operator above (at least in the nonar-

chimedean case). Here σw is defined similarly as in the global case above.

If v is finite and σ is a smooth admissible representation of M(Qv), then any φλ ∈ ι
G(Qv)
P (Qv)(σ, λ)

can be made to vary with λ in a unique way such that φλ|Kv is independent of λ, because of the

Iwasawa decomposition. We say in this case that φ is a flat section of the induction.

If σ is furthermore irreducible and unramified, then ι
G(Qv)
P (Qv)(σ, λ) has a unique up to scalar Kv-

fixed vector; given a Kv-fixed vector vsph in the space Vσ of σ, there is a unique φsph
λ ∈ ιG(Qv)

P (Qv)(σ, λ)

such that φsph
λ (k) = vsph for any k ∈ Kv. Then φsph

λ is Kv-fixed and forms a flat section. If

w ∈ W (P,Q), then Mv(w, φ)wλ is also Kv-fixed, and hence is a scalar multiple of the Kv-fixed

vector φw,sph
wλ ∈ ιG(Qv)

Q(Qv)(σ
w, wλ) given by the property that φw,sph

wλ (k) = vsph for any k ∈ Kv (recall

that σ and σw act on the same space). If we let λ vary in a flat section, this scalar multiple will
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vary, and it is possible to say how in particular cases when P is maximal. In fact, there is a classical

formula of Gindikin–Karpelevich which expresses this multiple in terms of local L-functions.

L-functions and intertwining operators

We will not need the local formula of Gindikin–Karpelevich here, but we will need a global

consequence of it, which is at the heart of the Langlands–Shihidi method. We need to set up some

notation before we can state it, however, and we do this now.

Assume for the rest of this section that G is split and P is maximal. Let B ⊂ P be a Borel

subgroup of G with Levi T , and fix a set Φ of positive simple roots for T in G that makes B

standard. Assume P corresponds to the subset of Φ obtained by omitting a single simple root γ.

Let w0 be the unique element of the Weyl group of T in G which sends every root in Φ\{γ} to

positive simple roots, and which sends γ to a negative root. If P ′ is the standard maximal parabolic

with Levi w0Mw0, then w0 ∈W (P, P ′).

View γ as an element of a∨P,0 and write

γ̃ = 〈ρP , γ〉−1ρP

where 〈·, ·〉 is the usual pairing on a∨P,0 induced from the Killing form. Then a∨P,0 is one dimensional,

generated by γ̃.

Let P∨ be the parabolic subgroup of the dual group G∨ corresponding to the set of coroots

associated with the simple roots in Φ\{γ}. The dual group M∨ is the Levi of P∨, and we let N∨

be the unipotent radical of P∨. The group M∨ acts on Lie(N∨) via the adjoint action. For i > 0

an integer, let Vi ⊂ Lie(N∨) generated by the coroots β∨ for which 〈γ̃, β∨〉 = i. Then each Vi is a

representation of M∨, and we denote the corresponding action of M∨ by Ri.

Theorem 1.1.1.2. Let P be maximal and let w0, P ′, γ̃, and Ri be as above. Let S be a set of

places which includes all the ramified places for π̃ and the archimedean place. For v /∈ S, fix vsph a

nonzero Kv-fixed vector in the space of π̃v. Let s ∈ C and let φsph
v,s ∈ ιG(Qv)

P (Qv)(π̃v, sγ̃) and φw0,sph
v,s ∈

ι
G(Qv)
P ′(Qv)(π̃

w0
v , s(w0γ̃)) be spherical sections defined as above so that φsph

v,s (k) = vsph = φw0,sph
v,s (k).

Assume φs ∈ ιG(A)
P (A)(π̃, sγ̃) decomposes as ⊗vφv,s where φv,s = φsph

v,s for v /∈ S. Then we have the
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formula

M(φ,w0)s(w0γ̃) =
m∏
j=1

LS(js, π̃, R∨i )

LS(js+ 1, π̃, R∨i )

⊗
v/∈S

φw0,sph
v,s ⊗

⊗
v∈S

Mv(φv,s, w0)s(w0γ̃),

where LS denotes a partial L-function, away from the places of S.

Proof. See Shahidi [Sha10], Theorem 6.3.1.

Thus the theorem above, in combination with Theorem 1.1.1.1, will later allow us to compute

constant terms of maximal parabolically induced Eisenstein series along the maximal parabolics

from which they are induced.

1.1.2 The Franke–Schwermer decomposition

Let E be a finite dimensional irreducible representation of G(C). Then the annihilator of E in

the center of the universal enveloping algebra of g is an ideal, and we denote it by JE . Denote by

AE(G) the space of automorphic forms on G(A) which are annihilated by a power of JE , and which

transform trivially under AG(R)◦. The forms in AE(G) are the ones that can possibly contribute

to the cohomology of E, as we will discuss later.

In [FS98], Franke and Schwermer wrote down a decomposition of AE(G) into pieces defined by

certain parabolic subgroups of G and cuspidal automorphic representations of their Levis. This

decomposition is a direct sum decomposition of G(Af ) × (g0,K∞)-modules, and we describe it in

this section.

First, given two parabolic subgroups of G defined over Q, we say that they are associate if their

Levis are conjugate by an element of G(Q). Let C be the set of equivalence classes for this relation.

It is a finite set. If P is a parabolic Q-subgroup of G, let [P ] denote its equivalence class in C.

Now fix P a parabolic Q-subgroup of G with Levi decomposition P = MN . Given another

parabolic Q-subgroup Q = MQNQ of G, we say a function f ∈ AE(G) is negligible along Q if for

any g ∈ G(A), the function given by

m 7→ f(mg), m ∈MQ(Q)AG(R)◦\MQ(A),
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is orthogonal to the space of cuspidal functions on MQ(Q)AG(R)◦\MQ(A). Let AE,[P ](G) be the

subspace of all functions in AE(G) which are negligible along any parabolic subgroup Q /∈ [P ]. It

is a theorem of Langlands that

AE(G) =
⊕
C∈C
AE,C(G)

as G(Af )× (g0,K∞)-modules. The summand AE,[G](G) is the space of cusp forms in AE(G).

Franke and Schwermer refine this decomposition even further using cuspidal automorphic rep-

resentations of the Levis of the parabolics in each class C ∈ C. We briefly recall how.

Let ϕ be an associate class of cuspidal automorphic representations of M . We do not recall here

the exact definition of this notion, referring instead to [FS98] Section 1.2, or [LS04] Section 1.3.

Each ϕ is a collection of irreducible representations of the groups MP ′(A) for each P ′ ∈ [P ] with

Levi decomposition P ′ = MP ′NP ′ , finitely many for each such P ′, and each such representation π

must occur in L2
cusp(MP ′(Q)\MP ′(A), χπ) where χπ is the central character of π. Conversely, any

irreducible representation π of M(A) with central character χπ occurring in L2
cusp(M(Q)\M(A), χπ)

determines a unique ϕ. We let ΦE,[P ] denote the set of all associate classes of cuspidal automorphic

representations of M .

Now given a ϕ ∈ ΦE,[P ], let π be one of the representations comprising ϕ; say π is a represen-

tation of the A-points of a Levi MP ′ for P ′ a parabolic associate to P . Form the space WP ′,π̃ as

in Section 1.1.1. Let dχπ be the differential of the central character of π at the archimedean place,

viewed as an element of a∨P ′,0. Then for any φ ∈ WP ′,π̃ we can form the Eisenstein series E(φ, λ),

λ ∈ a∨P ′,0.

Depending on the choice of φ, the Eisenstein series E(φ, λ) may have a pole at λ = dχπ. Nev-

ertheless, one can still take residues of E(φ, λ) at λ = dχπ to obtain residual Eisenstein series. We

let AE,[P ],ϕ(G) to be the collection of all possible Eisenstein series, residual Eisenstein series, and

partial derivatives of such with respect to λ, evaluated at λ = dχπ, built from any φ ∈ WP ′,π̃.

(For a more precise description of this space, see [FS98], Section 1.3, or [LS04], Section 1.4. There

is also a more intrinsic definition of this space, defined without reference to Eisenstein series, in

[FS98], Section 1.2, or [LS04], Section 1.4, which is proved to be equivalent to this description in

[FS98].) One can use the functional equation of Eisenstein series to show that the space AE,[P ],ϕ(G)

is independent of the π in ϕ used to define it.
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We can now state the Franke–Schwermer decomposition of AE(G).

Theorem 1.1.2.1 (Franke–Schwermer [FS98]). There is a direct sum decomposition of G(Af ) ×

(g0,K∞)-modules

AE(G) =
⊕
C∈C

⊕
ϕ∈ΦE,C

AE,C,ϕ(G).

1.1.3 Structure of the pieces of the Franke–Schwermer decomposition

We introduce in this section certain G(Af )× (g0,K∞)-modules, whose structures as such mod-

ules are explicit, and explain how they can be related to the pieces of the Franke–Schwermer

decomposition introduced just above. Almost everything in this section is done in Franke’s paper

[Fra98], pp. 218, 234, but without taking into consideration the associate classes ϕ.

We consider again a parabolic Q-subgroup P of G with Levi decomposition P = MN . As be-

fore, let us fix π a cuspidal automorphic representation of M(A), and let π̃ be its unitarization, as in

Section 1.1.1. Then π̃ occurs in L2
cusp(M(A)AP (R)◦\M(A)). For brevity, let us write V [π̃] for the

smooth, K-finite vectors in the π̃-isotypic component of L2
cusp(M(A)AP (R)◦\M(A)). Then V [π̃] is a

M(Af )×(m0,K∞∩P (R))-module, and we extend this structure to one of a P (Af )×(p0,K∞∩P (R))-

module by letting a∨P,0 and n act trivially, as well as AP (Af ) and N(Af ).

Fix for the rest of this section a point µ ∈ a∨P,0. Let Sym(aP,0)µ be the symmetric algebra on

the vector space aP,0; we view this space as the space of differential operators on a∨P,0 at the point

µ. So if H(λ) is a holomorphic function on a∨P,0, then D ∈ Sym(aP,0)µ acts on H by taking a sum

of iterated partial derivatives of H and evaluating the result at the point µ. So in this way, every

D ∈ Sym(aP,0)µ can be viewed as a distribution on holomorphic functions on a∨P,0 supported at the

point µ.

With this point of view, these distributions can be multiplied by holomorphic functions on a∨P,0;

just multiply the test function by the given holomorphic function before evaluating the distribution.

With this in mind, we can define an action of a∨P,0 on Sym(aP,0)µ by

(XD)(f) = D(〈X, ·〉f), X ∈ aP,0, D ∈ Sym(aP,0)µ.
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We also let m0 and n act trivially on Sym(aP,0)µ, which gives us an action of p0 on Sym(aP,0)µ.

We also let K∞ ∩ P (R) act trivially on Sym(aP,0)µ. Since the Lie algebra of K∞ ∩ P (R) lies

in m0, this is consistent with the p0 action just defined and makes Sym(aP,0)µ a (p0,K∞ ∩ P (R))-

module.

Finally, let P (Af ) act on Sym(aP,0)µ by the formula

(pD)(f) = D(e〈HP (p),·〉f), p ∈ P (Af ), D ∈ Sym(aP,0)µ.

Then with the actions just defined, Sym(aP,0)µ gets the structure of a P (Af ) × (p0,K∞ ∩ P (R))-

module.

Now we form the tensor product V [π̃]⊗ Sym(aP,0)µ, which carries a natural P (Af )× (p,K∞ ∩

P (R))-module structure coming from those on the two factors. We will consider in what follows

the induced G(Af )× (g0,K∞)-module

Ind
G(A)
P (A)(V [π̃]⊗ Sym(aP,0)µ).

This space turns out to be isomorphic to another G(Af )×(g0,K∞)-module, which we now describe.

Let WP,π̃ be the induction space introduced in Section 1.1.1; it is the unnormalized parabolic

induction of the space V [π̃] above. Form the tensor product

WP,π̃ ⊗ Sym(aP,0)µ.

While the first factor in this tensor product is a G(Af ) × (g0,K∞)-module, the second is only a

P (Af )× (p0,K∞ ∩ P (R))-module, and so we do not immediately get a G(Af )× (g0,K∞)-module

structure on the tensor product. However, one can endow this space with a G(Af ) × (g0,K∞)-

module structure by viewing it as a space of distributions in a manner to be described now.

We first introduce the space of functions on which we will consider distributions. These will be

functions on G(A)× a∨P,0. Let us write g for a variable in G(A) and λ for a variable in a∨P,0. Let S

be the space of functions f(g, λ) on G(A)× a∨P,0 which are smooth and compactly supported in the

variable g when λ is fixed, and which are holomorphic in the variable λ when g is fixed. Then we

consider the space D(S) of distributions on S which are compactly supported in the variable λ.
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The space WP,π̃ ⊗ Sym(a∨P,0)µ embeds naturally as a subspace of D(S). In fact, we can identify

the simple tensor φ ⊗ D, where φ ∈ WP,π̃ and D ∈ Sym(a∨P,0)µ, with the distribution given on

functions f ∈ S by

(φ⊗D)(f) = D

(∫
G(A)

φ(g)f(g, ·) dg

)
.

Here, D is being viewed as a distribution on holomorphic functions on a∨P,0 as described above, so

indeed the right hand side of this equality is a complex number.

Now we describe a G(Af )× (g0,K∞)-module structure on the space WP,π̃⊗Sym(aP,0)µ through

formulas that make sense in D(S). Let us give these formulas and then make comments on them

afterward. For φ ∈WP,π̃ and D ∈ Sym(aP,0)µ, we consider φ⊗D as a distribution in the variables

(g, λ) and we define:

(X(φ⊗D))(g, λ) = ((Xφ)⊗D)(g, λ) + (〈XHP (g), λ〉(φ⊗D))(g, λ),

for X ∈ g0,

(k(φ⊗D))(g, λ) = (φ⊗D)(gk, λ),

for k ∈ K∞, and

(h(φ⊗D))(g, λ) = (e〈HP (gh)−HP (g),λ〉(φ⊗D))(gh, λ),

for h ∈ G(Af ).

Now in the formulas defining the actions of G(Af ) and g0, there are distributions on the right

hand side that have been multiplied by functions depending on both g and λ. Therefore, it is not

immediately obvious that these expressions define elements of the image of WP,π̃ ⊗ Sym(aP,0)µ in

D(S); that is, it is not completely clear that these expressions can be written as a finite sum of

simple tensors in WP,π̃ ⊗ Sym(aP,0)µ. However, using properties of the function HP , this can be

checked. We omit the verification here for sake of brevity.

Now we can relate the two G(Af ) × (g0,K∞)-modules defined in this section. We have the

following proposition, whose proof we again omit.
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Proposition 1.1.3.1. There is an isomorphism of G(Af )× (g0,K∞)-modules

WP,π̃ ⊗ Sym(aP,0)µ ∼= Ind
G(A)
P (A)(V [π̃]⊗ Sym(aP,0)µ).

More generally, if E is a finite dimensional representation of G(C), then we also have an isomor-

phism

WP,π̃ ⊗ Sym(aP,0)µ ⊗ E ∼= Ind
G(A)
P (A)(V [π̃]⊗ Sym(aP,0)µ ⊗ E),

where on the left hand side, E is being viewed as a (g0,K∞)-module, and on the right, it is viewed

as a (p0,K∞ ∩ P (R))-module by restriction.

The reason we introduce the representation E in the second part of this proposition will become

more apparent when we discuss cohomology later.

Now we come back to Eisenstein series. Assume π is such that there is an irreducible finite

dimensional representation E of G(C) such that the associate class ϕ containing π is in ΦE,[P ].

Then we can construct elements of the piece AE,[P ],ϕ(G) of the Franke–Schwermer decomposition

from Section 1.1.2 from elements of WP,π̃ ⊗ Sym(aP,0)µ using Eisenstein series as follows.

Recall that, in the notation of Section 1.1.1, we have

WP,π̃
∼= Ind

G(A)
P (A)(V [π̃]) = ι

G(A)
P (A)(V [π̃],−ρP ).

Elements φ ∈ ιG(A)
P (A)(V [π̃],−ρP ) fit into flat sections φλ ∈ ι

G(A)
P (A)(V [π̃], λ) where λ varies in a∨P,0. Then

for such φ we have φ = φ−ρP . In what follows, we will identify elements of WP,π̃ with elements of

ι
G(A)
P (A)(V [π̃],−ρP ), and then use this notation to vary them in flat sections.

Let dχπ denote the differential of the archimedean component of the central character of π.

Then as in Section 1.1.1, if we are given φ ∈ WP,π̃, we can form the Eisenstein series E(φ, λ) for

λ varying in a∨P,0. This is a family of automorphic forms which varies meromorphically in λ. Let

h0 be a holomorphic function on a∨P,0 such that, for any φ ∈ WP,π̃, the product h0(λ)E(φ, λ) is

holomorphic near λ = dχπ. Then we define a map

Eh0 : WP,π̃ ⊗ Sym(aP,0)dχπ+ρP → AE,[P ],ϕ(G)
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by

φ⊗D 7→ D(h0(λ)E(φ, λ));

in other words, this map forms an Eisenstein series according to φ, multiplies it by h0(λ) in order

to cancel any poles, and then differentiates the result at the point λ = dχπ according to D.

The map Eh0 is surjective by our definition of AE,[P ],ϕ(G). If all the Eisenstein series E(φ, λ),

for φ ∈ WP,π̃, are holomorphic at λ = dχπ, then we write E = E1 for the map just defined with

h0(λ) = 1.

Proposition 1.1.3.2. The map Eh0 : WP,π̃ ⊗ Sym(aP,0)dχπ+ρP → AE,[P ],ϕ(G) defined just above is

a surjective map of G(Af ) × (g0,K∞)-modules. Furthermore, if all the Eisenstein series E(φ, λ)

arising from φ ∈WP,π̃ are holomorphic at λ = dχπ, then the map E is an isomorphism.

Proof. To check that Eh0 is a map of G(Af )× (g0,K∞)-modules, one just needs to use the formulas

defining the G(Af )×(g0,K∞)-module structure on WP,π̃⊗Sym(aP,0)λ and show they are preserved

when forming Eisenstein series and taking derivatives; this can be checked when λ is in the region

of convergence for the Eisenstein series, and then this extends to all λ by analytic continuation.

We omit the precise details of this check.

For the second claim in the proposition, that E is an isomorphism, this follows essentially from

Theorem 14 in Franke’s paper [Fra98]; this theorem implies that E injective, since it equals the

restriction of Franke’s mean value map MW to WP,π̃ ⊗ Sym(aP,0)dχπ+ρP . Whence by surjectivity

and the first part of the proposition, we are done.

The spaces AE,[P ],ϕ(G) carry a filtration by G(Af )× (g0,K∞)-modules which is due to Franke.

For our purposes, we will not need the precise definition of this filtration, but just a rough description

of its graded pieces. This is described in the following theorem.

Theorem 1.1.3.3. There is a decreasing filtration

· · · ⊃ FiliAE,C,ϕ(G) ⊃ Fili+1AE,C,ϕ(G) ⊃ · · ·

of G(Af )× (g0,K∞)-modules on AE,C,ϕ(G), for which we have

Fil0AE,C,ϕ(G) = AE,C,ϕ(G)
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and

FilmAE,C,ϕ(G) = 0

for some m > 0 (depending on ϕ), and whose graded pieces have the property described below.

Fix π in ϕ, and say π is a representation of the A-points of a Levi M of a parabolic P in C.

Let dχπ be the differential of the archimedean component of the central character of π. Let M be

the set of quadruples (Q, ν,Π, µ) where:

• Q is a parabolic subgroup of G which contains P ;

• ν is an element of (aP ∩mQ,0)∨;

• Π is an automorphic representation of M(A) occurring in

L2
disc(MQ(Q)AQ(R)◦\MQ(A))

and which is spanned by values at, or residues at, the point ν of Eisenstein series parabolically

induced from (P ∩MQ)(A) to MQ(A) by representations in ϕ; and

• µ is an element of a∨Q,0 whose real part in Lie(AG(R)\AMQ
(R)) is in the closure of the pos-

itive chamber, and such that the following relation between µ, ν and π holds: Let λπ̃ be the

infinitesimal character of the archimedean component of π̃. Then

λπ̃ + ν + µ

may be viewed as a collection of weights of a Cartan subalgebra of g0, and the condition we

impose is that these weights are in the support of the infinitesimal character of E.

For such a quadruple (Q, ν,Π, µ) ∈M, let V [Π] denote the Π-isotypic component of the space

L2
disc(MQ(Q)AQ(R)◦\MQ(A)) ∩ AE,[P∩MQ],ϕ|MQ

(MP ).

Then the property of the graded pieces of the filtration above is that, for every i with 0 ≤ i < m,
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there is a subset Mi
ϕ ⊂M and an isomorphism of G(Af )× (g0,K∞)-modules

FiliAE,C,ϕ(G)/Fili+1AE,C,ϕ(G) ∼=
⊕

(Q,ν,Π,µ)∈Mi
ϕ

Ind
G(A)
Q(A)(V [Π]⊗ Sym(aQ,0)µ+ρQ).

Proof. While this essentially follows again from the work of Franke [Fra98], in this form, this

theorem is a consequence of Theorem 4 in the paper of Grobner [Gro13]; the latter paper takes

into account the presence of the class ϕ while the former does not.

Remark 1.1.3.4. In the context of Proposition 1.1.3.2 and Theorem 1.1.3.3, when all the Eisenstein

series E(φ, λ) arising from φ ∈WP,π̃ are holomorphic at λ = dχπ, what happens is that the filtration

of Theorem 1.1.3.3 collapses to a single step. The nontrivial piece of this filtration is then given by

Ind
G(A)
P (A)(V [π̃] ⊗ Sym(aP,0)dχπ+ρP ) through the map E along with the isomorphism of Proposition

1.1.3.1.

When P is a maximal parabolic, the filtration of Theorem 1.1.3.3 becomes particularly simple.

To describe it, we set some notation.

Assume P is maximal. If π̃ is a unitary cuspidal automorphic representation of M and s ∈ C

with Re(s) > 0, let us write

LG(A)
P (A)(π̃, s)

for the Langlands quotient of

ι
G(A)
P (A)(π̃, 2sρP ).

One definition of this is that it is the quotient of the induction above by the kernel of the intertwining

operator

M(·, w0) : ι
G(A)
P (A)(π̃, s)→ ι

G(A)
P ′(A)(π̃,−s)

of Section 1.1.1. Here, if we fix a minimal parabolic contained in P , then w0 is the Weyl element

that sends every simple root in M to another positive simple root, and which sends the positive

simple root not in M to a negative root, and P ′ is the standard parabolic with Levi w0Mw0. Then

we have

Theorem 1.1.3.5 (Grbac [Grb12]). In the setting above, with P maximal and Re(s) > 0, assume

π̃ defines an associate class ϕ ∈ ΦE,[P ]. If any of the Eisenstein series E(φ, λ) coming from φ ∈Wπ̃
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have a pole at λ = 2s0ρP , then there is an exact sequence of G(Af )× (g0,K∞)-modules as follows:

0→ LG(A)
P (A)(π̃, s)→ AE,[P ],ϕ(G)→ Ind

G(A)
P (A)(V [π̃]⊗ Sym(aP,0)(2s+1)ρP )→ 0.

Proof. This follows from Theorem 3.1 in the paper of Grbac [Grb12].

1.2 Cohomology

We now would like to study the cohomology of the pieces of the Franke–Schwermer decom-

position. We can reduce this to studying the parabolically induced representations introduced in

the previous section and applying a classical argument involving the Kostant decomposition, as in

[BW00], Theorem III.3.3. We start with a general discussion of cohomology.

1.2.1 The cohomology of the space of automorphic forms

We continue to use the notation set in the introduction, and in particular, we will resume

working with our reductive Q-group G. We have our maximal compact subgroup K∞ ⊂ G(R), and

we fix an open subgroup K ′∞ of K∞. Then we necessarily have K◦∞ ⊂ K ′∞ ⊂ K∞.

We will be interested in the (g0,K
′
∞)-cohomology of the space of automorphic forms on G(A).

By Franke’s resolution of Borel’s conjecture ([Fra98], Theorem 18), this cohomology space (for

suitable K ′∞) computes the cohomology of certain locally symmetric spaces attached to G, and is

therefore of arithmetic interest.

So as before, let E be an irreducible, finite dimensional, complex representation of G(C). We

view E as a (g0,K∞)-module via its restriction to G(R), and hence as a G(Af )× (g0,K∞)-module

by giving it a trivial G(Af ) action. Our goal is to study the (g0,K
′
∞)-cohomology space

H i(g0,K
′
∞;AE(G)⊗ E)

for any i, which is naturally a G(Af )-module; see the standard reference by Borel–Wallach [BW00]

for the definition of (g0,K
′
∞)-cohomology and discussions of many of its most important properties.

Actually, the cohomology space above is smooth and admissible as a G(Af )-module, as can be

seen by comparing it to the cohomology of certain local systems on the locally symmetric spaces
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attached to G. By the results recalled in Section 1.1.2 and the Franke–Schwermer decomposition

(Theorem 1.1.2.1) we have a direct sum decomposition as G(Af )-modules

H i(g0,K
′
∞;AE(G)⊗ E) =

⊕
C∈C

⊕
ϕ∈ΦE,C

H i(g0,K
′
∞;AE,C,ϕ(G)⊗ E).

Each summand in the decomposition above is therefore a smooth, admissible G(Af )-module, and

although there may be infinitely summands on the right hand side which don’t vanish, only finitely

many of them have nonzero K ′f -invariants for any given open compact subgroup K ′f ⊂ Kf .

Let us write

H i
cusp(g0,K

′
∞;AE(G)⊗ E) =

⊕
ϕ∈ΦE,[G]

H i(g0,K
′
∞;AE,[G],ϕ(G)⊗ E)

for the cuspidal cohomology of E. This is also the same as

H i(g0,K
′
∞;L2

cusp(G(Q)AG(R)◦\G(A))⊗ E).

The natural complement to the cuspidal cohomology in the decomposition above is called the

Eisenstein cohomology, i.e.,

H i
Eis(g0,K

′
∞;AE(G)⊗ E) =

⊕
C∈C
C 6=[G]

⊕
ϕ∈ΦE,C

H i(g0,K
′
∞;AE,C,ϕ(G)⊗ E).

If P is a proper parabolic subgroup of G defined over Q, let us define the [P ]-Eisenstein cohomology

to be the summand corresponding to the class [P ], so

H i
[P ](g0,K

′
∞;AE(G)⊗ E) =

⊕
ϕ∈ΦE,[P ]

H i(g0,K
′
∞;AE,[P ],ϕ(G)⊗ E).

Now let HG be the Hecke algebra of smooth, compactly supported, complex-valued functions

on G(Af ),

HG = C∞c (G(Af )).
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Then HG acts on any smooth, admissible G(Af )-module (σ, V ) via convolution. Furthermore, for

any f ∈ HG and any open compact subgroup K ′f ⊂ Kf for which f is K ′f -biinvariant, we can

consider the trace Tr(f |V K′f ) of f acting as a linear operator on the K ′f invariants of V . This is

independent of the choice of K ′f and defines an association

f 7→ Jσ(f) = Tr(f |V K′f ),

and we call Jσ the character distribution associated with σ. An irreducible admissible G(Af )-

module is determined by its character distribution.

Definition 1.2.1.1. The multiplicity of an irreducible admissible G(Af )-module σ in the ith

(g0,K
′
∞)-cohomology of AE(G) is the nonnegative integer mi(σ,K ′∞, E) such that

Tr(f |H i(g0,K
′
∞;AE(G)⊗ E)K

′
f ) =

∑
σ

mi(σ,K ′∞, E)Jσ(f)

for any f ∈ HG and any open compact subgroup K ′f ⊂ Kf for which f is K ′f -biinvariant. Here, on

the right hand side, the sum is over all irreducible admissible G(Af )-modules.

Similarly we define mi
cusp(σ,K ′∞, E), mi

Eis(σ,K
′
∞, E), and mi

[P ](σ,K
′
∞, E) for a proper parabolic

Q-subgroup P of G, by formulas similar to the one above, namely:

Tr(f |H i
cusp(g0,K

′
∞;AE(G)⊗ E)K

′
f ) =

∑
σ

mi
cusp(σ,K ′∞, E)Jσ(f),

Tr(f |H i
Eis(g0,K

′
∞;AE(G)⊗ E)K

′
f ) =

∑
σ

mi
Eis(σ,K

′
∞, E)Jσ(f),

and

Tr(f |H i
[P ](g0,K

′
∞;AE(G)⊗ E)K

′
f ) =

∑
σ

mi
[P ](σ,K

′
∞, E)Jσ(f).

We call these numbers, respectively, the cuspidal multiplicity, the Eisenstein multiplicity, and the

[P ]-Eisenstein multiplicity of σ in the ith cohomology of E.

It follows immediately from the definitions that

mi(σ,K ′∞, E) = mi
cusp(σ,K ′∞, E) +mi

Eis(σ,K
′
∞, E)
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and

mi
Eis(σ,K∞, E) =

∑
C∈C
C 6=[G]

mi
C(σ,K ′∞, E).

The goal in the following will be to precisely compute, for certain choices of G, the multiplicity

of the Langlands quotients of certain induced representations, induced from maximal parabolic

subgroups, in the cohomology of particular E’s. These induced representations will show up in

Eisenstein cohomology naturally, as we will explain in the next section. Perhaps more interestingly

is that these Langlands quotients can also occur in cuspidal cohomology, and we will see examples

of this in the cases of GSp4 and G2 later.

1.2.2 The cohomology of induced representations

We now calculate the cohomology of representations of G that are parabolically induced from

automorphic representations of Levi subgroups, and hence compute the cohomology of the graded

pieces of the Franke filtration described in Theorem 1.1.3.3. The computations done in this section

were essentially carried out by Franke in [Fra98], Section 7.4, but not in so much detail. We fill in

some of the details and give a sharper result, which we can give because we are focusing on one

representation of the Levi at a time, and we can do this because we have access to the Franke–

Schwermer decomposition, Theorem 1.1.2.1. The method is essentially that of the proof of Theorem

III.3.3 in [BW00]. This method also appears in the computations of Grbac–Grobner [GG13] and

Grbac–Schwermer [GS11].

Let P ⊂ G be a parabolic subgroup defined over Q with Levi decomposition P = MN . Fix an

automorphic representation π of M(A) with central character χπ, occurring in

L2
disc(M(Q)\M(A), χπ).

Then the unitarization π̃ occurs in

L2
disc(M(Q)AP (R)◦\M(A)).
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Let dχπ denote the differential of the archimedean component of χπ. Fix also an irreducible finite

dimensional representation E of G(C).

As before, fix a compact subgroup K ′∞ of G(R) such that K◦∞ ⊂ K ′∞ ⊂ K∞. We will compute

the (g0,K
′
∞)-cohomology space

H i(g0,K
′
∞; Ind

G(A)
P (A)(π̃ ⊗ Sym(aP,0)dχπ+ρP )⊗ E)

in terms of (m0,K
′
∞∩P (R))-cohomology spaces attached to π. We will require the following lemma.

Lemma 1.2.2.1. Let µ, µ′ ∈ a∨P,0. Let Cµ′ denote the one dimensional aP,0-module on which

X ∈ aP,0 acts through multiplication by 〈X,µ′〉. Then there is an isomorphism of P (Af )-modules

H i(aP,0, Sym(aP,0)µ ⊗ Cµ′) ∼=


C(e〈HP (·),µ〉) if µ′ = −µ and i = 0;

0 if µ′ 6= −µ or i > 0.

Here, C(e〈HP (·),µ〉) is just the one dimensional representation of P (Af ) on which p ∈ P (Af ) acts

via e〈HP (p),µ〉.

Proof. It will be convenient to work in coordinates. So let λ = (λ1, . . . , λr) be coordinates on

a∨P,0; this is the same as fixing a basis of aP,0. Then the elements of Sym(aP,0)µ may be viewed as

polynomials in the variables λ1, . . . , λr.

Let α = (α1, . . . , αr) be a multi-index. By definition, the monomial λα = λα1
1 · · ·λαrr acts as a

distribution on holomorphic functions f on a∨P,0 via the formula

λαf =
∂α

∂λα
f(λ)|λ=µ.

Also by definition, if X ∈ aP,0, then Xλα acts as

(Xλα)f =
∂α

∂λα
(〈X,λ〉f(λ))|λ=µ.

Let P (λ) be a polynomial in λ. Then a quick induction using the above formulas shows that
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X ∈ aP,0 acts on P (λ) as

X(P (λ)) = 〈X,µ〉P (λ) +
r∑
i=1

∂

∂λi
P (λ).

Hence X acts on the element P (λ)⊗ 1 in Sym(a∨P,0)µ ⊗ Cµ′ by

X(P (λ)⊗ 1) = 〈X,µ+ µ′〉(P (λ)⊗ 1) +
r∑
i=1

(
∂

∂λi
P (λ)⊗ 1

)
.

It follows from this that if X1, . . . , Xr is the basis of aP,0 corresponding to the coordinates λ1, . . . , λr,

then the decomposition

aP,0 = CX1 ⊕ · · · ⊕ CXr

realizes Sym(aP,0)µ ⊗ Cµ′ as an exterior tensor product of analogous single-variable symmetric

powers:

Sym(aP,0)µ ⊗ Cµ′ ∼= (Sym(CX1)µ1 ⊗ Cµ′1)⊗ · · · ⊗ (Sym(CXr)µr ⊗ Cµ′r),

where µi, µ
′
i ∈ (CXi)

∨ are the ith components of µ, µ′ in the dual basis of a∨P,0 to X1, . . . , Xr. To

be explicit, here the space Sym(CXi)µi can be identified as the space of polynomials in the variable

λi with the structure of a module over the one-dimensional abelian Lie algebra CXi given by

Xi(λ
n
i ) = 〈Xi, µi〉+ nλn−1

i .

By the Künneth formula, if we ignore for now the P (Af )-action, we then reduce to checking the

one-dimensional analog of the lemma, that

H i(CXi,Sym(CXi)µi ⊗ Cµ′i)
∼=


C if µ′ = −µ and i = 0;

0 if µ′ 6= −µ or i > 0.

To check this formula, we first note that by definition of Lie algebra cohomology, the space

H∗(CXi, Sym(CXi)µi ⊗ Cµ′i) is the cohomology of the complex

Sym(CXi)µi ⊗ Cµ′i → HomC(CXi,Sym(CXi)µi ⊗ Cµ′i)→ 0→ · · · ,
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where the map between the first two terms is given by

(P ⊗ 1) 7→ (Xi 7→ Xi(P ⊗ 1)).

If µ′ 6= −µ, then this map is an isomorphism since the action of Xi on a polynomial preserves

its degree. On the other hand, if µ′ = −µ, then Xi decreases the degree of a polynomial by one

exactly, and therefore this map is surjective with kernel consisting of constant polynomials. This

therefore proves our formula, at least without taking into account the P (Af ) action, and shows in

fact that H0(aP,0, Sym(aP,0)µ ⊗ C−µ) can be identified with subspace of Sym(aP,0)µ consisting of

constants. By definition, this space has an action of P (Af ) given by the character e〈HP (·),µ〉, which

proves our lemma.

Another ingredient we need is a well-known theorem of Kostant. To state it, we need to set

some notation.

Let h ⊂ g be a Cartan subalgebra, and assume h ⊂ m. Fix an ordering on the roots of h in g

which makes p standard. If W (h, g) denotes the Weyl group of h in g, then write

WP = {w ∈W (h, g) | w−1α > 0 for all positive roots α in m}.

Write ρ for half the sum of the positive roots of h in g.

If Λ ∈ h∨ is a dominant weight, write EΛ for the representation of g of highest weight Λ. If

ν ∈ h∨ is a weight which is dominant for m we denote by Fν the representation of m of highest weight

ν. In both cases, these weights may be nontrivial on the center, in which case these representations

are considered to have central character given by the restriction of these weights to the respective

centers. Then we have the following well-known theorem, whose proof we omit.

Theorem 1.2.2.2 (Kostant). With notation as above, let Λ ∈ h∨ be a dominant weight. Then, as

representations of m, we have an isomorphism

H i(n, EΛ) ∼=
⊕
w∈WP

`(w)=i

Fw(Λ+ρ)−ρ,

where `(w) denotes the length of the Weyl group element w.

47



Now we are ready to state and prove the main theorem of this section. Its proof follows the

strategy in Borel–Wallach [BW00], Theorem III.3.3.

Theorem 1.2.2.3. Notation as above, let Λ ∈ h∨ be a dominant weight such that E = EΛ. Assume

that the cohomology space

H∗(g0,K
′
∞; Ind

G(A)
P (A)(π̃ ⊗ Sym(aP,0)dχπ+ρP )⊗ E)

is nontrivial. Then there is a unique w ∈WP such that

−w(Λ + ρ)|aP,0 = dχπ

and such that the infinitesimal character of the archimedean component of π̃ contains −w(Λ +

ρ)|h∩m0. Furthermore, if `(w) is the length of such an element w, then for any i we have

H i(g0,K
′
∞; Ind

G(A)
P (A)(π̃ ⊗ Sym(aP,0)dχπ+ρP )⊗ E)

∼= ι
G(Af )

P (Af )(πf )⊗H i−`(w)(m0,K
′
∞ ∩ P (R); π̃∞ ⊗ Fw(Λ+ρ)−ρ,0),

where ι denotes a normalized parabolic induction functor, and Fw(Λ+ρ)−ρ,0 denotes the restriction

to m0 of the representation of m of highest weight w(Λ + ρ)− ρ.

Proof. Let us first prove the uniqueness of the element w in the theorem. Note first that

h ∩ g0 = aP,0 ⊕ (h ∩m0).

Because Λ is dominant, we know (Λ + ρ) is regular, and the conditions in the theorem therefore

pin down the element w(Λ + ρ) uniquely up to the Weyl group W (h∩m0,m0) of h∩m0 in m0. But

it is well known that WP is a set of representatives for W (h, g) modulo W (h ∩m0,m0). Therefore

w(Λ + ρ) lies in a unique Weyl chamber, and so w is determined.

Let i be an integer. We now begin to compute the cohomology space

H i(g0,K
′
∞; Ind

G(A)
P (A)(π̃ ⊗ Sym(aP,0)dχπ+ρP )⊗ E).
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First, Proposition 1.1.3.1 allows us to pull the tensor product with E inside the induction, whence

by Frobenius reciprocity, we have

H i(g0,K
′
∞; Ind

G(A)
P (A)(π̃ ⊗ Sym(aP,0)dχπ+ρP )⊗ E)

∼= Ind
G(Af )

P (Af )(H
i(p0,K

′
∞ ∩ P (R); π̃ ⊗ Sym(aP,0)dχπ+ρP ⊗ E)). (1.2.2.1)

It is our goal, therefore, to compute

H i(p0,K
′
∞ ∩ P (R); π̃ ⊗ Sym(aP,0)dχπ+ρP ⊗ E).

Now, as (p0,K
′
∞ ∩ P (R))-modules, the space π̃ comes from a (m0,K

′
∞ ∩ P (R))-module and

Sym(aP,0)dχπ+ρP comes from an aP,0-module. Thus, using

p0 = (m0 ⊕ aP,0)⊕ n,

we get a spectral sequence whose E2 page is

Ej,k2 = Hj(m0 ⊕ aP,0,K
′
∞ ∩ P (R); π̃ ⊗ Sym(aP,0)dχπ+ρP ⊗H

k(n;E))

and which degenerates to the cohomology space above with i = j+k. We will eventually be able to

say that this spectral sequence degenerates on its E2 page, but this will follow from the vanishing

of enough of its terms. So we compute this page now.

By the Kostant decomposition (Theorem 1.2.2.2), the (j, k)-term on this E2 page is

⊕
w′∈WP

`(w)=k

Hj(m0 ⊕ aP,0,K
′
∞ ∩ P (R); π̃ ⊗ Sym(aP,0)dχπ+ρP ⊗ Fw′(Λ+ρ)−ρ).

Write ν(w′) = (w′(Λ + ρ) − ρ)|aP.0 , As an (m0 ⊕ aP,0)-module, the representation Fw′(Λ+ρ)−ρ de-

composes as

Fw′(Λ+ρ)−ρ = Fw′(Λ+ρ)−ρ,0 ⊗ Cν(w′),
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as an exterior tensor product over the direct sum m0⊕ aP,0. Thus by the Künneth formula, we get

H∗(m0 ⊕ aP,0,K
′
∞ ∩ P (R); π̃ ⊗ Sym(aP,0)dχπ+ρP ⊗ Fw′(Λ+ρ)−ρ)

∼= H∗(m0,K
′
∞ ∩ P (R); π̃ ⊗ Fw′(Λ+ρ)−ρ,0)⊗H∗(aP,0, Sym(aP,0)dχπ+ρP ⊗ Cν(w′)).

By Lemma 1.2.2.1, the second factor here is nonvanishing if and only if

dχπ + ρP = −ν(w′),

and the first factor is nonvanishing only if the infinitesimal character of Fw′(Λ+ρ)−ρ,0 matches the

negative of that of the archimedean component of π̃. Since p is standard, we have ρP = ρ|aP,0 ,

which implies

ν(w′) = w′(Λ + ρ)|aP.0 − ρP

and so this first nonvanishing condition is equivalent to

= w′(Λ + ρ)|aP.0 = dχπ;

the second of these nonvanishing conditions is just that −w′(Λ + ρ) occurs in the infinitesimal

character of the archimedean component of π̃. As shown at the beginning of this proof, there is

only one w′ satisfying these two conditions, and we will denote it by w.

Thus, by Lemma 1.2.2.1, we get

H∗(m0,K
′
∞ ∩ P (R); π̃ ⊗ Fw(Λ+ρ)−ρ,0)⊗H∗(aP,0,Sym(aP,0)dχπ+ρP ⊗ Cν(w))

∼= H∗(m0,K
′
∞ ∩ P (R); π̃ ⊗ Fw(Λ+ρ)−ρ,0)⊗ C(e〈HP (·),dχπ+ρP 〉),

where the factor C(e〈HP (·),dχπ+ρP 〉) is concentrated in degree zero.

Retracing our steps, we have thus computed the E2 page of our spectral sequence. It is

Ej,k2
∼=


Hj(m0,K

′
∞ ∩ P (R); π̃ ⊗ Fw(Λ+ρ)−ρ,0)⊗ C(e〈HP (·),dχπ+ρP 〉) if k = `(w);

0 if k 6= `(w).
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The E2 page therefore consists only of one row, and thus our spectral sequence degenerates. Hence

we have shown

H i(p0,K
′
∞ ∩ P (R); π̃ ⊗ Sym(aP,0)dχπ+ρP ⊗ E)

∼= H i−`(w)(m0,K
′
∞ ∩ P (R); π̃ ⊗ Fw(Λ+ρ)−ρ,0)⊗ C(e〈HP (·),dχπ+ρP 〉)

Now we rewrite

H i−`(w)(m0,K
′
∞ ∩ P (R); π̃ ⊗ Fw(Λ+ρ)−ρ,0)⊗ C(e〈HP (·),dχπ+ρP 〉)

∼= π̃f ⊗ C(e〈HP (·),dχπ+ρP 〉)⊗H i−`(w)(m0,K
′
∞ ∩ P (R); π̃∞ ⊗ Fw(Λ+ρ)−ρ,0)

∼= πf ⊗ C(e〈HP (·),ρP 〉)⊗H i−`(w)(m0,K
′
∞ ∩ P (R); π̃∞ ⊗ Fw(Λ+ρ)−ρ,0),

so that

H i(p0,K
′
∞ ∩ P (R); π̃ ⊗ Sym(aP,0)dχπ+ρP ⊗ E)

∼= πf ⊗ C(e〈HP (·),ρP 〉)⊗H i−`(w)(m0,K
′
∞ ∩ P (R); π̃∞ ⊗ Fw(Λ+ρ)−ρ,0).

We therefore have, by (1.2.2.1),

H i(g0,K
′
∞; Ind

G(A)
P (A)(π̃ ⊗ Sym(aP,0)dχπ+ρP )⊗ E)

∼= Ind
G(Af )

P (Af )(πf ⊗ C(e〈HP (·),ρP 〉))⊗H i−`(w)(m0,K
′
∞ ∩ P (R); π̃∞ ⊗ Fw(Λ+ρ)−ρ,0),

which is what we wanted to prove.

The above theorem will allow us to produce Eisenstein cohomology classes. To distinguish the

representations of G(Af ) generated by these classes, we will need to see what might correspond to

them on the Galois side. We set up the tools to do this in the next section.
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1.3 Galois representations

We now recall the facts we need about `-adic Galois representations. The reason for introducing

Galois representations into the picture is that they will allow us to distinguish the automorphic

representations to which they will be attached.

Our notion of what it means for a Galois representation to be attached to an automorphic

representation is relatively weak, but it will suffice for our purposes.

1.3.1 Galois representations attached to automorphic representations

We continue to use the notation set previously, and in particular we will continue working with

our reductive Q-group G, but with one modification: We now assume that G is split. This will

simplify our discussion of Satake parameters, and it will also allow us to work only with the Galois

group of Q instead of that of some finite extension.

We explain in this section what we mean when we say that an automorphic representation of

G(A) has attached to it a Galois representation. Our version of this notion will be a weak one, in

the sense that it will only depend on the automorphic representation in question at all but finitely

many of its unramified places. But this will suffice for our purposes.

So to get started, fix a prime p. We will recall some of the theory of unramified representations

of G(Qp) due to Langlands, Satake, and others.

First we fix a split maximal torus T ⊂ G and a Borel subgroup B ⊂ G containing T . Write U

for the unipotent radical of B. Let

W = NG(T )/T

be the Weyl group of G. Let δB(Qp) denote the modulus character of B(Qp).

Next, fix a model of G over Zp. Write Kp = G(Zp); this is a hyperspecial maximal compact

subgroup of G(Qp). Let H(Kp) be the spherical Hecke algebra, defined as the convolution algebra

of smooth, compactly supported, Kp-biinvariant, C-valued functions on G(Qp).

Fix an irreducible admissible representation σ of G(Qp) which is spherical, i.e., which has a

Kp-fixed vector. Then the Kp-invariant subspace σKp is one dimensional. Thus we get a character
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of the Hecke algebra

ωH
σ : H(Kp)→ End(σKp) ∼= C.

On the other hand, we have the Satake transform S, which is an isomorphism from H(Kp) to

the Weyl group invariants of the analogously defined Hecke algebra H(T (Zp)). In more detail, the

Hecke algebra H(T (Zp)) is defined to be the convolution algebra of smooth, compactly supported,

T (Zp)-biinvariant, C-valued functions on T (Qp). Because T is abelian, this is the same as the group

algebra C[T (Qp)/T (Zp)]. Of course, W acts on T and therefore gives compatible actions on both

H(T (Zp)) and C[T (Qp)/T (Zp)].

The Satake transform

S : H(Kp)→ H(T (Zp))

is defined by

S(f)(t) = δB(Qp)(t)
1/2

∫
U(Qp)

f(tu) du.

It is a theorem that the image of S is contained in the Weyl group invariantsH(T (Zp))W and, in fact,

is an isomorphism when H(T (Zp))W is considered at its target. Thus, through the identifications

above, we get an isomorphism

H(Kp) ∼= C[T (Qp)/T (Zp)]W .

We can therefore transfer the character ωH
σ defined above to C[T (Qp)/T (Zp)]W and obtain a char-

acter

ωS
σ : C[T (Qp)/T (Zp)]W → C.

There is another construction that gives a character of C[T (Qp)/T (Zp)]W starting from the

representation σ, which we describe now. It is a theorem that σ, since it is spherical, occurs as a

subquotient of a principal series representation

Ind
G(Qp)
B(Qp)(χ · δB(Qp))

for some character χ of T (Qp) which is trivial on T (Zp). The character χ with this property is

unique only up to the action of W . But in any case, the character χ, when viewed as a character
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T (Qp)/T (Zp), gives naturally a character

ω̃ : C[T (Qp)/T (Zp)]→ C.

The restriction of this character to the Weyl invariants will be written as

ωI
σ : C[T (Qp)/T (Zp)]W → C.

While there is a choice involved in selecting the character χ, and hence in defining ω̃, the character

ωI
σ does not depend on this choice and is well defined.

We state the following well known result as a proposition.

Proposition 1.3.1.1. In the setting above, the two characters

ωS
σ, ω

I
σ : C[T (Qp)/T (Zp)]W → C

coincide.

Let us denote by ωσ the common character ωS
σ = ωI

σ.

Now the group T (Qp)/T (Zp) can be naturally identified with the cocharacter group X∗(T ); the

identification is given by evaluating a cocharacter λ ∈ X∗(T ) at a uniformizer in Q×p . Also, if we

fix a maximal torus T∨ in the dual group G∨, we have a natural identification X∗(T ) = X∗(T∨) of

the cocharacter group of T with the character group of T∨.

Therefore the character ωσ just constructed may well be viewed as a character

ωσ : C[X∗(T∨)]W → C.

Now given a finite dimensional representation V of G∨(C), we can view its character χV as an

element of C[X∗(T∨)]W . Then the character ωσ gives a conjugacy class s(σ) in G∨(C); it is the

unique conjugacy class with the property that

ωσ(χV ) = Tr(s(σ)|V )
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for any finite dimensional representation V of G∨(C). We call s(σ) the Satake parameter or Lang-

lands parameter attached to σ.

We now fix a prime ` different from p. Since Q` is isomorphic to C, everything above could

be done over Q` instead. In particular, we may view ωσ as a character of Q`[T (Qp)/T (Zp)]W ∼=

Q`[X
∗(T∨)]W , and we may view the Satake parameter s(σ) as a conjugacy class in G∨(Q`).

We need to make this change of field because our Galois representations will have as their target

the group G∨(Q`). In fact, we are ready to give the following definition.

Definition 1.3.1.2. Let Π be an automorphic representation of G(A). We will say that a contin-

uous representation

ρ : GQ → G∨(Q`)

is attached to Π if there is a finite set S of places of Q containing `, the archimedean place, and all

the ramified places for Π, such that for any prime p /∈ S, ρ is unramified at p and we have

ρ(Frobp)
ss ∈ s(Πp),

where Frobp is any choice of (geometric) Frobenius element at p, the element ρ(Frobp)
ss is the

semisimplification of ρ(Frobp), and the Satake parameter s(Πp) of the local component of Π at p

is viewed as a conjugacy class in G∨(Q`).

We remark that in the definition, the semisimplification ρ(Frobp)
ss may be defined to be the

semisimple element of G∨(Q`) whose image in any finite dimensional representation of G∨(Q`) has

the same characteristic polynomial as ρ(Frobp).

Now in the case of the group GL2 a lot is known about when such Galois representations exist.

Let us recall some results in this direction.

Let F be a holomorphic cuspidal eigenform of weight k ≥ 1, conductor N ≥ 1, and nebentypus

ωF . Then F gives rise to a unitary automorphic representation π̃ of GL2(A). This representation

π̃ has central character given by the adelization of ωF . Write

π = π̃ ⊗ | det |(k−1)/2
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This normalization is necessary to recover the usual Galois representation attached to F . In fact,

we have the following theorem.

Theorem 1.3.1.3. With the setting as in the above paragraph, fix a prime ` not dividing N . Then

there is a continuous Galois representation

ρπ : GQ → GL2(Q`)

which is attached to π in the sense of Definition 1.3.1.2; in fact the set S in that definition can

be taken to be the set of primes dividing N , `, and ∞. This representation ρπ is unique up to

conjugation by elements of GL2(Q`), and it is irreducible. Furthermore, ρπ is Hodge–Tate (in fact,

de Rham) at ` with Hodge–Tate weights 0 and −(k − 1). (Here, our conventions are such that the

`-adic cyclotomic character has Hodge–Tate weight −1.)

Remark 1.3.1.4. The above is a classical theorem which (except for the final claim about ρπ being

Hodge–Tate) is due to Eichler–Shimura when k = 2, to Deligne when k > 2, and to Deligne–Serre

when k = 1. Usually when recalling this theorem one states explicitly the properties that, for p /∈ S

we have

Tr(ρπ(Frob−1
p )) = ap,

where ap is the pth Hecke eigenvalue of F , and

det(ρπ) = ωFχ
k−1
cyc ,

where χcyc : GQ → Z×` denotes the `-adic cyclotomic character and ωF is viewed as a finite order

Galois character by class field theory. Actually, these assertions follow from our statement of the

theorem once we know πp explicitly enough to know the characteristic polynomial of s(πp) for

p /∈ S.

We conclude this section with a proposition which will be useful for us later when distinguishing

between different automorphic representations. To state it, we recall the following definition.

Definition 1.3.1.5. Let Π,Π′ be two automorphic representations of a reductive group G, with

respective local components Πv,Π
′
v at places v. We say Π and Π′ are nearly equivalent if, for all
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but finitely many places v, there is an isomorphism Πv
∼= Π′v.

Proposition 1.3.1.6. Let Π,Π′ be two automorphic representations of G(A) with respective Galois

representations

ρ, ρ′ : GQ → G∨(Q`).

Assume Π and Π′ are nearly equivalent. Let

R : G∨ → GLn

be a finite dimensional representation of G∨. Then the semisimplified Galois representations

(R ◦ ρ)ss, (R ◦ ρ′)ss,

which are semisimple representations of GQ into GLn(Q`), are equivalent.

Proof. By the hypotheses, there is a finite set S of places, including ` and the archimedean place,

such that for p /∈ S, the local components Πp and Π′p of our automorphic representations at p are

unramified and isomorphic. Therefore we have an equality of Satake parameters for p /∈ S,

s(Πp) = s(Π′p).

After possibly enlarging S, we have then that for p /∈ S, the semisimple elements

ρ(Frobp)
ss, ρ′(Frobp)

ss

are conjugate in G∨(Q`). Therefore we have an equality of traces

Tr(R(ρ(Frobp))) = Tr(R(ρ′(Frobp)))

By continuity and Chebotarev, this implies an equality of characters

Tr(R ◦ ρ) = Tr(R ◦ ρ′),
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which in turn implies the conclusion of our proposition.

Remark 1.3.1.7. The above proposition may be summarized as saying that (R ◦ ρ)ss is a near-

equivalence invariant of automorphic representations (at least when ρ exists). It is therefore also an

isomorphism invariant; that is, the proposition can be applied when Π ∼= Π′. This is useful, since

it is possible for an automorphic representation to have many Galois representations attached to it

in the sense of our definition. This is especially possible when ρ is reducible (i.e., factors through

a proper parabolic subgroup of G∨(Q`)).

1.3.2 Galois representations and induced representations

In this section we explain how to attach Galois representations to subquotients of parabolically

induced representations. This will therefore give us a way of attaching Galois representations to

Eisenstein series.

We continue with the notation of the previous section, and in particular we will work with our

split reductive Q-group G and a choice of split maximal torus T ⊂ G and Borel subgroup B ⊂ G

containing T . As we did before, we choose a split maximal torus T∨ in the dual group G∨ and a

Borel B∨ containing T∨.

Now let P ⊂ G be a parabolic subgroup containing B, and let M be its standard Levi. The

parabolic P corresponds to a subset of the set of simple roots of T in G, and the set of corresponding

coroots gives us a standard parabolic P∨ in G∨. Its standard Levi M∨ is, as this notation suggests,

identified with the dual group of M .

Proposition 1.3.2.1. Let π be an automorphic representation of M(A). Assume that π has at-

tached to it a Galois representation

ρπ : GQ →M∨(Q`),

in the sense of Definition 1.3.1.2. Let Π be an automorphic representation of G(A) which is a

subquotient of the induced representation

Ind
G(A)
P (A)(π ⊗ δ

1/2
P (A)),
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where δP (A) is the modulus character of P (A). Let iM be the inclusion map

iM : M∨(Q`) ↪→ G∨(Q`).

Then the Galois representation

ρΠ : GQ → G∨(Q`)

given by

ρΠ = iM ◦ ρπ

is attached to Π, again in the sense of Definition 1.3.1.2.

Proof. Decompose π and Π into their local components,

π ∼=
⊗′

v

πv, Π ∼=
⊗′

v

Πv.

Let S0 be a finite set of places of Q, which contains ` and the archimedean place, and such that for

p /∈ S0, the condition

ρ(Frobp)
ss ∈ s(πp)

of Definition 1.3.1.2 is satisfied for πp. Let S be the set of primes containing all those in S, as well

as any place v for which Πv is not spherical. We are to verify that

iM (s(πp)) ⊂ s(Πp). (1.3.2.1)

for p /∈ S.

Let WG be the Weyl group of T in G, and WM that of T in M , and let

ωπp : Q`[X
∗(T∨)]WM → Q`, ωΠp : Q`[X

∗(T∨)]WG → Q`

be the characters constructed in Proposition 1.3.1.1. Let V be any finite dimensional representation

of G, and let V |M be the same representation but viewed as a representation of M . By the
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characterizing property of the Satake parameter, checking (1.3.2.1) is the same as checking that

ωπp(χV ) = ωΠp(χV )

where χV is the character of V . This will of course follow if we show ωΠp is the restriction of ωπp

to the WG-invariants Q`[T (Qp)/T (Zp)]WG .

Recall the construction of ωπp via normalized induction; the representation πp occurs as the

irreducible spherical subquotient of a Borel induction

Ind
M(Qp)
(B∩M)(Qp)(χ · δ(B∩M)(Qp)).

But by induction in stages, Πp is the irreducible spherical subquotient of

Ind
G(Qp)
B(Qp)(χ · δB(Qp)).

This shows then that ωπp is the restriction of the character Q`[T (Qp)/T (Zp)]→ Q` induced from χ

to theWM -invariants, and similarly ωΠp is the restriction of the same character to Q`[T (Qp)/T (Zp)]WG .

Once we pass through the identification T (Qp)/T (Zp) = X∗(T∨), this is exactly what we wanted

to show.

1.4 The case of GSp4

We now apply the theory of the previous three sections to the case when G = GSp4. We will

define certain Langlands quotients of parabolically induced representations, induced from the Siegel

parabolic, and study their multiplicities in Eisenstein and cuspidal cohomology.

1.4.1 The group GSp4

We fix in this section some notation that will be used throughout this section.

Let J be the matrix

J =


1

1
−1

−1

 .
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Define GSp4 to be the group over Q defined matricially for Q-algebras A by

GSp4(A) = {g ∈ GL4(A) | tgJg = νJ for some ν = ν(g) ∈ A×}.

The group GSp4 is reductive and split. In fact, a split maximal torus T is given by the subgroup

of all diagonal matrices in GSp4.

The assignment g 7→ ν(g), where ν(g) is as in the definition above, defines a character of GSp4,

called the similitude character, and which we denote simply by ν. We also denote by the same

letter the restriction of ν to the maximal torus T .

The group GSp4 contains the subgroup Sp4, defined as

Sp4 = {g ∈ GSp4 | ν(g) = 1}.

The group Sp4 is the split simple group of type C2, with a choice of split maximal torus T0 = T∩Sp4,

given again by diagonal matrices. Let us now study this group from the perspective of its root

lattice.

The root lattice

The Dynkin diagram of Sp4 is as in Figure 1.4.1. So we are writing α for the long simple root

Figure 1.4.1: The Dynkin diagram of GSp4

and β for the short simple root. This way of labelling the roots will be consistent with our notation

for the simple roots of G2 later.

Explicitly, any element of T0 is a diagonal matrix of the form

diag(a, b, a−1, b−1),

and the characters α and β act on these matrices by

α(diag(a, b, a−1, b−1)) = b2, β(diag(a, b, a−1, b−1)) = ab−1.
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The character α has an obvious square root, which we write additively as α/2, which picks out the

b entry of a diagonal matrix as above. Then α/2 and β generate the character group X∗(T0).

The inner product space X∗(T0) ⊗ R is isometric to R2 with its usual inner product, and an

isometry is given by α 7→ (0, 2) and β 7→ (1,−1). Thus we get a picture of the root lattice as in

Figure 1.4.2; there, the dominant chamber is shaded.

We can extend the characters α and β to characters of the torus T ⊂ GSp4 as follows. Every

Figure 1.4.2: The root lattice of GSp4

element of T can be written as a diagonal matrix of the form

diag(a, b, ca−1, cb−1),

and for such matrices, we let

α(diag(a, b, ca−1, cb−1)) = b2c−1, β(diag(a, b, ca−1, cb−1)) = ab−1.

By its definition, the character ν acts on these matrices as

ν(diag(a, b, ca−1, cb−1)) = c.

The characters α, β, ν generate an index 2 subgroup in the character group X∗(T ), and the character

α+ ν (we write the group law in X∗(T ) additively) has a square root.

The center of GSp4 is equal to the center of GL4; it is just the subgroup of invertible multiples
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of the identity matrix I. The center of Sp4 has order 2 and is equal to {±I}.

Let us write ∆ for the set of roots of T in GSp4 obtained above, or for the set of roots in T0 in

Sp4. Write ∆+ for the positive roots. So

∆+ = {α, β, α+ β, α+ 2β}.

Parabolic subgroups

For γ ∈ ∆, write xγ for the unipotent root group homomorphism

xγ : Ga → GSp4.

Here Ga denotes as usual the additive group scheme. Then we have the following matrix formulas

for each xγ ,

xα(a) =


1

1 a
1

1

 , xβ(a) =


1 a

1
1
−a 1

 ,

xα+β(a) =


1 a

1 a
1

1

 , xα+2β(a) =


1 a

1
1

1

 ,

(1.4.1.1)

and then

x−γ(a) = txγ(a)

for γ ∈ ∆.

Let Pα ⊂ GSp4 be the standard parabolic subgroup whose Levi contains the image of xα. Write

Pα = MαNα for its Levi decomposition. We similarly define Pβ and write Pβ = MβNβ for its Levi

decomposition. We write B for the standard Borel and B = TU for its Levi decomposition. Then

by (1.4.1.1) it follows that B, Pα and Pβ take the following forms:

B =



∗ ∗ ∗ ∗
∗ ∗ ∗
∗
∗ ∗


 , Pα =



∗ ∗ ∗ ∗
∗ ∗ ∗
∗

∗ ∗ ∗


 , Pβ =



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗ ∗


 ,
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Along with GSp4 itself, these comprise all the standard parabolic subgroups of GSp4. The parabolics

Pα and Pβ are both maximal and have Levis isomorphic to GL2 ×GL1. Explicit isomorphisms

iα : GL2 ×GL1 →Mα, and iβ : GL2 ×GL1 →Mβ

are given by, for A =
(
a b
c d

)
∈ GL2 and t ∈ GL1,

iα(A, t) =


t−1 det(A)

a b
t

c d

 ∈Mα, iβ(A, t) =

(
A ∗

t tA−1

)
∈Mβ. (1.4.1.2)

As is often done, we call Pα the Klingen parabolic and Pβ the Siegel parabolic.

Duality

The group GSp4 is self dual. Identifying GSp4 with its dual group switches the long and short

simple roots. For us this will mean that certain data associated with the Siegel parabolic will

become associated with the Klingen parabolic on the dual side, and vice-versa.

This can be made explicit as follows. There are isomorphisms GL1
∼= GL∨1 , GL2

∼= GL∨2 , and

GSp4
∼= GSp∨4 such that the diagrams below commute. Identify Mα and Mβ with GL2 ×GL1 via

the maps iα and iβ of (1.4.1.2). Then M∨α and M∨β are identified with GL∨2 × GL∨1 as well, and

these latter identifications fit into a commutative diagram as follows. We have

GL∨2 ×GL∨1
∼ //

∼
��

M∨α
� � //

∼
��

GSp∨4

∼
��

GL2 ×GL1
ϕα
// GL2 ×GL1

iβ
//Mβ
� � // GSp4

(1.4.1.3)

where the map ϕα is the map given by

ϕα(A, t) = (A,det(A)t). (1.4.1.4)
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Similarly, we have a commutative diagram

GL∨2 ×GL∨1
∼ //

∼
��

M∨β
� � //

∼
��

GSp∨4

∼
��

GL2 ×GL1
ϕβ
// GL2 ×GL1

iα //Mα
� � // GSp4

(1.4.1.5)

where the map ϕβ given by

ϕβ(A, t) = (tA, t). (1.4.1.6)

Finally, for the Borel, the map i0 : GL3
1 → T given by

i0(a, b, c) = diag(a, b, ca−1, cb−1) (1.4.1.7)

is an isomorphism which identifies T with GL3
1, and hence also T∨ and (GL∨1 )3. This latter identi-

fication fits into the commutative diagram

(GL∨1 )3 ∼ //

∼
��

T∨ �
�

//

∼
��

GSp∨4

∼
��

(GL1)3 ϕ0
// (GL1)3 i0 // T �

�
// GSp4

(1.4.1.8)

where the map ϕ0 is given by

ϕ0(t1, t2, t3) = (t1t2t3, t1t3, t1t2t
2
3). (1.4.1.9)

The Weyl group

Let W = W (T,GSp4) be the Weyl group of GSp4. The group W is isomorphic to the dihedral

group D4 with eight elements acting naturally on the root lattice.

For γ ∈ ∆, let wγ be the reflection about the line perpendicular to γ. Then W is generated

by the simple reflections wα and wβ. Let us amalgamate products of these reflections into a single

notation: Write wαβ = wαwβ, wαβα = wαwβwα, and so on. Then

W = {1, wα, wβ, wαβ, wβα, wαβα, wβαβ , w−1}.
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The elements above are written minimally in terms of products of the simple reflections wα and

wβ, except for the final element w−1. This element w−1 is the element that acts by negation on

the root lattice, and it of length 4, equal to both wαβαβ and wβαβα.

For P = MN one of the standard parabolic subgroups of GSp4, let

WP = {w ∈W | w−1γ > 0 for all positive roots γ in M}.

This is the set of minimal length representatives for the quotient W (T,M)\W . Then

WPα = {1, wβ, wβα, wβαβ}, WPβ = {1, wα, wαβ, wαβα},

and WB = W .

Finally, we note for future reference that the action of W on T is given by

diag(a, b, ca−1, cb−1)wα = diag(a, cb−1, ca−1, b),

diag(a, b, ca−1, cb−1)wβ = diag(b, a, cb−1, ca−1).

(1.4.1.10)

The group GSp4(R)

The real Lie group GSp4(R) has discrete series representations, but is disconnected. However,

Sp4(R) is connected as a real Lie group. Therefore it will be easier to describe the classification of

the discrete series representations of Sp4(R) first and then use it to classify those of GSp4(R). For

a review of Harish-Chandra’s classification of discrete series, the reader may jump ahead to Section

1.6.2, specifically Theorem 1.6.2.1.

Fix first a maximal compact subgroup K∞ in GSp4(R). Then the connected component K◦∞ of

the identity is a maximal compact subgroup of Sp4(R).

The group K◦∞ is isomorphic to the real unitary group U(2). Therefore any maximal torus in

K◦∞ is two dimensional. Fix Tc ⊂ K◦∞ such a maximal torus. Then Tc is also a maximal torus in

Sp4(R).

Let tc be the complexified Lie algebra of Tc and k that of K◦∞. Abusing notation, we let

∆ = ∆(tc, sp4) be the roots of tc in sp4, and let ∆c = ∆(tc, k) ⊂ ∆ be the set of compact roots.
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There are two roots in ∆c and they are short. Pick one, and again by abuse of notation, call it

β. Choose a long root α in ∆ such that α and β are a pair of simple roots. The roots β and α/2

generate the lattice of analytically integral weights in t∨c .

The compact Weyl group Wc = W (tc, k) has two elements and is generated by the simple

reflection wβ across the line perpendicular to β. If we write W = W (tc, sp4) for the Weyl group

of ∆, then Wc has index 4 in W . Therefore the discrete series representations of Sp4(R) are

parametrized by analytically integral weights that lie far enough inside the four chambers below

the line perpendicular to β.

The element w−1 is in the Weyl group W , and the element wβ ◦ w−1 is equal to the simple

reflection wα+β across the line perpendicular to α + β. If a discrete series representation V has

Harish-Chandra parameter λ, then the contragredient V ∨ has Harish-Chandra parameter −λ; but

if the weight λ is in one of the four chambers under the line perpendicular to β, then −λ will lie

above this line. Therefore we should choose wβ(−λ) = wα+βλ as the parameter for V ∨.

Now there is an element k0 of order 2 in the nonidentity component of K∞ such that the adjoint

action of k0 on K◦∞ preserves Tc and acts as inversion there. Write GSp4(R)+ for the subgroup of

GSp4(R) given by

GSp4(R)+ = {g ∈ GSp4(R) | ν(g) > 0}.

Then

GSp4(R)+ ∼= Sp4(R)× R>0,

and each discrete series representation V of Sp4(R) can be extended to a representation V+ of

GSp4(R)+ by letting the R>0 component act trivially. Then we can induce to GSp4(R) to get a

representation Ṽ ,

Ṽ = Ind
GSp4(R)
GSp4(R)+(V+).

As a representation of GSp4(R)+, Ṽ splits as

Ṽ ∼= V+ ⊕ V ∨+ ,

with k0 switching between the two summands. It follows that, up to twists, the discrete series

representations of GSp4(R) are parametrized by orbits of certain analytically integral weights under
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the action of the four element subgroup

{1, wα, wα+β, w−1} ⊂W,

and the discrete series representations obtained in the same manner as Ṽ , without twisting, are

self-dual.

1.4.2 Near equivalence and induced representations

In this section we introduce the induced representations whose Langlands quotients we will be

interested in. These representations will be induced from the maximal parabolics of GSp4, and

when computing the Eisenstein multiplicity of their Langlands quotients it will be enough, by

multiplicity one theorems, to distinguish them up to near equivalence.

Now by Theorem 1.2.2.3, the pieces of the Franke filtration that can contribute to Eisenstein

cohomology are those which are induced from a cuspidal representation of a Levi subgroup which

itself has cohomology. For the Levis of the maximal parabolic subgroups of GSp4, which are both

isomorphic to GL2×GL1, such representations are given by pairs (F,ψ), where F is a holomorphic

cuspidal eigenform form of weight at least 2, and ψ is a Dirichlet character.

For such a pair (F,ψ), let us view ψ as a character of GL1(A) in the usual way, and let us write

π̃F for the unitary automorphic representation of GL2(A) attached to F . Write k for the weight of

F and ωF for the nebentypus. Then ωF is identified with the central character of π̃F .

The archimedean component π̃F,∞ of π̃F is the discrete series representation of GL2(R) of weight

k with trivial character on the central R>0. This representation is the sum of the two discrete series

representations of SL2(R) with Harish-Chandra parameters ±(k−1), and occurs in the cohomology

of the representation of GL2 of highest weight k − 2.

Now we have the representation π̃F � ψ of GL2(A) × GL1(A); the symbol � here is meant to

signal that this is an exterior tensor product. We identify the maximal Levis Mα and Mβ with

GL2 × GL1 via the isomorphisms of (1.4.1.2). Let δPα(A) and δPβ(A) be the respective modulus

characters of Pα(A) and Pβ(A). We note that for A ∈ GL2(A) and t ∈ GL1(A), we have

δPα(A)(A, t) = | det(A)|2|t|−4, δPβ(A)(A, t) = |det(A)|3t−3. (1.4.2.1)
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Now let s ∈ C. We define the normalized induced representations

ι
GSp4(A)
Pγ(A) (π̃F � ψ, s) = Ind

GSp4(A)
Pγ(A) ((π̃F � ψ)⊗ δs+1/2

Pγ
), γ ∈ {α, β}. (1.4.2.2)

These representations are trivial on AGSp4
(R)◦.

Proposition 1.4.2.1. Let γ ∈ {α, β} be one of the simple roots of GSp4. Let F, F ′ be holomorphic

cuspidal eigenforms, let ψ,ψ′ be Dirichlet characters, and let s, s′ ∈ R>0. If there are irreducible

subquotients

Π of ι
GSp4(A)
Pγ(A) (π̃F � ψ, s)

and

Π′ of ι
GSp4(A)
Pγ(A) (π̃F ′ � ψ′, s′)

such that Π and Π′ are nearly equivalent, then π̃F = π̃F ′, ψ = ψ′, and s = s′.

Proof. We will prove this proposition for the Siegel parabolic Pβ; the proof in the Klingen case is

analogous.

Let S be a finite set of places, including the archimedean place, such that for p /∈ S, the local

components Πp and Π′p are unramified and isomorphic. Then for such p, we have in particular

that π̃F,p and π̃F ′,p are unramified, and so are ψp and ψ′p. Write T2 for the standard diagonal torus

of GL2 and B2 for the standard upper triangular Borel in GL2. Then we know that there are

unramified characters χ1, χ2 of Q×p such that π̃F,p is the unramified subquotient of

Ind
GL2(Qp)
B2(Qp) ((χ1 � χ2)⊗ δ1/2

B2(Qp)),

where χ1 � χ2 is the character of T2(Qp) defined by

(χ1 � χ2)(diag(x, y)) = χ1(x)χ2(y)

and δB2(Qp) is the usual modulus character of B(Qp). Similarly, there are also unramified characters

χ′1, χ
′
2 of Q×p such that π̃F ′,p is the unramified subquotient of

Ind
GL2(Qp)
B2(Qp) ((χ′1 � χ′2)⊗ δ1/2

B2(Qp)).
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Furthermore, by temperedness, we know that χ1, χ2, χ
′
1, χ
′
2 are all unitary.

For x, y, t ∈ Q×p , consider the element of T (Qp) given in Mβ
∼= GL2 × GL1 by (diag(x, y), t).

Write χ1 � χ2 � ψp for the character of T (Qp) given on such elements by

(χ1 � χ2 � ψp)(diag(x, y), t) = χ1(x)χ2(y)ψp(t).

By induction in stages, we have that Πp is the unramified subquotient of

Ind
GSp4(Qp)
B(Qp) ((χ1 � χ2 � ψp)⊗ δsPβ(Qp) ⊗ δ

1/2
B(Qp)),

and similarly Π′p is the unramified subquotient of

Ind
GSp4(Qp)
B(Qp) ((χ′1 � χ′2 � ψ′p)⊗ δs

′

Pβ(Qp) ⊗ δ
1/2
B(Qp)).

By the theory of the Satake isomorphism recalled in Section 1.3.1, since Πp
∼= Π′p, the characters

(χ1 � χ2 � ψp)⊗ δsB(Qp) and (χ′1 � χ′2 � ψ′p)⊗ δs
′

B(Qp)

are equal up to the Weyl group W ; that is, there is a w ∈W such that for all x, y, t ∈ Q×p , we have

((χ1 � χ2 � ψp)⊗ δsPβ(Qp))((diag(x, y), t)w) = ((χ′1 � χ′2 � ψ′p)⊗ δs
′

Pβ(Qp))(diag(x, y), t). (1.4.2.3)

First, let us take the absolute value of both sides of (1.4.2.3). Since all characters involved

except δPβ(Qp) are unitary, this gives

δsPβ(Qp)((diag(x, y), t)w) = δs
′

Pβ(Qp)(diag(x, y), t), (1.4.2.4)

By the local analogue of (1.4.2.1), this becomes

δsPβ(Qp)((diag(x, y), t)w) = |xy|3s′ |t|−3s′ . (1.4.2.5)
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Now we compute, using (1.4.1.10), the following identities

(diag(x, y), t)wα = (diag(x, ty−1), t), (diag(x, y), t)wαβ = (diag(y, tx−1), t),

(diag(x, y), t)wβα = (diag(ty−1, x), t), (diag(x, y), t)wαβα = (diag(ty−1, tx−1), t),

(diag(x, y), t)wβαβ = (diag(tx−1, y), t), (diag(x, y), t)w−1 = (diag(tx−1, ty−1), t).

From these identities follow

δsPβ(Qp)((diag(x, y), t)wα) = |xy−1|3s, δsPβ(Qp)((diag(x, y), t)wαβ ) = |x−1y|3s,

δsPβ(Qp)((diag(x, y), t)wβα) = |xy−1|3s, δsPβ(Qp)((diag(x, y), t)wαβα) = |xy|−3s|t|3s,

δsPβ(Qp)((diag(x, y), t)wβαβ ) = |x−1y|3s, δsPβ(Qp)((diag(x, y), t)w−1) = |xy|−3s|t|3s.

Letting (x, y, t) = (1, 1, p) in the equations above and using (1.4.2.5) then gives

p3s′ =


1 if w ∈ {wα, wαβ, wβα, wαβα};

p−3s if w ∈ {wαβα, w−1}.

Since s, s′ > 0, this is impossible, which forces w = 1 or w = wβ. In either case, an analogous

computation as above then gives

p3s′ = p3s,

from which we conclude s = s′. Then we can cancel the modulus characters in (1.4.2.3) and get

(χ1 � χ2 � ψp)((diag(x, y), t)w) = (χ′1 � χ′2 � ψ′p)(diag(x, y), t), for some w ∈ {1, wβ}.

In the case that w = 1, we conclude that χ1 = χ′1, χ2 = χ′2, and ψp = ψ′p. If instead w = wβ, then

(diag(x, y), t)w = (diag(y, x), t),

and we conclude χ1 = χ′2, χ2 = χ′1, and ψp = ψ′p. In either case we have ψp = ψ′p and that

Ind
GL2(Qp)
B2(Qp) ((χ1 � χ2)⊗ δ1/2

B2(Qp)) and Ind
GL2(Qp)
B2(Qp) ((χ′1 � χ′2)⊗ δ1/2

B2(Qp))
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have the same unramified subquotients, which means π̃F,p ∼= π̃F ′,p. Since this is true for any p /∈ S,

strong multiplicity one for GL2 (and GL1) finishes the proof.

Next we want to distinguish between representations induced from different standard parabolics,

including the Borel. So let us first describe how we will induce characters from the torus T .

First identify T with (GL1)3 via the map (1.4.1.7). Let ψ1, ψ2, ψ3 be Dirichlet characters, viewed

as characters of GL1(A). Write ψ1 � ψ2 � ψ3 for the character of T (A) given by

(ψ1 � ψ2 � ψ3)(t1, t2, t3) = ψ1(t1)ψ2(t2)ψ3(t3).

Let δB(A) be the modulus character of B(A). When restricted to T (A), this gives

δB(A)(t1, t2, t3) = |t1|4|t2|2|t3|−3.

More generally, for s1, s2 ∈ C, we will consider the character of B(A) given by

e〈HB(·),s1α+s2β〉.

If ρ = 1
2(3α+ 4β) is half the sum of the positive roots, then we have

δ
1/2
B(A) = e〈HB(·),ρ〉.

We write

ι
GSp4(A)
B(A) (ψ1 � ψ2 � ψ3; s1, s2) = Ind

GSp4(A)
B(A) ((ψ1 � ψ2 � ψ3)⊗ e〈HB(·),s1α+s2β+ρ〉) (1.4.2.6)

for the normalized induction.

To distinguish between representations induced from different parabolics, we will attach to them

Galois representations and distinguish between those. The next three propositions will do this for

B, Mα, and Mβ, respectively.

Fix any prime ` and fix an isomorphism of C with Q`.

Proposition 1.4.2.2. Let ψ1, ψ2, ψ3 be Dirichlet characters, and let m1,m2 ∈ Z. Let Π be an
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irreducible subquotient of

ι
GSp4(A)
B(A) (ψ1 � ψ2 � ψ3;m1/2,m2).

Let jT,GSp4
be the inclusion T ↪→ GSp4. Then Π⊗|ν|m1/2 has attached to it the Galois representation

GQ → GSp4(Q`) given by

jT,GSp4
◦
(
(ψ1ψ2ψ3χ

m2
cyc)× (ψ1ψ3χ

m1−m2
cyc )× (ψ1ψ2ψ

2
3)
)
,

where we have viewed ψ1, ψ2, ψ3 as Galois characters via class field theory.

Proof. Let p be a prime different from ` which is unramified for Π, and hence which not divide the

conductors of the ψi’s. Let λi = ψi(p) for i = 1, 2, 3. (This is the Satake parameter of ψi at p.)

Then the character

(ψ1 � ψ2 � ψ3)⊗ e〈HB(·),(m1/2)α+m2β〉

of GL1(A)3 has Satake parameter at p

(p−m2λ1, p
−(m1−m2)λ2, p

m1/2λ3) ∈ GL1(Q`)
3.

Therefore

(ψ1 � ψ2 � ψ3)⊗ e〈HB(·),(m1/2)α+m2β〉 ⊗ |ν|m1/2 (1.4.2.7)

has Satake parameter at p

(p−m2λ1, p
−(m1−m2)λ2, λ3).

When identifying (GL1)3 with T on the dual side via the map ϕB of (1.4.1.8) and (1.4.1.9), this

implies that the character (1.4.2.7) has attached to it the Galois representation into T (Q`) given

by

(ψ1ψ2ψ3χ
m2
cyc)× (ψ1ψ3χ

m1−m2
cyc )× (ψ1ψ2ψ

2
3) : GQ → T (Q`)

Now we can pass the similitude twist inside the induction and get that Π ⊗ |ν|m1/2 is a sub-

quotient of the normalized induction of the character (1.4.2.7), whence an appeal to Proposition

1.3.2.1 finishes the proof.
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Proposition 1.4.2.3. Let F be a holomorphic cuspidal eigenform of weight k with central character

ωF , and let ψ be a Dirichlet character. Let m ∈ Z, and let Π be any irreducible subquotient of

ι
GSp4(A)
Pα(A) (π̃F � ψ,m/4).

Let jMβ ,GSp4
be the inclusion Mβ ↪→ GSp4. Then Π ⊗ |ν|(k−1−m)/2 has attached to it the Galois

representation GQ → GSp4(Q`) given by

jMβ ,GSp4
◦ (ρF × ψωFχk−1−m

cyc ),

where ρF is the Galois representation attached to F by Eichler–Shimura, Deligne, and Deligne–Serre

(Theorem 1.3.1.3), and ωF and ψ are identified with Galois characters via class field theory.

Proof. The proof will be similar to the previous proposition. Let p be a prime different from `

which is unramified for Π, and hence which is unramified for π̃F and ψ. Let diag(λ1, λ2) ∈ GL2(Q`)

be a diagonal representative of the Satake parameter of π̃F at p, and let λ3 = ψ(p). Then the

automorphic representation of Mα(A) given by

(π̃F � ψ)⊗ δm/4Pα(A)

has Satake parameter at p represented by

(p−m/2 diag(λ1, λ2), pmλ3) ∈ GL2(Q`)×GL1(Q`),

by (1.4.2.1). Thus

(π̃F � ψ)⊗ δm/4Pα(A) ⊗ |ν|
(k−1−m)/2 (1.4.2.8)

has Satake parameter at p represented by

(p−(k−1)/2 diag(λ1, λ2), pmλ3) ∈ GL2(Q`)×GL1(Q`),

because |ν(A, t)| = |det(A)| for (A, t) ∈Mα(A).

Now we pass through the map ϕα of (1.4.1.3) and (1.4.1.4) to get that the representation of
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(1.4.2.8) has Satake parameter represented by

(p−(k−1)/2 diag(λ1, λ2), p−(k−1−m)λ1λ2λ3) ∈ GL2(Q`)×GL1(Q`),

and therefore has the Galois representation GQ →Mβ(Q`) given by

ρF × ψωFχk−1−m
cyc

attached to it. Thus we are done by Proposition 1.3.2.1.

Proposition 1.4.2.4. Let F be a holomorphic cuspidal eigenform of weight k, and let ψ be a

Dirichlet character. Let m ∈ Z, and assume m ≡ k−1 (mod 2). Let Π be any irreducible subquotient

of

ι
GSp4(A)
Pβ(A) (π̃F � ψ,m/6).

Let jMα,GSp4
be the inclusion Mα ↪→ GSp4. Then Π ⊗ |ν|(k−1)/2 has attached to it the Galois

representation GQ → GSp4(Q`) given by

jMα,GSp4
◦ ((ρF ⊗ ψ)× ψχ(k−1−m)/2

cyc ),

where ρF is the Galois representation attached to F by Eichler–Shimura, Deligne, and Deligne–Serre

(Theorem 1.3.1.3), and ψ is identified with a Galois character via class field theory.

Proof. The proof will again be very similar to the previous two propositions. Let p be a prime

different from ` which is unramified for Π, and hence which is unramified for π̃F and ψ. Let

diag(λ1, λ2) ∈ GL2(Q`) be a diagonal representative of the Satake parameter of π̃F at p, and let

λ3 = ψ(p). Then the automorphic representation of Mα(A) given by

(π̃F � ψ)⊗ δm/6Pβ(A)

has Satake parameter at p represented by

(p−m/2 diag(λ1, λ2), pm/2λ3) ∈ GL2(Q`)×GL1(Q`),
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by (1.4.2.1). Thus

(π̃F � ψ)⊗ δm/4Pα(A) ⊗ |ν|
(k−1)/2 (1.4.2.9)

has Satake parameter at p represented by

(p−m/2 diag(λ1, λ2), p−(k−1−m)/2λ3) ∈ GL2(Q`)×GL1(Q`),

because |ν(A, t)| = |t| for (A, t) ∈Mβ(A).

Now we pass through the map ϕβ of (1.4.1.5) and (1.4.1.6) to get that the representation of

(1.4.2.9) has Satake parameter represented by

(p−(k−1)/2λ3 diag(λ1, λ2), p−(k−1−m)λ3) ∈ GL2(Q`)×GL1(Q`),

and therefore has the Galois representation GQ →Mα(Q`) given by

ρF × ψωFχ(k−1−m)/2
cyc

attached to it. Thus we are done once again by Proposition 1.3.2.1.

Proposition 1.4.2.5. Let Fα, Fβ be two holomorphic cuspidal eigenforms of weights kα and kβ,

respectively. Let ψα, ψβ, ψ1, ψ2, ψ3 be Dirichlet characters, and let mα,mβ,m1,m2 ∈ Z. Assume

that mβ ≡ kβ − 1 (mod 2). Then given any irreducible subquotients

Πα of ι
GSp4(A)
Pα(A) (π̃Fα � ψα,mα/4)

and

Πβ of ι
GSp4(A)
Pβ(A) (π̃Fβ � ψβ,mβ/6)

and

Π0 of ι
GSp4(A)
B(A) (ψ1 � ψ2 � ψ3;m1/2,m2),

we have that no two of Πα, Πβ, and Π0 are nearly equivalent.
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Proof. We first prove the proposition in the case that

kα − 1−mα ≡ kβ − 1 ≡ m1 (mod 2). (1.4.2.10)

Assume moreover that the quantities of (1.4.2.10) are all even. Then Propositions 1.4.2.3, 1.4.2.4,

and 1.4.2.2 attach to Πα, Πβ, and Π0, respectively, a Galois representation (which, by the parity

assumption just made, are central twists by an integral power of the cyclotomic character of the

Galois representations from those propositions). Let ρα, ρβ, and ρ0, respectively, be these Galois

representations. Denote by Std the standard representation of GSp4 into GL4 which we used to

define the group GSp4. Then we have the following formulas for our Galois representations when

composed with Std:

Std(ρα ⊗ χ(kα−1−mα)/2
cyc ) = ρFα ⊕ (ρ∨Fα ⊗ (ψαωFαχ

kα−1−mα
cyc ));

Std(ρβ ⊗ χ
(kβ−1
cyc )/2) = (ρFβ ⊗ ψβ)⊕ (ωFβψβχ

(kβ−1+mβ)
cyc )⊕ (ψβχ

(kβ−1−mβ)/2
cyc );

Std ◦(ρ0 ⊗ χm1/2
cyc ) = (ψ1ψ2ψ3χ

m2
cyc)⊕ (ψ1ψ3χ

m1−m2
cyc )⊕ (ψ3χ

−m2
cyc )⊕ (ψ2ψ

2
3χ

m2−m1
cyc ).

These follow from the usual formulas we use to include the Levis Mα, Mβ, and T into GSp4; here, of

course, ωFα is the nebentypus of Fα and all Dirichlet characters are identified with Galois characters

via class field theory.

Now since ρFα and ρFβ are irreducible, the three representations above (and any twist of them)

are semisimple. In particular, Std ◦ρα is the sum of two irreducible representations, Std ◦ρβ is

the sum of three, and Std ◦ρ0 is the sum of four. Therefore these representations are pairwise

non-isomorphic, and we can now appeal to Proposition 1.3.1.6 to conclude when the quantities of

(1.4.2.10) are all even.

On the other hand, when the quantities of (1.4.2.10) are all odd, we can just apply a completely

analogous argument to attach Galois representations to the twisted representations Πα ⊗ |ν|1/2,

Πβ ⊗ |ν|1/2, and Π0 ⊗ |ν|1/2, and we conclude in this case too.

Finally, assume that one of the quantities in (1.4.2.10) is even and another is odd. Let Π

be the representation of Πα, Πβ, and Π0 corresponding to the even quantity, and let Π′ be the
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one corresponding to the odd quantity. Then, as we just saw, Π has attached to it a Galois

representation ρΠ : GQ → GSp4(Q`) such that Std ◦ρΠ is semisimple and Hodge-Tate. But Π′ may

not have a Galois representation attached to it; we only know that Π′ ⊗ |ν|1/2 does. If there is

no such Galois representation, then we are done. Otherwise, it does have a Galois representation,

call it ρΠ′ , and we may assume ` is odd. We then restrict to GQ(ζ`), where ζ` is a primitive `th

root of unity. Then χcyc has a square root, and the representation of GQ(ζ`) given by (ρΠ′ ⊗χ
1/2
cyc)ss

must be the restriction to GQ(ζ`) of the Galois representation attached to Π′⊗ |ν|1/2; they are both

semisimple and their traces agree on Frobenius elements Frobp with p ≡ 1 (mod `). But since the

Galois representation attached to Π′ ⊗ |ν|1/2 is Hodge–Tate, ρΠ′ cannot be, and this distinguishes

Π′ from Π, as desired.

Remark 1.4.2.6. Some of the assumptions above on the parameters in the proof may look strange

at first, but there is an explanation for them. If one computes exactly which representations in-

duced from Mα, Mβ, and T can have cohomology for a given representation E of GSp4(C), their

parameters will satisfy (1.4.2.10). More precisely, if E has highest weight Λ, and if the represen-

tations Πα, Πβ, and Π0 of the proposition appear in the cohomology of E, then the quantities

of (1.4.2.10) are all even if Λ + ρ is in the integral span of the root lattice, and they are all odd

otherwise. In either of these cases, the quantity kβ − 1−mβ is always even.

This is to be expected for the following reason. In the case that Λ + ρ is in the integral span of

the root lattice, the Galois representations attached to the automorphic representations appearing

in the cohomology of E should be de Rham with Hodge–Tate weights given by the cocharacter of

T∨ corresponding to the infinitesimal character of these automorphic representations at infinity.

This infinitesimal character must then match that of E, and is therefore given by the integral

parameter Λ + ρ. In the case of Πα, Πβ, and Π0, these Galois representations are described up

to a twist by a power of the cyclotomic character respectively by Propositions 1.4.2.3, 1.4.2.4, and

1.4.2.2, and because the quantities of (1.4.2.10) are all even, the power we are twisting by is inte-

gral. Are applying that twist, the Hodge–Tate weights of these Galois representations will match

the cocharacter of T∨ given by Λ + ρ.

On the other hand, if Λ + ρ is not in the integral span of the root lattice, then the automorphic

representations appearing in the cohomology of E only have associated Galois representations (at
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least ones which are de Rham) after twisting by a half power of the similitude character. Cor-

respondingly, since the quantities of (1.4.2.10) are all odd in this case, the representations Πα,

Πβ, and Π0 must also be twisted by a half power of the similitude character to obtain nice Galois

representations.

1.4.3 Eisenstein multiplicity of Langlands quotients

In this section we introduce the Langlands quotients we are interested in and compute their

multiplicities in Eisenstein cohomology. Before we do that, however, let us compute the cohomology

of certain induced representations of the kind considered in Theorem 1.2.2.3. We do this in the

next proposition for representations induced from the Siegel parabolic of GSp4.

In what follows, we will be considering the (g0,K
◦
∞)-cohomology of representations when G =

GSp4. In this case we have g0 = sp4, the complexified Lie algebra of Sp4. As discussed in Section

1.4.1, the group K∞ has two connected components, and so the cohomology spaces we obtain will

be modules for the two element group of components of K∞, as well as for the group GSp4(Af ).

We will also consider the normalized induction functors ι
GSp4(A)
P (A) , for P a standard parabolic,

defined in (1.4.2.2) and (1.4.2.6), and also their finite adelic analogues ι
GSp4(Af )

P (Af ) which are defined

similarly.

The following proposition is essentially proved by Grbac and Grobner in [GG13], Proposition

4.2, using the same techniques as the ones we use. The main differences are that Grbac and Grobner

work with Sp4 instead of GSp4, which is not a serious difference, and that they also obtain results

for totally real fields instead of just Q. Actually, we have set things up so that it is possible to use

the results in this section to obtain results over totally real fields as well, but we are content with

working over Q for simplicity.

Proposition 1.4.3.1. Let E be an irreducible, finite dimensional representation of GSp4(C), and

say that E has highest weight Λ̃. Let Λ = Λ̃|T0, so that there are c1, c2 ∈ Z≥0 such that

Λ =
c1

2
(α+ 2β) + c2(α+ β).

Let F be a holomorphic cuspidal eigenform of weight k and trivial nebentypus, and let s ∈ C with
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Re(s) ≥ 0. Assume

H i(sp4,K
◦
∞; Ind

GSp4(A)
Pβ(A) ((π̃F � 1)⊗ Sym(aPβ ,0)(2s+1)ρPβ

)⊗ E) 6= 0.

Then either:

(i) We have

i = 3, k = c1 + 2c2 + 4, s =
c1 + 1

6
,

and

H3(sp4,K
◦
∞; Ind

GSp4(A)
Pβ(A) ((π̃F � 1)⊗ Sym(aPβ ,0)(2s+1)ρPβ

)⊗ E)

∼= ι
GSp4(Af )

Pβ(Af ) (π̃F,f � 1, (c1 + 1)/6),

or,

(ii) We have

i = 4, k = c1 + 2, s =
c1 + 2c2 + 3

6
,

and

H4(sp4,K
◦
∞; Ind

GSp4(A)
Pβ(A) ((π̃F � 1)⊗ Sym(aPβ ,0)(2s+1)ρPβ

)⊗ E)

∼= ι
GSp4(Af )

Pβ(Af ) (π̃F,f � 1, (c1 + 2c2 + 3)/6).

In both cases the cohomology spaces have the trivial action of the component group of K∞.

Proof. We will apply Theorem 1.2.2.3 to our present situation with π = (π̃F �1)⊗δsPβ(A) and h = t,

the complexified Lie algebra of T . In fact, it suffices to do all our computations restricted to the

complexified Lie algebra t0 of T0, which is a Cartan subalgebra of sp4. We have

WPβ = {1, wα, wαβ, wαβα},
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and one readily computes

−(Λ + ρ) = −(c1 + 1)
β

2
− (c1 + 2c2 + 3)

α+ β

2
,

−wα(Λ + ρ) = −(c1 + 2c2 + 3)
β

2
− (c1 + 1)

α+ β

2
,

−wαβ(Λ + ρ) = −(c1 + 2c2 + 3)
β

2
+ (c1 + 1)

α+ β

2
,

−wαβα(Λ + ρ) = −(c1 + 1)
β

2
+ (c1 + 2c2 + 3)

α+ β

2
.

Note that we have a decomposition

t0 = (mβ,0 ∩ t0)⊕ aPβ ,0,

and note also that (α+ β) acts as zero on the first summand, while β acts as zero on the second.

Now by Theorem 1.2.2.3, in order for our cohomology space to be nontrivial, we need there to

be a w ∈WPβ with

−w(Λ + ρ)|aPβ ,0 = 2sρPβ = 6s
α+ β

2
,

and

−w(Λ + ρ)|mβ,0 = ±(k − 1)
β

2
.

Therefore, because Re(s) ≥ 0, we see from the formulas for −w(Λ + ρ)|aPβ ,0 that w can only equal

wαβ or wαβα.

In the case that w = wαβ, we obtain by matching coefficients that

k − 1 = +(c1 + 2c2 + 3),

with this choice of sign because k − 1 ≥ 0, and

6s = c1 + 1.

We have that the length `(wαβ) of wαβ is 2. Also, since

ρ =
β

2
+ 3

α+ β

2
,
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we have

(wαβ(Λ + ρ)− ρ)|mβ,0 = (c1 + 2c2 + 2)
β

2
= (k − 2)

β

2
.

Therefore, the isomorphism of Theorem 1.2.2.3 in our case is

H i(sp4,K
◦
∞; Ind

GSp4(A)
Pβ(A) ((π̃F � 1)⊗ Sym(aPβ ,0)(2s+1)ρPβ

)⊗ E)

∼= ι
GSp4(Af )

Pβ(Af ) (π̃F,f � 1, (c1 + 1)/6)⊗H i−2(mβ,0,K
◦
∞ ∩ Pβ(R); (π̃F,∞ � 1)⊗ Fk−2),

where Fk−2 is the representation of mβ,0 of highest weight (k − 2)(β/2).

Now, since k−1 = c1 + 2c2 + 3 > 0, the representation π̃F,∞ is the discrete series representation

of GL2(R) of weight k, and therefore has nontrivial cohomology when tensored with Fk−2 in degree

1 and degree 1 only. Since K◦∞ ∩ GL2(R) is a maximal compact subgroup of GL2(R) (instead of

just being its identity component) the cohomology of π̃F,∞ in degree 1 is 1 dimensional (instead of

being 2 dimensional). The claim (i) of our proposition is now immediate.

The computation which uses wαβα and which proves the claim (ii) of the proposition is com-

pletely similar, and we omit it. If instead we decided to take (sp4,K∞)-cohomology, rather than

(sp4,K
◦
∞)-cohomology, then we would obtain the same results. This is because we decided to induce

the trivial character on the GL1 component of Mβ, and the maximal compact subgroup {±1} of

GL1(R) acts trivially via this character. It follows that the component group of K∞ acts trivially

on the cohomology, and this finishes the proof.

Now fix F a holomorphic cuspidal eigenform of weight k ≥ 2 and trivial nebentypus. For s ∈ C

with Re(s) > 0, let us write

Lβ(π̃F , s) = Langlands quotient of ι
GSp4(A)
Pβ(A) (π̃F � 1, s).

This notion was introduced just before Theorem 1.1.3.5.

The Langlands quotient Lβ(π̃F , s) is irreducible, and under a vanishing assumption on the L-

function of π̃F , we will calculate the multiplicity of the finite part Lβ(π̃F , s)f in the Eisenstein

cohomology of GSp4. The following lemma will be key to this.

Lemma 1.4.3.2. For any flat section φs ∈ ιGSp4(A)
Pβ(A) (π̃F � 1, s), the Eisenstein series E(φ, 2sρPβ )
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does not have a pole for Re(s) > 0 except perhaps if s = 1/6. If furthermore

L(π̃F , 1/2) = 0,

then E(φ, 2sρPβ ) is also holomorphic at s = 1/6.

Proof. This is an easy consequence of what is done in the paper of Kim [Kim95], but let us quickly

explain how this is proved, since we have set up the tools to do so already.

It suffices to prove the lemma for φ =
⊗

v φv decomposable into local sections. Write E(φ, s) =

E(φ, 2sρPβ ). By Theorem 1.1.1.1, the constant term of E(φ, s) along Pα (and hence along B) is

zero, and the constant term along Pβ is

EPβ (φ, s) = φs +M(φ,wαβα)−2sρPβ
.

Then we apply Theorem 1.1.1.2; in our current setting the root γ of that theorem is β, and

β̃ = ρPβ/3, and adjusting for this gives

M(φ,wαβα)−2sρPβ
=

m∏
j=1

LS(3js, π̃F , R
∨
i )

LS(3js+ 1, π̃F , R∨i )

⊗
v/∈S

φ
wαβα,sph
v,s ⊗

⊗
v∈S

Mv(φv,s, wαβα)−2sρPβ
,

where S is a finite set of places such that for v /∈ S, φv,s is spherical, and φ
wαβα,sph
v,s are certain

spherical vectors. Also, the representations Ri of M∨β can be determined from the action of the

Levi of Pα on its unipotent radical; there are two of them, and R1 is the standard representation

of GL2, and R2 is the determinant. Thus the quotient of L-functions is

LS(3s, π̃F )ζS(6s)

LS(3s+ 1, π̃F )ζS(6s+ 1)
.

Now by Harish-Chandra, the local intertwining operators are all holomorphic for Re(s) > 0

since π̃F is tempered. So we only have to worry about the poles and zeros of the L-functions in the

quotient above. Again since Re(s) > 0, the L-functions in the denominator do not vanish as they

are in the range of convergence, and the only pole in the numerator comes from the ζ-function at

s = 1/6. But if L(π̃F , 1/2) = 0, this zero cancels with the pole from the ζ-function.

Since the poles of E(φ, s) are determined by the poles of the constant term at all standard
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proper parabolics, we are done.

We are now ready to put everything together and compute the Eisenstein multiplicity of Lβ(π̃F�

1, s) for Re(s) > 0. See Definition 1.2.1.1 for the definition of this multiplicity.

Theorem 1.4.3.3. Let E be an irreducible representation of GSp4(C), and say that E has highest

weight Λ̃. Let Λ = Λ̃|T0, so that there are c1, c2 ∈ Z≥0 such that

Λ =
c1

2
(α+ 2β) + c2(α+ β).

Let F be a holomorphic cuspidal eigenform of weight k and trivial nebentypus, and let s ∈ C with

Re(s) > 0. If c1 = 0 and k = 2c2 + 4, also assume that

L(π̃F , 1/2) = 0.

Then

mi
[Pβ ](Lβ(π̃F � 1, s)f ,K

◦
∞, E) =


1 if i = 3, k = c1 + 2c2 + 4, s = (c1 + 1)/6

or if i = 4, k = c1 + 2, s = (c1 + 2c2 + 3)/6;

0 otherwise;

and

mi
[Pα](Lβ(π̃F � 1, s)f ,K

◦
∞, E) = mi

[B](Lβ(π̃F � 1, s)f ,K
◦
∞, E) = 0.

Therefore we also have

mi
Eis(Lβ(π̃F � 1, s)f ,K

◦
∞, E) = mi

[Pβ ](Lβ(π̃F � 1, s)f ,K
◦
∞, E).

Finally, all of these multiplicities are the same if we replace K◦∞ by K∞.

Proof. There are four associate classes of parabolics for GSp4 and they are equal to the conjugacy

classes of such. From the Franke–Schwermer decomposition (Theorem 1.1.2.1) we have that the
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Eisenstein cohomology decomposes as

H i
Eis(sp4,K

◦
∞;AE(GSp4)⊗ E) =

⊕
P∈{Pα,Pβ ,B}

⊕
ϕ∈ΦE,[P ]

H i(sp4,K
◦
∞;AE,[P ],ϕ(GSp4)⊗ E).

We will study the summands corresponding to Pβ, Pα, and B in what follows. The strategy for

the Pβ summand will be to show that if the representation Lβ(π̃F � 1, s) occurs as a subquotient

of one of these summands, then the corresponding associate class in ΦE,[Pβ ] is the unique one that

contains (π̃ � 1) ⊗ δsMβ(A). Then Proposition 1.4.3.1 will allow us to deduce the [Pβ]-Eisenstein

multiplicity claimed. In the remaining cases of Pα and B, we just show that none of the summands

of the cohomology corresponding to these parabolic subgroups can contain Lβ(π̃F � 1, s) as a

subquotient, the key input being Proposition 1.4.2.5.

Case of Pβ. Let ϕ′ be an associate class of cuspidal automorphic representations for E and

[Pβ] as in Section 1.1.2. Then ϕ′ contains a cuspidal automorphic representation of Mβ(A) which

tranforms trivially under AGSp4
(R)◦, and which therefore must be of the form

(π̃′ � ψ′)⊗ δs′Mβ(A)

where π̃′ is a unitary cuspidal automorphic representation of GL2(A), ψ′ is a Dirichlet character,

and s′ ∈ C. After possibly conjugating by wαβα, we may even assume Re(s′) ≥ 0.

We will study the pieceAE,[Pβ ],ϕ′(GSp4) of the Franke–Schwermer decomposition using Theorem

1.1.3.5 of Grbac. But first, we note that the infinitesimal character of AE,[Pβ ],ϕ′(GSp4) as an

(sp4,K∞)-module must match that of E. The former is given in terms of the representations in

ϕ′ by the Weyl orbit of λπ̃′ + 2s′ρPβ , where λπ̃′ is the infinitesimal character of π̃′, and the latter

is given by Λ + ρ. But the weight Λ + ρ is regular and real, and so since λπ′ is a multiple of the

root β and ρPβ is a multiple of the root α + β, it follows that λπ′ and s′ are real and nonzero. In

particular, s′ > 0 since we assumed Re(s′) ≥ 0.

Now we apply Theorem 1.1.3.5 and Proposition 1.1.3.2 to find that the cohomology space

H∗(sp4,K
◦
∞;AE,[Pβ ],ϕ′(GSp4)⊗ E),
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if nontrivial, is made up of subquotients of the cohomology spaces

H∗(sp4,K
◦
∞;Lβ(π̃′ � ψ′, s′)⊗ E) (1.4.3.1)

and

H∗(sp4,K
◦
∞;⊗ Ind

GSp4(A)
Pβ(A) ((π̃′ � ψ′)⊗ Sym(aPβ ,0)(2s′+1)ρPβ

)⊗ E). (1.4.3.2)

We claim that if (1.4.3.1) is nonzero, then π̃′ is cohomological. This will imply that π̃′ is

attached to a cuspidal holomorphic eigenform of weight at least 2. To start, we split into two cases:

Either π̃′∞ is tempered or nontempered. Of course, by Selberg’s conjecture, the latter possibility

should not occur, but we will use the following ad-hoc argument to bypass a dependence on this

conjecture.

So assume now, for sake of contradiction, both that the cohomology space (1.4.3.1) is nontrivial

and that π̃′∞ is nontempered. By the Langlands classification for real groups, π̃′∞ is the Langlands

quotient of a representation induced from a character, say χ, of T (R), and then Lβ(π̃′ � ψ′, s′)∞

is the Langlands quotient of a representation induced from χδs
′

Pβ(R). If Lβ(π̃′ � ψ′, s′)∞ ⊗ E has

nontrivial (sp4,K
◦
∞)-cohomology, then by [BW00], Theorem VI.1.7 (iii) (or rather, the analogue of

this theorem with twisted coefficients) so does the (normalized) induced representation

ι
GSp4(R)
B(R) (χδs

′

Pβ(R)).

By [BW00], Theorem III.3.3 and induction in stages, the induction

ι
GL2(R)
(B∩GL2)(R)(χδ

s′

Pβ(R))

has nontrivial (sl2,O(2))-cohomology when twisted by some finite dimensional representation of

GL2(C), and hence so does

ι
GL2(R)
(B∩GL2)(R)(χ)

since δPβ(R) is trivial on SL2(R). Thus by [BW00], Theorem VI.1.7 (ii), π̃′∞, which is the Langlands

quotient of this induction, also has cohomology. But the cohomological cusp forms for GL2 are the

holomorphic modular forms, which are in particular tempered at infinity. This is a contradiction.
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Therefore, still assuming (1.4.3.1) is nonzero, we must have π̃′∞ is tempered. Then by (the

twisted version of) [BW00], Lemma VI.1.5,

H∗(sp4,K
◦
∞; ι

GSp4(R)
Pβ(R) ((π̃′ � ψ′)∞, s

′)⊗ E) 6= 0.

But by [BW00], Theorem III.3.3, this is computed in terms of the cohomology of π̃′∞, and we

conclude that π̃′ is cohomological, as desired.

If instead (1.4.3.2) is nonzero, then we can use Theorem 1.2.2.3 to conclude that π̃′ is cohomo-

logical. In any case, if

H∗(sp4,K
◦
∞;AE,[Pβ ],ϕ′(GSp4)⊗ E) 6= 0,

then π̃′ = π̃F ′ for some cuspidal holomorphic eigenform F ′ of weight at least 2. Furthermore,

any irreducible subquotient of this cohomology space must be an irreducible subquotient of either

(1.4.3.2) or (1.4.3.1). The former, by Theorem 1.2.2.3 is a sum of copies of

ι
GSp4(Af )

Pβ(Af ) ((π̃F ′ � ψ′)f , s
′),

while the latter is a sum of copies of the Langlands quotient of this induction. In particular, they

are all nearly equivalent and occur in this induction.

So if we now assume that

H∗(sp4,K
◦
∞;AE,[Pβ ],ϕ′(GSp4)⊗ E)

contains Lβ(π̃F �ψ, s)f as a subquotient, then since we have shown s′ > 0, by Proposition 1.4.2.1,

π̃′ = π̃F , ψ′ = 1, and s = s′.

Therefore we have just shown that ϕ′ contains (π̃F � 1) ⊗ δsPβ(A). Since no two classes ϕ′

overlap, this determines ϕ′ uniquely. By Proposition 1.1.3.2, Proposition 1.4.3.2 and our vanishing

assumption on the L-function of π̃F , we have

AE,[Pβ ],ϕ(GSp4) ∼= Ind
GSp4(A)
Pβ(A) ((π̃F � 1)⊗ Sym(aPβ ,0)(2s+1)ρPβ

),

and then Proposition 1.4.3.1 gives the [Pβ]-Eisenstein multiplicities claimed.
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Case of Pα. Let ϕ′ this time be an associate class for E and Pα. Then ϕ′ contains a represen-

tation of the form

(π̃′ � ψ′)⊗ δs′Mα(A)

with π̃′ a unitary cuspidal automorphic representation of GL2(A), ψ′ a Dirichlet character, and

s′ ∈ C with Re(s′) ≥ 0. Then the same argument as in the Pβ case shows that s′ is real and

positive.

Now we once again apply Theorem 1.1.3.5 and Proposition 1.1.3.2 to find that the cohomology

space

H∗(sp4,K
◦
∞;AE,[Pα],ϕ′(GSp4)⊗ E),

if nontrivial, is made up of subquotients of the cohomology spaces

H∗(sp4,K
◦
∞;LGSp4(A)

Pα(A) (π̃′ ⊗ ψ′, s′)⊗ E) (1.4.3.3)

and

H∗(sp4,K
◦
∞; Ind

GSp4(A)
Pα(A) ((π̃′ � ψ′)⊗ Sym(aPα,0)(2s′+1)ρPα

)⊗ E). (1.4.3.4)

Just as in the Pβ case, the nonvanishing of either (1.4.3.3) or (1.4.3.4) implies that π̃′ = π̃F ′ for a

cuspidal holomorphic eigenform F ′ of weight at least 2, and that any irreducible subquotient of

H∗(sp4,K
◦
∞;AE,[Pα],ϕ′(GSp4)⊗ E)

is nearly equivalent to an irreducible subquotient of

ι
GSp4(Af )

Pα(Af ) ((π̃′ � ψ′)f , s
′).

Now we use Proposition 1.4.2.5 to conclude that Lβ(π̃F � 1, s) cannot also occur as a subquotient,

which finishes the proof in the case of Pα.

Case of B. Now we let ϕ′ be an associate class for E and [B]. So ϕ′ contains a character of

T (A) of the form

(ψ′1 � ψ′2 � ψ′3)⊗ e〈HB(·),s′1α+s′2β〉,
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where ψ′1, ψ
′
2, ψ

′
3 are Dirichlet characters and s′1, s

′
2 ∈ C. Let us write

ψ′ = ψ′1 � ψ′2 � ψ′3

for short.

We will study the piece AE,[B],ϕ′(GSp4) of the Franke–Schwermer decomposition using the

(Franke) filtration of Theorem 1.1.3.3. By that theorem, there is a filtration on the spaceAE,[B],ϕ′(GSp4)

whose graded pieces are parametrized by certain quadruples (Q, ν,Π, µ). For the convenience of

the reader, we recall what these quadruples consist of now:

• Q is a standard parabolic subgroup of GSp4;

• ν is an element of (t ∩mQ,0)∨;

• Π is an automorphic representation of MQ(A) occurring in

L2
disc(MQ(Q)AQ(R)◦\MQ(A))

and which is spanned by values at, or residues at, the point ν of Eisenstein series parabolically

induced from (B ∩MQ)(A) to MQ(A) by representations in ϕ′; and

• µ is an element of a∨Q,0 whose real part in Lie(AGSp4
(R)\AMQ

(R)) is in the closure of the

positive cone, and such that ν + µ lies in the Weyl orbit of Λ + ρ.

Then the graded pieces of AE,[B],ϕ′(GSp4) are isomorphic to direct sums of GSp4(Af )× (sp4,K∞)-

modules of the form

Ind
GSp4(A)
Q(A) (Π⊗ Sym(aQ,0)µ+ρQ)

for certain quadruples (Q, ν,Π, µ) of the form just described.

For each of the four possible parabolic subgroupsQ and any corresponding quadruple (Q, ν,Π, µ)

as above, we will show using Proposition 1.4.2.5 that the cohomology

H∗(sp4,K
◦
∞; Ind

GSp4(A)
Q(A) (Π⊗ Sym(aQ,0)µ+ρQ)) (1.4.3.5)

cannot have Lβ((π̃F � 1)f , s) as a subquotient, which will finish the proof.
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So first assume we have a quadruple (Q, ν,Π, µ) as above where Q = B. Then mQ,0 = 0, forcing

ν = 0. The entry Π is the unitarization of a representation in ϕ′, and thus must be a character ψ′

of T (A) conjugate to ψ′1 � ψ′2 � ψ′3. Finally, we have µ is Weyl conjugate to Λ + ρ.

Therefore the cohomology (1.4.3.5) is isomorphic, by Theorem 1.2.2.3, to a finite sum of copies

of

ι
GSp4(Af )

B(Af ) (ψ′f , µ).

By Proposition 1.4.2.5, Lβ((π̃F � 1)f , s) cannot be a subquotient of this space, and we conclude in

the case when Q = B.

If now we have a quadruple (Q, ν,Π, µ) where Q = Pα, then ν is an integer multiple of α/2 and

µ is a multiple of (α+ 2β)/2, and ν + µ is conjugate to Λ + ρ. We find that Π is a representation

generated by residual Eisenstein series at the point ν and is therefore a subquotient of the normalized

induction

ι
Mα(A)
(B∩Mα)(A)(ψ

′, ν),

where ψ′ is a character of T (A) conjugate to ψ′1 �ψ
′
2 �ψ

′
3. Then by 1.2.2.3 and induction in stages,

(1.4.3.5) is isomorphic to a subquotient of a finite sum of copies of

ι
GSp4(Af )

B(Af ) (ψ′f , ν + µ).

We then conclude in this case as well using Proposition 1.4.2.5.

The case when Q = Pβ is completely similar, and we omit the details. When Q = G, it is once

again similar, but easier since we do not need to use induction in stages. So we are done with the

proof of the [B]-Eisenstein multiplicity.

Finally, if we instead used K∞ instead of K◦∞ to compute cohomology, then all the multiplicities

that were zero remain zero. The multiplicities that were 1 remain 1 because they followed from

Proposition 1.4.3.1, which gets the same answer in both cases. The final claim about the action of

the component group of K∞ follows.
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1.4.4 Cuspidal multiplicity of Langlands quotients

Despite being nontempered quotients of induced representations, some of the Langlands quo-

tients we studied in the previous section can be found in cuspidal cohomology as well as Eisenstein

cohomology. The purpose of this section is to explain how this happens.

The occurrence of this phenomenon relies on the study of CAP representations, which were

first studied in an automorphic context by Piatetski-Shapiro in [PS83]. These, by definition, are

cuspidal automorphic representations which are nearly equivalent to an irreducible constituent of

a parabolically induced representation. In our context, these show up in the proof of the following

theorem.

Theorem 1.4.4.1. Let F be a cuspidal holomorphic eigenform of even weight k ≥ 4, and let ε be

the sign of the functional equation for the L-function L(π̃F , s). Assume L(π̃F , 1/2) = 0. Let E be

the irreducible representation of GSp4(C) of highest weight k−4
2 (α+ β). Then

mi
cusp(Lβ(π̃ � 1, 1/6)f ,K

◦
∞, E) =


1 if ε = 1 and i = 2 or 4;

2 if ε = −1 and i = 3;

0 otherwise.

Consequently,

mi(Lβ(π̃ � 1, 1/6)f ,K
◦
∞, E) =


1 if ε = 1 and i = 2, 3, or 4;

3 if ε = −1 and i = 3;

0 otherwise.

Proof. In [PS83], Piatetski-Shapiro proves that all CAP representations which are nearly equivalent

to Lβ(π̃ � 1, 1/6) come from Saito–Kurokawa forms, and each Saito–Kurokawa form appears with

multiplicity one. If ε = −1, then the corresponding Saito–Kurokawa representation which, at finite

places, is given by Lβ(π̃ � 1, 1/6)f , is in the (holomorphic) discrete series at infinity with Harish-

Chandra parameter k−4
2 (α + β) + ρ. The (sp4,K

◦
∞)-cohomology of the archimedean component

of this Saito–Kurokawa representation, with coefficients twisted by E, is therefore concentrated in
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middle degree 3 and is 2 dimensional. (See the remarks on discrete representations in Section 1.4.1;

the discrete series representations of GSp4(R) are sums to two such representations of Sp4(R).)

If instead ε = 1, then the Saito–Kurokawa representation in question has archimedean compo-

nent isomorphic to Lβ(π̃ � 1, 1/6)∞. Its cohomology is therefore concentrated in degrees 2 and 4,

and there it is isomorphic to the (sl2,O(2))-cohomology of π̃F,∞. (Note Pβ(R) ∩K◦∞ contains all

of O(2).) Since π̃F,∞ is the discrete series representation of GL2(R) of weight k, its cohomology is

1 dimensional. Therefore we have justified the cuspidal multiplicity of Lβ(π̃ � 1, 1/6)f . The full

multiplicity follows from adding the Eisenstein multiplicity computed in Theorem 1.4.3.3.

For a nice account of the facts we used about the CAP representations appearing here, see Gan

[Gan08]

We now make several remarks.

Remark 1.4.4.2. The above theorem corrects a computation made in the paper of Urban [Urb11],

5.5.3. There he obtains the same result except with the claim that

m2
[Pβ ](Lβ(π̃ � 1, 1/6)f ,K

◦
∞, E)

equals 1 instead of 0. When we factor in this correction, this shows that the Euler–Poincaré multi-

plicity (equivalent to the alternating sum of our multiplicities mi) discussed there is 1 when ε = 1

and is −3 when ε = −1.

But this would seem to throw off the computation in [Urb11] of the cuspidal overconvergent mul-

tiplicity of the critical p-stabilization of Lβ(π̃�1, 1/6)f . However, when we take into account the fact

that Pβ(R)∩K◦∞ contains the maximal compact subgroup O(2) of the GL2(R) factor of Mβ(R), we

see that all Eisenstein multiplicities there should be computed via (sl2,O(2))-cohomology, instead

of (sl2, SO(2))-cohomology. Taking this into account makes Urban’s overconvergent Eisenstein mul-

tiplicities equal to 1 instead of 2 when they are nonzero. The cuspidal overconvergent multiplicity

is then still equal to 2(ε− 1), which is what was claimed in [Urb11].

Remark 1.4.4.3. One could, in principle, use our methods to obtain analogous results as Theorems

1.4.3.3 and 1.4.4.1 in the case of Pα instead of Pβ. To compute the cuspidal multiplicities for Pα,

one would instead need to use results of Howe–Piatetski-Shapiro [HPS79] and Soudry [Sou88].
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Remark 1.4.4.4. In the case of G2, the results that allow us to compute the cuspidal multiplicity

for Langlands quotients coming from the short root parabolic are contained in the work on Gan–

Gurevich [GG06]. However, the corresponding results in the case of the long root parabolic are not

known. There are partial results in another work of Gan and Gurevich [GG09], but it does not give

all the results we need. In particular, they say nothing about the CAP representations they obtain

at infinity, and so we compute what these representations should be explicitly assuming Arthur’s

conjectures in Section 1.6.

1.5 The case of G2

In this section, we carry out computations analogous to those in the previous section for Lang-

lands quotients coming from the long root parabolic in G2. However, we note that it is not necessary

to have read the previous section in order to read this one.

1.5.1 The group G2

We define G2 to be the split simple group over Q with Dynkin diagram as in Figure 1.5.1.

Fixing a maximal Q-split torus T in G2, we choose a long simple root α and a short simple root β,

Figure 1.5.1: The Dynkin diagram of G2

as notated in the Dynkin diagram.

The group G2 has trivial center, so unlike Sp4, there are no central extensions of it which are

nontrivial.

Also different from Sp4 is that G2 does not have such a nice matricial definition. There is a

faithful representation of G2 into GL7 that we will make some use of, and while it is possible to

characterize the image of that representation in terms of the preservation of certain alternating

3-forms, it is hard to make that characterization explicit in terms of matrices. Consequently, we

will study G2 from the point of view of its root system, which we discuss now.
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The root lattice

The root lattice of G2 looks as in Figure 1.5.2. There, the dominant chamber is shaded. Write

Figure 1.5.2: The root lattice of G2

∆ for the set of roots of T in G2, and write ∆+ for the positive ones. So we have

∆+ = {α, β, α+ β, α+ 2β, α+ 3β, 2α+ 3β}.

One nice feature of G2 is that the Z-span of the root lattice equals the character group of T :

X∗(T ) = Zα⊕ Zβ.

Since the Cartan matrix of G2 has determinant 1, an analogous fact holds for the cocharacter group:

X∗(T ) = Zα∨ ⊕ Zβ∨. (1.5.1.1)

Parabolic subgroups

Let B denote the standard Borel subgroup of G2 with respect to our positive system of roots

∆+. We write B = TU for its Levi decomposition. Besides B, there are two other proper standard

parabolic subgroups, and they are maximal. Let Pα denote the standard parabolic subgroup whose

Levi contains α, and write Pα = MαNα for its Levi decomposition. Similarly define Pβ = MβNβ.

The maximal torus T is of course isomorphic to GL1 × GL1. In fact we fix an isomorphism
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i0 : GL1 ×GL1 → T , defined by

i0(t1, t2) = α∨(t1)β∨(t2).

This is indeed an isomorphism by (1.5.1.1).

For γ ∈ ∆ a root, write

xγ : Ga → G2

for the corresponding root group homomorphism, where Ga is the additive group scheme.

The Levis Mα and Mβ are both isomorphic to GL2. We write

iα : GL2 →Mα and iβ : GL2 →Mβ

for the isomorphisms which send the upper triangular matrix
(

1 a
0 1

)
in GL2 to the element xα(a)

and xβ(a), respectively.

We then have the following relations among these isomorphisms:

i−1
α (i0(t1, t2)) =

(
t1t
−1
2

t−1
1 t22

)
, i−1

β (i0(t1, t2)) =

(
t2

t1t
−1
2

)
.

We will often identify T with GL1 × GL1 via i0 and drop the notation from formulas. Similarly

we will often identify Mα and Mβ with GL2 and drop iα and iβ from notation when it causes no

confusion.

The standard representation

The smallest fundamental weight of G2 is α + 2β, and the representation attached to it is

seven dimensional. We denote it by R7 and call it the standard representation of G2; it is the

representation one naturally gets when defining G2 through its action on traceless split octonions.

Let V7 be the space of R7. This representation contains weight vectors for the seven weights

given by the six short roots together with the zero weight; see Figure 1.5.3. For such a weight λ,

choose a nonzero vector vλ ∈ V7 corresponding to that weight.

Let us order our weight vectors as follows:

v−α−2β, v−α−β, v−β, v0, vβ, vα+β, vα+2β.
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Figure 1.5.3: The weights of R7

Then using the above list as an ordered basis represents G2 as 7× 7 matrices acting on the linear

span of these seven weight vectors. We then have the following matrix representations of the

standard Levi subgroups of G2. For T we have

R7(i0(t1, t2)) = diag(t−1
2 , t−1

1 t2, t1t
−2
2 , 1, t−1

1 t22, t1t
−1
2 , t2), (1.5.1.2)

and for Mα and Mβ we have

R7 ◦ iα =


det−1

Std∨

1
Std

det

 , (1.5.1.3)

where Std is the standard representation of GL2, and

R7 ◦ iβ =

Std∨

Ad
Std

 , (1.5.1.4)

where Ad = Sym2⊗det−1 is the adjoint representation of GL2. These can be seen by looking at

strings in the directions of α and β in the weight diagram as in Figure 1.5.4.

Figure 1.5.4: The standard Levis of G2 under R7
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Duality

As in the case of GSp4, the group G2 is self dual, and identifying G2 with its dual group switches

the long and short simple roots.

More explicitly, fix identifications GL∨2
∼= GL2 and G2

∼= G∨2 so that positive coroots correspond

on the dual side to positive roots. Identify Mα and Mβ with GL2 via the maps iα and iβ introduced

above. Then M∨α and M∨β are identified with GL∨2 , and we have commuting diagrams

GL∨2
∼ //

∼
��

M∨α
� � //

∼
��

G∨2

∼
��

GL2
iβ
//Mβ
� � // G2,

(1.5.1.5)

and

GL∨2
∼ //

∼
��

M∨β
� � //

∼
��

G∨2

∼
��

GL2
iα //Mα

� � // G2.

(1.5.1.6)

This is simpler than in the GSp4 case; the obvious identifications are the correct ones. However,

the situation for the Borel is still a little bit complicated. Identifying GL1
∼= GL∨1 and T ∼= T∨, we

have a commuting diagram

GL∨1 ×GL∨1
∼ //

∼
��

T∨ �
�

//

∼
��

G∨2

∼
��

GL1 ×GL1
ϕ0
// GL1 ×GL1

i0 // T �
�

// G2,

(1.5.1.7)

where ϕ0 is given by

ϕ0(t1, t2) = (t31t
2
2, t

2
1t2). (1.5.1.8)

The Weyl group

Let W = W (T,G2) be the Weyl group of G2. The group W is isomorphic to the dihedral group

D6 with 12 elements acting naturally on the root lattice.

For γ ∈ ∆, let wγ be the reflection about the line perpendicular to γ. Then W is generated by

the simple reflections wα and wβ. As before, we use the following notation: Write wαβ = wαwβ,
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wαβα = wαwβwα, and so on. Then

W = {1, wα, wβ, wαβ, wβα, wαβα, wβαβ , wαβαβ , wβαβα, wαβαβα, wβαβαβ, w−1}.

The elements above are written minimally in terms of products of the simple reflections wα and

wβ, except for the final element w−1. This is the element that acts by negation on the root lattice,

and it of length 6, equal to both wαβαβαβ and wβαβαβα.

For P = MN one of the standard parabolic subgroups of GSp4, we write as usual

WP = {w ∈W | w−1γ > 0 for all positive roots γ in M}

for the set of representatives for the quotient W (T,M)\W of minimal length. Then

WPα = {1, wβ, wβα, wβαβ , wβαβα, wβαβαβ}, WPβ = {1, wα, wαβ, wαβα, wαβαβ , wαβαβα},

and WB = W .

We note for later use that

i0(t1, t2)wα = i0(t−1
1 t32, t2), i0(t1, t2)wβ = i0(t1, t1t

−1
2 ). (1.5.1.9)

The group G2(R)

The real Lie group G2(R) is connected and has discrete series (see Section 1.6.2 for a review of

the classification of discrete series, particularly Theorem 1.6.2.1).

Fix a maximal compact torus Tc in G2(R). Then Tc is two dimensional and lies in a maximal

compact subgroup of G2(R), which we denote by K∞. Then K∞ is connected and 6 dimensional.

In fact

K∞ ∼= SU(2)× SU(2)/µ2,

where µ2 = {±1} is diagonally embedded in SU(2)× SU(2).

Let tc be the complexified Lie algebra of Tc, and k that of K∞. We abuse notation and write

∆ = ∆(tc, g2) for the roots of tc in g2. Let ∆c = ∆(tc, k) denote the set of compact roots. There
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are four roots in ∆c consisting of a pair of short roots and a pair of long roots. The short compact

roots are orthogonal to the long ones.

Again, abusing notation, choose two simple roots α, β of tc in g2 with α long and β short, and

choose them so that β is compact. Then

∆c = {±β,±(2α+ 3β)}.

The compact Weyl group Wc = W (tc, k) has four elements and is isomorphic to (Z/2Z)⊕(Z/2Z).

We in fact have

Wc = {1, wβ, wαβαβα, w−1},

and wαβαβα equals the reflection across the line perpendicular to 2α + 3β. It follows that the

discrete series representations of G2(R) are parameterized by integral weights in the union of the

three chambers between β and 2α+ 3β which are far enough from the walls of those chambers.

1.5.2 Near equivalence and induced representations

In this section we will study the parabolically induced representations whose Langlands quo-

tients we will try to locate in cohomology later.

Let F be a cuspidal holomorphic eigenform, and let π̃ be the unitary automorphic representa-

tion of GL2(A) associated with it. We can then view π̃ as an automorphic representation of either

Mα(A) or Mβ(A).

Let δMα(A) be the modulus character of Mα(A), and δMβ(A) that of Mβ(A). Then for A ∈

GL2(A), we have

δMα(A)(A) = | detA|5, δMβ(A)(A) = |detA|3.

If s ∈ C, we define the normalized parabolic inductions

ι
G2(A)
Pγ(A)(π̃F , s) = Ind

G2(A)
Pγ(A)(π̃F ⊗ δs+1/2

Pγ
), γ ∈ {α, β}. (1.5.2.1)

We then have the following analogue of Proposition 1.4.2.1.

Proposition 1.5.2.1. Let γ ∈ {α, β} be one of the simple roots of G2. Let F, F ′ be cuspidal
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holomorphic eigenforms, and let s, s′ ∈ R>0. If there are irreducible subquotients

Π of ι
G2(A)
Pγ(A)(π̃F , s)

and

Π′ of ι
G2(A)
Pγ(A)(π̃F ′ , s

′)

such that Π and Π′ are nearly equivalent, then π̃F = π̃F ′ and s = s′.

Proof. We prove this for the short root parabolic Pβ since the proof in the case of Pα is completely

analogous.

Let p be a prime where the local components Πp and Π′p are unramified and isomorphic. Then

π̃F,p and π̃F ′,p are unramified.

Write T2 for the standard diagonal torus of GL2 and B2 for the standard upper triangular Borel

in GL2. Let δB2(Qp) be the usual modulus character of B2(Qp). Then by the results recalled in

Section 1.3.1, there are characters χ1, χ2, χ
′
1, χ
′
2 of Q×p such that π̃F,p is the unramified subquotient

of

Ind
GL2(Qp)
B2(Qp) ((χ1 � χ2)⊗ δ1/2

B2(Qp)),

and π̃F ′,p is the unramified subquotient of

Ind
GL2(Qp)
B2(Qp) ((χ′1 � χ′2)⊗ δ1/2

B2(Qp)).

Here, χ1 � χ2 is the character of T2 which evaluated at diag(x, y) ∈ T2(Qp) gives the product

χ1(x)χ2(y), and similarly for χ′1 � χ′2. By temperedness, the characters χ1, χ2, χ
′
1, χ2 are unitary.

By induction in stages, Π is the unramified subquotient of

Ind
G2(Qp)
B(Qp) (χδsPβ(Qp)δ

1/2
B(Qp)),

where χ is the character of T given by χ = (χ1 � χ2) ◦ iβ ◦ i−1
0 (see the subsection on parabolic

subgroups in Section 1.5.1) and similarly Π′p is the unramified subquotient of

Ind
G2(Qp)
B(Qp) (χ′δs

′

Pβ(Qp)δ
1/2
B(Qp)),
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where χ′ = (χ′1 � χ′2) ◦ iβ ◦ i−1
0 . The characters χ and χ′ are unitary. Since Π ∼= Π′, the characters

χδsPβ(Qp) and χ′δs
′

Pβ(Qp)

are equal up to the Weyl group W ; there is a w ∈W such that for all x, y ∈ Q×p , we have

χδsPβ(Qp)(i0(x, y)w) = χ′δs
′

Pβ(Qp)(i0(x, y)). (1.5.2.2)

Now let t ∈ Q×p and let

T = i0(t2, t).

Then we compute, using (1.5.1.9), that

T = Twβ = i0(t2, t),

Twα = Twαβ = i0(t, t),

Twβα = Twβαβ = i0(t, 1),

Twαβα = Twαβαβ = i0(t−1, 1),

Twβαβα = Twβαβαβ = i0(t−1, t−1),

Twαβαβα = Tw−1 = i0(t−2, t−1).

Since det(i−1
β (i0(x, y))) = x, the above gives

|χδsPβ(Qp)(T
w)| =



p6s if w ∈ {1, wβ};

p3s if w ∈ {wα, wαβ, wβα, wβαβ};

p−3s if w ∈ {wαβα, wαβαβ , wβαβα, wβαβαβ};

p−6s if w ∈ {wαβαβα, w−1}.

Comparing this to

|χ′δs′Pβ(Qp)(T )| = |t|6s′
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via (1.5.2.2) gives, since s, s′ > 0,

s = s′ and w ∈ {1, wβ}, or s = 2s′ and w ∈ {wα, wαβ, wβα, wβαβ}.

But in this latter case we can then repeat the calculation with T = i0(t, 1) instead. In this case we

then find

Twα = Twαβ = (t−1, 1),

Twβα = Twβαβ = (t−1, t−1),

and the same argument then rules out w ∈ {wα, wαβ, wβα, wβαβ}.

Therefore w ∈ {1, wβ} and s = s′. Then (1.5.2.2) implies χ1 = χ′1 and χ2 = χ′2 if w = 1, or

χ1 = χ′2 and χ2 = χ′1 if w = wβ. In either case we have

Ind
GL2(Qp)
B2(Qp) ((χ1 � χ2)⊗ δ1/2

B2(Qp)) and Ind
GL2(Qp)
B2(Qp) ((χ′1 � χ′2)⊗ δ1/2

B2(Qp))

have the same unramified subquotients, which means π̃F,p ∼= π̃F ′,p.

Now letting p vary over all unramified primes for which Πp
∼= Π′p and applying strong multiplicity

one for GL2 finishes the proof.

Let ψ1, ψ2 be Dirichlet characters, and consider the character ψ1 � ψ2 of T (A) given by

(ψ1 � ψ2)(i0(t1, t2)) = ψ1(t1)ψ2(t2).

Let δB(A) be the modulus character of B(A). We have

δ
1/2
B(A) = e〈HB(·),ρ〉,

where ρ = 3α+ 5β is half the sum of positive roots. If s1, s2 ∈ C, write

ι
G2(A)
B(A) (ψ1 � ψ2; s1, s2) = Ind

G2(A)
B(A) ((ψ1 � ψ2)⊗ e〈HB(·),s1α+s2β+ρ〉) (1.5.2.3)
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for the normalized induction.

For the following we fix any prime ` and identify C and Q` via a fixed isomorphism.

Proposition 1.5.2.2. Let ψ1, ψ2 be Dirichlet characters, and let m1,m2 ∈ Z. Let Π be an irre-

ducible subquotient of

ι
G2(A)
B(A) (ψ1 � ψ2;m1,m2).

Let jT,G2 be the inclusion of T into G2. Then Π has attached to it the Galois representation

GQ → G2(Q`) given by

jT,G2 ◦ i0 ◦
(
(χm2

cycψ
3
1ψ

2
2)× (χm1

cycψ
2
1ψ2)

)
,

where we have viewed ψ1, ψ2 as Galois characters via class field theory.

Proof. Let p be a prime different from ` which is unramified for Π, and hence which not divide the

conductors of the ψi’s. Let λi = ψi(p) for i = 1, 2. Then the character

(ψ1 � ψ2)⊗ e〈HB(·),m1α+m2β〉 (1.5.2.4)

of GL1(A)2 has Satake parameter at p

(p−(2m1−m2)λ1, p
−(2m2−3m1)λ2) ∈ GL1(Q`)

2.

Identifying (GL1)2 with T on the dual side via the map ϕ0 of (1.5.1.7) and (1.5.1.8) gives that

the character (1.5.2.4) has attached to it the Galois representation

i0 ◦
(
(χm2

cycψ
3
1ψ

2
2)× (χm1

cycψ
2
1ψ2)

)
.

Then we appeal to Proposition 1.3.2.1 to finish the proof.

Proposition 1.5.2.3. Let F be a holomorphic cuspidal eigenform of weight k and let m ∈ Z with

m ≡ k − 1 (mod 2). Let Π be any irreducible subquotient of

ι
G2(A)
Pα(A)(π̃F ,m/10).
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Let jMβ ,G2 be the inclusion Mβ ↪→ G2. Then Π has attached to it the Galois representation GQ →

G2(Q`) given by

jMβ ,G2 ◦ iβ ◦ (ρF ⊗ χ(m−k+1)/2
cyc ),

where ρF is the Galois representation attached to F by Eichler–Shimura, Deligne, and Deligne–Serre

(Theorem 1.3.1.3).

Proof. Let p be a prime different from ` which is unramified for Π, and hence which is unramified

for π̃F . Let diag(λ1, λ2) ∈ GL2(Q`) be a diagonal representative of the Satake parameter of π̃F at

p. Then

π̃F ⊗ δm/10
Pα(A)

has Satake parameter at p represented by

p−m/2 diag(λ1, λ2) ∈ GL2(Q`),

because δPα(A) acts as |det |5. Now we use the commutativity of (1.5.1.5) and Proposition 1.3.2.1

to conclude.

Proposition 1.5.2.4. Let F be a holomorphic cuspidal eigenform of weight k and let m ∈ Z with

m ≡ k − 1 (mod 2). Let Π be any irreducible subquotient of

ι
G2(A)
Pβ(A)(π̃F ,m/6).

Let jMα,G2 be the inclusion Mα ↪→ G2. Then Π has attached to it the Galois representation

GQ → G2(Q`) given by

jMα,G2 ◦ iα ◦ (ρF ⊗ χ(m−k+1)/2
cyc ),

where ρF is the Galois representation attached to F by Eichler–Shimura, Deligne, and Deligne–Serre

(Theorem 1.3.1.3).

Proof. The proof is completely similar to that of 1.5.2.3 above; switch α and β and appeal to

(1.5.1.6) instead of (1.5.1.5).

Before giving the analogue of Proposition 1.4.2.5, we need to prove a lemma about Galois
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representations attached to modular forms. The analogue of this lemma in the GSp4 case was

not necessary because of the nice shape of the Levis of the standard parabolic subgroups in the

standard representation of GSp4. Here in the G2 case, however, the blocks of Mβ in the standard

representation R7 include a symmetric square representation of GL2, and we will need the following

lemma to distinguish representations factoring through it and those factoring through Mα.

Lemma 1.5.2.5. Let F be a holomorphic cuspidal eigenform of weight k ≥ 2, and let ρF be its

Galois representation into GL2(Q`) (Theorem 1.3.1.3). Then Sym2 ρF is either irreducible, or is

the direct sum of two irreducible representations.

Proof. We separate the proof into two cases, first when F does not have CM and second when it

does.

Assume F does not have CM. By results of Momose [Mom81] (See also [Loe17]) we know then

that the image of ρF in GL2(Q`) can be conjugated to be either:

• an open subgroup of GL2(Z`), or

• an open subgroup of B×, where B is a certain quaternion algebra over Q`.

In either case the image of ρF is large enough for Sym2 ρF to be irreducible.

Now assume F has CM by an imaginary quadratic field K. Then ρF is the induction

ρF ∼= Ind
GQ
GK

(χ),

where χ is a Hecke character of GK . Thus, if c ∈ GQ is a complex conjugation, then writing V for

the space of ρF , there are linearly independent vectors u, v ∈ V such that

gu = χ(g)u, gv = χ(cgc)v, for g ∈ GK ,

and

cu = v, cv = u.

Let us write χc for the character given by

χc(g) = χ(cgc)
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for g ∈ GQ. If v1, v2 ∈ V , write v1 ⊗ v2 = v2 ⊗ v1 for the corresponding product in Sym2(V ).

Now we have

c(u⊗ v) = u⊗ v,

and

g(u⊗ v) = (χχc)(g)u⊗ v,

for g ∈ GK . So the space spanned by u⊗ v is invariant and gives the character χ′ of GQ which is

given by χχc on GK and is trivial on c. Also,

c(u⊗ u) = v ⊗ v, c(v ⊗ v) = u⊗ u,

and

g(u⊗ u) = χ2(g)u⊗ u, g(v ⊗ v) = χ2
c(g)v ⊗ v,

for g ∈ GK . Therefore the space spanned by u ⊗ u and v ⊗ v is also invariant, and GQ acts on it

as Ind
GQ
GK

(χ2). Thus

Sym2 ρF ∼= χ′ ⊕ Ind
GQ
GK

(χ2).

It now suffices to prove that Ind
GQ
GK

(χ2) is irreducible.

To this end, we first note that

Sym2 ρF |GK = χ2 ⊕ χ2
c ⊕ χχc.

Since Sym2 ρF is Hodge–Tate with Hodge–Tate weights 0, k − 1, and 2k − 2, it follows that either

χ2 or χ2
c is finite order, and the other is a finite order character times χ2k−2

cyc |GK . Therefore χ2

and χ2
c are distinct, because the evaluation of either character on a Frobenius element Frobp in

GK gives p-Weil numbers of different weights (since k > 1) and by Chebotarev, there are infinitely

many such Frobenius elements in GK .

Now assume that the space of Ind
GQ
GK

(χ2), spanned by u⊗ u and v ⊗ v, has an invariant vector

a(u⊗ u) + b(v ⊗ v)
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for some scalars a, b. We will show that this implies a = b = 0, which will prove that Ind
GQ
GK

(χ2) is

irreducible. Choose g ∈ GK with χ2(g) 6= χ2
c(g). Then we have

g(a(u⊗ u) + b(v ⊗ v)) = aχ2(g)(u⊗ u) + bχ2
c(g)(v ⊗ v),

which cannot be in the span of a(u ⊗ u) + b(v ⊗ v) unless a = 0 or b = 0. Since c switches u ⊗ u

and v ⊗ v, we must have both a = 0 and b = 0, which finishes the proof.

Remark 1.5.2.6. In our applications, we actually only need this lemma for one single `, but it

was essentially no harder to write down the proof for all `.

Remark 1.5.2.7. We thank Shuai Wang for bringing the following to our attention. There are

examples of irreducible, two dimensional representations of finite groups whose symmetric squares

do actually decompose as sums of three characters. It seems they tend to come from certain

representations of dihedral groups of order divisible by 8, though they can also come from other

groups of order divisible by 8 as well.

Therefore we cannot hope to get by on the irreducibility of ρF alone in proving the above lemma.

Also, this shows that the hypothesis that weight k ≥ 2 is essential, otherwise ρF may factor through

one of the aforementioned dihedral representations (for example if ρF has image precisely D4).

Proposition 1.5.2.8. Let Fα, Fβ be two holomorphic cuspidal eigenforms of weights kα and kβ,

respectively, and assume kβ ≥ 2. Let ψ1 and ψ2 be Dirichlet characters, and let mα,mβ,m1,m2 ∈

Z. Assume that mα ≡ kα − 1 (mod 2) and mβ ≡ kβ − 1 (mod 2). Then given any irreducible

subquotients

Πα of ι
G2(A)
Pα(A)(π̃Fα ,mα/10)

and

Πβ of ι
G2(A)
Pβ(A)(π̃Fβ ,mβ/6)

and

Π0 of ι
G2(A)
B(A) (ψ1 � ψ2;m1,m2),

we have that no two of Πα, Πβ, and Π0 are nearly equivalent.
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Proof. Let ρα, ρβ, and ρ0 be, respectively, the Galois representations attached to Πα, Πβ, and Π0

by Propositions 1.5.2.3, 1.5.2.4, and 1.5.2.2. We compose these with the standard representation

R7 and obtain, using (1.5.1.4), (1.5.1.3), and (1.5.1.2),

R7 ◦ ρα = (ρFα ⊗ χ(mα−kα+1)/2
cyc )⊕ (ρFα ⊗ χ(mα−kα+1)/2

cyc )∨ ⊕Ad(ρFα ⊗ χ(mα−kα+1)/2
cyc ),

R7 ◦ ρβ = 1⊕ (ωFβχ
mβ
cyc)⊕ (ω−1

Fβ
χ
−mβ
cyc )⊕ (ρFβ ⊗ χ

(mβ−kβ+1)/2
cyc )⊕ (ρFβ ⊗ χ

(mβ−kβ+1)/2
cyc )∨,

R7 ◦ ρ0 = 1⊕ (χm1
cycψ

2
1ψ2)⊕ (χ−m1

cyc ψ−2
1 ψ−1

2 )⊕ (ψ1ψ2χ
m2−m1
cyc )⊕ (ψ−1

1 ψ−1
2 χm1−m2

cyc )

⊕ (ψ1χ
2m1−m2
cyc )⊕ (ψ−1

1 χm2−2m1
cyc ).

Here ωFβ is the nebentypus of Fβ. We see that the first of these representations is either the sum

of 3 or 4 irreducible representations by Lemma 1.5.2.5, that the second is the sum of 5 irreducible

representations, and the last is the sum of 7. Therefore we are done by invoking Proposition

1.3.1.6.

1.5.3 Eisenstein multiplicity of Langlands quotients

We compute in this section the Eisenstein multiplicity of Langlands quotients coming from the

long root parabolic Pα. What follows will be highly analogous to the content of Section 1.4.3 where

we computed the Eisenstein multiplicity of Langlands quotients coming from the Siegel (short root)

parabolic of GSp4. It is interesting to note that the roles of the long and short root parabolics

switch when passing from GSp4 to G2.

For standard parabolics P in G2, we will make use of the normalized parabolic induction functors

ι
G2(A)
P (A) defined in (1.5.2.1) and (1.5.2.3), and their similarly defined finite adelic analogues ι

G2(Af )

P (Af ) .

Proposition 1.5.3.1. Let E be an irreducible, finite dimensional representation of G2(C), and say

that E has highest weight Λ. Write

Λ = c1(2α+ 3β) + c2(α+ 2β)

with c1, c2 ∈ Z≥0. Let F be a holomorphic cuspidal eigenform of weight k and trivial nebentypus,
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and let s ∈ C with Re(s) ≥ 0. Assume

H i(g2,K∞; Ind
G2(A)
Pα(A)(π̃F ⊗ Sym(aPα,0)(2s+1)ρPα

)⊗ E) 6= 0.

Then either:

(i) We have

i = 4, k = 2c1 + c2 + 4, s =
c2 + 1

10
,

and

H4(g2,K∞; Ind
G2(A)
Pα(A)(π̃F ⊗ Sym(aPα,0)(2s+1)ρPα

) ⊗ E) ∼= ι
G2(Af )

Pα(Af )(π̃F,f , (c2 + 1)/10),

or,

(ii) We have

i = 5, k = c1 + c2 + 3, s =
3c1 + c2 + 4

10
,

and

H5(g2,K∞; Ind
G2(A)
Pα(A)(π̃F ⊗ Sym(aPα,0)(2s+1)ρPα

)⊗ E)

∼= ι
G2(Af )

Pα(Af )(π̃F,f , (3c1 + c2 + 4)/10),

or,

(iii) We have

i = 6, k = c1 + 2, s =
3c1 + 2c2 + 5

10
,

and

H6(g2,K∞; Ind
G2(A)
Pα(A)(π̃F ⊗ Sym(aPα,0)(2s+1)ρPα

)⊗ E)

∼= ι
G2(Af )

Pα(Af )(π̃F,f , (3c1 + 2c2 + 5)/10).
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Proof. Let t be the complexified Lie algebra of T . Note that we have a decomposition

t = (mα,0 ∩ t)⊕ aPα,0,

and (α+ 2β) acts by zero on the first component while α acts by zero on the second. We also have

WPα = {1, wβ, wβα, wβαβ , wβαβα, wβαβαβ},

and one computes

−(Λ + ρ) = −(c1 + 1)
β

2
− (3c1 + 2c2 + 5)

α+ 2β

2
,

−wβ(Λ + ρ) = −(c1 + c2 + 2)
β

2
− (3c1 + c2 + 4)

α+ 2β

2
,

−wβα(Λ + ρ) = −(2c1 + c2 + 3)
β

2
− (c2 + 1)

α+ 2β

2
,

−wβαβ(Λ + ρ) = −(2c1 + c2 + 3)
β

2
+ (c2 + 1)

α+ 2β

2
,

−wβαβα(Λ + ρ) = −(c1 + c2 + 2)
β

2
+ (3c1 + c2 + 4)

α+ 2β

2
,

−wβαβαβ(Λ + ρ) = −(c1 + 1)
β

2
+ (3c1 + 2c2 + 5)

α+ 2β

2
.

Now by Theorem 1.2.2.3, in order for our cohomology space to be nontrivial, there needs to be

a w ∈WPα with

−w(Λ + ρ)|aPα,0 = 2sρPα = 10s
α+ 2β

2
,

and

−w(Λ + ρ)|mα,0 = ±(k − 1)
α

2
.

Therefore, since Re(s) ≥ 0, we see from the formulas for each −w(Λ + ρ)|aPβ ,0 that w can only

equal wβαβ , wβαβα, or wβαβαβ.

In the case that w = wβαβ , we get that

k − 1 = +(2c1 + c2 + 3),
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with this choice of sign because k − 1 ≥ 0, and

6s = c2 + 1.

We also have that the length `(wβαβ) of wβαβ is 3. Finally, since

ρ =
α

2
+ 5

α+ 2β

2
,

we have

(wβαβ(Λ + ρ)− ρ)|mα,0 = (2c1 + c2 + 2)
α

2
= (k − 2)

α

2
.

Therefore, the isomorphism of Theorem 1.2.2.3 in our case is

H i(g2,K∞; Ind
G2(A)
Pα(A)(π̃F ⊗ Sym(aPα,0)(2s+1)ρPα

)⊗ E)

∼= ι
G2(Af )

Pα(Af )(π̃F,f , (c2 + 1)/10)⊗H i−3(mα,0,K∞ ∩ Pα(R); π̃F,∞ ⊗ Fk−2),

where Fk−2 is the representation of mα,0 of highest weight (k − 2)(α/2).

Now, since k−1 = 2c1 + c2 + 3 > 0, the representation π̃F,∞ is the discrete series representation

of GL2(R) of weight k, and therefore has nontrivial cohomology when tensored with Fk−2 in degree

1 and degree 1 only. Since K∞∩GL2(R) is a maximal compact subgroup of GL2(R), the cohomology

of π̃F,∞ in degree 1 is 1 dimensional. The claim (i) of our proposition is now immediate.

The claims (ii) and (iii) are completely similar, using instead the length 4 element wβαβα and

the length 5 element wβαβαβ, respectively; we omit the details.

We now prove an analogue of Lemma 1.4.3.2 in our context.

Lemma 1.5.3.2. Let F be a holomorphic cuspidal eigenform of weight k ≥ 2 and trivial nebentypus.

For any flat section φs ∈ ιG2(A)
Pα(A)(π̃F , s), the Eisenstein series E(φ, 2sρPα) does not have a pole for

Re(s) > 0 except perhaps if s = 1/10. If furthermore

L(1/2, π̃F ,Sym3) = 0,

then E(φ, 2sρPα) is also holomorphic at s = 1/10.
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Proof. This is an easy consequence of what is done in the paper of Žampera [Ž97], but let us quickly

explain how this is proved, since we have set up the tools to do so already.

It suffices to prove the lemma for φ =
⊗

v φv decomposable into local sections. Write E(φ, s) =

E(φ, 2sρPβ ). By Theorem 1.1.1.1, the constant term of E(φ, s) along Pβ (and hence along B) is

zero, and the constant term along Pα is

EPα(φ, s) = φs +M(φ,wβαβαβ)−2sρPβ
.

Then we apply Theorem 1.1.1.2; in our current setting the root γ of that theorem is α, and

β̃ = ρPα/5, and adjusting for this gives

M(φ,wβαβαβ)−2sρPα =

m∏
j=1

LS(5js, π̃F , R
∨
i )

LS(5js+ 1, π̃F , R∨i )

⊗
v/∈S

φ
wβαβαβ ,sph
v,s ⊗

⊗
v∈S

Mv(φv,s, wβαβαβ)−2sρPα ,

where S is a finite set of places such that for v /∈ S, φv,s is spherical, and φ
wβαβαβ ,sph
v,s are certain

spherical vectors. Also, the representations Ri of M∨β can be determined from the action of the Levi

of Pα on its unipotent radical; there are two of them, and R1 is the representation Sym3⊗det−1

of GL2, and R2 is the determinant. Thus the quotient of L-functions is

LS(5s, π̃F ,Sym3)ζS(10s)

LS(5s+ 1, π̃F ,Sym3)ζS(10s+ 1)
.

Now by Harish-Chandra, the local intertwining operators are all holomorphic for Re(s) > 0

since π̃F is tempered. So we only have to worry about the poles and zeros of the L-functions in

the quotient above. Again since Re(s) > 0, the L-functions in the denominator do not vanish as

they are in the range of convergence. By a result of Kim and Shahidi [KS99], the symmetric cube

L-function is entire, and so the only pole in the numerator comes from the ζ-function at s = 1/10.

But if L(1/2, π̃F , Sym3) = 0, this zero cancels with the pole from the ζ-function.

Since the poles of E(φ, s) are determined by the poles of the constant term at all standard

proper parabolics, we are done.

Now fix F a holomorphic cuspidal eigenform of weight k ≥ 2 and trivial nebentypus. For s ∈ C
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with Re(s) > 0, let us write

Lα(π̃F , s) = Langlands quotient of ι
G2(A)
Pα(A)(π̃F , s).

This notion was introduced just before Theorem 1.1.3.5.

We now compute the Eisenstein multiplicity of this Langlands quotient (see Definition 1.2.1.1).

Theorem 1.5.3.3. Let E be an irreducible, finite dimensional representation of G2(C), and say

that E has highest weight Λ. Write

Λ = c1(2α+ 3β) + c2(α+ 2β)

with c1, c2 ∈ Z≥0. Let F be a holomorphic cuspidal eigenform of weight k and trivial nebentypus,

and let s ∈ C with Re(s) ≥ 0. If c2 = 0 and k = 2c1 + 4, also assume that

L(1/2, π̃F , Sym3) = 0.

Then

mi
[Pα](Lα(π̃F , s),K∞, E) =



1 if i = 4, k = 2c1 + c2 + 4, s = (c2 + 1)/10

or if i = 5, k = c1 + c2 + 3, s = (3c1 + c2 + 4)/10

or if i = 6, k = c1 + 2, s = (3c1 + 2c2 + 5)/10;

0 otherwise,

and

mi
[Pβ ](Lα(π̃F , s),K∞, E) = mi

[B](Lα(π̃F , s),K∞, E) = 0.

Therefore we also have

mi
Eis(Lα(π̃F , s),K∞, E) = mi

[Pα](Lα(π̃F , s),K∞, E).

Proof. From the Franke–Schwermer decomposition (Theorem 1.1.2.1) we have that the Eisenstein
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cohomology decomposes as

H i
Eis(g2,K∞;AE(G2)⊗ E) =

⊕
P∈{Pα,Pβ ,B}

⊕
ϕ∈ΦE,[P ]

H i(g2,K∞;AE,[P ],ϕ(G2)⊗ E).

We will study the summands corresponding to Pα, Pβ, and B in what follows.

Case of Pα. Let ϕ′ be an associate class of cuspidal automorphic representations for E and [Pα]

as in Section 1.1.2. Then ϕ′ contains a cuspidal automorphic representation of Mα(A) ∼= GL2(A),

and which therefore must be of the form

π̃′ ⊗ δs′Mβ(A)

where π̃′ is a unitary cuspidal automorphic representation of GL2(A) and s′ ∈ C. After possibly

conjugating by wβαβαβ, we may even assume Re(s′) ≥ 0.

First, we note that the infinitesimal character of AE,[Pα],ϕ′(G2) as a (g2,K∞)-module must

match that of E. The former is given by the Weyl orbit of λπ̃′+2s′ρPα , where λπ̃′ is the infinitesimal

character of π̃′, and the latter is given by the Weyl orbit of Λ + ρ. But the weight Λ + ρ is regular

and real, and so since λπ′ is a multiple of the root α and ρPα is a multiple of the root α + 2β, it

follows that λπ′ and s′ are real and nonzero. In particular, s′ > 0 since we assumed Re(s′) ≥ 0.

Now we apply Theorem 1.1.3.5 and Proposition 1.1.3.2 to find that the cohomology space

H∗(g2,K∞;AE,[Pα],ϕ′(G2)⊗ E),

if nontrivial, is made up of subquotients of the cohomology spaces

H∗(g2,K∞;Lα(π̃′, s′)⊗ E) (1.5.3.1)

and

H∗(g2,K∞;⊗ Ind
G2(A)
Pα(A)(π̃

′ ⊗ Sym(aPα,0)(2s′+1)ρPα
)⊗ E). (1.5.3.2)

We claim that if (1.5.3.1) is nonzero, then π̃′ is cohomological. This will imply that π̃′ is

attached to a cuspidal holomorphic eigenform of weight at least 2. To start, we split into two cases:
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Either π̃′∞ is tempered or nontempered. Of course, by Selberg’s conjecture, the latter possibility

should not occur, but we will use the following ad-hoc argument to bypass a dependence on this

conjecture.

So assume now, for sake of contradiction, both that the cohomology space (1.5.3.3) is nontrivial

and that π̃′∞ is nontempered. By the Langlands classification for real groups, π̃′∞ is the Langlands

quotient of a representation induced from a character, say χ, of T (R), and then Lα(π̃′, s′)∞ is

the Langlands quotient of a representation induced from χδs
′

Pα(R). If Lα(π̃′, s′)∞⊗E has nontrivial

(g2,K∞)-cohomology, then by [BW00], Theorem VI.1.7 (iii) (or rather, the analogue of this theorem

with twisted coefficients) so does the (normalized) induced representation

ι
GSp4(R)
B(R) (χδs

′

Pα(R)).

By [BW00], Theorem III.3.3 and induction in stages, the induction

ι
GL2(R)
(B∩GL2)(R)(χδ

s′

Pα(R))

has nontrivial (sl2,O(2))-cohomology when twisted by some finite dimensional representation of

GL2(C), and hence so does

ι
GL2(R)
(B∩GL2)(R)(χ)

since δPβ(R) is trivial on SL2(R). Thus by [BW00], Theorem VI.1.7 (ii), π̃′∞, which is the Langlands

quotient of this induction, also has cohomology. But the cohomological cusp forms for GL2 are the

holomorphic modular forms, which are in particular tempered at infinity. This is a contradiction.

Therefore, still assuming (1.5.3.1) is nonzero, we must have π̃′∞ is tempered. Then by (the

twisted version of) [BW00], Lemma VI.1.5,

H∗(g2,K∞; ι
G2(R)
Pα(R)(π̃

′
∞, s

′)⊗ E) 6= 0.

But by [BW00], Theorem III.3.3, this is computed in terms of the cohomology of π̃′∞ itself, and we

conclude that π̃′ is cohomological, as desired.

If instead (1.5.3.2) is nonzero, then we can use Theorem 1.2.2.3 to conclude that π̃′ is cohomo-
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logical. In any case, if

H∗(g2,K∞;AE,[Pα],ϕ′(G2)⊗ E) 6= 0,

then π̃′ = π̃F ′ for some cuspidal holomorphic eigenform F ′ of weight at least 2. Furthermore,

any irreducible subquotient of this cohomology space must be an irreducible subquotient of either

(1.5.3.2) or (1.4.3.1). The former, by Theorem 1.2.2.3 is a sum of copies of

ι
GSp4(Af )

Pβ(Af ) ((π̃F ′ � ψ′)f , s
′),

while the latter is a sum of copies of the Langlands quotient of this induction. In particular, they

are all nearly equivalent and occur in this induction.

So if we now assume that

H∗(g2,K∞;AE,[Pα],ϕ′(G2)⊗ E)

contains Lα(π̃F , s)f as a subquotient, then since we have shown s′ > 0, by Proposition 1.5.2.1,

π̃′ = π̃F and s = s′.

Therefore we have just shown that ϕ′ contains π̃F ⊗ δsPα(A). Since no two classes ϕ′ overlap, this

determines ϕ′ uniquely. By Proposition 1.1.3.2, Proposition 1.5.3.2 and our vanishing assumption

on the symmetric cube L-function of π̃F , we have

AE,[Pα],ϕ(G2) ∼= Ind
G2(A)
Pα(A)(π̃F ⊗ Sym(aPα,0)(2s+1)ρPα

),

and then Proposition 1.5.3.1 gives the [Pβ]-Eisenstein multiplicities claimed.

Case of Pβ. Let ϕ′ this time be an associate class for E and Pβ. Then ϕ′ contains a represen-

tation of the form

π̃′ ⊗ δs′Mα(A)

with π̃′ a unitary cuspidal automorphic representation of GL2(A) and s′ ∈ C with Re(s′) ≥ 0. Then

the same argument as in the Pα case shows that s′ is real and positive.

Now we once again apply Theorem 1.1.3.5 and Proposition 1.1.3.2 to find that the cohomology
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space

H∗(g2,K∞;AE,[Pβ ],ϕ′(G2)⊗ E),

if nontrivial, is made up of subquotients of the cohomology spaces

H∗(g2,K∞;LG2(A)
Pβ(A)(π̃

′ ⊗ ψ′, s′)⊗ E) (1.5.3.3)

and

H∗(g2,K∞; Ind
GSp4(A)
Pα(A) (π̃′ ⊗ Sym(aPβ ,0)(2s′+1)ρPβ

)⊗ E). (1.5.3.4)

Just as in the Pα case, the nonvanishing of either (1.5.3.3) or (1.5.3.4) implies that π̃′ = π̃F ′ for a

cuspidal holomorphic eigenform F ′ of weight at least 2, and that any irreducible subquotient of

H∗(g2,K∞;AE,[Pβ ],ϕ′(G2)⊗ E)

is nearly equivalent to an irreducible subquotient of

ι
G2(Af )

Pβ(Af )(π̃
′
f , s
′).

Now we use Proposition 1.5.2.8 to conclude that Lβ(π̃F , s) cannot also occur as a subquotient,

which finishes the proof in the case of Pβ.

Case of B. Now we let ϕ′ be an associate class for E and [B]. So ϕ′ contains a character of

T (A) of the form

(ψ′1 � ψ′2)⊗ e〈HB(·),s′1α+s′2β〉,

where ψ′1, ψ
′
2 are Dirichlet characters and s′1, s

′
2 ∈ C. Let us write

ψ′ = ψ′1 � ψ′2 � ψ′3

for short.

We will study the pieceAE,[B],ϕ′(G2) of the Franke–Schwermer decomposition using the (Franke)

filtration of Theorem 1.1.3.3. By that theorem, there is a filtration on the space AE,[B],ϕ′(G2) whose

graded pieces are parametrized by certain quadruples (Q, ν,Π, µ). For the convenience of the reader,
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we recall what these quadruples consist of now:

• Q is a standard parabolic subgroup of G2;

• ν is an element of (t ∩mQ,0)∨;

• Π is an automorphic representation of MQ(A) occurring in

L2
disc(MQ(Q)AQ(R)◦\MQ(A))

and which is spanned by values at, or residues at, the point ν of Eisenstein series parabolically

induced from (B ∩MQ)(A) to MQ(A) by representations in ϕ′; and

• µ is an element of a∨Q,0 whose real part in Lie(AMQ
(R)) is in the closure of the positive cone,

and such that ν + µ lies in the Weyl orbit of Λ + ρ.

Then the graded pieces of AE,[B],ϕ′(G2) are isomorphic to direct sums of G2(Af )×(g2,K∞)-modules

of the form

Ind
G2(A)
Q(A) (Π⊗ Sym(aQ,0)µ+ρQ)

for certain quadruples (Q, ν,Π, µ) of the form just described.

For each of the four possible parabolic subgroupsQ and any corresponding quadruple (Q, ν,Π, µ)

as above, we will show using Proposition 1.5.2.8 that the cohomology

H∗(g2,K∞; Ind
G2(A)
Q(A) (Π⊗ Sym(aQ,0)µ+ρQ)) (1.5.3.5)

cannot have Lα(π̃F,f , s) as a subquotient, which will finish the proof.

So first assume we have a quadruple (Q, ν,Π, µ) as above where Q = B. Then mQ,0 = 0, forcing

ν = 0. The entry Π is the unitarization of a representation in ϕ′, and thus must be a character ψ′

of T (A) conjugate to ψ′1 � ψ′2. Finally, we have µ is Weyl conjugate to Λ + ρ.

Therefore the cohomology (1.4.3.5) is isomorphic, by Theorem 1.2.2.3, to a finite sum of copies

of

ι
GSp4(Af )

B(Af ) (ψ′f , µ).

By Proposition 1.5.2.8, Lβ((π̃F � 1)f , s) cannot be a subquotient of this space, and we conclude in
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the case when Q = B.

If now we have a quadruple (Q, ν,Π, µ) where Q = Pα, and ν + µ is an integral weight because

it is conjugate to Λ + ρ. We find that Π is a representation generated by residual Eisenstein series

at the point ν and is therefore a subquotient of the normalized induction

ι
Mα(A)
(B∩Mα)(A)(ψ

′, ν),

where ψ′ is a character of T (A) conjugate to ψ′1 � ψ′2. Then by 1.2.2.3 and induction in stages,

(1.5.3.5) is isomorphic to a subquotient of a finite sum of copies of

ι
G2(Af )

B(Af ) (ψ′f , ν + µ).

We then conclude in this case as well using Proposition 1.5.2.8.

The case when Q = Pβ is completely similar, and we omit the details. When Q = G, it is once

again similar, but easier since we do not need to use induction in stages. So we are done.

1.5.4 Arthur’s conjectures and the cuspidal multiplicity of Langlands quotients

We would like now to determine the cuspidal multiplicity of the Langlands quotient we studied

in Theorem 1.5.3.3. Unfortunately, not enough information is known about the CAP representa-

tions which can occur in the cuspidal spectrum of G2. So our computation will have to rely on

some conjectures.

Recall that a cuspidal automorphic representation is CAP if it is nearly equivalent to an irre-

ducible subquotient of a parabolically induced representation. A point of view put forth by Gan

and others is that CAP representations should be studied through the lens of Arthur’s conjectures,

as we explain now.

In his celebrated work [Art84], Arthur introduced a series of conjectures which, for a reductive

Q-group G, classify the representations occurring in the space L2(G(Q)\G(A)). The data involved

in this classification decomposes into local data, and so part of this classification is to build packets

of representations of G(Qv) for every place v. Of particular importance for us will be the shape

of these local packets at v = ∞, and so we start (as Arthur did in [Art84]) by reviewing these

119



conjectures for real groups.

Arthur’s conjecture for real groups

Let WR be the Weil group of R. Recall that WR is the union C× ∪ C×j where the element j

has the properties that j2 = −1 and

jzj−1 = z, z ∈ C×.

The group WR comes equipped with a natural multiplicative map

| · | : WR → R>0

extending the usual absolute value on C× and for which |j| = 1.

Now let G be a real reductive group. Attached to G we have the complex dual group G∨(C)

and the L-group

LG = G∨(C) oWR;

we will not need to recall how the action of WR on G∨(C) is defined here, but we will remark that

it is trivial if G is split.

Langlands classified the irreducible admissible representations of G in terms of certain homo-

morphisms ψ : WR → LG, viewed up to conjugacy under G∨(C), called Langlands parameters.

The classification is finite-to-one from representations to parameters, the preimage of any parame-

ter under the classification being called an L-packet. Certain properties of parameters correspond

to certain properties of the representations in the corresponding L-packets; for example, if the

projection of the image of a parameter φ onto G∨(C) is bounded, then φ is called tempered because

all of the representations in the corresponding L-packet are tempered.

In formulating his conjectures, Arthur needed to define a new kind of parameter; the goal of his

definition of parameters is not to classify representations of G, but rather to define the local (in our

case, archimedean) components of a classification of certain representations of the adelic points of
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a group which has G as its real factor. An Arthur parameter, as we will call it, is a homomorphism

ψ : WR × SL2(C)→ LG,

viewed up to conjugacy under G∨(C), whose restriction to WR is a tempered Langlands parameter.

There are at least two ways to obtain a Langlands parameter from an Arthur parameter ψ,

and the correct way perhaps is not the one suggested by the definition. Instead, given an Arthur

parameter ψ, we define the attached Langlands parameter φψ : WR → LG to be given by

φψ(w) = ψ

(
w,

(
|w|1/2

|w|−1/2

))
.

The statement of Arthur’s conjecture for G will involve the L-packet attached to the parameter

φψ.

It would be unreasonable for us to recall here all of the ingredients necessary to completely

define everything that appears in the statement of Arthur’s conjecture, but we will recall some of

these ingredients now before stating the conjecture, albeit a minimal amount.

Fix now an Arthur parameter ψ for G. Write

C̃ψ = Z(Im(ψ),G∨(C))

for the centralizer of the image of ψ in G∨(C), and define the finite group

Cψ = C̃ψ/C̃
◦
ψZ(LG,G∨(C)).

We can make the same definition for the Langlands parameter φψ to get a group C̃φψ and a finite

group Cφψ , and we get a natural map

Cψ → Cφψ ,

which is surjective. Hence we get an injective map

Ĉφψ → Ĉψ,
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where the hat denotes the set of irreducible characters of the group which it decorates.

Let ψ be an Arthur parameter for G. Arthur’s conjecture asserts that there is a unique triple

(Aψ, εψ, 〈·, ·〉) where

• Aψ is a finite set of irreducible representations of G,

• εψ : Aψ → {±1} is a function, and

• π 7→ 〈·, π〉 is a function Aψ → Ĉψ,

satisfying certain properties. Among these are that Aψ contains the L-packet for φψ, εψ equals 1

on this L-packet, and that for π ∈ Aψ, we have that π appears in the L-packet for φψ if and only if

〈·, π〉 is in Ĉφψ . There are two more properties that these triples are expected to satisfy (labelled (ii)

and (iii) in [Art84], Conjecture 1.3.3). The property (ii) is that a certain distribution built out of

the triple and ψ is stable, and the property (iii) is an identity involving these triples for endoscopic

groups of G; it asserts that the distributions constructed in (ii) for G and its endoscopic groups

are related by transfer.

In any case, we do not actually need the precise statement of this conjecture; we will check this

conjecture in Section 1.6 for a candidate triple attached to a particular Arthur parameter for G2(R)

by proving that our triple is an instance of a general construction of Adams–Johnson [AJ87], who

prove that their construction satisfies the properties asserted by Arthur’s conjecture.

Given a triple (Πψ, εψ, 〈·, ·〉) as described above, let us call the component Πψ the Arthur packet

attached to ψ.

Arthur’s global conjecture

Arthur’s archimedean conjecture discussed above also has an analogue for nonarchimedean local

fields, as long as one replaces the Weil group with the Weil–Deligne group. There is also a global

conjecture which Arthur formulates (at least for split groups) in Section 2 of [Art84].

So let G be a split reductive group over Q. To make a global conjecture, one must replace the

Weil–Deligne group from the local situation with the conjectural Langlands group LQ. For any

place v, the group LQ should come equipped with embeddings Wv → LQ, where we use Wv to

denote the Weil–Deligne group of Qv unless v is archimedean, in which case we use it to denote the
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Weil group.

An Arthur parameter is then a G∨(C)-conjugacy class of maps

ψ : LQ × SL2(C)→ LG

satisfying certain properties. Here LG is the global L-group of G. Restriction of such a parameter

ψ to Wv then gives a local Arthur parameter ψv at v.

One can also make definitions of C̃ψ and Cψ in the global setting, analogous to those made in

the local setting. Then there are maps

C̃ψ → C̃ψv , Cψ → Cψv .

We consider the set Aψ to be the set of all representations of the form π = ⊗′vπv for πv ∈ Aψv . For

such a π, we define 〈·, ·〉 by

〈s, π〉 =
∏
v

〈sv, πv〉,

where s ∈ Cψ and sv is its image in Cψv , and 〈·, πv〉 is the function appearing in Arthur’s local

conjecture.

Then Arthur conjectures the following. First of all, the representations occurring in L2(G(Q)\G(A))

all occur in some Aψ, and if ψ is such that C̃ψ is finite, then the representations in L2(G(Q)\G(A))

which lie in Aψ all occur in the discrete spectrum L2
disc(G(Q)\G(A)).

Furthermore, he gives a formula for the multiplicity with which these representations occur in

the discrete spectrum: There should be an integer dψ > 0 and a homomorphism ξψ : Cψ → {±1}

such that the multiplicity mπ for which any π ∈ Aψ occurs in L2
disc(G(Q)\G(A)) is given by

mπ =
dψ

#Cψ

∑
s∈Cψ

〈s, π〉ξψ(s).

If ψ is such that C̃ψ is finite, let us call Aψ the Arthur packet attached to ψ.
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An Arthur packet for G2

In [GG09], Gan and Gurevich made a study of certain automorphic representations of G2(A)

which are CAP with respect to the long root parabolic Pα, and in Section 13 of that paper, they

interpret what Arthur’s conjectures would mean in terms of those CAP representations. More

precisely, they define a certain Arthur parameter for G2 and explain the shape of the corresponding

Arthur packets, both globally and locally. We now recall their work.

First, let π be a unitary cuspidal automorphic representation of GL2(A) with trivial central

character. Then π can be viewed as a representation of PGL2(A) and there should correspond to

π a global Langlands parameter

φπ : LQ → SL2(C).

We remark that SL2(C) is the dual group of PGL2, and that since PGL2 is split, we may replace

the L-group of PGL2 with just the dual group in the definition of Langlands parameter.

Now from φπ Gan and Gurevich construct an Arthur parameter for G2 as follows. Let γ and γ′

be two orthogonal roots of G2. Assume γ is short, so that γ′ is long. Let SLγ be the SL2 subgroup

of G2 corresponding to the sl2-triple coming from γ, and similarly for SLγ′ . Then because γ and

γ′ are orthogonal, SLγ and SLγ′ centralize each other. Let jγ be the inclusion SLγ ↪→ G2, and

similarly define jγ′ . Then we can make the following composition, which we take to be our Arthur

parameter ψ.

LQ × SL2(C)
(φπ ,id)−−−−→ SL2(C)× SL2(C)

∼−→ SLγ(C)× SLγ′(C)
jγ×jγ′−−−−→ G2(C).

The last map in this composition is well defined because SLγ and SLγ′ centralize each other, and

in fact its kernel is µ2 = {±1} diagonally embedded. Since G2 is split and self dual, we may view

Arthur parameters for G2 as maps into G2(C).

Now we can start to look at the multiplicity formula. According to [GG09], we have

C̃ψ = Cψ ∼= Z/2Z.
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Therefore the representations occurring in L2(G2(Q)\G2(A)) and Aψ are discrete. We also have

dψ = 1 and

ξψ(c) =


1 if ε(π,Sym3, 1/2) = 1;

(−1)c if ε(π,Sym3, 1/2) = −1,

for c ∈ Z/2Z. Here ε(π,Sym3, 1/2) is the sign of the functional equation for the symmetric cube

L-function of π.

Of course, to get further information, we have to inspect the local situation. Write π = ⊗′vπv.

The Langlands parameter φπ decomposes into local parameters φπv which are the parameters

attached by the local Langlands correspondence for GL2 to the representations πv. The local

Arthur parameter ψv then equals the composition

Wv × SL2(C)
(φπv ,id)−−−−−→ SL2(C)× SL2(C)

∼−→ SLγ(C)× SLγ′(C)
jγ×jγ′−−−−→ G2(C).

Again according to [GG09], the local component group Cψv is isomorphic to Z/2Z if πv is

discrete series, and is trivial otherwise. The local Arthur packet Aψv should have two elements if

πv is discrete series, and should have one element otherwise. Let us write

Aψv = {Π+
v ,Π

−
v }, if πv is discrete series,

and otherwise

Aψv = {Π+
v }, if πv is not discrete series.

Here Π+
v should be the representation which is attached to φψv by the local Langlands correspon-

dence. Hence

Π+
v = Lα(πv, 1/10),

which is the Langlands quotient of the unitary induction of πv ⊗ | det |1/2 from Mα(Qv). (We will

explain later in more detail why the parameter ψv corresponds to this representation, at least in

the archimedean case.) Then if πv is discrete series, we have

〈c,Π+
v 〉 = 1, 〈c,Π−v 〉 = (−1)c.
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Feeding all this back into the multiplicity formula above gives the following. If Π ∈ Ãψ with

Π = ⊗′vΠv and with each Πv in Aψv , then we have m(Π) = 1 if and only if ε(π,Sym3, 1/2) = 1 and

Πv = Π−v for an even number of v, or ε(π,Sym3, 1/2) = −1 and Πv = Π−v for an odd number of v.

Otherwise m(Π) = 0.

Based on what we have seen, we feel it is reasonable to make the following conjecture.

Conjecture 1.5.4.1. Let π be a unitary cuspidal automorphic representation of GL2(A). Write

π = ⊗′vπv and write Lα(πv, 1/10) for the Langlands quotient of the unitary induction of πv⊗| det |1/2

from Mα(Qv) to G2(Qv).

(a) Let S be the set of places v for which πv is discrete series. For every v ∈ S, there is a

representation Π−v of G2(Qv), different from Lα(πv, 1/10), such that the following holds. Let

S′ ⊂ S be a subset. Then

Π =
⊗
v∈S′

Π−v ⊗
⊗′

v/∈S′
Lα(πv, 1/10)

occurs in L2
disc(G2(Q)\G2(A)) with either multiplicity zero or one, and it does so with multi-

plicity one if and only if either ε(π,Sym3, 1/2) = 1 and #S is even, or ε(π,Sym3, 1/2) = −1

and #S is odd.

(b) If L(π,Sym3, 1/2) = 0, then the representations Π above which occur in the discrete spectrum

are cuspidal.

(c) If π∞ is the discrete series of GL2(R) of even weight k ≥ 4, then Π−∞ is the discrete series

representation of G2(R) with Harish-Chandra parameter k−4
2 (2α+ 3β) + ρ.

Of course, part (a) of this conjecture is just a slight reformulation of what was said above,

and what was expected in [GG09]. Part (b) was also expected by [GG09], and is more generally

reflective of the expected behavior for CAP forms. Part (c), on the other hand, will require some

explanation, and Section 1.6 will be devoted to justifying it. Essentially, Adams and Johnson

[AJ87] have made a general construction of packets corresponding to a certain type of archimedean

Arthur parameters. What we will show is that the Arthur parameter ψ∞ constructed just above

is of this type, and that the corresponding Adams–Johnson construction yields a packet of two

representations. We will explicitly compute these two representations and show that one is the

126



Langlands quotient Lα(πv, 1/10) while the other is the discrete series representation with Harish-

Chandra parameter k−4
2 (2α+ 3β) + ρ from our conjecture.

We remark that this discrete series representation is the one which is called “quaternionic of

weight k/2” by Gan–Gross–Savin [GGS02]. This class of quaternionic discrete series is an analogue

of the holomorphic discrete series for groups such as GSp4. In fact, the analogue of our conjecture

holds for GSp4 and its Siegel parabolic (as partially discussed in the proof of Theorem 1.4.4.1) and

one even gets holomorphic discrete series in that case.

Back to cohomology

We can now state what consequences Conjecture 1.5.4.1 has for cohomology. We consider again

the Langlands quotients Lα(π̃, 1/10) from Section 1.5.3.

Theorem 1.5.4.2. Let F be a cuspidal holomorphic eigenform of even weight k ≥ 4. Assume

L(π̃F ,Sym3, 1/2) = 0. Let E be the irreducible representation of G2(C) of highest weight k−4
2 (2α+

3β). Assume Conjecture 1.5.4.1. Then

mi
cusp(Lα(π̃, 1/10)f ,K∞, E) =


1 if ε(π̃F ,Sym3, 1/2) = 1 and i = 3 or 5,

or if ε(π̃F ,Sym3, 1/2) = −1 and i = 4;

0 otherwise.

Consequently, under Conjecture 1.5.4.1, we have

mi(Lα(π̃, 1/10)f ,K∞, E) =


1 if ε(π̃F , Sym3, 1/2) = 1 and i = 3, 4, or 5;

2 if ε(π̃F , Sym3, 1/2) = −1 and i = 4;

0 otherwise.

Proof. The theorem just follows from the description of the archimedean components of the repre-

sentations Π appearing in Conjecture 1.5.4.1. Indeed, the discrete series representation appearing

there must be cohomological in middle degree 4, and the Langlands quotient is cohomological

in one degree above and below middle. The multiplicities are 1 and not higher because K∞ is

connected.
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1.6 The archimedean Arthur packet for G2

In this section, we compute what should be the archimedean Arthur packet discussed in Section

1.5.4 above. We are indebted to Jeffrey Adams, who suggested to us that this packet might be

constructed via cohomological induction.

1.6.1 Cohomological induction

In this section we recall a few facts about the cohomological induction functors of Zuckerman.

Everything we discuss in this section is contained in the reference of Knapp–Vogan [KV95]. We

will not actually need give the definition of the cohomological induction functors because we will

be able to study them explicitly enough using certain properties which we will give instead. The

interested reader may refer to Chapter V of [KV95].

We now set some notation that will be in play throughout this section. Let G be a real reductive

Lie group with complexified Lie algebra g. We fix K a maximal compact subgroup of G and θ a

Cartan involution which gives K. Let k be the complexified Lie algebra of K.

We fix a θ-stable Cartan subalgebra t ⊂ g. Let 〈·, ·〉 be the pairing on t∨ induced by the Killing

form. We also fix a θ-stable parabolic subalgebra q of g containing t, and we let l be the Levi

subalgebra of q containing t, and u its nilpotent radical. Then q = l ⊕ u. Let L be the Levi

subgroup of G corresponding to l. Note that L ∩K is a maximal compact subgroup of L.

Finally, if h ⊂ g is a Lie subalgebra which is stable under the adjoint action of the Cartan

subalgebra t, we write ρ(h) ∈ t∨ for half the sum of the roots of t in h.

For i ≥ 0, we consider the cohomological induction functors Ri from (l,L ∩ K)-modules to

(g,K)-modules as defined in Section V.1 of [KV95]. These are normalized so that if Z is an

(l,L∩K)-module with infinitesimal character given by Λ ∈ t∨, the Ri(Z) has infinitesimal character

given by Λ + ρ(u) ([KV95], Corollary 5.25). We recall the following fact about the functors Ri.

Theorem 1.6.1.1. Let Z be an irreducible (l,L∩K)-module with infinitesimal character given by

Λ ∈ t∨. Write S = dimC(u ∩ k). Assume

Re〈Λ + ρ(u), γ〉 > 0
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for all roots γ of t in u. Then Ri(Z) = 0 for i 6= S and RS(Z) is nonzero and irreducible.

Proof. This is part of Theorem 0.50 in [KV95].

If Λ ∈ t∨ is a weight such that

Re〈Λ + ρ(u), γ〉 > 0

for all roots γ of t in u, like in the theorem above, then we say Λ is in the good range. Modules

whose infinitesimal characters are sufficiently far in the good range are nice for us because they

will make the spectral sequence we are about to discuss degenerate.

Now this spectral sequence will be the one for cohomological induction in stages. It is slightly

tricky to state with our current notation because the functors Ri have a normalization built into

them which will need to be undone when writing down this spectral sequence.

In the following, we will consider another θ-stable parabolic subalgebra q′ contained in q and

containing t. Write q′ = l′ ⊕ u′ for the Levi decomposition, and let L′ be the Levi subgroup of

G corresponding to l′. We will also view the weight −2ρ(u′) as a character of L′, and we will

let C−2ρ(u′) be the associated one dimensional (l′,L′ ∩K)-module. Similarly, we consider the one

dimensional (l′,L′∩K)-module C−2ρ(u′∩l), and the one dimensional (l,L∩K)-module C−2ρ(u), both

similarly defined.

Theorem 1.6.1.2. With the notation as above, for (l′,L′ ∩K)-modules Z, there is a convergent,

first-quadrant spectral sequence

Ri(Rj(Z ⊗ C−2ρ(u′∩l))⊗ C−2ρ(u)) =⇒ Ri+j(Z ⊗ C−2ρ(u′)).

Proof. This is Theorem 11.77 of [KV95]. (See also the Formula (11.73) there for the discrepancy

in notation which forced us to twist by characters in each step.)

Note that nothing about cohomologically induced modules is made explicit by the two theorems

in this section; no result here tells us how to actually compute a given cohomologically induced

module. The results of the next section will begin to do this, and can be combined with the spectral

sequence above to obtain even more information.

129



1.6.2 Discrete series and Harish-Chandra’s classification

In this section we classify discrete series representations in a manner which is classical, and then

recast this classification using cohomolgical induction. Let us begin by setting some notation that

will be used throughout this section.

Like the previous section we fix a G a real reductive Lie group with complexified Lie algebra

g. However, now we assume that G contains a compact Cartan subgroup, say Tc. By results

of Harish-Chandra, this assumption is equivalent to the assumption that G has discrete series

representations.

Let K be a maximal compact subgroup containing Tc. We furthermore assume that K is

connected, and hence so is G. Let k and tc denote, respectively, the complexified Lie algebras of K

and Tc. If θ is the Cartan involution of G which gives K, then everything we have just defined is

θ-stable. Finally, let us write W = W (tc, g) for the Weyl group of tc in g and Wc = W (tc, k) for the

compact Weyl group.

We call a weight of tc analytically integral if it is the differential of a character Tc → C×.

Harish-Chandra classified the discrete series representations of G in terms of certain analytically

integral weights of tc. Here is his classification.

Theorem 1.6.2.1 (Harish-Chandra). Let Λ be a regular weight of tc. So the weight Λ determines

a dominant Weyl chamber in t∨c and hence also an ordering on the roots of tc in g, and we let ρΛ

denote half the sum of the roots which are positive with respect to this ordering.

Then there is a bijection between Wc-orbits of regular weights Λ of tc such that Λ−ρΛ is dominant

and analytically integral, and discrete series representations of G with trivial central character. Let

πΛ be the discrete series representation corresponding to such a weight Λ. Then this bijection is

determined by the following property.

The ordering determined by Λ also determines an ordering on the compact roots (that is, the

roots of tc in k). Let

πΛ|K =
⊕
Λ′

V
mΛ′

Λ′

be the decomposition of πΛ into its K-types, where the sum is over all analytically integral weights

Λ′ of tc which are dominant with respect to the positive compact roots, and VΛ′ is the irreducible

130



representation of k with highest weight Λ′. Let ρΛ,c denote half the sum of the positive compact

roots. Then the property determining πΛ in terms of Λ is that the smallest Λ′ for which mΛ′ is

nonzero is

Λ′ = Λ + ρΛ − 2ρΛ,c.

For this particular Λ′ we have mΛ′ = 1.

Finally, any discrete series representation can be obtained from one of the ones above by a

central twist.

In the setting of this theorem, we call (the Wc orbit of) Λ the Harish-Chandra parameter of the

discrete series representation πΛ (or any of its central twists) and we call the representation VΛ′

with

Λ′ = Λ + ρΛ − 2ρΛ,c.

the lowest K-type of πΛ.

Now we explain how to get discrete series representations by cohomologically inducing charac-

ters. Let Λ be a regular weight of tc, and as in Theorem 1.6.2.1, order the roots of tc in g so that Λ

is dominant and let ρΛ be half the sum of positive roots. Let b be the Borel subalgebra of g which

is determined by the positive roots in this ordering, and let b = t ⊕ u0 be its Levi decomposition.

Then t is just the sum of tc and the center of g. Let T be the corresponding maximal torus in G.

We will consider the cohomological induction from (t,T ∩K)-modules to (g,K)-modules with

respect to the parabolic subalgebra b. If Λ − ρΛ is analytically integral, we view it as a character

of T which has a trivial action of the center of G, and also as a (t,T ∩K)-module.

Theorem 1.6.2.2. With notation as above, assume Λ− ρΛ is dominant and analytically integral.

Then the cohomologically induced module R(Λ − ρΛ) is isomorphic to (the (g,K)-module of) the

discrete series representation of G with Harish-Chandra parameter Λ.

Proof. This is Theorem 11.178(a) in [KV95].

We remark that the weight Λ−ρΛ in the theorem is by definition in the good range, in the sense

of Theorem 1.6.1.1. Therefore it makes sense to drop the cohomological degree from the notation

R.
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1.6.3 The Adams–Johnson construction

We will now recall the main results of the work of Adams–Johnson [AJ87] as interpreted in

terms of Arthur parameters. Section 3 of [AJ87] explains the connection between these results and

Arthur’s conjectures quickly, but there is also an article of Arthur [Art89] which explains this in

more detail, and which is very explicit about the parameters involved. We mostly follow this latter

article.

Most of this section is devoted to explaining the construction of the parameters that are relevant

to the Adams–Johnson construction. After constructing these parameters, the construction of the

associated packet by Adams–Johnson will be easy to describe using cohomological induction.

We keep the notation of the previous section, and in particular we will be working with the

objects G, Tc, K, g, tc, k, θ, W , and Wc defined there. As before, we also write T for the maximal

torus of G containing Tc, and t for its Lie algebra. Let q be a θ-stable parabolic subalgebra with

Levi factor l containing t, and let L be the corresponding Levi subgroup of G. Let u be the nilpotent

radical of q.

We will consider, in what follows, the L-group of G,

LG = G∨(C) oWR

and also that of L. Here WR is the Weil group of R,

WR = C× ∪ C×j,

where j2 = −1 and jzj−1 = z for z ∈ C×.

Choose a maximal torus in G∨(C) and identify it with T∨(C). Then L∨(C) is identified with

a Levi subgroup of G∨(C) containing T∨(C).

Construction of ξ

The first order of business is to construct an embedding ξ of LL into LG. This is done on pp.

30-31 of [Art89] and we recall here the process.

We already have an embedding L∨(C) ↪→ LG because we have embedded L∨(C) into G∨(C).
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So to get the embedding ξ of L-groups, we only need to describe where to send elements of WR.

We will describe ξ(z) for z ∈ C× and ξ(j) separately.

First, for z ∈ C×, let tz be the unique element of T∨(C) such that

Λ∨(tz) = z〈Λ
∨,ρ(u)〉z−〈Λ

∨,ρ(u)〉,

for any character Λ∨ of T∨(C) (equivalently, Λ∨ is a cocharacter of T(C)). Here, as before, ρ(u) is

half the sum of the roots of t in u. Then the map z 7→ tz is a homomorphism C× → T∨(C), and

we set

ξ(z) = tz o z.

We now describe ξ(j). Let nL be any element of the derived group of L∨(C) normalizing

T∨(C) and such that Ad(nL) sends the positive roots of Lie(T∨(C)) in Lie(L∨(C)) to negative

ones. Similarly define the element nG in the derived group of G∨(C). Then we declare

ξ(j) = nGn
−1
L o j.

Thus we have defined the embedding ξ : LL→ LG. It depends on certain choices, but only up

to conjugation in LG.

Construction of ψ

Now we construct an Arthur parameter ψ. Fix a character Λ : L → C×. We also denote by Λ

the restriction of this character to T, and the weight of t which that gives. We assume that Λ is

dominant with respect to the roots of t in u.

This character Λ, when viewed as a one dimensional representation of L, determines by the

archimedean local Langlands correspondence, a Langlands parameter

φΛ : WR → LL
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whose image lies in Z(L∨(C)) oWR, where we have written Z(L∨(C)) for the center of L∨(C).

Now let

ψL : WR × SL2(C)→ LL

be the Arthur parameter for L determined by the requirements that

ψL|WR = φΛ

and that
(

1 1
0 1

)
maps to a principal unipotent element in L∨(C). Then we define the Arthur parameter

ψ for G by

ψ = ξ ◦ ψL,

where ξ is the embedding above.

Construction of the Adams–Johnson packet

Let w ∈ W be a Weyl group element. We use w to twist our parabolic subalgebra q in the

following way. If ∆(q) denotes the set of roots of t in q, we let qw be the parabolic subalgebra

of g containing precisely all the roots wγ for γ ∈ ∆(q), along with t. Let lw be the Levi factor

containing t and let Lw be the Levi subgroup of G corresponding to lw.

Now Lemma 2.5 (1) of [AJ87] states that all the Levis Lw for w ∈ W are inner forms of

each other. Therefore they have the same L-groups. So let φΛ,w : WR → LLw be the Langlands

parameter given by φΛ, but viewed as a parameter for Lw. Then φΛ,w corresponds to a one

dimensional representation of Lw, which we denote by Λw.

We may now define the Adams–Johnson packet. Let R = RS be the cohomological induction

functor of Section 1.6.1 (see in particular Theorem 1.6.1.1).

Definition 1.6.3.1. The Adams–Johnson packet attached to the Arthur parameter ψ constructed

above is the set

AJψ = {R(Λw) | w ∈W},

where, for w ∈ W , the cohomological induction of Λw is taken with respect to the parabolic

subalgebra qw.
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Actually, it can be that a lot of the representations in AJψ corresponding to different elements w

are equal. In fact, it is noted in [AJ87] that w,w′ ∈W lie in the same double coset in Wc\W/W (t, l)

if and only if R(Λw) ∼= R(Λw′). Arthur notes in [Art89] that this set Wc\W/W (t, l) of double cosets

is in bijection with the component group Cψ attached to ψ.

Now we have the following theorem, which is the main result of [AJ87] as interpreted by Arthur

[Art89].

Theorem 1.6.3.2 (Adams–Johnson). For each ψ as above, there is a function εψ : AJψ → {±1}

and a pairing 〈·, ·〉 between Cψ and AJψ, such that the triples (AJψ, εψ, 〈·, ·〉) satisfy the conclusion

of Arthur’s conjecture ([Art84], Conjecture 1.3.3).

Proof. This is the main result of [AJ87]; See Theorems 2.13 and 2.21 there. Arthur [Art89], Section

5, also describes how to get the objects εψ and 〈·, ·〉 from the objects appearing in [AJ87].

Remark 1.6.3.3. Strictly speaking, although it is mentioned in [AJ87] and [Art89] that AJψ

contains the L-packet attached to the Langlands parameter φψ associated with ψ, a proof of this

is written down in neither of these references. We will be able to check this directly, however, for

the packet that we obtain for G2(R) in the next section.

1.6.4 Determination of the packet for G2(R)

Recall that in Section 1.5.4 we constructed a global Arthur parameter for G2 whose associated

packet should contain the CAP forms that are nearly equivalent to the Eisenstein series considered

there. This Arthur parameter has a local archimedean component, and in this section we will recall

how it is constructed and denote it ψ′.

This notation suggests that there will be another Arthur parameter in play, and indeed, we will

construct one via the process of the previous section. This other parameter will be denoted ψ. But

the parameters ψ and ψ′ will turn out to be equal, which means that we can apply the methods of

the previous section and obtain an Adams–Johnson packet for ψ, or equivalently, for ψ′. We then

determine the representations in this packet explicitly. They will turn out to be the Langlands

quotient and the discrete series representation discussed in Conjecture 1.5.4.1.

To be consistent with the rest of this section, we change some of the notation used in Section

1.5.1. In particular, let us write G2 = G2(R) for the real split G2, K for a fixed maximal compact
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subgroup of G2, and Tc for a fixed maximal torus contained in K. Let g2, k, and tc be the respective

complexified Lie algebras. We still write α and β, respectively, for fixed long and short simple roots

of tc in g2, and we assume we have chosen K so that ±β and ±(2α + 3β) are the compact roots.

We fix θ the Cartan involution giving K. Write W for the Weyl group of tc in g2 and Wc for the

Weyl group of tc in k.

On the dual side of things, we have G∨2 (C) = G2(C), and we fix a maximal torus in G2(C),

identifying it with T∨c (C). Passage to the dual side switches the long and short simple roots, so α∨

becomes a short simple root for T∨c (C) in G2(C), and β∨ becomes a long simple root. In order to

distinguish when we are on the dual side and when we are not, we will denote roots of T∨c (C) in

G2(C) with a prime and thus write β′ = α∨ and α′ = β∨. Then we have

(α+ β)∨ = α′ + 3β′, (α+ 2β)∨ = 2α′ + 3β′,

(α+ 3β)∨ = α′ + β′, (2α+ 3β)∨ = α′ + 2β′.

The parameter ψ′

Fix throughout this section an even integer k ≥ 4. We denote by π the discrete series repre-

sentation of GL2(R) with trivial central character. Then π may be viewed as a representation of

PGL2(R). Let

φ : WR × LPGL2(R)

be its Langlands parameter. This can be made explicit. For one thing, the L-group of PGL2(R) is

just SL2(C)×WR, and then φ takes the following form. For z ∈ C×, we have

φ(z) =

(
(z/z)(k−1)/2 0

0 (z/z)−(k−1)/2

)
× z, (1.6.4.1)

which is an element of SL2(C)× C× ⊂ SL2(C)×WR, and

φ(j) =

(
0 −1
1 0

)
× j. (1.6.4.2)
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(See, for example [Pra18], Proposition 2.) Note that the quantity (z/z)(k−1)/2 should be interpreted

as

(z/z)(k−1)/2 = |z|k−1z−(k−1).

For γ′ a root of T∨c (C) in G2(C), let SLγ′(C) ⊂ G2(C) be the SL2(C) associated with γ′. It is

generated by the images of the unipotent root group homomorphisms x±γ′ corresponding to ±γ′.

If γ′1 and γ′2 are orthogonal roots, then the elements in the image of xγ′1 and xγ′2 commute. Hence

SLγ′1(C) and SLγ′2(C) centralize each other. We thus get a map

SLγ′1(C)× SLγ′2(C)→ G2(C). (1.6.4.3)

Now the maximal torus T∨c (C) in G2(C) is just the image under this map of the product of the

diagonal tori in SLγ′1(C) and SLγ′2(C). The character group of T∨c (C) is generated by its root

lattice, and it is visible from the root lattice of G2 that the characters γ′1 and γ′2 generate an index

2 subgroup of the character group of T∨c (C). It follows that the map above has a kernel of order

2. The character (γ′1 + γ′2)/2 is a root of T∨c (C), and it generates the whole character group along

with γ′1 and γ′2. All three of these characters, when lifted to SLγ′1(C)× SLγ′2(C), are trivial on the

diagonally embedded µ2 = {±1}, and so in fact the kernel of the above map is this µ2. Thus we

identify

SLγ′1(C)× SLγ′2(C)/µ2

as a subgroup of G2(C) in this way. It contains T∨c (C) and is simply the subgroup generated by

the inages of the unipotent root group homomorphisms x±γ′1 and x±γ′2 .

Now we can define the Arthur parameter ψ′. It is the composition

WR × SL2(C)
(φ,id)−−−→ (SL2(C)×WR)× SL2(C)

∼−→ SLβ′(C)× SL2α′+3β′(C)×WR

→ G2(C)×WR = LG2,

where middle map leaves the order of the SL2’s the same and only rearranges the placement of WR,

and the last map is the product of the map from (1.6.4.3) with the identity map of WR. To be

clear, φ is mapping into the subgroup SLβ′(C) ×WR of LG2, so the image of the restriction of ψ′
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to WR lands in that subgroup.

The choice of the pair (β′, 2α′ + 3β′) of orthogonal roots doesn’t really matter, as long as φ is

mapping to the short root SL2(C). Any other choice of orthogonal roots would lead to an Arthur

parameter which is conjugate to ψ′.

The Levi L1,1

We now begin working towards constructing a parameter ψ via the constructions from Section

1.6.3, and therefore we must start by constructing a Levi subgroup of G2.

First, let q1,1 be the parabolic subalgebra of g2 whose Levi l1,1 contains the roots ±(α + 2β)

along with tc, and whose nilpotent radical u1,1 contains the roots −(α + 3β), −β, α, α + β, and

2α+ 3β. (These five roots are the ones lying above the line containing α+ 2β in the root diagram.)

Then let L1,1 be the Levi subgroup of G2 containing Tc and corresponding to l1,1. The notation is

justified by the following lemma.

Lemma 1.6.4.1. The Levi L1,1 is isomorphic to U(1, 1)

Proof. First we look at the complexified situation. The group L1,1(C) is the Levi subgroup of

G2(C) containing Tc(C) and the images of the unipotent root group homomorphisms x±(α+2β).

Therefore, as α is orthogonal to α+ 2β, L1,1(C) is the subgroup of

SLα+2β(C)× SLα(C)/µ2

generated by the first factor and the diagonal torus from the second factor.

Now we take real points. The group of real points in the diagonal torus of SLα(C) is a one

dimensional subtorus of Tc, hence is a circle U(1), and the group of real points of SLα+2β(C) is a

form of SL2(R). Since the root α+ 2β is noncompact, this form is noncompact and is thus SL2(R)

itself.

We conclude that

L1,1
∼= SL2(R)×U(1)/µ2,

and we are done since this latter group is U(1, 1).
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The embedding ξ

We now describe the embedding ξ constructed in Section 1.6.3 in our current context of L1,1.

The complexification L1,1(C) is the Levi subgroup of G2(C) containing α+2β and the torus Tc(C),

and therefore the dual group L∨1,1(C) is the Levi containing (α+ 2β)∨ = 2α′+ 3β′ and T∨c (C). The

group L∨1,1(C) is therefore the subgroup of

SLβ′(C)× SL2α′+3β′(C)/µ2

containing the factor SL2α′+3β′(C) and the diagonal torus in the factor SLβ′(C). For

(A,B) ∈ SLβ′(C)× SL2α′+3β′(C),

let [A,B] denote the image of (A,B) modulo µ2, viewed as an element of G2(C).

To describe explicitly the embedding

ξ : LL1,1 ↪→ LG2,

we need to describe explicitly the elements tz, nL1,1 , and nG2 from Section 1.6.3. Recall that for

z ∈ C×, tz ∈ T∨c (C) was defined by the requirement that for any character Λ∨ of T∨c (C), we have

Λ∨(tz) = z〈Λ
∨,ρ(u1,1)〉z−〈Λ

∨,ρ(u1,1)〉,

where ρ(u1,1) is half the sum of roots of tc in u1,1. This half sum equals 3α/2, and so we are

requiring

Λ∨(tz) = (z/z)〈Λ
∨,3α/2〉.

Since α∨ = β′, it follows that

tz =

[(
(z/z)3/2 0

0 (z/z)−3/2

)
, 1

]
∈ SLβ′(C)× SL2α′+3β′(C)/µ2.
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Next we have the element nG2 , which is any element of G2(C) that normalizes T∨c (C) and whose

adjoint action negates every positive root. Thus we can take

nG2 =

[(
0 −1
1 0

)
,

(
0 −1
1 0

)]
.

The adjoint action of this element negates the orthogonal roots β′ and 2α′+ 3β′ and therefore acts

as negation on the whole root lattice.

Finally, we have the element nL1,1 , which is any element of the derived group of L∨1,1(C) which

normalizes T∨c (C) and whose adjoint action negates every positive root of L∨1,1(C). The derived

group of L∨1,1(C) is just the subgroup SL2α′+3β′(C), and so we may take

nL1,1 =

[
1,

(
0 −1
1 0

)]
.

We thus have

nG2n
−1
L1,1

=

[(
0 −1
1 0

)
, 1

]
.

The embedding ξ is then just defined to be the usual inclusion

L∨1,1(C) ↪→ G2(C) ⊂ LG2

on the subgroup L∨1,1(C) of LL1,1, and on the Weil group it is defined by the rules ξ(z) = tz o z for

z ∈ C×, and ξ(j) = nG2n
−1
L1,1

o j. Thus

ξ(z) =

[(
(z/z)3/2 0

0 (z/z)−3/2

)
, 1

]
o z, z ∈ C×, (1.6.4.4)

and

ξ(j) =

[(
0 −1
1 0

)
, 1

]
o j.

The parameter ψ

To construct our Arthur parameter ψ, we must start with a character Λ of L1,1. Such characters

can be specified by weights of Tc that are multiples of α/2. The weight α itself corresponds to the
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determinant character of L1,1
∼= U(1, 1). Thus we set

Λ =
k − 4

2
α.

The archimedean local Langlands correspondence attaches to this character the Langlands param-

eter

φΛ : WR → LL1,1

given by

φΛ(z) =

[(
(z/z)(k−4)/2 0

0 (z/z)−(k−4)/2

)
, 1

]
o z ∈ L∨1,1(C)

for z ∈ C× and

φΛ(j) = 1 o j.

We now define a parameter ψL1,1 for the Levi, as in Section 1.6.3. This requires us to choose

a principal unipotent element in L∨1,1(C), and we choose [1,
(

1 1
0 1

)
]. Thus ψL1,1 is defined to be the

Arthur parameter

ψL1,1 : WR × SL2(C)→ LL1,1

given by

ψL1,1(w, 1) = φΛ(w), w ∈WR

and

ψL1,1

(
1,

(
1 1
0 1

))
=

[
1,

(
1 1
0 1

)]
o 1.

It follows that the restriction of ψL1,1 to SL2(C) is just the identification of SL2(C) with SL2α′+3β′(C).

Finally, we define

ψ = ξ ◦ ψL1,1 .

We have the following lemma, which is now not so difficult.

Lemma 1.6.4.2. The parameters ψ and ψ′ are equal.
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Proof. We check that ψ and ψ′ coincide on C×, j, and SL2(C). We have, for z ∈ C×,

ψ(z) = ξ(ψL1,1(z)) = ξ

([(
(z/z̄)(k−4)/2 0

0 (z/z̄)−(k−4)/2

)
, 1

]
o z

)
=

([(
(z/z̄)(k−4)/2 0

0 (z/z̄)−(k−4)/2

)
, 1

]
· tz
)
o z

=

[(
(z/z̄)(k−1)/2 0

0 (z/z̄)−(k−1)/2

)
, 1

]
o z (by (1.6.4.4))

= ψ′(z),

where the last equality is just the definition of ψ′, along with (1.6.4.1). Also,

ξ(ψL1,1(j)) = ξ(1 o j) = nG2n
−1
L1,1

o j =

((
0 −1
1 0

)
, 1

)
o j = ψ′(j)

by (1.6.4.2). Finally, ψ and ψ′ coincide on SL2(C), because when restricted to SL2(C), both become

the inclusion of SL2α′+3β′(C) into LG2. Therefore we have ψ = ψ′, as desired.

The character Λw

Consider the set of double cosets

Wc\W/W (tc, l1,1).

This set has two elements and a representative for the nontrivial coset is given by the Weyl group

element that rotates the root lattice by π/3 clockwise. Let w be this element.

We consider the parabolic subalgebra q2 which contains wγ for every root γ of tc in q1,1. Thus q2

contains the all the positive roots along with −β. The Levi subalgebra of q2 containing tc contains

the roots ±β.

Let L2 be the Levi subgroup of G2 containing tc and corresponding to l2. Again, the notation

is suggestive of the following lemma.

Lemma 1.6.4.3. The Levi L2 is isomorphic to U(2).

Proof. The proof is completely similar to the proof of Lemma 1.6.4.1, except we replace the root

α+ 2β there by β. Then β is compact, so the form of SL2(R) that appears here is SU(2).
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Similar to what was discussed above for L1,1, the dual group L∨2 (C) of L2 is the subgroup of

SLα′+2β′(C)× SLα′(C)/µ2

generated by the factor SLα′ along with the diagonal torus in SLα′+2β′(C). The Langlands param-

eter φ can be conjugated to give a parameter that sends z ∈ C× to

(
(z/z)(k−4)/2 0

0 (z/z)−(k−4)/2

)
∈ SLα′+2β′(C)

and which sends j to 1o j. This is how we view the parameter φ as a Langlands parameter for L2.

Corresponding to this parameter via the archimedean local Langlands correspondence is the

character we call Λw; it is the character of L2 which acts on Tc via the weight k−4
2 (2α+ 3β).

The packet AJψ

We can now construct our packet AJψ. By definition, it consists of the cohomologically induced

representations

R(Λ) and R(Λw).

The following is the main result of this section.

Theorem 1.6.4.4. We have that

R(Λ) ∼= Lα(π, 1/10),

the Langlands quotient of the parabolic induction of π from the long root parabolic, where π is the

discrete series representation of GL2(R) of weight k, and we have that R(Λw) is the discrete series

representation of G2(R) with Harish-Chandra parameter k−4
2 (2α + 3β) + ρ, where ρ = 3α + 5β is

half the sum of positive roots.

Thus the Adams–Johnson packet attached to ψ = ψ′ consists of Lα(π, 1/10) and this discrete

series representation.

Proof. We study R(Λw) first, using the spectral sequence of Theorem 1.6.1.2. Let b be the standard

Borel subalgebra of g2 containing tc, and u its unipotent radical. Let Z be the one dimensional
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(tc,Tc)-module given by the character

k − 4

2
(2α+ 3β) + (6α+ 10β).

We will induce first from tc to l2, and then from l2 to g2. The relevant degrees S for the cohomo-

logical inductions (see Theorem 1.6.1.1) are both S = 1; since l2 is compact, the degree S for the

induction from Tc to L2 just equals the dimension of the unipotent radical of the Borel subalgebra

of l2, and for L2 to G2, the degree is the number of compact roots not in l2. Both of these numbers

are 1.

Now the first step is to induce Z ⊗C−2ρ(u∩l2) to L2. The weight 2ρ(u ∩ l2) equals β, and hence

R1(Z ⊗ C−2ρ(u∩l2))

is the discrete series representation of L2 with Harish-Chandra parameter

k − 4

2
(2α+ 3β) + (6α+ 9β) +

1

2
β,

by Theorem 1.6.2.2. Since L2 is compact by Lemma 1.6.4.3, this is just the character of L2 given

by

k − 4

2
(2α+ 3β) + (6α+ 9β).

Now 2ρ(u2) = 6α+ 9β, so

R1(Z ⊗ C−2ρ(u∩l2))⊗ C−2ρ(u2)

is the one dimensional representation of L2 given by Λw, and therefore

R1(R1(Z ⊗ C−2ρ(u∩l2))⊗ C−2ρ(u2)) = R(Λw).

By Theorem 1.6.1.2, R(Λw) is the term E1,1
2 of a spectral sequence converging toR(Z⊗C−2ρ(u)).

The other terms in this spectral sequence vanish by Theorem 1.6.1.1, so we have

R(Λw) = R(Z ⊗ C−2ρ(u)).
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But 2ρ(u) = 6α + 10β, so Z ⊗ C−2ρ(u) is the character k−4
2 (2α + 3β). Thus by Theorem 1.6.2.2

again, R(Λw) is just the discrete series representation of G2 with Harish-Chandra parameter

k − 4

2
(2α+ 3β) + ρ,

as desired.

Now we show that R(Λ) is the Langlands quotient claimed. The key to this is a theorem in

Vogan’s book [Vog81], Theorem 6.6.15, which links the composition of ordinary parabolic induction

with cohomological induction with the composition in the opposite order. Instead of recalling the

theorem in general, we explain what it means in our special case. It requires three types of data as

input: We need what Vogan calls θ-stable data, character data, and cuspidal data, which are defined

in general in Definitions 6.5.1, 6.6.1, and 6.6.11, respectively, in Vogan’s book. Moreover, there is

a bijection between these first two kind of data (Proposition 6.6.2 in [Vog81]) and a surjective map

from pieces of character data to pieces of cuspidal data (Proposition 6.6.12 in [Vog81]). Pieces of θ-

stable data are used to construct cohomological inductions of parabolically induced representations

and in our case will be used to realize the representation R(Λ). On the other hand, cuspidal data

are used to construct parabolic inductions of discrete series representations and will be used to

realize Lα(π, 1/10). Theorem 6.6.15 in Vogan’s book will then state that these two constructions

coincide. We note that this theorem is stated in terms of Langlands subrepresentations instead of

Langlands quotients, so we have to make a few minor adjustments.

To build the θ-stable data we need, we first construct a certain θ-stable maximal torus of G2.

Let T0 be the center of L1,1. Let A be the θ-stable maximal split torus in the derived group of

L1,1. Then H = T0A is a maximal torus in G2. It is neither split nor compact. Let µ : T0 → C×

be given by

µ = Λ|T0 =
k − 4

2
α|T0 .

Fix a minimal parabolic subgroup B1,1 in L1,1 containing H, and let ν : A→ C× be the character

given by

ν = δ
−1/2
B1,1
|A.

Then the quadruple (q1,1,H, µ, ν) is a piece of θ-stable data in the sense of [Vog81]. We write µ⊗ν
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for the character of H given by µ on T0 and by ν on A, and we construct the representation (called

a standard module for our data) given by

R(Ind
L1,1

B1,1
((µ⊗ ν)⊗ δ1/2

B1,1
)). (1.6.4.5)

Of course, in the parabolic induction, the characters ν and δ
1/2
B1,1

cancel, and the parabolic induction

thus becomes

Ind
L1,1

B1,1
(µ⊗ 1).

By definition of µ, this contains Λ as its unique subrepresentation. Since cohomological induction

is exact in the good range, we see that R(Λ) is a subrepresentation of (1.6.4.5).

Now we construct a piece of character data from (q1,1,H, µ, ν) as in [Vog81]. For us this will

be a pair (H,Γ) where Γ : H→ C× is a character satisfying certain properties. (Actually, Vogan’s

definition contains also the data of a character of the complexified Lie algebra h of H, but that

character is determined from the differential of Γ.) We set Γ|A = ν, and we let Γ|T0 be the product

of µ with the restriction to T0 of the character det(gθ=−1
2 ∩ u1,1). This latter character is equal to

the sum of noncompact roots in u1,1, and is therefore given by

α+ (α+ β)− (α− 3β) = α− 2β = 2α− (α+ 2β).

Its restriction to T0 is therefore given by 2α, and thus

Γ|T0 =
k

2
α|T0 .

From (H,Γ) we construct another piece of data, which Vogan calls cuspidal data. Consider

the centralizer of A in G2; this is a Levi subgroup of G2, and we write MA for its Langlands

decomposition. The torus A was a maximal split torus in a short root SL2(R), and it follows that

M is a long root SL2(R) in G2. Therefore there is a long root parabolic P = MAN in G2.

A piece of cuspidal data constructed from (H,Γ) will consist of the Levi MA, along with a

character of A, which will is given by Γ|A = ν, and also a discrete series representation π0 of MA.

This latter representation is given as the cohomological induction of µ′ ⊗ ν from H to MA, where
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(q′,H, µ′, ν) is the θ-stable data for MA obtained from the restriction of the character data (H,Γ)

to MA. In this data, the θ-stable parabolic q′ is the intersection of q1,1 with the complexified Lie

algebra m ⊕ a of MA. It contains the noncompact root α in its radical. The character µ′ is the

restriction of Γ to T0 multiplied by the inverse of the sum of the noncompact roots in the radical

of q′. Thus it is equal to k−2
2 α|T0 .

The Theorem 6.6.15 in [Vog81] then asserts that (1.6.4.5) is isomorphic to

IndG2
P (R(µ′ ⊗ ν)⊗ δ1/2

P ). (1.6.4.6)

The cohomological induction in this expression is, by Theorem 1.6.2.2, the twist of the discrete

series representation of MA of weight k by the character det−1/2. Since P is a long root parabolic,

det−1/2 = δ
−1/10
P |MA, and we get that (1.6.4.6), and also hence (1.6.4.5), are isomorphic to the

normalized induction

ιG2

Mα(R)(π,−1/10).

Since π is self dual, the unique irreducible subrepresentation of this is, by dualizing, isomorphic to

Lα(π, 1/10), and this is isomorphic to R(Λ) by above. This is what we wanted to prove.

Remark 1.6.4.5. We make one more comparison to the GSp4 case. For GSp4, the normalized

induced representation ι
GSp4(R)
Mβ(R) (π�1, 1/6) from the Siegel parabolic contains as a subrepresentation

a member of the large discrete series. This large discrete series representation has Harish-Chandra

parameter is related, by the Weyl group element which rotates the root lattice clockwise by an

angle of π/2, to the holomorphic discrete series which are the archimedean components of the CAP

forms appearing in the proof of Theorem 1.4.4.1.

For G2, on the other hand, it is possible to make a (somewhat lengthy) computation using

the work of Blank [Bla85] to show that the induced representation ι
G2(R)
Mα(R)(π, 1/10) contains as a

subrepresentation the discrete series representation of G2(R) with Harish-Chandra parameters

k − 4

2
(α+ 3β) + (α+ 4β) and

k − 4

2
(α+ 3β) + (2α+ 5β).

These parameters are obtained from the Harish-Chandra parameter of R(Λw) by applying various
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Weyl group elements.

However, in forthcoming work of R. Dalal, this same result is proved using our determination

of the Arthur packet above. With this input, the result becomes much easier to prove, and in

particular, Dalal circumvents the use of the results of Blank.

The Harish-Chandra parameter of R(Λw), as discussed before, is the one called quaternionic

of weight k/2 in [GGS02]. These quaternionic discrete series are supposed to be analogous to the

holomorphic ones, and so we once again see that the theory of representations induced from the

long root parabolic of G2 corresponds well to the theory of those induced from the Siegel parabolic

in GSp4.
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Chapter 2: p-adic deformation of certain critical Eisenstein series for G2

This paper is organized at follows. We first briefly recall some facts about the structure of

the group G2 in Section 1.5.1. Then in Section 2.2, we study certain unramified principal series

representations of G2 at p and obtain both qualitative and quantitative information about their

p-stabilizations for later use. In Section 2.3 we carry out the p-adic deformation described in the

introduction of this thesis.

In the appendix to this thesis, we take some time to recall the results from [Urb11] that we

need, and we also take the opportunity to correct a mistake in that paper.

Notation and conventions

The ring of adeles of Q will be denoted A, the ring of finite adeles will be denoted Af , and the

ring of finite adeles away from a prime p will be denoted Apf . The archimedean place of Q will be

denoted ∞.

If G is a reductive group, then given an automorphic representation Π of G(A), we let Πf denote

the representation of G(Af ) which is the finite component of Π. Similarly define the representation

Πp
f of G(Apf ).

Some notation and conventions about the group G2 will be introduced in Section 2.1 and will

be used throughout this chapter. A significant amount of notation will also be introduced in the

appendix and will be used in Section 2.3.

2.1 The group G2

We collect in this section some facts about the group G2 which we will use throughout this

chapter.

By definition, G2 will be the split simple group over Q of type G2. We fix a split maximal torus

T in G2, and we also fix a pair of simple roots for T in G2, the longer of which we denote by α

and the shorter of which we denote by β. The Dynkin diagram is pictured here. The group G2 has
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Figure 2.1.1: The Dynkin diagram of G2

trivial center.

The set of positive roots for G2 consists of the following six roots:

α, β, α+ β, α+ 2β, α+ 3β, 2α+ 3β.

The root lattice is shown in Figure 2.1.2. There, the dominant chamber is shaded.

The group G2 has three proper standard parabolic subgroups. One is the Borel, which we

Figure 2.1.2: The root lattice of G2

denote by B. Let us write U for its unipotent radical, so that B = TU . We also have the long

root parabolic, which is the one whose Levi contains α. We write Pα for it, and denote its Levi by

Mα and its unipotent radical by Nα. Similarly, there is the short root parabolic Pβ whose Levi Mβ

contains β. Write Nβ for its unipotent radical.

Both Mα and Mβ are isomorphic to GL2. If
(
a b
c d

)
∈ GL2, we let

(
a b
c d

)
α

∈Mα,

(
a b
c d

)
β

∈Mβ

be the corresponding matrices in Mα and Mβ, respectively. Here, this correspondence is fixed so

that if xα : Ga → G2 is the root group homomorphism for α, then xα(a) =
(

1 a
0 1

)
α
, and similarly for
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β.

We note here that the root α + 2β acts on elements of T the same way as the determinant

character for Mα. That is,

(α+ 2β)

(
t1 0
0 t2

)
α

= t1t2.

Similarly,

(2α+ 3β)

(
t1 0
0 t2

)
β

= t1t2.

We will write W for the Weyl group of G2. It has 12 elements and is generated by the simple

reflections wα and wβ across the lines perpendicular to, respectively, α and β. We amalgamate

these notations to express the corresponding products. So, for example, we write wαβ = wαwβ,

and wαβα = wαwβwα, and so on. Then

W = {1, wα, wβ, wαβ, wβα, wαβα, wβαβ , wαβαβ , wβαβα, wαβαβα, wβαβαβ, wαβαβαβ}.

For this last element we have wαβαβαβ = wβαβαβα. This element acts on the root system by

multiplication by −1.

The group G2(R) is connected and has discrete series. Its maximal compact, which we will

denote by K∞, is 6 dimensional. Since G2 is 14 dimensional, the symmetric space G2(R)/K∞ is

8-dimensional. In particular, the middle degree for the cohomology of the locally symmetric spaces

attached to G2 is 4.

Finally, we fix a maximal compact subgroup Kf of G2(Af ) which is hyperspecial at all places.

2.2 Unramified principal series and their p-stabilizations

In this section we study the unramified principal series representations of G2 which give rise to

the components at p of the functorial lifts we will be interested in. We will obtain information in

this section about when certain unramified principal series are irreducible, as well as information

about the slopes of unramified principal series representations.

We remark that, although we only prove results for G2 here, a lot of the theory introduced in

this section is not specific to G2 and could in principal be done for any split reductive group.
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2.2.1 Reducibility of certain principal series

In this chapter, we will be concerned with the representations obtained by unitary parabolic

induction from the long root parabolic Pα in G2, induced from automorphic representations of the

form π ⊗ |det |1/2, where π is the unitary automorphic representation of GL2(A) ∼= Mα(A) coming

from a cuspidal holomorphic eigenform which is unramified at p and has trivial nebentypus. More

precisely, we will be interested in the unique irreducible (Langlands) quotient of such an induction,

and since the goal will be to p-adically deform this quotient, we will need to examine this quotient

at p.

Now the p-component of this Langlands quotient is the Langlands quotient of the unitary

parabolic induction

ι
G2(Qp)
Pα(Qp)(πp ⊗ | det |1/2).

If we knew that this induced representation were irreducible, then of course it would equal its

Langlands quotient and we would obtain a good description our global Langlands quotient at p.

However, and rather interestingly, this will never be the case!

The reason for this can actually be seen from the root lattice for G2. First, let us write πp itself

as an unramified principal series,

πp ∼= ι
Mα(Qp)
Bα(Qp) (χ)⊗ | det |1/2,

where Bα = B ∩Mα is the standard Borel of Mα, and χ̃ is an unramified character of T (Qp). By

unitarity, χ̃ has the form

χ̃(diag(t1, t2)) = χ(t1)χ−1(t2), t1, t2 ∈ Q×p

for some unramified unitary character χ of Q×p , and this can be rewritten as

χ̃(t) = χ(α(t)), t ∈ T (Qp).
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The determinant factor of πp can be moved into the induction, and using (α+ 2β)(t) = det(t), we

can rewrite our principal series as

πp ∼= ι
G2(Qp)
B(Qp) ((χ ◦ α) · (| · |1/2 ◦ (α+ 2β))).

Now, on the other hand, there is a element w1 in the Weyl group of G2 which rotates the

root lattice clockwise by 60 degrees. This element takes the ordered pair (α, α + 2β) to the pair

(2α + 3β, β). Now the pair (2α + 3β, β) plays the same role for the short root Levi Mβ that

(α, α+ 2β) plays for Mα, except that the entries of this pair are reversed. It follows that

ι
Mβ(Qp)

Bβ(Qp) ((χ ◦ w1α) · (| · |1/2 ◦ w1(α+ 2β))),

which is the principal series for Mβ induced from the twist by w1 same character as above, is

isomorphic to

ι
Mβ(Qp)

Bβ(Qp) (| · |1/2 ⊗ | · |−1/2)⊗ χ.

(Here, of course, Bβ = B ∩Mβ is the standard Borel of Mβ.) Now the above representation is

obviously reducible by the theory of principal series for GL2(Qp), and so if we induced it further to

G2(Qp), we would obtain a reducible representation. By induction in stages, and the fact that the

irreducible constituents of a principal series do not depend on the Weyl twist of the representation

being induced, we find that ι
G2(Q)
Pα(Qp)(πp) is also reducible.

Nevertheless, this argument actually suggests what the Langlands quotient of this induction

should be, and it turns out we will be able to write it as a parabolic induction of a character,

neither from Mα(Qp) nor T (Qp), but rather from Mβ(Qp). We make all this precise in the following

proposition.

Proposition 2.2.1.1. Let χ be an unramified unitary character of Q×p , and let χ̃ be the character

of T (Qp) defined by

χ̃

(
t1 0
0 t2

)
α

= χ(t1)χ−1(t2), t1, t2 ∈ Q×p .
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Then the principal series representation

ι
G2(Qp)
B(Qp) (χ̃ · | detα |1/2)

is reducible. Its Langlands quotient is isomorphic to

ι
G2(Qp)
Pβ(Qp)(χ ◦ detβ),

which is irreducible.

Proof. Let w = wβwα, so that wα = 2α + 3β and w(α + 2β) = β. Rewrite our principal series

representation as

ι
G2(Qp)
B(Qp) (χ̃ · | detα |1/2) = ι

G2(Qp)
B(Qp) ((χ ◦ α) · (| · |1/2 ◦ (α+ 2β))).

Because α + 2β is dominant, the Langlands quotient of this is the unique unramified irreducible

constituent of it, and is therefore isomorphic to the unique unramified irreducible constituent of

the twist by w,

ι
G2(Qp)
B(Qp) ((χ ◦ (wα)) · (| · |1/2 ◦ (w(α+ 2β)))) = ι

G2(Qp)
B(Qp) ((χ ◦ (2α+ 3β)) · (| · |1/2 ◦ β))

= ι
G2(Qp)
B(Qp) (δ

1/2
Bβ(Qp) · (χ ◦ detβ)).

By induction in stages, this is

ι
G2(Qp)
Pβ(Qp)(ι

Mβ(Qp)

Bβ(Qp) (δ
1/2
Bβ(Qp) · (χ ◦ detβ))).

The inner parabolic induction is reducible, hence so is the whole one, and also our original principal

series (before applying the twist by w).

Now the unique unramified constituent of the inner induction

ι
Mβ(Qp)

Bβ(Qp) (δ
1/2
Bβ(Qp) · (χ ◦ detβ))

is the unramified character χ ◦ detβ of Mβ(Qp), which is a quotient. Therefore the Langlands
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quotient we are interested in is the unique unramified irreducible constituent of

ι
G2(Qp)
Pβ(Qp)(χ ◦ detβ).

So to prove the proposition, it suffices to prove this is irreducible. But this was already done (for

unitary characters) in the paper of Jantzen [Jan98]; See section 6 of that paper. So we are done.

We prove now a proposition which will be helpful later in this chapter. For this proposition, it

is important for us to view the coefficient field of our representations as Qp rather than C.

Proposition 2.2.1.2. Let χ : T (Qp)→ Q×p be an unramified character. Assume that for all roots

γ for G2 we have

vp(χ(γ∨(p))) 6= ±1.

Then the principal series representation

ι
G2(Qp)
B(Qp) (χ)

is irreducible.

Proof. We will use Proposition 2.4 of the paper of Jantzen [Jan98]. In our case, this says that if

ι
M(Qp)
(B∩M)(Qp)(wχ) (2.2.1.1)

is irreducible for the maximal Levis M = Mα,Mβ and for all w in the Weyl group of G2, then for

any w′ in the Weyl group of G2, we have

ι
G2(Qp)
B(Qp) (χ) ∼= ι

G2(Qp)
B(Qp) (w′χ) (2.2.1.2)

So let us first check that the principal series representations (2.2.1.1) are irreducible for M =

Mα,Mβ.

Let γ0 denote the positive root in M , so γ0 = α if M = Mα, or γ0 = β if M = Mβ. Then
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(2.2.1.1) is reducible if and only if (wχ)(γ∨0 (t)) = |t|±1 for all t ∈ Q×p . But we have

(wχ)(γ∨0 (p)) = χ((w−1γ0)∨(p)),

and the right hand side of the above equation is not equal to p±1 by hypothesis. Therefore the

representations (2.2.1.1) are irreducible for both Levis M , and so (2.2.1.2) holds for all w′.

Now by the theory of Satake parameters, there are Weyl group elements w1 and w2 so that the

irreducible spherical constituent of

ι
G2(Qp)
B(Qp) (w1χ)

is the unique irreducible quotient, and so that the spherical constituent of

ι
G2(Qp)
B(Qp) (w2χ)

is the unique irreducible subrepresentation. By (2.2.1.2), this subrepresentation and this quotient

must coincide, forcing

ι
G2(Qp)
B(Qp) (χ)

to be irreducible, as desired.

2.2.2 The algebra Up

Let us start by fixing a Chevalley basis for g2. This means we fix root vectors Eγ for every root

γ such that

[Eγ , Eγ′ ] = uγ,γ′Eγ+γ′

whenever γ and γ′ are roots, where uγ,γ′ = ±〈γ, (γ′)∨〉 unless γ + γ′ is not a root, in which case

uγ,γ′ = 0.

We can then define root group maps xγ : Ga → G2 for any root γ, which are defined over Z for

some model of G2 over Z. They are defined on points by

xγ(a) = exp(aEγ).
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Then over Zp, we have the group G2(Zp) which is generated inside of G2(Qp) by the images of Zp

under these root group homomorphisms, along with the images of Z×p under all coroots γ∨. It is a

hyperspecial maximal compact subgroup in G2(Qp).

We note the following identity for future use:

xγ(a)xγ′(a
′) = xγ+γ′(uγ,γ′aa

′)xγ′(a
′)xγ(a). (2.2.2.1)

For an integer m ≥ 1, let pm : G2(Zp) → G2(Z/pmZ) be the reduction modulo pm map. We

consider in this section the Iwahori subgroup Im of depth m, defined by

Im = {g ∈ G2(Zp) | pm(g) ∈ B(Z/pmZ)}.

We then have the Iwahori decomposition, which says the following. Let U be the unipotent radical

of the parabolic opposite to B, and let U−m = U(Zp) ∩ Im. Then

Im = U(Zp)T (Zp)U−m = U−mT (Zp)U(Zp).

As in [Urb11] and also the appendix of this thesis, we will use the Iwahori subgroup Im to define

a certain Hecke algebra Up which will act on smooth admissible representations of G2(Qp) with an

Im-fixed vector. To define the algebra Up, first we define a monoid T− by

T− = {t ∈ T (Qp) | tU(Zp)t−1 ⊂ U(Zp)}.

For a given t ∈ T−, we write ut for the element of Up given by

ut =
1

Vol(Im)
char(ImtIm).

Then we define Up to be the convolution algebra over Zp generated by the ut’s for t ∈ T−. The

Hecke algebra Up acts on smooth admissible representations of G2(Qp) with an Im fixed vector by

convolution. It turns out that neither the structure of Up, nor its action on smooth admissible

representations σ, depend on the choice of m, as long as σIm 6= 0. Indeed, we have the relation
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utut′ = utt′ for t, t′ ∈ T− (which can be checked using the Iwahori decomposition) which implies that

Up is isomorphic to the monoid algebra over Zp generated by T−/T (Zp), and thus it is independent

of m. In particular, Up is commutative. That the action of Up on smooth admissible representations

is independent of m follows from writing the double coset ImtIm in terms of right cosets for Im

and showing that there is a description of those cosets which is independent of m. Actually, this is

more or less a corollary of the following lemma, which will be useful to us in the next section.

Lemma 2.2.2.1. Let t ∈ T−. Then

ImtIm = t(t−1U(Zp)t)T (Zp)U−m.

Proof. We use the Iwahori decomposition. We have

ImtIm = t(t−1U(Zp)t)(t−1T (Zp)t)(t−1U−mt)Im.

Since t ∈ T−, t−1U−mt ⊂ U−m, and t−1T (Zp)t = T (Zp). So

(t−1T (Zp)t)(t−1U−mt) ⊂ T (Zp)U−m ⊂ Im.

Therefore we can absorb this factor into the Im on the right and get

ImtIm = t(t−1U(Zp)t)Im.

Now we use the Iwahori decomposition again:

ImtIm = t(t−1U(Zp)t)U(Zp)T (Zp)U−m.

Since t ∈ T−, we have t−1U(Zp)t ⊃ U(Zp). So we get

ImtIm = t(t−1U(Zp)t)T (Zp)U−m,

whence the lemma.
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2.2.3 p-stabilization of unramified principal series

Let us first recall the following definition from [Urb11].

Definition 2.2.3.1. Let m ≥ 1, and let σ be a smooth admissible representation of G2(Qp) with

σIm 6= 0. An irreducible constituent of σIm for the action of Up will be called a p-stabilization of σ.

Actually, we note that the definition given in [Urb11] is more general, and will be recalled in

the appendix.

Now any p-stabilization of a representation σ as in this definition is one dimensional. Indeed,

Up is generated by finitely many commuting operators. Since σIm is finite dimensional, so is any p-

stabilization of it, and therefore these operators must share a common eigenvector. This eigenvector

must then generate the whole p-stabilization by the assumption that it is irreducible.

We now study the action of Up on certain unramified principal series, and determine their p-

stabilizations. In what follows, we take m = 1, and denote I = I1 and U− = U−1 . We consider a

proper standard parabolic subgroup P of G2 and write P = MN for its Levi decomposition. So

P ∈ {B,Pα, Pβ}. If P = Pα, Pβ, then M ∼= GL2, and by an unramified character of M(Qp) we

mean a character which is the composition of an unramified character of Q×p with the determinant.

In the following proposition we will consider the set WP of minimal length representatives in the

Weyl group W of G2 of the quotient WM\W , where WM is the Weyl group of M . One computes

that WM = W if M = T , and otherwise has 6 elements.

Proposition 2.2.3.2. Let P be as above and let χ be an unramified character of M(Qp). Then

the (non-normalized) principal series representation

Ind
G2(Qp)
P (Qp) (χ)

has |WP | different p-stabilizations, one corresponding to each w ∈ WP , and the action of ut on

each is given by multiplication by

χ(tw)
∏
γ>0

wγ<0 or wγ∈∆M

|γ(t)|−1,

where ∆M denotes the set of roots in M and the absolute value in the expression is the usual p-adic
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absolute value.

We will prove this proposition momentarily. The key will be to use the well-known decomposi-

tion

G2(Qp) =
∐

w∈WP

P (Qp)wI, (2.2.3.1)

which will allow us to write down an explicit basis for the I-invariants of our principal series rep-

resentation. We will show that the operators ut for t ∈ T− are lower triangular in this basis. A

similar argument for GSp4 appears in [SU06a], Proposition 4.2.2, but not in so much detail.

We will need a couple of lemmas. We consider the root group homomorphisms xγ as defined

in the beginning of Section 2.2.2. For γ ∈ {α, β} a simple root, let wγ denote the corresponding

representative element in G2(Qp) as in the lemma above. For longer elements of the Weyl group,

which are amalgamations of wα and wβ, we consider representatives in G2(Qp) formed by amalga-

mating the representatives just chosen. So for example, wαβα = wαwβwα, and so on.

Next we recall the fact that, given any ordering γ1, . . . , γ6 on the positive roots of G2, there is

a way to write any x ∈ U(Qp) as

x = xγ1(a1) . . . xγ6(a6),

for some unique a1, . . . , a6 ∈ Qp. This follows from, for example, [Spr09], Proposition 8.2.1.

Lemma 2.2.3.3. Choose any order γ1, . . . , γ6 on the roots of G2. Let x ∈ U(Zp). Then if we write

x = xγ1(a1) . . . xγ6(a6),

for some a1, . . . , a6 ∈ Qp, then actually a1, . . . , a6 ∈ Zp.

Proof. Assume for sake of contradiction that one of the ai’s is in Qp but not in Zp. Let i be so that

ai /∈ Zp and γi is as small as possible. Since the only relations in U(Qp) are

xγ(a)xγ(a′) = xγ(a+ a′)

and the commutation relation (2.2.2.1), then no matter how we expand x as a word in elements

xγ(a), there will be one component of that word of the form xγi(a) with a /∈ Zp. (Here we must
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use that the constants uγ,γ′ in (2.2.2.1) are integers.) This is a contradiction, since U(Zp) can be

generated by xγ(a) for roots γ and a ∈ Zp.

Proof (of Proposition 2.2.3.2). From the decomposition (2.2.3.1), it follows that the space of Iwa-

hori invariants,

Ind
G2(Qp)
P (Qp) (χ)I ,

has a basis of |WP | elements, given by functions Φw for w ∈WP defined uniquely by the conditions

that

Φw(w) = 1, Φw(w′) = 0 if w′ 6= w.

Now let t ∈ T− and w,w′ ∈ WP . Let us normalize the Haar measure on G2(Qp) so that I has

measure 1. Then we have by definition,

(utΦ
w)(w′) =

∫
ItI

Φw(w′z) dz.

We invoke Lemma 2.2.2.1 to write this as

∫
t−1U(Zp)t

∫
T (Zp)U−

Φw(w′txy) dy dx,

where the Haar measure on t−1U(Zp)t gives the subset U(Zp) measure 1, and that on T (Zp)U−

gives it measure 1. Then we use the fact that Φw is in the induced representation to write this as

χ(tw
′
)

∫
t−1U(Zp)t

∫
T (Zp)U−

Φw(w′xy) dy dx.

Since Φw is also I-invariant, this simplifies to

χ(tw
′
)

∫
t−1U(Zp)t

Φw(w′x) dx.

Then we make a change of variable to write this as

χ(tw
′
)
∏
γ>0

|γ(t)|−1

∫
U(Zp)

Φw(w′t−1xt) dx.
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Now we order the positive roots of G2 as follows: If P = B, order γ1, . . . , γ6 so that w′γi > 0

for i ≤ 6 − l(w′) and w′γi < 0 for i > 6 − l(w′). If P = Pα, then let γ1 = α and order the rest of

the γi’s so that w′γi > 0 for 1 < i ≤ 6− l(w′) and w′γi < 0 for i > 6− l(w′). Similarly if P = Pβ,

order the roots in an analogous way except that γ1 = β. Then let Uw′,+ be the set of all elements

in U(Zp) of the form

xγ1(a1) · · ·xγ6−l(w′)(a6−l(w′)),

where the ai’s are in Zp, and let Uw′,− be the set of all elements in U(Zp) of the form

xγ6−l(w′)+1
(a6−l(w′)+1) · · ·xγ6(a6)

where again the ai’s are in Zp. By Lemma 2.2.3.3, U(Zp) = Uw′,+Uw′,−. Then we rewrite

χ(tw
′
)
∏
γ>0

|γ(t)|−1

∫
U(Zp)

Φw(w′t−1xt) dx

= χ(tw
′
)
∏
γ>0

|γ(t)|−1

∫
Uw′,−

∫
Uw′,+

Φw(w′(t−1x′t)(t−1x′′t)) dx′ dx′′,

where Uw′,− and Uw′,+ get measure 1.

Now the only way for w′(tx′t−1)(tx′′t−1) to be in P (Qp)wI is if w′ ≥ w in the Bruhat order

(see, for example, Proposition 6 in [BN11], where this statement is proved for P = B; the cases

of the other two parabolic subgroups then follow from this one). Thus the integral above vanishes

unless w = w′ or l(w′) > l(w). This implies that if we order the basis {Φw} increasingly in the

length of w, then ut is lower triangular. Hence there are |WP | p-stabilizations of our principal

series representation, and to prove the proposition, we only need to compute the above integral

when w′ = w.

Setting w′ = w, our integral becomes

χ(tw)
∏
γ>0

|γ(t)|−1

∫
Uw,−

∫
Uw,+

Φw(w(t−1x′t)(t−1x′′t)) dx′ dx′′.

By definition of Uw′,−, w(tx′t−1)w−1 ∈ P (Qp) and is a product of unipotent elements. Thus we
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may factor it out and we get

χ(tw)
∏
γ>0

|γ(t)|−1

∫
Uw,+

Φw(w(t−1x′′t)) dx′′.

The only way for w(tx′′t−1) to be in P (Qp)wI is if (tx′′t−1) ∈ U(Zp) (see [BN11], Proposition 8)

and so we may shrink the region of integration to tUw,+t
−1. Hence we get

χ(tw)
∏
γ>0

|γ(t)|−1

∫
tUw,+t−1

Φw(w(t−1x′′t)) dx′′.

But then (t−1x′′t) ∈ I for every x′′ ∈ (tUw,+t
−1), so this is just

χ(tw)
∏
γ>0

|γ(t)|−1

∫
tUw,+t−1

Φw(w) dx′′ = χ(tw)
∏
γ>0

|γ(t)|−1 Vol(tUw,+t
−1).

Of course,

Vol(tUw,+t
−1) =

∏
γ>0,wγ<0
wγ/∈∆M

|γ(t)|.

Combining, we finally get

(utΦ
w)(w) = χ(tw)

∏
γ>0

wγ<0 or wγ∈∆M

|γ(t)|−1,

which yields the proposition.

2.2.4 Slopes

Fix an integer m ≥ 1. Let σ be an irreducible admissible representation of G2(Qp) over Qp

which has a vector fixed by Im. Fix a p-stabilization σ(p) of σ. Then σ(p) is one dimensional and

induces a character θ : Up → Qp. We define a rational character µθ ∈ X∗(T )⊗Q by the condition

that, for any algebraic cocharacter µ∨ of T , we have

〈µθ, µ∨〉 = vp(θ(µ
∨(p))).
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This character µθ is called the slope of σ(p) or of θ. If µθ is not identically zero, we say that θ or

σ(p) is of finite slope.

We finish this section with a proposition which will be useful to us later. In its hypotheses we

use the terminology “sufficiently regular” in reference to a character µ of T , and by this we mean

there is a regular character µ0 of T such that, for any µ > µ0 in the order induced by the Weyl

chamber containing µ0, the conclusion of the proposition holds.

Proposition 2.2.4.1. Let χ : T (Qp)→ Qp be an unramified character. Let σ(p) be a p-stabilization

of the principal series representation

σ = ι
G2(Qp)
B(Qp) (χ).

If the slope µ of σ(p) is sufficiently regular, then σ is irreducible.

Proof. By Proposition 2.2.3.2, σ has a p-stabilization for each w ∈ W , and the slope of the wth

p-stabilization is given by the rational character µ such that, for any root γ, we have

〈µ, γ∨〉 = vp(χδ
1/2
B(Qp)((wγ)∨(p))) +

∑
γ′>0
wγ′<0

〈γ′, γ∨〉

= vp(χ((wγ)∨(p))) + 〈ρ, (wγ)∨〉+
∑
γ′>0
wγ′<0

〈γ′, γ∨〉.

If µ is sufficiently regular, then the quantity vp(χ((wγ)∨(p))) on the right hand side is sufficiently

far away from zero, as the other quantities on the right hand side can be explicitly bounded

independently of γ. In particular,

vp(χ((wγ)∨(p))) 6= ±1,

and since this holds for any γ, we are done by Proposition 2.2.1.2.

2.3 p-adic deformation of certain Eisenstein series

We now introduce the functorial lift Π, which is the “Eisenstein series” alluded to in the title of

this section. After recalling some relevant facts about it from Chapter 1, we will prove that under
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certain conditions that it can be p-adically deformed in a generically cuspidal family. The main

result in this direction here is Theorem 2.3.2.3.

2.3.1 The overconvergent multiplicity

Let F be a cuspidal holomorphic eigenform with level N , trivial nebentypus, and even weight

k ≥ 4. Assume p - N . Let π be the unitary cuspidal automorphic representation of GL2(A)

attached to F . We will be interested in deforming p-adically the Langlands quotient, which we will

denote by Π, of the unitary induction

ι
G2(A)
Pα(A)(π ⊗ δ

1/10
Pα(A)).

We will explain under what circumstances this representation can be p-adically deformed in a

generically cuspidal family of automorphic representations of G2(A).

To get started, we invite the reader to read the appendix of this thesis, which explains the

general tools we will use to make these p-adic deformations. We will assume familiarity with the

content and notation of first three sections of this appendix in this section. In particular, we will

be working with the cohomology of XG2 and its overconvergent counterparts, and the associated

multiplicities.

We first state what we know about how Π appears in the cohomology of XG2 , using results of

Chapter 1. Let λ0 be the dominant weight

λ0 =
k − 4

2
(2α+ 3β).

The cohomology G2(Af )-module H i(XG2 , Vλ0), as usual, splits G2(Af )-equivariantly into a direct

sum of two G2(Af ) submodules given by the cuspidal and Eisenstein cohomology:

H i(XG2 , Vλ0) = H i
cusp(XG2 , Vλ0)⊕H i

Eis(XG2 , Vλ0).

We have the following result about the appearance of Π in Eisenstein cohomology. To state it, we

write Π =
⊗′

v Πv for the decomposition over all places v of Π into representations of G2(Qv), and

we let Πf be the finite part of Π.
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Theorem 2.3.1.1. Assume that L(1/2, π,Sym3) = 0. Then the representation Πf appears in

exactly one way as a subquotient of the cohomology space H i
Eis(XG2 , Vλ0) when i = 4, and does not

appear as a subquotient of this space for i 6= 4.

Moreover, if Π′f if another irreducible admissible G2(Af )-module which at every finite place

except p is isomorphic to Πf , then Π′f appears as a subquotient of H i
Eis(XG2 , Vλ0) if and only if

i = 4 and the local component Π′p of Π′f at p is an irreducible subquotient of the unitary induction

ι
G2(Qp)
Pα(Qp)(πp ⊗ δ

1/10
Pα(Qp)).

Moreover, in this case, any such subquotient of Π′f appears uniquely as a subquotient of the Eisen-

stein cohomology.

Proof. For the representation Πf , this is a consequence of Theorem 1.5.3.3. Strictly speaking, the

statement of that theorem does not apply directly to Π′f , but its proof works for this representation

in exactly the same way because the methods used there for distinguishing subquotients of different

parabolic inductions work by distinguishing them at all but finitely many places. In a little more

detail, these methods show that any such Π′f appearing in the Eisenstein cohomology of Vλ0 actually

appears in the space

H i(g2,K∞;Aλ0,[Pα],ϕ(G2)⊗ Vλ0),

which is shown to be concentrated in degree 4 and isomorphic to the unitary parabolic induction

ι
G2(Af )

Pα(Af )(π ⊗ δ
1/10
Pα(Af ))

by Proposition 1.5.3.1, because of the assumption on the vanishing of the symmetric cube L-

function.

As for the appearance in cuspidal cohomology, the results in Chapter 1 explain how Πf appears

in cuspidal cohomology assuming conjectures about CAP representations. These conjectures are

given as Conjecture 1.5.4.1, and it is explained there why they should be reasonable. We state a

consequence of these conjectures here, which is Theorem 1.5.4.2 (whose proof assumes Conjecture

1.5.4.1).
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Conjecture 2.3.1.2. Assume ε(1/2, π,Sym3) = −1 (so in pariticular, L(1/2, π,Sym3) = 0). Then

Πf appears exactly once as a summand of the cuspidal cohomology H i
cusp(XG2 , Vλ0). Moreover, if

Π′f is another summand of this cuspidal cohomology which is equivalent to Πf at every finite place

except perhaps p, then Π′f
∼= Πf .

See Section 1.5.4 for a discussion of how this conjecture essentially reduces to considerations

surrounding Arthur’s conjectures.

Now we consider the representation Πf as a module for the Hecke algebra Hp introduced in

Section A.1.2 (considered here for G = G2). Also let Πp
f be the irreducible admissible G2(Apf )-

module which is given by Πv at every finite place v 6= p. We also consider the G2(Af )-module

Π̃f = Πp
f ⊗ ι

G2(Qp)
Pα(Qp)(πp ⊗ δ

1/10
Pα(Qp)).

Then Πf is the unique irreducible quotient of Π̃f .

Let I be the Iwahori subgroup of G2(Zp) of depth 1 as considered previously. By Proposition

2.2.3.2, Π̃I
f is exactly 12 dimensional, and ΠI

f is exactly 6 dimensional by the same proposition

along with Proposition 2.2.1.1. However, it seems we cannot rule out the possibility that a given

p-stabilization of either Πf or Π̃f occurs more than once in the respective space Iwahori fixed

vectors. This could happen if, for example, the Hecke polynomial of F at p has a double root

(although it seems this is expect never to occur, but this is not known). This will not matter for

our applications, however.

As a matter of notation, given a p-stabilization σ of Πf , let us write mp(σ) for the dimension

of the σ-isotypic component of Πf as a Up-module. Similarly define m̃p(σ̃) for a p-stabilization σ̃

of Π̃f . We note that any p-stabilization of Πf is also a p-stabilization of Π̃f .

We will now fix a p-stabilization of Πf which will be denoted σ(Π)un. (The decoration (·)un is

there to signify that this p-stabilization will not yet have been normalized properly.) To do this,

fix αp a root of the Hecke polynomial of F at p. Then we can write the local component πp of π at

p as

πp ∼= ι
Mα(Qp)
Bα(Qp) (χ′ ⊗ | det |1/2),
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where Bα = B ∩Mα, and χ′ is an unramified character of T (Qp) such that

χ̃′(diag(t1, t2)α) = (p(k−1)/2αp)
vp(t1)(p(k−1)/2αp)

−vp(t2), t1, t2 ∈ Q×p .

Let χ be the unramified character of Q×p such that

χ(t) = (p(k−1)/2αp)
vp(t), t ∈ Q×p .

Then by Proposition 2.2.1.1,

Πp
∼= Ind

G2(Qp)
Pβ(Qp)((χ ◦ detβ) · δ1/2

Pβ(Qp)).

By Proposition 2.2.3.2, ΠI
p has a p-stabilization corresponding to w = 1 ∈WPβ whose ut-eigenvalue

is

χ(detβ(t))δ
1/2
Pβ(Qp)(t)|β(t)|−1 = (p(k−1)/2αp)

vp((2α+3β)(t))p(3/2)vp((2α+3β)(t))pvp(β(t))

= α
vp((2α+3β)(t))
p p((k−4)/2)vp((2α+3β)(t))pvp(β(t)),

for t ∈ T−. The p-stabilization of Πf with these Up-eigenvalues is the p-stabilization that we denote

by σ(Π)un. If we write sp = vp(αp), then the slope of this p-stabilization is

(
sp +

k − 4

2

)
(2α+ 3β) + β.

We normalize this representation σ(Π)un in a way which is consistent with the definition of

the character distribution Icl
G2

(·, λ0;K∞) made in Section A.1.2; to do this we simply define, for

f = ut ⊗ fp with t ∈ T− and fp ∈ C∞c (G2(Apf )),

σ(Π)(f) = |λ0(t)|−1σ(Π)un(f).

Then it follows that σ(Π) has slope

sp(2α+ 3β) + β.
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We state the next proposition as a culmination of all the considerations made so far in this

section. Recall the definitions of multiplicities that were made in Section A.1.3.

Proposition 2.3.1.3. Assume ε(1/2, π,Sym3) = −1. Then under Conjecture 2.3.1.2, we have

mcl
0 (σ(Π), λ0;K∞) = mp(σ(Π))

and

mcl(σ(Π), λ0;K∞) = m̃p(σ(Π)un) +mp(σ(Π)un).

In particular (still assuming this conjecture) we have

mcl(σ(Π), λ0;K∞) ≥ 2.

The classical multiplicity in the above proposition is exactly 2 (under Conjecture 2.3.1.2) if all

12 of the p-stabilizations of Π̃f are distinct.

Now we express the classical multiplicity just studied in terms of overconvergent multiplicities.

For w ∈ W , let σ(Π)w,λ0 be defined as in Section A.1.3. So σ(Π)w,λ0(f) = σ(Π)(f), and σ(Π)w,λ0

has slope

sp(2α+ 3β) + β − λ0 + w ∗ λ0,

where, we recall, w ∗ λ = w(λ+ ρ)− ρ, and ρ = 3α+ 5β is half the sum of the positive roots.

Proposition 2.3.1.4. Assume sp <
k−2

4 . Then we have

mcl(σ(Π), λ0;K∞) = m†(σ(Π), λ0;K∞)−m†(σ(Π)wβ ,λ0 , wβ ∗ λ0;K∞).

Proof. The proposition will follow from Theorem A.1.3.1 and Theorem A.1.3.3 if we can show that

sp(2α+ 3β) + β − λ0 + w ∗ λ0

is in the cone X∗(T )Q,+ generated over Q≥0 by the positive simple roots only for w = 1, wβ. For

w = 1 this is clear because this quantity is just the slope of σ(Π). For w = wβ, we have that
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wβ(2α+ 3β) = 2α+ 3β and wβ(ρ) = 3α+ 4β, so

sp(2α+ 3β) + β − λ0 + w ∗ λ0 = sp(2α+ 3β) ∈ X∗(T )Q,+.

For any other w, we have w(2α+3β) 6= 2α+3β, and therefore the coefficient of α in w(2α+3β),

expressed as a linear combination of α and β, is at most 1. Therefore the coefficient of α in wλ0−λ0

is at most −k−4
2 . Furthermore, the coefficient of α in wρ − ρ must smaller than 0 because, as

w 6= id, wβ, w must negate some positive root whose α-coefficient is nonzero. Thus the coefficient

of α in

β − λ0 + wλ0 + wρ− ρ+ sp(2α+ 3β)

is at most −k−2
2 .

Now by assumption, sp <
k−2

4 , so the coefficient of α in

sp(2α+ 3β) + β − λ0 + wλ0 + wρ− ρ+ sp(2α+ 3β)

is negative. Therefore it is not in the cone X∗(T )Q,+, as desired.

For P = MN a standard parabolic in G2 and w ∈WP
Eis (See Section A.1.1) letm†G2,M,w(σ(Π), λ;K∞)

be the multiplicity of σ(Π) in the character distribution I†G2,M,w(·, λ;K∞) as defined in Section

A.1.2. This is well defined and nonnegative by Theorem A.1.3.4. Similarly definem†G2,M,w(σ(Π)λ0,wβ , λ0−

β;K∞). (Note that wβ ∗ λ0 = λ0− β.) We have, by definition of the cuspidal overconvergent char-

acter distribution,

m†(σ(Π), λ0;K∞) = m†0(σ(Π), λ0;K∞)

+
∑

P=Pα,Pβ ,B

∑
w∈WP

Eis

(−1)l(w)+dim(N)m†G2,M,w(σ(Π), λ0;K∞), (2.3.1.1)
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and similarly,

m†(σ(Π)λ0−β,wβ , λ0;K∞) = m†0(σ(Π)λ0,wβ , λ0 − β;K∞)

+
∑

P=Pα,Pβ ,B

∑
w∈WP

Eis

(−1)l(w)+dim(N)m†G2,M,w(σ(Π)λ0,wβ , λ0 − β;K∞). (2.3.1.2)

We now compute the sums in the right hand sides of these formulas in pieces. This will allow us

to express the overconvergent multiplicities in terms of the cuspidal ones. We note for the following

that the slope of σ(Π)λ0,wβ is sp(2α+ 3β).

Lemma 2.3.1.5. We have

m†G2,Mβ ,1
(σ(Π), λ0;K∞) = 0,

and

m†G2,Mβ ,1
(σ(Π)λ0,wβ , λ0 − β;K∞) = 0.

Proof. By definition, we have

I†G2,Mβ ,1
(f, λ0;K∞) = I†Mβ ,0

(f reg
Mβ ,1

, λ0 + 2ρPβ ;K∞ ∩ Pβ(R)),

for f ∈ H′p. We note that

λ0 + 2ρPβ =
k + 2

2
(2α+ 3β).

First let τ be a constituent of the character distribution I†Mβ ,0
(·, k+2

2 (2α + 3β);K∞ ∩ Pβ(R)),

viewed as an irreducible representation of the corresponding Hecke algebra for Mβ
∼= GL2, which

we will denote by Hp,β. We claim that if t = (2α+ 3β)∨(p), then ut,Mβ
acts on τ with eigenvalue 1.

To see this, put τ in a generically cuspidal p-adic family varying in the weight λ (which we

can do by the machinery of Urban’s eigenvariety). Then for λ = k+2
2 (2α+ 3β) + pnβ where n is a

sufficiently large integer, the family deforms to a classical cuspidal automorphic representation τn

of cohomological weight λ. Because of the presence of k+2
2 (2α + 3β) in the weight, such a τn is a

twist by |det |(k+2)/2 at all places different from p of a cuspidal representation of GL2 with trivial

central character; but at p, this twist cancels with the normalization of |λ(t)|−1 used to define the

classical character distribution. The element t is central in Mβ(Qp), so on any such τn, ut,Mβ
acts
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trivially. By continuity, ut,Mβ
also acts trivially on τ , which proves our claim.

Now we let ut be the corresponding element of the Hecke algebra of G2, for the same value of

t just considered. Then for any fp ∈ C∞c (G2(Apf ),Qp), consider the operator f = ut ⊗ fp ∈ Hp.

Then since f reg
Mβ ,1

= ut ⊗ fpMβ
, the operator f acts via I†G2,Mβ ,1

(·, λ0;K∞) by a sum of traces of the

form

Tr(fp| Ind
G2(Apf )

Mβ(Apf )
(τp))

for representations τ as above, by our claim. (Here τp is the component of τ away from p.)

Therefore the slope of any constituent of I†G2,Mβ ,1
(·, λ0;K∞) is orthogonal to 2α + 3β. But the

slope of σ(Π)char is sp(2α + 3β) + β, so if we have that sp > 0, then σ(Π) is not a constituent of

I†G2,Mβ ,1
(·, λ0;K∞).

If sp = 0, we must argue differently. But in this case, the representation τ is noncritical,

and therefore classical. But now we appeal to Proposition 1.5.2.8, which says that such an ir-

reducible subquotient representation induced from Pβ cannot be equivalent to one induced from

Pα at all but finitely many places. We see once again then that σ(Π) cannot be a constituent of

I†G2,Mβ ,1
(·, λ0;K∞) in this case.

This proves the first equality in the statement of the proposition, and the second one is com-

pletely analogous using the fact that the slope of σ(Π)λ0,wβ is sp(2α+ 3β).

Lemma 2.3.1.6. Let w ∈ {wα, wαβ}. Then if k is sufficiently large with respect to sp, then we

have

m†G2,Mβ ,w
(σ(Π), λ0;K∞) = 0,

and

m†G2,Mβ ,w
(σ(Π)λ0,wβ , λ0 − β;K∞) = 0.

Proof. We will view all finite slope representations of H′p as modules for the algebra

Up[u−1
t , t ∈ T−]⊗Zp C

∞
c (G2(Apf ),Qp)

in the natural way.

First we look at m†G2,Mβ ,wα
(σ(Π), λ0;K∞). Assume for sake of contradiction that there is a
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constituent τ of I†Mβ ,0
(·, wα ∗ λ0 + 2ρPβ ,K∞ ∩ Pβ(R)) such that σ(Π) appears in

f 7→ Tr(f reg
Mβ ,wα

|τ).

We note that

wα ∗ λ0 + 2ρPβ =

(
k

4
+

3

2

)
(2α+ 3β) +

(
k

4
+

1

2

)
β,

so τ has this cohomological weight.

Now we let t = (α+ β)∨(p) so that

uwα(t),Mβ
= uβ∨(p),Mβ

.

Let cτ be the eigenvalue of uβ∨(p),Mβ
on τ , and cσ be the eigenvalue of ut on σ(Π). Then we have,

if fp ∈ C∞c (G2(Apf ),Qp) and f = ut ⊗ fp, that

Tr(f reg
Mβ ,wα

|τ) = Tr(uβ∨(p),Mβ
⊗ fpMβ

|τ) = cτ Tr(1⊗ fpMβ
|τ).

But we also have

Tr(f |σ(Π)) = cσ Tr(1⊗ fp|σ(Π)).

It follows that cσ = cτ and that

fp 7→ Tr(1⊗ fp|σ(Π))

is a constituent of

fp 7→ Tr(1⊗ fpMβ
|τ).

This means, first of all, that vp(cσ) = vp(cτ ), and since the slope of σ(Π) is sp(2α+ 3β) + β, we

find that

vp(cτ ) = vp((sp(2α+ 3β) + β)(β∨(p))) = 3sp + 1.

Hence τ has slope

3sp + 1

2
β + a(2α+ 3β)

for some a ∈ Q×. But by looking at the weight, this implies that τ is noncritical and hence classical
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since k is sufficiently large with respect to sp.

Second, by above we must have that fp 7→ Tr(1⊗ fp|σ(Π)) is a constituent of

Ind
G2(Apf )

Pβ(Apf )
(τp ⊗ | detβ |b)

for some half integer b of the same parity as the weight of τ ; here τ is being viewed as a p-stabilization

of the finite part of a cuspidal, cohomological automorphic representation of Mβ
∼= GL2 and τp is

the corresponding representation of GL2(Apf ).

But away from p, σ(Π) is induced from a cuspidal, cohomological automorphic representation

along Pα. So now we appeal to Proposition 1.5.2.8 which says that if we have such a representation

induced from Pβ, then it cannot be equivalent to one induced from Pα at all but finitely many

places. This is the contradiction sought.

The proof for σ(Π)λ0,wβ and w = wα is completely similar, and so are the proofs when w = wαβ;

in the latter case, we just need to replace (α+ β)∨(p) with (α+ 2β)∨(p).

One computes easily that W
Pβ
Eis = {1, wα, wαβ}. Thus the previous two lemmas have ruled out

any contribution to (2.3.1.1) and (2.3.1.2) from multiplicities coming from Pβ, at least when k is

sufficiently large with respect to sp. We now do the same for the multiplicities coming from B. We

note here that WB
Eis = W .

Lemma 2.3.1.7. Let w ∈W . Then we have

m†G2,T,w
(σ(Π), λ0;K∞) = 0,

and

m†G2,T,w
(σ(Π)λ0,wβ , λ0 − β;K∞) = 0.

Proof. The proof is very similar to that of Lemma 2.3.1.6, except that we do not need to examine the

slope to prove the classicality of a representation of T , as such representations are already classical.

So we can just appeal to Proposition 1.5.2.8 again, which considers representations induced from

B as well as Pα and Pβ. We omit the precise details.

Now we examine multiplicities coming from Pα itself. We note that WPα
Eis = {1, wβ, wβα}.
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Lemma 2.3.1.8. Let w ∈ {1, wβ}. Then if k is sufficiently large with respect to sp, then we have

m†G2,Mα,w
(σ(Π), λ0;K∞) = 0,

and

m†G2,Mα,w
(σ(Π)λ0,wβ , λ0 − β;K∞) = 0.

Proof. We compute

λ0 + 2ρPβ = wβ ∗ (λ0 − β) + 2ρPβ =
k − 4

4
α+

(
3(k − 4)

4
+ 5

)
(α+ 2β)

and

wβ ∗ λ0 + 2ρPβ = λ0 − β + 2ρPβ =

(
k − 4

4
+

1

2

)
α+

(
3(k − 4)

4
+

9

2

)
(α+ 2β).

We can argue exactly as in Lemma 2.3.1.6 to see that if any of the multiplicities in the statement

of our lemma is nonzero, then there exists τ , a p-stabilization of the finite part of a classical

cohomological cuspidal automorphic representation of Mα, such that

Πp
f = Ind

G2(Apf )

Pα(Apf )
(τp ⊗ | detα |a)

for a either 3(k−4)
4 + 5 or 3(k−4)

4 + 9
2 (depending on w). Here, Πp

f and τp are the components away

from p. Furthermore, this τ would have weight k−4
2 or k−4

2 + 1, depending again on w. This would

imply that the component πpf of π away from p and ∞ is isomorphic to τ by Proposition 1.5.2.1,

which tells us when constituents of two parabolic inductions from Pα can be equivalent at almost

all places. But just by comparing the weights of π and τ we obtain a contradiction. Thus the

multiplicities in the statement of our lemma are all zero.

Lemma 2.3.1.9. We have

m†G2,Mα,wβα
(σ(Π), λ0;K∞) = 0.

Proof. We can argue just as in Lemma 2.3.1.5 that any irreducible constituent τ of I†Mα,0
(·, wβα ∗

λ0 + 2ρPα ;K∞ ∩ Pα(R)) must have slope a multiple of α; the slope in the direction of α+ 2β must

be trivial.
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So now assume for sake of contradiction that there is such a τ so that σ(Π) appears in

f 7→ Tr(f reg
Mα,wβα

|τ).

Let t = β∨(p). Then w(t) = (α + 2β)∨(p). We have that ut acts via a scalar of p-adic valuation 2

on σ(Π) because (sp(2α + 3β) + β)(β∨(p)) = p2. But by what we just said above, uw(t) must act

on τ by a scalar with p-adic valuation 0. This is a contradiction.

Lemma 2.3.1.10. Assume sp <
k−1

2 . Then

m†G2,Mα,wβα
(σ(Π)wβ ,λ0 , λ0;K∞) = 1.

Proof. Note that

wβα ∗ (λ0 − β) + 2ρPβ =
k − 2

2
α+ 2(α+ 2β).

In the character distribution I†Mα,0
(·, k−2

2 α+ 2(α+ 2β);K∞ ∩ Pα(R)), the representation given by

the normalized p-stabilization of πf with smaller slope appears, and it does so exactly once (because

K∞ ∩ Pα(R) is a maximal compact subgroup of Mα(R) and the Hecke polynomial for F at p does

not have a double root by the assumption of sp). It follows that σ(Π)wβα,λ0 appears exactly once

in the character distribution

f 7→ Tr(f reg
Mα,wβα

|τ).

It cannot appear in any character distribution

f 7→ Tr(f reg
Mα,wβα

|τ ′)

for any other τ ′ in I†Mα,0
(·, k−2

2 α+ 2(α+ 2β);K∞ ∩ Pα(R)) by Proposition 1.5.2.1.

With all this preparation, we can now state the main result about multiplicities.

Theorem 2.3.1.11. Let k be sufficiently large with respect to sp. Then

m†0(σ(Π), λ0;K∞) ≥ mcl(σ(Π), λ0;K∞) + 1.
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In particular, under Conjecture 2.3.1.2, if ε(1/2, π,Sym3) = −1, then

m†0(σ(Π), λ0;K∞) ≥ 3.

Proof. Combining all the previous lemmas, Proposition 2.3.1.4, and (2.3.1.1) and (2.3.1.2), we find

mcl(σ(Π), λ0;K∞) = m†0(σ(Π), λ0;K∞)−m†0(σ(Π)wβ ,λ0 , λ0 − β;K∞)− 1.

But m†0(σ(Π)wβ ,λ0 , λ0 − β;K∞) ≥ 0 by Theorem A.1.3.4. This gives the first statement in the

theorem, and the second follows from Proposition 2.3.1.3.

Remark 2.3.1.12. Theorem 2.3.1.11 shows that, at least conjecturally, the cuspidal overconver-

gent multiplicity of σ(Π) is at least 3 when the sign of the symmetric cube functional equation of

F is −1 (at least under some conditions on sp and k). In fact, in this case, it seems we should

expect this multiplicity to be exactly 3. This is because the number of elements in a discrete series

L-packet of G2(R) is exactly three, from which it should follow that the multiplicity of a generic

member of the cuspidal family in which σ(Π) deforms should be 3.

The analogous assertion for GSp4 is true for certain representations induced from the Siegel

parabolic; when the corresponding multiplicities are computed with respect to the connected com-

ponent of the maximal compact subgroup at infinity, one gets that the cuspidal overconvergent

multiplicity is −4 when ε(1/2, π) = −1. See Example 5.5.3 in [Urb11] and Section 1.4.4.

Now, when ε(1/2, π,Sym3) = 1, we expect to always have m†0(σ(Π), λ0;K∞) = 0, even if

L(1/2, π,Sym3) = 0. In this case, the CAP representation equivalent to Π at all finite places appears

in cohomology in degrees 3 and 5, at least conjecturally, by the results in Chapter 1. This means

that the classical multiplicity for σ(Π) will differ by 3 from the case when ε(1/2, π,Sym3) = −1,

making the cuspidal overconvergent multiplicity zero. Again, the analogous fact is true for GSp4.

2.3.2 The p-adic families

We retain the setting of the previous section; in particular, we will continue working with our

modular form F of weight k, its associated automorphic representation π, the Langlands quotient

Π, and the normalized p-stabilization σ(Π) of Π. We continue to write sp for the slope of a chosen
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p-stabilization of F . Then σ(Π) has slope sp(2α+ 3β) + β, and it has weight λ0 = k−4
2 (2α+ 3β).

We assume furthermore that F has level 1 throughout this section. In this case, the triple

product L-function of π splits as

L(s, π × π × π) = L(s, π,Sym3)L(s, π)2.

It is well known that the triple product L-function above has functional equation with sign −1

because π is unramified at all finite places and the triple (F, F, F ) is in the balanced range. Therefore

ε(1/2, π,Sym3) = −1 if F has level 1.

The Langlands quotient Π has full level

Kf,max =
∏
`6=∞

G2(Z`)

when F has level 1. Write Kf = Kf,max for short, and

Kp
f =

∏
`6=p,∞

G2(Z`)

Let X be the weight space for G2 as introduced in Section A.1.2. We will consider the eigenvariety

EJ,Kp
f

of tame level Kp
f , introduced in Section A.1.4, for the X-family of cuspidal overconvergent

character distributions J whose specializations at points λ ∈ X(Qp) are given by

Jλ = I†G2,0
(·, λ;K∞).

We also consider the Hecke algebra

Rp = Up ⊗Zp C
∞
c (Kp

f\G2(Apf )/Kp
f ,Zp).

This is the algebra called RS,p in Section A.1.4 when S is empty.

The first order of business is use the eigenvariety to get rid of the hypothesis on the slope in

Theorem 2.3.1.11.
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Theorem 2.3.2.1. Assume F has level 1. Then under Conjecture 2.3.1.2, we have

m†0(σ(Π), λ0;K∞) > 0.

Proof. We begin by deforming the chosen p-stabilization of F in a Coleman family F . Choose an

increasing sequence kn of integers such that kn → k p-adically, and let Fn be the specialization of

F to weight kn. The form Fn is p-stabilized of slope sp.

Let Rp(GL2) be the Hecke algebra for GL2 as defined as Rp; so

Rp(GL2) = Up(GL2)⊗Zp C
∞
c (Kp

f (GL2)\GL2(Apf )/Kp
f (GL2),Zp),

where Up(GL2) is the Up algebra for GL2 and

Kp
f (GL2) =

∏
`6=p,∞

GL2(Z`).

Then each Fn defines a character θFn : Rp(GL2) → Qp. Similarly, our p-stabilization of F defines

a character θF : Rp(GL2)→ Qp and we have

lim
n→∞

sup
f∈Rp(GL2)

|θFn(f)− θF (f)| = 0. (2.3.2.1)

Furthermore, letting

λn =
kn − 4

2
(2α+ 3β),

we have λn → λ0 in X(Qp).

Now let πn, Πn and σ(Πn) be defined from Fn as π, Π and σ(Π) were defined from our chosen

p-stabilization of F . In particular, the p-stabilization of Πn chosen corresponds to w = 1, and

σ(Πn) has slope sp(2α + 3β). Then for n sufficiently large, say greater than some n0, we have by

Theorem 2.3.1.11 that the multiplicity mJλn
(σ(Π), λn,K∞) is greater than 0.

Let θn be the character of Rp defined by σ(Π). On Up, θn|Up is obtained from θFn |Up(GL2) by

the same process for each n. Away from p, on C∞c (Kp
f\G2(Apf )/Kp

f ,Zp), θn is obtained from θFn by

restriction; the spherical Hecke algebra for G2 is the subalgebra of Weyl invariants of that of GL2.
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So by Theorem A.1.4.2, the point xn = (θn, λn) lies on the eigenvariety EJ,Kp
f
(Qp). By what we

just said, along with (2.3.2.1), we have xn → x0 in the space R∅,p(Qp)×X(Qp), where x0 = (θ0, λ0)

and θ0 is the character of Rp corresponding to σ(Π), and R∅,p is the space introduced in Section

A.1.4. Therefore, by the local finiteness of the eigenvariety over weight space, x0 is also a point on

the eigenvariety, and so mJ(θ0, λ0) > 0.

This implies that there is an irreducible finite slope representation σ′ of Hp occurring in Jλ0 =

I†G2,0
(·, λ0;K∞) such that the character of Rp corresponding to σ′ is θ0. But, because a spherical

representation is determined by the corresponding character of the spherical Hecke algebra, such a

σ′ is determined completely by θ0 as θ0 has full tame level Kp
f . Therefore σ′ must equal σ(Π). We

conclude that σ(Π) occurs in Jλ0 , and hence

m†0(σ(Π), λ0;K∞) > 0,

as desired.

We will apply this Theorem momentarily to obtain our main result. First, however, we need a

lemma.

Lemma 2.3.2.2. Let t ∈ T−− (see Section A.1.2). Then for m > 1, we have

Im−1tIm = ImtIm,

where Im is the Iwahori subgroup of depth m.

Proof. The proof is very similar to that of Lemma 2.2.2.1. First we use the Iwahori decomposition

to write

Im−1tIm = t(t−1U(Zp)t)(t−1T (Zp)t)(t−1U−m−1t)Im.

Since t ∈ T−−, we have t−1U−m−1t ⊂ Um, so

(t−1T (Zp)t)(t−1U−m−1t) ⊂ T (Zp)U−m ⊂ Im.
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Therefore we can absorb this factor into the Im on the right and get

Im−1tIm = t(t−1U(Zp)t)Im.

Now we use the Iwahori decomposition again:

Im−1tIm = t(t−1U(Zp)t)U(Zp)T (Zp)U−m.

Since t ∈ T−, we have t−1U(Zp)t ⊃ U(Zp). So we get

Im−1tIm = t(t−1U(Zp)t)T (Zp)U−m.

By Lemma 2.2.2.1, this is exactly ImtIm.

We are now ready to prove our main theorem.

Theorem 2.3.2.3. Assume the level of F is 1. Then under conjecture 2.3.1.2 there are

• an open affinoid subdomain U ⊂ X,

• a finite cover w : V→ U,

• a point y0 ∈ V(Qp) with w(y0) = λ0,

• a Zariski dense subset Σ ⊂ V(Qp) with w(y) regular algebraic for every y ∈ Σ,

• for each y ∈ Σ, a nonempty finite set Πy of finite slope p-stabilizations of irreducible, co-

homological, cuspidal automorphic representations of G2 of weight w(y) and full tame level

Kp
f ,

• a Zp-algebra homomorphism θV : Rp → O(V),

• a nontrivial Qp-linear map IV : Hp(Kp
f )→ O(V),

satisfying the following properties:

• The specialization of θV at the point y0 is the character of Rp coming from σ(Π);
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• The representation σ(Π) is an irreducible component of the specialization of IV at y0;

• For each y ∈ Σ and each σ ∈ Πy, the specialization of θV at y occurs in the representation of

Rp on σK
p
f ;

• For each y ∈ Σ, the specialization Iy of IV at y satisfies

Iy(f) =
∑
σ∈Πy

mcl(σ,w(y);K∞) Tr(f |σ),

for f ∈ Hp(Kp
f );

• The set w(Σ) contains all sufficiently regular dominant algebraic weights in X(Qp);

• There is a Zariski closed subset of U such that for y ∈ Σ with w(y) not in this closed subset,

Πy only contains one representation and this representation is the (normalized) p-stabilization

of an everywhere unramified representation.

Proof. This follows immediately from Theorem A.1.4.3 upon using Theorem 2.3.2.1 to show that

the hypothesis that m†0(σ(Π), λ0;K∞) > 0 is satisfied, except for the very last claim about how the

representations in Σ away from a Zariski closed set are unramified. To see this last point, we only

need to show these representations are unramified at p.

Let σ ∈ Πy for such a y ∈ Σ. Let t ∈ T−−. Then since σ is finite slope p-stabilization of an

automorphic representation of weight w(y) which we are assuming to be algebraic, we have that

there is a constant ct ∈ Q×p such that

utv = ctv

for all v ∈ σ. Write Πσ for the automorphic representation of which σ is a p-stabilization. Then

there is an integer m such that σ ⊂ ΠIm
σ .

Now let v ∈ σ, so that v is Im-fixed. Let g ∈ Im−1 We compute

ctgv = g(utv) = g

∫
ImtIm

hv dh =

∫
Im−1tIm

ghv dv =

∫
Im−1tIm

hv dv = utv = ctv,

where we used Lemma 2.3.2.2 in the third equality as well as the second-to-last. Since ct 6= 0, this

shows that v is Im−1-fixed.
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Repeating this argument sufficiently many times shows that Πσ has an I1-fixed vector. Therefore

the local component of Πσ at p is a subquotient of an unramified principal series representation,

call it Iσp .

Now after possibly shrinking Σ to contain points lying over only very regular weights that are

close p-adically to λ0, for y ∈ Σ, the slope of σ ∈ Πy is very close to the slope µ0 of σ(Π). Thus, for

such σ (because the slopes of representations occurring in the cuspidal overconvergent distribution

differ from their automorphic counterparts by a normalization factor equal to the weight) Πσ has

a p-stabilization whose slope is very close to µ0 + w(y), and hence is very regular. By Proposition

2.2.4.1, this implies that the principal series representation Iσp is irreducible, hence equal to the

local component of Πσ at p. So Πσ is unramified for such σ, as desired.
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Chapter 3: Galois representations into G2 and the symmetric cube Bloch–Kato

conjecture

This chapter is organized as follows. In Section 3.1, we recall the facts about G2 and its 7-

dimensional representation we need. In Section 3.2, we review the main result of Chapter 2 and

state a conjectural global Langlands correspondence for cohomological representations of G2. We

then prove give some p-adic Hodge theoretic results in Section 3.3 that we will need to use later on

in this chapter.

Section 3.4 then constructs families of G2-Galois representations using the theory of pseu-

docharacters. Finally, in Section 3.5, we construct our lattice and the nontrivial Selmer class whose

existence proves the main theorem of this thesis.

Notation and conventions

Throughout this chapter, p is a fixed prime number, and we work relative to a fixed isomorphism

Qp
∼= C. This means, for example, that automorphic representations will be viewed with coefficients

in Qp.

Given a reductive group G over a field k and A a k-algebra, we let G(A) denote the A-points

of G. When k is of characteristic zero, we let G∨ be the dual reductive group of G over k.

Given a maximal torus T in such a reductive group G, we have the group X∗(T ) = Hom(T,Gm)

of weights of T and the group X∗(T ) = Hom(Gm, T ) of coweights of T . If G is split, this latter

group can be viewed as the group of weights of a fixed maximal torus in G∨. We let 〈·, ·〉 denote

the natural pairing between weights and coweights given by composition.

We let A denote the ring of adeles of Q. We also let Af denote the ring of finite adeles,

and Apf the ring of adeles away from p and ∞. Similar conventions are used for automorphic

representations of a reductive group G over Q; given such an automorphic representation π, we let

πf be the associated admissible representation of G(Af ), and πpf that of G(Apf ).

Given a rigid analytic space V over Qp or a finite extension thereof, we let O(V) denote the ring
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of analytic functions on V. If V is affinoid, we let O(V)◦ denote the subring of O(V) of analytic

functions whose evaluations at all points in V are bounded above in absolute value by 1. If V is

affinoid and reduced, we view O(V) with its usual Qp-Banach space topology. Then O(V)◦ is an

open ball in O(V).

We always write GQ for the absolute Galois group of Q. We fix a decomposition group GQp in

GQ, viewed as the absolute Galois group of Qp.

All representations of the Galois group GQ into Qp will be continuous. For simplicity, we will

consider any representation of GQ that, a priori, has coefficients in a finite extension of Qp, as

instead having coefficients base changed up to Qp. So for example, the p-adic Galois representation

attached to a modular eigenform will always be considered to have coefficients in Qp.

We will consider Fontaine’s functors DdR, Dst, and Dcrys of, respectively, de Rham, semistable,

and crystalline periods. Correspondingly to the above convention about Galois representations, all

p-adic Hodge theoretic constructions we consider in this chapter will be considered as Qp-linear

objects. Therefore, given a Galois representation V of GQp over Qp, the spaces DdR(V ), Dst(V ),

and Dcrys(V ) will be considered as Qp-vector spaces with extra structure.

The conventions we use in this chapter are geometric. So for a prime `, Frob` denotes a geometric

Frobenius element of the Galois group GQ. The Hodge–Tate weight of the cyclotomic character is

−1. Given a semistable representation V of GQp over Qp, the crystalline Frobenius φ on Dst(V )

will also be geometric. The Filtrations on DdR(V ), Dst(V ), and Dcrys(V ) do not change.

For example, if V is the 2-dimensional Galois representation attached to a modular eigenform of

weight k which is unramified at p, then V is crystalline at p and Dcrys(V ) has Hodge–Tate weights

0 and −(k − 1). The filtration Fili for DdR(V ) falls at i = 0 and i = k − 1. Both the Newton and

Hodge polygons lie on or below the horizontal axis.

Finally, given n > 1 an integer, we let Adn denote the representation of the reductive group

GL2 given by

Adn = Symn(Std)⊗ det−1,

where Std denotes the 2-dimensional standard representation of GL2. We will use this notation

both for n = 2 and n = 3 in this chapter.
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3.1 The group G2

We begin by recalling some basic facts we need about the exceptional group G2. The group G2

will carry an isomorphism class of 7-dimensional representations. It is not so easy to describe the

image under any of these representations matricially in a very explicit way. However, the image

will be characterized by the preservation of a certain kind of alternating trilinear form. If this form

is chosen to be simple and explicit enough, then one can get one’s hands on certain useful relations

amongst matrix coefficients of particular elements in the image. These relations will play a crucial

role in Section 3.5.3 when we prove the main theorem of this thesis. They will be used to show

that the cocycle we construct in the symmetric cube Selmer group is nontrivial.

3.1.1 Structure of G2

We define G2 to be the split simple group over Q of type G2. Its Dynkin diagram therefore

looks as in Figure 3.1.1.

Figure 3.1.1: The Dynkin diagram of G2

We are thus denoting the long simple root by α and the short simple root by β.

The root lattice looks as in Figure 3.1.2. There, the positive roots are labelled and the dominant

chamber is shaded. Thus the positive roots are given as α, β, α+ β, α+ 2β, α+ 3β, 2α+ 3β.

Fixing a maximal torus T ⊂ G2 and a system of positive roots as above, we let Pα be the

standard maximal parabolic subgroup of G2 whose Levi contains α. We also let Pβ be the other

maximal parabolic subgroup of G2; its Levi contains the root β. We let Mα and Mβ be the standard

Levi subgroups of Pα and Pβ, respectively. Then Mα and Mβ are both isomorphic to GL2.

The smallest fundamental weight for G2 is α + 2β, and the irreducible representation of G2 of

that highest weight is 7-dimensional. We call it the standard representation of G2 and denote it by

R7. Its weights are shown in Figure 3.1.3.

We will be interested in this chapter in how R7 restricts to the parabolic subgroup Pβ. Let V7

denote the space of R7. For each weight γ of T in R7, let vγ ∈ V7 be a fixed nonzero vector of that
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Figure 3.1.2: The root lattice of G2

Figure 3.1.3: The weights of R7

weight. Then we have a basis of V7 given, in order, by

vα+2β, vα+β, vβ, v0, v−β, vα−β, v−α−2β.

In this basis, the Levi Mβ, which we view as GL2, is represented as

Mβ ∼

Std
Ad2

Std∨

 .

Here Std denotes the standard representation of GL2, and Ad2 = Sym2(Std) ⊗ det−1 the 3-

dimensional adjoint representation. The fact that the Levi Mβ takes this shape can be seen from

following root strings in the weight diagram for R7 in the direction of β, as in Figure 3.1.4.

We also note that, in the basis above, the parabolic subgroup Pβ is block upper triangular, as
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Figure 3.1.4: The Levi Mβ under R7

follows:

Pβ ∼

Std ∗ ∗
Ad2 ∗

Std∨

 .

The Weyl group W of G2 is isomorphic to the dihedral group D6 with 12 elements acting in

the natural way on the root lattice. For γ a positive root of G2, let wγ be the reflection across the

line perpendicular to γ. Then W is generated by wα and wβ, and we have

W = {1, wα, wβ, wαβ, wβα, wαβα, wβαβ , wαβαβ , wβαβα, wαβαβα, wβαβαβ, w−1}.

Here we amalgamate notation for products of wα and wβ; so wαβ = wαwβ, and so on. The final

element w−1 is the longest element of W and it acts as −1 on the root lattice. It is equal to both

wαβαβαβ and wβαβαβα.

Finally, we note that the group G2 is self dual. We will often conflate G2 and its dual group,

though we remark that passing to the dual switches the long and short roots. So α∨ is the short

simple root for the dual G2 and β∨ is the long one. Thus, on the dual side, the weights for the

standard representation are

±(2α∨ + β∨), ±(α∨ + β∨), ±α∨, 0.

3.1.2 Alternating trilinear forms and G2

Let k be an algebraically closed field, and say for simplicity that k is of characteristic zero. Let

V be the space of the standard representation of GL7 over k. It is a classical fact that the group

G2 over k is the stabilizer of any alternating trilinear form which is generic, meaning that the orbit

of this form must be Zariski open in GL7. Let e1, . . . , e7 be a basis for V , and e∨1 , . . . , e
∨
7 the dual
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basis for V ∨. Then a standard example of such a trilinear form is given by

e∨1 ∧ e∨2 ∧ e∨3 + e∨4 ∧ e∨5 ∧ e∨6 + e∨1 ∧ e∨4 ∧ e∨7 + e∨2 ∧ e∨5 ∧ e∨7 + e∨3 ∧ e∨6 ∧ e∨7 .

(See, for example, [CH88].)

Making the permutation (2635)(47) on the indices turns this form into

−e∨1 ∧ e∨4 ∧ e∨7 − e∨1 ∧ e∨5 ∧ e∨6 + e∨2 ∧ e∨3 ∧ e∨7 + e∨2 ∧ e∨4 ∧ e∨5 + e∨3 ∧ e∨4 ∧ e∨5 ,

and then making the change of basis e4 7→ −e4 and e5 7→ −e5 makes this

e∨1 ∧ e∨4 ∧ e∨7 + e∨1 ∧ e∨5 ∧ e∨6 + e∨2 ∧ e∨3 ∧ e∨7 − e∨2 ∧ e∨4 ∧ e∨5 + e∨3 ∧ e∨4 ∧ e∨5 .

Finally, for any a ∈ k×, we can make the change of basis

(e1, e2, e3, e4, e5, e6, e7) 7→ (e1, e2, ae3, a
−1e4, ae5, a

−1e6, a
−1e7)

to bring this form to

e∨1 ∧ e∨4 ∧ e∨7 + e∨1 ∧ e∨5 ∧ e∨6 + e∨2 ∧ e∨3 ∧ e∨7 − e∨2 ∧ e∨4 ∧ e∨5 + ae∨3 ∧ e∨4 ∧ e∨5 .

We record this in the following lemma.

Lemma 3.1.2.1. For any a ∈ k×, the alternating 3-form

e∨1 ∧ e∨4 ∧ e∨7 + e∨1 ∧ e∨5 ∧ e∨6 + e∨2 ∧ e∨3 ∧ e∨7 − e∨2 ∧ e∨4 ∧ e∨5 + ae∨3 ∧ e∨4 ∧ e∨5

is generic.

For a ∈ k×, let Ga be the subgroup of GL7 preserving the form in the lemma. Then Ga ∼= G2,

and Ga is conjugate in GL7 to the image of G2 under the standard representation R7 discussed in

the previous section.
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Lemma 3.1.2.2. The subgroup of Ga, given on k-algebras A by

Ta(A) = {diag(t1, t2, t1t
−1
2 , 1, t−1

1 t2, t
−1
2 , t−1

1 ) | t1, t2 ∈ Gm(A)}

is a maximal torus in Ga.

Proof. The group Ta is clearly a torus of rank 2, and it is easy to check that it preserves the form

of Lemma 3.1.2.1. Since Ga is of rank 2, the lemma follows.

We remark that, despite the choice of notation, Ta does not actually depend on the element a.

However, we insist on this notation in order to be consistent with our notation for other subgroups

of Ga, and to distinguish this torus from the torus T that appeared in the previous section, which

was only a subgroup of G2 and not immediately of GL7.

We now study the root system of Ga in the basis e1, . . . , e7. Write

[t1, t2] = diag(t1, t2, t1t
−1
2 , 1, t−1

1 t2, t
−1
2 , t−1

1 ) ∈ Ta.

Abusing notation slightly, write

α([t1, t2]) = t−1
1 t22, β([t1, t2]) = t1t

−1
2 .

We define various 1-parameter subgroups of Ga by defining them on A-points for k-algebras A as

follows. For x ∈ A, let

g(α, x) =



1
1 x

1
1

1 a−1x
1

1


, g(β, x) =



1 x
1

1 −2x −x2

1 x
1

1 −x
1


,
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g(α+ β, x) =



1 x
1 2x a−1x2

1
1 a−1x

1 a−1x
1

1


,

g(α+ 2β, x) =



1 2x a−1x2

1 −x
1 −a−1x

1 a−1x
1

1
1


,

g(α+ 3β, x) =



1 x
1

1 a−1x
1

1
1

1


, g(2α+ 3β, x) =



1 x
1 −x

1
1

1
1

1


.

Then for γ ∈ {α, β, α+ β, α+ 2β, α+ 3β, 2α+ 3β}, one checks easily the relations given by

[t1, t2]g(γ, x)[t1, t2]−1 = g(γ, γ([t1, t2])x).

One also checks that g(γ, ·) ⊂ Ga by checking that these elements preserve the given generic

alternating 3-form, and it follows that

{α, β, α+ β, α+ 2β, α+ 3β, 2α+ 3β}

forms a system of positive roots for Ta in Ga.

We do one sample calculation checking that g(β, ·) ⊂ Ga now. Write

e∨ijk = e∨i ∧ e∨j ∧ e∨k ,

for 1 ≤ i, j, k ≤ 7. Then the trilinear form stabilized by Ga is

e∨147 + e∨156 + e∨237 − e∨246 + ae∨345.
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Using that a matrix acts on the basis e∨1 , . . . , e
∨
7 by its transpose, we compute then that

g(β, x)(e∨147 + e∨156 + e∨237 − e∨246 + ae∨345)

=(e∨147 + xe∨247 + xe∨157 + x2e∨257) + (e∨156 + xe∨256 − xe∨157 − x2e∨257)

+ (e∨237 − 2xe∨247 − x2e∨257)− (e∨246 + xe∨256 − xe∨247 − x2e∨257)

+ a(e∨345 − 2xe∨445 − x2e∨545 + xe∨355 − 2x2e∨455 − x3e∨555)

=(e∨147 + e∨156 + e∨237 − e∨246 + ae∨345) + (x− 2x+ x)e∨247 + (x− x)e∨157

+ (x2 − x2 − x2 + x2)e∨257 + (x− x)e∨256

=e∨147 + e∨156 + e∨237 − e∨246 + ae∨345,

as desired.

Now we denote by Pa,β the parabolic subgroup of Ga containing Ta along with all the positive

roots for Ta in Ga and −β. One checks easily that if we let

g(−β, x) =



1
x 1

1
−x 1
−x2 2x 1

1
−x 1


,

then g(−β, x) ∈ Ga and

[t1, t2]g(−β, x)[t1, t2]−1 = g(−β, β([t1, t2])−1x).

Therefore for γ any positive root or γ = −β, the root subgroups corresponding to γ are the

one-parameter subgroups g(γ, ·) given above.
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Proposition 3.1.2.3. Let P232 be the standard parabolic subgroup of GL7 of the form

P232 =



∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗
∗ ∗


.

Then P232 ∩Ga = Pa,β.

Proof. Clearly T ′ ⊂ P232 and g(γ, ·) ⊂ P232 for any positive root γ or γ = −β. Therefore Pa,β ⊂

P232.

To show the opposite inclusion, we use the Bruhat decomposition. Let

w̃α =



1
−1

1
1

−a−1

a
1


, w̃β =



1
1

1
−1

1
1

1


.

Then one checks easily that w̃α, w̃β ∈ Ga. Also, w̃α, w̃β normalize the torus T ′, and they normalize

the standard diagonal maximal torus in GL7, which we denote T7, and thus these elements are

representatives for the Weyl groups of both Ga and GL7.

Like in the previous section, we use amalgamated notation and let, for example, w̃αβ = w̃αw̃β.

Let sα = (23)(56) ∈ S7 be the permutation corresponding to w̃α when viewing the Weyl group of

GL7 as the symmetric group on 7 elements. Similarly define sβ = (12)(35)(67) ∈ S7, as well as sαβ,

and so on. Then one checks

sαβ = (125763), sβα = (367521), sαβα = (31)(26)(57), sβαβ = (15)(37),

sαβαβ = (156)(273), sβαβα = (165)(237), sαβαβα = (16)(27)(35),

sβαβαβ = (17)(25)(36), sαβαβαβ = (17)(26)(35),

and this defines a homomorphism from the Weyl group of Ga to the Weyl group S7 of GL7 which

is visibly injective. The Weyl group W232 of the Levi of P232 is the subgroup of S7 which acts
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separately on the sets {1, 2}, {3, 4, 5}, {6, 7}. One sees from the list given above that the only

elements of the Weyl group of Ga which are in W232 are 1 and sβ.

Let Ma,β be the Levi of Pa,β. Writing Wa for the Weyl group of Ga and Wa,β for that of Mβ,

we thus get an injective map

Wa,β\Wa ↪→W232\S7.

Let us identify Wa,β\Wa with the set WPa,β of minimal length representatives of this quotient,

so

Wa,β\Wa
∼= WPa,β = {1, sα, sαβ, sαβα, sαβαβ , sαβαβα}.

Write WP232 for the set of minimal length representatives for the quotient W232\S7. Then we have

an inclusion

WPa,β ↪→WP232 .

Now the Bruhat decomposition gives a decomposition into disjoint sets,

GL7 =
∐

s∈WP232

P232sP232.

Similarly,

Ga =
∐

s∈WPa,β

Pa,βsPa,β.

Because WPa,β injects into WP232 , a subdecomposition of the first decomposition above is given by

GL7 ⊃
∐

s∈WPa,β

P232sP232.

Since Pa,β ⊂ P232, we have

Pa,βsPa,β ⊂ P232sP232

for any s ∈WPa,β . Since for s 6= 1, P232sP232 is disjoint from P232, this proves that Pa,βsPa,β∩P232 =

∅. Therefore we must have Pa,β = P232 ∩Ga, as desired.

The following lemma will be a key step for us in checking that the cocycle we construct later

on will lie in the correct Bloch–Kato Selmer group.
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Lemma 3.1.2.4. Let h ∈ Pa,β, and write hij for the (i, j)-entry of the matrix h. Then we have

the relations

2h22h13 − 2h12h23 + h21h14 − h11h24 = 0

and

h22h14 − h12h24 − 2h21h15 + 2h11h25 = 0.

Proof. First we check this for h in the unipotent radical of Pa,β, which we denote by Na,β. Any

element h ∈ Na,β can be written as

h = g(α, x1)g(α+ β, x2)g(α+ 2β, x3)g(α+ 3β, x4)g(2α+ 3β, x5).

Then one can compute using the expressions for these 1-parameter subgroups given above that

h =



1 x2 2x3 x4 ∗ ∗
1 x1 2x2 −x3 ∗ ∗

1 ∗ ∗
1 ∗ ∗

1 ∗ ∗
1

1


where the asterisks are certain polynomial combinations of x1, . . . , x5. The matrix entries of this

element clearly satisfy the relations listen in the statement of the lemma.

Now let h be any element of Pa,β satisfying the relations given in the lemma. We will check

that the entries of the matrices

g(β, x)h, g(−β, x)h, [t1, t2]h

also satisfy the relations stated in the lemma. For the first of these, let h′ = g(β, x)h and write

h′ = (h′ij). We have (
h′11 h′12

h′21 h′22

)
=

(
h11 + xh21 h12 + xh22

h21 h22

)
and (

h′13 h′14 h′15

h′23 h′24 h′25

)
=

(
h13 + xh23 h14 + xh24 h15 + xh25

h23 h24 h25

)
.
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Thus

2h′22h
′
13 − 2h′12h

′
23 + h′21h

′
14 − h′11h

′
24

=2h22(h13 + xh23)− 2(h12 + xh22)h23 + h21(h14 + xh24)− (h11 + xh21)h24

=2h22h13 − 2h12h23 + h21h14 − h11h24 + 2xh22h23 − 2xh22h23 + xh21h24 − xh21h24

=0,

and

h′22h
′
14 − h′12h

′
24 − 2h′21h

′
15 + 2h′11h

′
25

=h22(h14 + xh24)− (h12 + xh22)h24 − 2h21(h15 + xh25) + 2(h11 + xh21)h25

=h22h14 − h12h24 − 2h21h15 + 2h11h25 + xh22h24 − xh22h24 − 2xh21h25 + 2xh21h25

=0,

as desired.

Now instead let h′ = g(−β, x)h. Then we have

(
h′11 h′12

h′21 h′22

)
=

(
h11 h12

h21 + xh11 h22 + xh12

)

and (
h′13 h′14 h′15

h′23 h′24 h′25

)
=

(
h13 h14 h15

h23 + xh13 h24 + xh14 h25 + xh15

)
.

Thus

2h′22h
′
13 − 2h′12h

′
23 + h′21h

′
14 − h′11h

′
24

=2(h22 + xh12)h13 − 2h12(h23 + xh13) + (h21 + xh11)h14 − h11(h24 + xh14)

=2h22h13 − 2h12h23 + h21h14 − h11h24 + 2xh12h13 − 2xh12h13 + xh11h14 − xh11h14

=0,
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and

h′22h
′
14 − h′12h

′
24 − 2h′21h

′
15 + 2h′11h

′
25

=(h22 + xh12)h14 − h12(h24 + xh14)− 2(h21 + xh11)h15 + 2h11(h24 + xh14)

=h22h14 − h12h24 − 2h21h15 + 2h11h24 + xh12h14 + xh12h14 − 2xh11h15 + 2xh11h14

=0,

as desired.

Finally, let h′ = [t1, t2]h. Then we have

(
h′11 h′12

h′21 h′22

)
=

(
t1h11 t1h12

t2h21 t2h22

)

and (
h′13 h′14 h′15

h′23 h′24 h′25

)
=

(
t1h13 t1h14 t1h15

t2h23 t2h24 t2h25

)
.

Thus

2h′22h
′
13 − 2h′12h

′
23 + h′21h

′
14 − h′11h

′
24 = t1t2(2h22h13 − 2h12h23 + h21h14 − h11h24) = 0

and

h′22h
′
14 − h′12h

′
24 − 2h′21h

′
15 + 2h′11h

′
25 = t1t2(h22h14 − h12h24 − 2h21h15 + 2h11h25) = 0,

as desired, once again.

Now let Ma,β denote the Levi subgroup of Pa,β. It is generated by elements of the form g(β, x),

g(−β, x) and [t1, t2]. By the Levi decomposition, Pa,β = Ma,βNa,β. We already showed that the

matrices in Na,β satisfy the conclusion of the lemma, and by what we just showed, so do matrices

in Ma,βNa,β. So we are done.
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3.2 Setup

The construction of nontrivial elements in the symmetric cube Selmer group that we will make

in this chapter relies on certain results of an automorphic nature that were obtained in the previous

chapters of this thesis, especially Chapter 2. We begin by recalling the results which will be relevant

here.

The aforementioned construction will also depend on certain standard conjectures, and we will

also state these conjectures in this section.

3.2.1 Summary of previous results

Let F be a cuspidal holomorphic eigenform of weight k and level 1. Then k ≥ 12. We fix a root

αp of the Hecke polynomial of F at p and let sp = vp(αp).

Let πF be the cuspidal automorphic representation of GL2(A) associated with F . Because of the

assumption that F has level 1, we have ε(1/2, πF ,Sym3) = −1. In particular, L(1/2, πF , Sym3) = 0.

We view πF as a representation of the LeviMα(A) of Pα(A). We then consider the representation

Π which we define to be the Langlands quotient of the unitary parabolic induction

ι
G2(A)
Pα(A)(πF ⊗ δ

1/10
Pα(A)).

Let Πf be its finite component.

We assume the following conjecture.

Conjecture 3.2.1.1. There is a unique summand Π′ of L2
disc(G2(Q)\G2(A)) which is equivalent

to Π at all but finitely many places. If Π′f denotes its finite component, then actually Π′f
∼= Πf .

The representation Π′ is cuspidal. The archimedean component Π′∞ of Π′ is discrete series with

Harish-Chandra parameter k−4
2 (2α+3β)+ρ (where the positive compact roots are given by 2α+3β

and β, and ρ = 3α+ 5β denotes half the sum of positive roots).

A more general conjecture than this is stated in Chapter 1 as Conjecture 1.5.4.1, and it is

explained there how this more general conjecture reduces to Arthur’s conjectures and a computation

of an archimedean Arthur packet à la Adams–Johnson, along with a statement about the expected

behavior of CAP representations.

198



Let

λ0 =
k − 4

2
(2α+ 3β).

This conjecture implies that there is only one irreducible representation of G2(Af ) which is equiv-

alent to Πf at all but finitely many places and which appears in the cuspidal cohomology of G2

with coefficients twisted by the highest weight λ0 representation Vλ0 of G2(C), and this this repre-

sentation is exactly Πf . This statement is Conjecture 2.3.1.2 of Chapter 2.

In order to state the result obtained in Chapter 2 which we will use here, we need to introduce a

Hecke algebra Rsph
p and the weight space X. So first we let X be the functor on algebraic extensions

L of Qp defined by

X(L) = Homcont(T (Zp), L×).

Then X is represented by a rigid analytic space over Qp called weight space. Its group of Qp-points

contains the group X∗(T ) of algebraic characters of the maximal torus T in G2.

Let Kf be a fixed maximal compact subgroup of G2(Af ) which is hyperspecial at all places,

and let Kp
f be the product of its components at all places except for p. We let

Rsph
p = Zp[T (Qp)/T (Zp)]⊗Zp C

∞
c (Kp

f\G2(Apf )/Kp
f ,Zp).

The component Zp[T (Qp)/T (Zp)] is supposed to be viewed as the algebra Up introduced in Sec-

tion 2.2.2 or, more generally, in Section 4.1 of [Urb11]. We write ut for the group-like element

of Zp[T (Qp)/T (Zp)] corresponding to t ∈ T (Qp). The component C∞c (Kp
f\G2(Apf )/Kp

f ,Zp) is a

space of compactly supported smooth functions, and it is a spherical Hecke algebra which acts on

irreducible admissible representations of G2(Apf ) over a coefficient field containing Zp which are

spherical at all places (except for p and ∞, of course).

The algebra Rsph
p acts, for instance, on finite slope p-stabilizations of everywhere unramified

irreducible admissible representations of G2(Af ) (see Section 4.1.9 of [Urb11], or Section 2.2.2 or

A.1.3, for this notion). By the results of Section 2.3.1, the representation Πf has a certain finite

slope p-stabilization, denoted σ(Π), corresponding to the choice of root αp of the Hecke polynomial

of F at p; σ(Π) is given as a space by Πp
f with corresponding action by C∞c (Kp

f\G2(Apf )/Kp
f ,Zp),

and then ut ∈ Zp[T (Qp)/T (Zp)] acts by multiplication by χ0(t) for some unramified character
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χ0 : T (Qp)→ Q×p satisfying

χ0(µ∨(p)) = α〈2α+3β,µ∨〉
p p〈β,µ

∨〉

for any cocharacter µ∨ of T . Thus

vp(χ0(µ∨(p))) = 〈sp(2α+ 3β) + β, µ∨〉, (3.2.1.1)

and σ(Π) has slope sp(2α+ 3β) + β in the sense of the aforementioned references.

Theorem 3.2.1.2. Let the setting be as above. Then under Conjecture 3.2.1.1, there are

• an open affinoid subdomain U ⊂ X,

• a finite cover w : V→ U with V reduced,

• a point y0 ∈ V(Qp) with w(y0) = λ0,

• a Zariski dense subset Σ ⊂ V(Qp) with λy = w(y) regular algebraic for every y ∈ Σ,

• for each y ∈ Σ, a finite slope p-stabilization σy of an irreducible, cohomological, cuspidal

automorphic representation πy of G2(A) of weight w(y) and full level Kf ,

• a Zp-algebra homomorphism θV : Rsph
p → O(V),

satisfying the following properties:

• The set w(Σ) contains every dominant regular algebraic weight outside of a proper Zariski

closed subset of X;

• The specialization of θV at the point y0 is the character of Rsph
p coming from σ(Π);

• For each y ∈ Σ, the specialization θy of θV at y is the character of Rsph
p induced by the

representation σy;

• For all y ∈ Σ, the component πy,p of πy at p can be written as a normalized parabolic induction

ι
G2(Qp)
Pα(Qp)(χ)
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where χ is the unramified character of T (Qp) such that

χ(µ∨(p)) = θy(uµ∨(p))p
−〈λ+ρ,µ∨〉. (3.2.1.2)

Here, ρ = 3α+ 5β is half the sum of positive roots.

Proof. Except for reducedness of V as well as the very last point in the statement of the theorem,

this is part of Theorem 2.3.2.3. If V is not reduced, we simply pass to O(V)red, which has no effect

on V(Qp). The last point just follows from a short computation using Proposition 2.2.3.2 showing

that, after undoing certain normalizations, the unramified character from which πy,p is induced

satisfies the formula stated in the theorem.

3.2.2 Galois representations into G2

In this section we state a conjecture which is a version of the global Langlands correspondence for

cohomological automorphic representations π of G2(A) of weight λ, with λ algebraic and dominant.

If λ is regular and π is cuspidal, such representations π are discrete series with infinitesimal character

given by λ+ ρ.

Fix such a π. Recall (see Section 1.3, for example) that if ` is a finite prime at which π is

unramified, then the local component π` of π at ` corresponds via the Satake isomorphism to a

unique semisimple conjugacy class s(π`) ∈ G2(Qp). We call s(π`) the Satake parameter of π`. As

well, we get a character ω : Qp[X
∗(T∨)] → Qp, and these have the property that if V is a finite

dimensional representation of G2 and χV is the character of V , viewed as an element of Qp[X
∗(T∨)],

then

ω(χV ) = Tr(s(π`)|V ).

In the following we will have occasion to consider the composition λ◦χV for λ and χV as above.

What is meant by this is the set of all integers 〈λ, µ〉, counted with multiplicity, with µ a character

of T∨ in the support of χV . So if µ occurs as a weight of T∨ in V with multiplicity n, then this

contributes the number 〈λ, µ〉 to the set χV ◦ λ, n times.

We now state the following conjecture.

Conjecture 3.2.2.1. Let λ be a dominant algebraic weight of T and let π be a cohomological
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automorphic representation of G2(A) with cohomological weight λ. Let S be the set of finite places

at which π is ramified. Then there is a continuous representation

ρπ : GQ → G2(Qp)

such that:

(1) ρπ is unramified at all finite primes ` /∈ S ∪ {p};

(2) If ` /∈ S ∪ {p}, then

ρπ(Frob−1
` )ss ∈ s(π`),

where (·)ss denotes semisimplification and s(π`) is the Satake parameter of π`;

(3) If πp is unramified, then for any faithful representation R : G2 → GLn, the representation

R ◦ ρ|GQp is crystalline. Furthermore, R ◦ ρ|GQp has Hodge-Tate weights given by

HT(R ◦ ρ|GQp ) = χR ◦ (λ+ ρ),

where χR is the character of R, χR ◦ λ is defined as above, and ρ = 3α + 5β is half the sum

of positive roots.. Finally, the characteristic polynomial of the inverse φ−1 of the crystalline

Frobenius φ on Dcrys(R ◦ ρ|GQp ) is the same as the characteristic polynomial of R(s(πp)).

This conjecture is analogous to many known results and other conjectures on Galois represen-

tations attached to cohomological automorphic representations. The closest case to this which is

known in the literature is in the work of Kret–Shin [KS20]. There they prove a similar result for

G2 and GSp2n under some extra assumptions (including a Steinberg assumption that the represen-

tations in this chapter will not satisfy).

We believe that this conjecture is not too far out of reach. When π is cuspidal, if one could

prove certain properties, including cuspidality, of the exceptional theta lift to PGSp6 of such a π

as in the conjecture (this theta lift is the one discovered by Ginzburg–Rallis–Soudry [GRS97]) then

one could hope to construct the Galois representation into GL7(Qp). From there, one should be

able to use the arguments in the paper [Che19] of Chenevier to show that the Galois representation

obtained actually factors through G2(Qp).
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3.3 Some p-adic Hodge theory

We now give various results whose purpose is to help establish the crystallinity of certain p-

adic representations. Although not all of these results actually do this directly (Lemma 3.3.1.1 is a

criterion for an extension to be de Rham, for instance) they are enough to combine with other parts

of the theory to show crystallinity of the representations which we need to show are crystalline.

3.3.1 Two lemmas

We now give some lemmas; the first of these lemmas is a technical lemma which generalizes a

result due to Skinner and Urban, see [Urb13a]. It is proved in much the same way.

Lemma 3.3.1.1. Let V and W be de Rham representations of GQp. Let E be an extension,

0→ V → E →W → 0.

Assume that all the Hodge–Tate weights of V are strictly negative. Writing g : DdR(E)→ DdR(W )

for the natural map, assume there is a subspace D ⊂ DdR(E) such that

DdR(W ) = g(D)⊕ Fil0(DdR(W )).

Then E is de Rham.

Proof. We first claim that H0(Q, V ⊗ B+
dR) = H1(Q, V ⊗ B+

dR) = 0. In fact, let B =
⊕∞

i=0 t
iB+

dR

where t ∈ B+
dR is the usual uniformizer. Then B/tB ∼= B+

HT. Since V is de Rham with strictly

negative Hodge–Tate weights, we have

H0(Q, V ⊗B+
HT) = H1(Q, V ⊗B+

HT) = 0

Then tensoring the exact sequence

0→ B
t→ B → B+

HT → 0

with V gives that multiplication by t on B induces an isomorphism H0(Q, V ⊗B)→ H0(Q, V ⊗B)
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and an isomorphism H1(Q, V ⊗ B) → H1(Q, V ⊗ B). Thus, composing these isomorphisms with

themselves enough times shows that these groups are zero. In particular, the summands H0(Q, V ⊗

B+
dR) and H1(Q, V ⊗B+

dR) are zero, which proves the claim.

Now we consider the diagram

0

��

0

��

0 //

��

Fil0DdR(E) //

��

Fil0DdR(W ) //

��

0

��

DdR(V ) //

��

DdR(E)
g

//

fE
��

DdR(W )
δ //

fW
��

H1(Q, V ⊗DdR)

��

(V ⊗ BdR

B+
dR

)GQp // (E ⊗ BdR

B+
dR

)GQp
g′
// (W ⊗ BdR

B+
dR

)GQp δ′ //

��

H1(Q, V ⊗ BdR

B+
dR

),

0

which is commutative and has exact rows and columns. The fact that the groups in the top

corners are zero follows from the claim above, and exactness in the third column is due to W

being de Rham. Now by the hypothesis that DdR(W ) = g(D) ⊕ Fil0(DdR(W )), we see that

g(fW (D)) = (W ⊗ BdR

B+
dR

)GQp , so that g ◦ fW is surjective. Thus fE ◦ g′ is surjective, and so therefore

is g′. Thus δ′ = 0, which in turn implies δ = 0. Since V and W are de Rham, so therefore is E.

Next we state a lemma about the interpolation of crystalline periods.

Lemma 3.3.1.2 (Kisin). Let W be a reduced affinoid rigid analytic space and ρ : GQp → GLn(O(W))

a continuous representation. Assume there is a Zariski dense subset T ⊂W(Qp) such that for all

x ∈ T , the specialization ρx of ρ at x is Hodge–Tate with Hodge–Tate weights k1,x, . . . , kn,x, in in-

creasing order. Assume furthermore that for any n, the subset Tn of x ∈ T such that ki+1,x−ki,x ≥ n

for all i, is Zariski dense. Finally, for n sufficiently large and for any x ∈ Σn, assume that ρx is

crystalline and that the eigenvalues of the crystalline Frobenius for ρx are given by φi(x)pki,x for

some φi ∈ O(W). Then for any x ∈ Σ,

Dcrys(ρx)φ=φ1(x)k1,x 6= 0
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More generally, for any 1 ≤ k ≤ n, we have

Dcrys(∧kρx)φ=
∏k
i=1 φi(x)ki,x 6= 0.

Proof. The last statement follows from the one before it, and that statement is Proposition 4.2.2

(i) in [SU06b] which, in turn, is derived from Corollary 5.15 in [Kis03].

3.3.2 Extensions of ρF by ρF (1)

Let F be our modular eigenform of level 1 introduced in Section 3.2, and ρF its p-adic Galois

representation. We will need a particular result which does not seem to be available in the literature,

namely that any extension E of the form

0→ ρF (1)→ E → ρF → 0

is semistable. The proof is inspired by an argument in the paper [PR94] of Perrin-Riou. We will find

the dimension of the space of such extensions which are semistable using filtered (φ,N)-modules,

and then show it is equal to dimension of the space of all extensions by interpreting this latter

space as a Galois cohomology group.

First, for convenience, we will prove the following lemma.

Lemma 3.3.2.1. Let αp be, as before, a root of the Hecke polynomial of F at p. Then the numbers

α−1
p , p−1α−1

p , p−(k−1)αp, and p−kαp are all distinct.

Proof. It suffices to prove that αp 6= pk−1α−1
p and αp 6= pkα−1

p , or equivalently, that α2
p 6= pk−1

and α2
p 6= pk. Let ap be the Fourier coefficient of F at p. If we did have α2

p = p(k−1), then

ap = ±p(k−1)/2. But since F is level 1, ap is an integer, so this is impossible. If we instead had

α2
p = pk, then ap = ±(pk/2 + p(k−2)/2). rewrite this as

ap = ±p(k−1)/2(p1/2 + p−1/2).

But since (p1/2 +p−1/2) > 2, this would violates Deligne’s theorem that the Ramanujan Conjecture

holds for F . Thus the lemma is proved.
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We consider the associated filtered (φ,N)-module of ρF , Dst(ρF ). Since F is unramified at p,

the nilpotent operator N on Dst(ρF ) is zero. The Frobenius operator φ is invertible and acts with

eigenvalues α−1
p and p−(k−1)αp. The filtration FiliDst(V ) has two steps: We have FiliDst(ρF ) =

Dst(ρF ) for i ≤ 0; for 1 ≤ i ≤ k, we have FiliDst(ρF ) is one-dimensional; and for i > k, we have

FiliDst(ρF ) = 0.

Let MF(φ,N) denote the category of filtered (φ,N) modules over Qp. Recall that a filtered

(φ,N)-module D is admissible if the Newton polygon and Hodge polygon of D meet at their

endpoints, and for every filtered (φ,N)-submodule D′ ⊂ D, the Newton polygon of D′ lies above

its Hodge polygon. It is a theorem of Colmez and Fontaine that the admissible filtered (φ,N)-

modules are precisely those coming from semistable representations of GQp .

Lemma 3.3.2.2. We have

dimQp
Ext1

MF(φ,N)(Dst(ρF ), Dst(ρF (1))) = 5.

Proof. Let us write D = Dst(ρF ) and D[1] = Dst(ρF (1)). The underlying vector spaces of D and

D[1] can be considered the same, with the filtration of D[1] equal to that of D but shifted up by

1, and the Frobenius φ[1] on D[1] given in terms of the Frobenius φ on D by φ[1](v) = p−1φ(v) for

any v in the underlying space of D or D[1].

Consider an extension E in Ext1
MF(φ,N)(D,D[1]), so E sits in exact sequence

0→ D[1]→ E → D → 0.

Let w1 be any vector in D[1] which generates Fil2(D[1]), and w2 any other vector in D[1] which

spans D[1] along with w1. Then w1, w2 may be considered as vectors in E. Let w3 be any vector

in E mapping to the vector in D corresponding to w1 in D[1], and similarly let w4 be any vector

in E mapping to the vector in D corresponding to w2 in D[1]. Then w1, w2, w3, w4 is a basis for E.

If p−1A is the matrix of the Frobenius acting on D[1] in the basis {w1, w2}, then by construction

there is a matrix M such that, in the basis {w1, w2, w3, w4}, the Frobenius φE on E is given by the

block upper triangular matrix (
p−1A M

0 A

)
.
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By Lemma 3.3.2.1, all the eigenvalues of the above matrix are distinct. Therefore there is a unique

choice of w3, w4 as above such that

φE =

(
p−1A 0

0 A

)
.

Then {w1, w2, w3, w4} is the unique basis of E, up to scaling by a nonzero matrix in the center of

GL4(Qp), such that w1 ∈ Fil2(D[1]), such that w3 maps to the vector corresponding to w1 in D,

and such that

φE =

(
p−1A 0

0 A

)
.

Now we define a map

M2(Qp)×Qp → Ext1
MF(φ,N)(D,D[1]),

where M2(Qp) is the space of 2 by 2 matrices over Qp. If (B, c) ∈M2(Qp)×Qp, we define a filtered

(φ,N) module E(B, c) in Ext1
MF(φ,N)(D,D[1]) as follows. We declare E(B, c) to be the linear span

of a basis of four vectors, denoted v1, v2, v3, v4, with Frobenius φB,c defined in this basis by

φB,c =

(
p−1A 0

0 A

)
,

nilpotent endomorphism NB,c defined in this basis by

NB,c =

(
0 B
0 0

)
,

and filtration defined by

Fili(E(B, c)) =



E(B, c) if i ≤ 0;

Qpv1 + Qpv2 + Qpv3 if i = 1;

Qpv1 + Qp(cv2 + v3) if 2 ≤ i ≤ k − 1;

Qpv1 if i = k;

0 if i ≥ k + 1.

(3.3.2.1)

We must check four things: First, the assignment (B, c) 7→ E(B, c) is well defined (i.e., that E(B, c)
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is a filtered (φ,N)-module which is an extension of D by D[1]); second, that this assignment is

injective; third, that it is surjective; and fourth, that it is a Qp-linear map. From this it follows

that (B, c) 7→ E(B, c) is an isomorphism of Qp vector spaces, which will prove the lemma.

Well definedness. We will check that E(B, c) is a filtered (φ,N)-module; then clearly the maps

a1w1 + a2w2 7→ a1v1 + a2v2, D[1]→ E(B, c)

and

a1v1 + a2v2 + a3v3 + a4v4 7→ a3w1 + a4w2, E(B, c)→ D

make E(B, c) an extension of D by D[1]. Here we are viewing the vectors w1, w2 from above as a

basis for both D[1] and D, as we are viewing their underlying spaces as the same.

To check E(B, c) is a filtered (φ,N)-module, we only need to check that NB,cφB,c = pφB,cNB,c.

But,

φ−1
B,cNB,cφB,c =

(
pA−1 0

0 A−1

)(
0 B
0 0

)(
p−1A 0

0 A

)
=

(
0 pB
0 0

)
= pNB,c,

as desired.

Injectivity. Let (B, c) and (B′, c′) be elements of M2(Qp)×Qp. Assume we have a commutative

diagram of filtered (φ,N)-modules

0 // D[1] //

=

��

E(B, c) //

∼
��

D //

=

��

0

0 // D[1] // E(B′, c′) // D // 0

with exact rows. Call the middle vertical map ψ. Take v1, v2, v3, v4 to be a basis of E(B, c) satisfying

the properties listed for the basis w1, w2, w3, w4 at the beginning of the proof. Let v′1, v
′
2, v
′
3, v
′
4 be

a similar basis for E(B′, c′). Then by the diagram,

ψ(v1) = v′1, ψ(v2) = v′2,
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and there is a matrix Mψ ∈M2(Qp), say

Mψ =

(
m11 m12

m21 m22

)
,

such that

ψ(v3) = m11v
′
1 +m12v

′
2 + v′3,

and

ψ(v4) = m21v
′
1 +m22v

′
2 + v′4.

Because ψ must preserve Fil1, this implies m21 = m22 = 0. Because it must also preserve Fil2, we

have m12 = 0. And because it must preserve Filk−1, we have

ψ(cv2 + v3) = cv′2 +m21v
′
2 + v′3 ∈ Qp(c

′v′2 + v′3),

which implies m11 = c′ − c.

Now equivariance for the action of the Frobenius operator gives

ψ(Av3) = p−1Am11v
′
2 +Av′3 ∈ Qpv3 + Qpv4.

Thus since A is invertible, we have m11 = 0 and hence c = c′. Therefore ψ(vi) = v′i for i = 1, 2, 3, 4,

and so N -equivariance gives also B = B′. Thus (B, c) 7→ E(B′, c′) is injective.

Surjectivity. We must show that any extension E fitting in an exact sequence

0→ D[1]→ E → D → 0,

is of the form E(B, c) for some (B, c) ∈M2(Qp)×Qp. Let φE , NE be the operators for this module

E. Let v1, v2, v3, v4 to be a basis of E satisfying the properties listed for the basis w1, w2, w3, w4

at the beginning of the proof. Then since the nilpotent operators for D[1] and D are zero (as V is

crystalline) we must have that in this basis,

NE =

(
0 B
0 0

)
,
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for some B ∈ M2(Qp). By compatibility of the filtration of E with those of D[1] and D, it is not

too hard to see that the filtration on E must satisfy

Fili(E) =



E(B, c) if i ≤ 0;

Qpv1 + Qpv2 + Qpv3 if i = 1;

Qpv1 if i = k;

0 if i ≥ k + 1.

So we only need to explain why there is a c ∈ Qp such that

Fili(E) = Qpv1 + Qp(cv1 + v3) if 2 ≤ i ≤ k − 1.

Since

Fil1(E) = Qpv1 + Qpv2 + Qpv3,

we at least know that there are c, d ∈ Qp such that

Fili(E) = Qpv1 + Qp(dv1 + cv2 + v3) if 2 ≤ i ≤ k − 1.

But of course, this just equals

Qpv1 + Qp(cv2 + v3),

after cancelling dv1 with an element of the first summand. This proves surjectivity.

Qp-linearity. This follows from unravelling the definitions of the Qp-linear structure on Ext1
MF(φ,N)(D,D[1]).

We omit the details.

We record a corollary to the proof of Lemma 3.3.2.2 that will be useful later.

Corollary 3.3.2.3. Let E be an extension in Ext1
MF(φ,N)(Dst(ρF ), Dst(ρF (1))). Let w3, w4 ∈

Dst(ρF ) be any basis and let A be the matrix of the crystalline Frobenius for Dst(V ) in that basis.

Then there is a basis v1, v2, v3, v4 of E and a matrix B ∈ M2(Qp) such that v3 maps to w3 and v4
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maps to w4 under the map E → Dst(ρF ), such that the crystalline Frobenius φE for E has the form

φ =

(
p−1A 0

0 A

)

in this basis, and such that the monodromy operator NE for E has the form

NE =

(
0 B
0 0

)

in this basis.

Now we compute the dimension of the corresponding group of extensions of Galois representa-

tions.

Lemma 3.3.2.4. We have

dimQp
Ext1

GQp
(ρF , ρF (1)) = 5.

Proof. First we note

Ext1
GQp

(ρF , ρF (1)) ∼= H1(Qp, ρ
∨
F ⊗ ρF (1)).

The group on the right and side breaks up as

H1(Qp,Ad2 ρF (1)⊕Qp(1)) ∼= H1(Qp,Ad2 ρF (1))⊕H1(Qp,Qp(1)).

The piece H1(Qp,Qp(1)) is 2-dimensional by a standard computation in Kummer theory, and

the piece H1(Qp,Ad2 ρF (1)) is 3 dimensional by a now classical computation using local Tate

duality.

Proposition 3.3.2.5. Any extension E of Galois representations,

0→ ρF (1)→ E → ρF → 0

is semistable at p.

Proof. We first recall that any extension of admissible filtered (φ,N)-modules is again admissible.

So, because of the equivalence of categories between semistable representations and admissible
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filtered (φ,N)-modules, we get an injection

Ext1
MF(φ,N)(Dst(ρF ), Dst(ρF (1))) ↪→ Ext1

GQp
(ρF , ρF (1)),

whose image is the group of semistable extensions of ρF by ρF (1). By Lemmas 3.3.2.2 and 3.3.2.4,

both the source and target have dimension 5, so this injection is an isomorphism. The proposition

follows.

3.4 Pseudocharacters and Galois representations

The combination of Theorem 3.2.1.2 and Conjecture 3.2.2.1 provides us many crystalline Galois

representations into G2(Qp), varying with weights λ ∈ X. Moreover, the eigenvalues of Frobenius

elements Frob` with ` 6= p, as well as the eigenvalues of the crystalline Frobenius, are varying

analytically in this family.

We would like to construct a genuine family of Galois representation into, not just GL7, but

G2. The now classical theory of pseudorepresentations would allow us to do the former, but not

the latter. The tool which will allow us to do the latter was introduced by V. Lafforgue [Laf18];

this is the notion of pseudocharacter.

We will recall a bit of the theory of pseudocharacters, and then construct a G2-pseudocharacter

of GQ which interpolates the aforementioned Galois representations.

3.4.1 Pseudocharacters

In this section we recall some of the theory of pseudocharacters. We will follow Böckle–Harris–

Khare–Thorne [B+̈19] in our exposition. We begin with the definition.

Definition 3.4.1.1. Let G be a split reductive group over Z, A a ring and Γ a group. Let G act

on itself by conjugation, and let Z[G] be the ring of regular functions on G, on which G therefore

acts as well. Let Z[G]G be the subring of invariants for this action. Then a G-pseudocharacter of

Γ over A is a collection Θ of ring maps

Θn : Z[Gn]G → Fun(Γn, A),
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where Fun(Γ, A) is the ring of A-valued functions on Γ, such that the maps Θn satisfy the following

properties:

(1) Given any positive integers m,n, any function ζ : {1, . . . ,m} → {1, . . . , n}, any f ∈ Z[Gm]G,

and any γ1, . . . , γn ∈ Γ, we have

Θn(f ζ)(γ1, . . . , γn) = Θm(f)(γζ(1), . . . , γζ(m)),

where f ζ is defined by

f ζ(g1, . . . , gn) = f(gζ(1), . . . , gζ(m))

for all g1, . . . , gn ∈ Γ;

(2) Given any positive integer n, any γ1, . . . , γn+1 ∈ Γ, and any f ∈ Z[Gn]G, we have

Θn+1(f̂)(γ1, . . . , γn+1) = Θn(f)(γ1, . . . , γn−1, γnγn+1),

where f̂ is defined by

f̂(g1, . . . , gn+1) = f(g1, . . . , gn−1, gngn+1),

for all g1, . . . gn+1 ∈ Γ.

If Γ and A have topologies, then we say Θ is continuous if for any f ∈ Z[G]G and any n, the map

Θn(f) is a continuous function Γn → A.

As noted in [B+̈19], Lemma 4.3, a representation ρ : Γ→ G(A) gives a G-pseudocharacter of Γ

over A, which is denoted Tr ρ and is defined by

(Tr ρ)n(f) = f(ρ(γ1), . . . , ρ(γn)).

The pseudocharacter Tr ρ only depends on ρ up to conjugation in G(A). We also note that when

G = GLn, this recovers the notion of pseudorepresentation of Taylor [Tay91]; the function Θ1(Tr),

where Tr ∈ Z[GLn]GLn denotes the usual trace, will be a pseudorepresentation in this case, and the
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rest of the pseudocharacter will be determined by this.

Also noted in [B+̈19], Lemma 4.4, is that we can change the ring. More precisely, if Θ is a

G-pseudocharacter over a ring A and φ : A → B is a ring homomorphism, then φ∗Θ, defined by

(φ∗Θ)n(f) = φ ◦Θn(f) for f ∈ Z[G]G, is a G-pseudocharacter of Γ over B.

For such Θ, we can also change the group; if ψ : Γ′ → Γ is a group homomorphism, then ψ∗Θ,

defined by (ψ∗Θ)n(f) = Θn(f) ◦ ψ for f ∈ Z[G]G, is a G-pseudocharacter of Γ′ over A.

The changes of groups and rings just described are also compatible with continuity as long as

the maps φ and ψ as above are continuous.

We now state a fundamental result in the theory of pseudocharacters.

Theorem 3.4.1.2. Let G be a split reductive group over Z, let Γ be a group, and let k be an

algebraically closed field. Let Θ be a G-pseudocharacter of Γ over k. Then there is a representation

ρ : Γ→ G(k) such that Θ = Tr ρ.

Proof. This follows from Theorem 4.5 in [B+̈19].

Actually, we remark something stronger can be said than this; the assignment ρ 7→ Tr ρ is in

fact a bijection if we restrict our attention to conpletely reducible ρ. See Definitions 3.3 and 3.5 in

[B+̈19] for this notion.

3.4.2 Construction of a pseudocharacter

We now use the setup of Section 3.2 to construct a G2-pseudocharacter Θ of the Galois group GQ

over an affinoid ring. We assume Conjectures 3.2.1.1 and 3.2.2.1 (and continue to do so throughout

the rest of this chapter).

We retain the setting of Section 3.2.1. In particular, we have our modular form F of weight k,

our automorphic representation πF of GL2(A), our Langlands quotient Π, its p-stabilization σ(Π),

and its cohomological weight λ0 = k−4
2 (2α+3β). There is a chosen root αp of the Hecke polynomial

of F at p whose slope is sp.

We also have our global Hecke algebra Rsph
p which is spherical away from p and given by Up at

p. For ` a finite prime different from p, let

Hsph
K`

= C∞c (K`\G2(Z`)/K`)
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be the spherical Hecke algebra over Zp at `. Then naturally Hsph
K`

injects into Rsph
p .

Now since we are assuming Conjecture 3.2.1.1, we have the existence of the objects in Theorem

3.2.1.2. So we have our weight space X, the affinoid subdomain U ⊂ X, the finite cover w : V→ U,

the point y0 in V corresponding to σ(Π), the subset Σ ⊂ V(Qp), the unramified cohomological

automorphic representations πy for y ∈ Σ, and the character θV : Rsph
p → O(V).

Furthermore, since we are assuming Conjecture 3.2.2.1, each of the automorphic representations

πy for y ∈ Σ have corresponding Galois representations ρy : GQ → G2(Qp), satisfying the properties

listed in that conjecture. The automorphic representation Π also has a Galois representation

attached to it as in Conjecture 3.2.2.1, but this is unconditional. By Proposition 1.5.2.3, it is given

as follows. Let ρF : GQ → GL2(Qp) be the Galois representation attached to F by Deligne. View

the target GL2(Qp) of ρF as Mβ(Qp) and let j : Mβ → G2 be the inclusion. Then Π has attached

to it the Galois representation ρΠ given by

ρΠ = j ◦ (ρF (−(k − 2)/2)).

Here, ρF (−(k − 2)/2) denotes a Tate twist of ρF .

Let O(V)◦ be the subring of functions in O(V) whose evaluations at every point have p-adic

absolute value bounded above by 1. This ring defines a formal scheme whose rigid generic fiber is

V. It follows from Noether normalization for O(V) (plus a few details, which we omit) that O(V)◦

is finite over a power series ring over Zp in two variables. The ring O(V)◦ is therefore profinite.

We will use this in the proof of the following proposition.

Proposition 3.4.2.1. With the setting as above, in particular assuming Conjectures 3.2.1.1 and

3.2.2.1, there is a continuous G2-pseudocharacter Θ◦ of GQ over O(V)◦ satisfying the following

properties:

Let Θ be the pseudocharacter of GQ obtained from Θ◦ by changing the ring from O(V)◦ to

O(V). Then

(1) The pseudocharacter Θ is continuous;

(2) The pseudocharacters Θ◦ and Θ are unramified at all finite primes ` 6= p;

(3) The pseudocharacter Θy0 obtained from Θ by changing the ring via the point y0 ∈ V(Qp) is
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the G2-pseudocharacter of GQ over Qp obtained from the Galois representation ρΠ;

(4) For any y ∈ Σ, the pseudocharacter Θy obtained from Θ by changing the ring via y is the

G2-pseudocharacter of GQ over Qp obtained from the Galois representation ρy.

Proof. Let ` 6= p be a finite prime, and let y ∈ Σ. Then the automorphic representation πy is un-

ramified at `; let πy,` be its local component at `, and let sy,` be its Satake parameter, considered as

an element of T∨(Qp)/W , where W is the Weyl group of G2. Let θy,` : Hsph
K`
→ Qp be the character

of the spherical Hecke algebra at ` obtained from πy,`; it is the restriction of θy to Hsph
K`
⊂ Rp.

Now recall that sy,` is obtained from θy via the following process. First we view Hsph
K`
∼=

Zp[X∗(T∨)]W via the Satake isomorphism, and we lift the character θy to a character θ̃y : Zp[X∗(T∨)]→

Qp. This defines a character X∗(T∨)→ Q×p . Then there is a unique element s̃ ∈ T∨(Qp) such that

for any µ ∈ X∗(T∨), we have

θ̃y(µ) = µ(s̃).

Then we define sy,` to be the Weyl orbit of s̃. It is unique with the property that

θy,`(χV ) = tr(sy,`|V ),

for any finite dimensional representation V of G2, where χV is the character of V .

Let F be the fraction field of O(V). Then in exactly this same way, from the character θV,` :

Hsph
K`
→ O(V) obtained by restricting θV to Hsph

K`
, we obtain an element sV,` ∈ T∨(F )/W .

Now let A be obtained from O(V) by inverting finitely many elements f1, . . . , fr ∈ O(V), such

that sV,` ∈ T∨(A)/W . Let y ∈ Σ be a point which does not lie on any of the divisors of the fi’s.

Let s̄V,` ∈ T (Qp)/W be the element obtained from sV,` by specializing at y. Then by construction,

θy,`(χV ) = tr(s̄V,`|V ),

for any V , from which it follows that

s̄V,` = sy,`.

We will use this property in the construction of Θ◦.

First we define Θ on Frobenius elements Frob` for ` 6= p. Let f ∈ Zp[Gn
2 ]G2 and let `1, . . . , `n
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be primes (not necessarily distinct) different from p. Then we define

Θn(f)(Frob`1 , . . . ,Frob`n) = f(sV,`1 , . . . , sV,`n).

Before checking any properties of this assignment, we first claim that Θn(f) ∈ O(V)◦. We only

know a priori that Θn(f) ∈ F . So let f1, . . . , fr ∈ O(V) now be elements such that sV,`1 , . . . , sV,`n ∈

T (A)/W where A is obtained from O(V) by inverting the fi’s. Let y be a point in Σ which is not

on the divisor of any fi. Then by construction,

y(Θn(f)(Frob`1 , . . . ,Frob`n)) = f(sy,`1 , . . . , sy,`n) = f(ρy(Frob`1), . . . , ρy(Frob`n)),

where we are using the defining property of the Galois representation ρy in the last equality.

Now by continuity of ρy and the compactness of GQ, a standard argument using the Baire cate-

gory theorem implies that the representation ρy takes values in G2(OE), at least up to conjugation,

for some finite extension E of Qp. Therefore the element f(ρy(Frob`1), . . . , ρy(Frob`n)) is integral.

Since this is true for all such y, by density of Σ, the element Θn(f)(Frob`1 , . . . ,Frob`n) is actually

in O(V)◦, as claimed.

The rest of the proof is more or less standard. Let g1, . . . , gn be elements of GQ, and for each i

let `i,j , j > 0, be primes such that Frob`i,j → gi as j →∞. The ring O(V)◦ is profinite, so we can

define Θn(f)(g1, . . . , gn) by defining it on the finite quotients of O(V)◦ using the definition above

for Frobenius elements and taking the limit as j → ∞. By continuity, the resulting assignment

f 7→ Θn(f) is a pseudocharacter, as f 7→ y(Θn(f)) is one (in fact it is the pseudocharacter attached

to ρy by construction). Then again by continuity, the pseudocharacter Θ must satisfy the properties

claimed in the proposition.

3.4.3 The pseudorepresentation T

We continue to assume Conjectures 3.2.1.1 and 3.2.2.1. Then in Proposition 3.4.2.1 we con-

structed a G2-pseudocharacter Θ of GQ over O(V), where V is as in Theorem 3.2.1.2. We now

restrict Θ to a certain affinoid curve in V which we construct as follows.

Let c = (c1, c2) be a pair of integers with c1, c2 > 0 and c1 6= c2. Let U be the affinoid subset of
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weight space X over which V lies, and w : V→ U the corresponding map, as in Conjecture 3.2.1.1.

Define L ⊂ X to be the Zariski closure of the set of weights λ ∈ w(Σ) of the form

λ0 + n(c1(2α+ 3β) + c2(α+ 2β)), n ∈ Z>0.

We can and do choose c so that there are infinitely many such weights in L(Qp)∩w(Σ) and so that

λ0 ∈ L(Qp).

Then L is a line in U. Let Z′ be the curve in V cut out by it. Then the point y0 ∈ V(Qp)

corresponding to σ(Π) is in Z′, and we take Z to be the irreducible component of Z′ containing y0.

We let Σc = Σ ∩ Z(Qp).

There is a natural map O(V)→ O(Z) corresponding to the inclusion of Z into V. Thus we may

change the target of our pseudocharacter Θ from O(V) to O(Z), as explained in Section 3.4.1. This

gives us a continuous G2-pseudocharacter of GQ over O(Z), which we denote ΘZ. It satisfies all the

same properties at Θ listed in Proposition 3.4.2.1, except that in the point (3), we must replace Σ

with Σc.

In the next section, we will be concerned with the Galois representation ρZ : GQ → G2(Frac(O(Z)))

that we obtain from ΘZ via Theorem 3.4.1.2. But right now we must study the corresponding 7-

dimensional pseudorepresentation we obtain from Θ.

Recall from Section 3.1.1 that we have the 7-dimensional representation R7 : G2 → GL7. This

representation induces a map of rings Z[GL7]GL7 → Z[G2]G2 . Composing ΘZ with this map gives

a GL7-pseudocharacter of GQ over O(Z), and evaluating this pseudocharacter on the function

Tr ∈ Z[GL7]GL7 gives a 7-dimensional pseudorepresentation of GQ into O(Z). We denote this

pseudorepresentation by T in what follows. It is not difficult to check that T is the trace of the

composition R7 ◦ ρZ.

The following proposition will be the first time in this chapter that we must use that F is not

CM. This is to ensure that the adjoint representation Ad2 ρF is irreducible. We note that in the

proof of this proposition, we will use certain terminology (such as “de Rham” or “crystalline” and

so on) in reference to certain pseudorepresentations; what is meant by this is that the correspond-

ing semisimple representations satisfy the properties described by this terminology. We also say

that a pseudorepresentation is irreducible if it is not the sum of two nonzero pseudorepresentations,
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and that it is absolutely irreducible if, after passing to any étale extension of the target, it is still

irreducible.

Lemma 3.4.3.1. The pseudorepresentation T : GQ → O(Z) constructed above is either absolutely

irreducible, or, over O(Z̃) for some finite cover Z̃ of Z, it is the sum of two pseudorepresentations,

say T = T1 +T2. In this latter case, if T1,x0 and T2,x0 denote, respectively, the specializations of T1

and T2 at a point x0 ∈ Z̃(Qp) above y0, then (up to swapping T1 and T2) we have

T1,x0 = Tr(Ad2 ρF ), T2,x0 = Tr(ρF (−(k − 2)/2)) + Tr(ρF (−k/2)).

Proof. We will work over a sufficiently large extension Z̃ as in the statement of the lemma. We

write Σ̃c for the preimage of Σc in Z̃(Qp), and we write x0 for a chosen preimage of y0 in Z̃(Qp).

First we note that by the facts recalled in Section 3.1.2, we have,

Tx0 = Tr(ρF (−(k − 2)/2)) + Tr(Ad2 ρF ) + Tr(ρF (−k/2)),

where Tx0 is the specialization of T at the point x0. These three pieces are irreducible because F

is level 1 and therefore not CM (see Lemma 1.5.2.5, for example).

Assume now that T is reducible. Then it is either the sum of three pseudorepresentations, or the

sum of two. More precisely, there are four cases. In Case 1, T = T1 + T2 + T3 with specializations

at x0 given by

T1,x0 = Tr(Ad2 ρF ), T2,x0 = Tr(ρF (−(k − 2)/2)), T3,x0 = Tr(ρF (−k/2)).

In Case 2, T = T1 + T2 with

T1,x0 = Tr(Ad2 ρF ) + Tr(ρF (−k/2)), T2,x0 = Tr(ρF (−(k − 2)/2)).

In Case 3, T = T1 + T2 with

T1,x0 = Tr(Ad2 ρF ) + Tr(ρF (−(k − 2)/2)), T2,x0 = Tr(ρF (−k/2)).
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Finally, in Case 4, T = T1 + T2 with

T1,x0 = Tr(Ad2 ρF ), T2,x0 = Tr(ρF (−(k − 2)/2)) + Tr(ρF (−k/2)).

We will show that we must be in Case 4 if T is not irreducible by ruling out the other three cases

now.

Case 1. We first recall that the character χR7 of the standard representation R7 is supported

at the 7 coweights

± (2α∨ + β∨),±(α∨ + β∨),±α∨, 0. (3.4.3.1)

We also note that the Hodge–Tate weights of Tx0 are given by ±k,±k/2,±(k − 2)/2, 0, and are

therefore distinct. Therefore, by looking at the Hodge–Tate–Sen weights of L0, we deduce the

following. Since ±k, 0 are the Hodge–Tate weights of T1,x0 , and

±k = 〈λ0 + ρ,±(2α∨ + β∨)〉, 0 = 〈λ0 + ρ, 0〉,

we must have that for any x ∈ Σ̃c, the specialization T1,x has Hodge–Tate weights

〈λx + ρ,±(2α∨ + β∨)〉, 〈λx + ρ, 0〉 = 0,

where λx is the image of x in weight space. Similarly, for any x ∈ Σ̃c, the specialization T2,x has

Hodge–Tate weights

〈λx + ρ, α∨〉, 〈λx + ρ,−(α∨ + β∨)〉,

and T3,x has Hodge–Tate weights

〈λx + ρ, α∨ + β∨〉, 〈λx + ρ,−α∨〉.

Moreover, we know that for any such x, each of T1,x, T2,x and T3,x is crystalline; this is because

their sum, which corresponds to a cohomological automorphic representation of weight λx, is crys-

talline by Conjecture 3.2.2.1. By (3.2.1.2), the eigenvalues of the crystalline Frobenius φ are given

220



on T1,x + T2,x + T3,x by

(θy(uµ∨(p))p
−〈λ+ρ,µ∨〉)−1,

where µ∨ are the coweights from (3.4.3.1), and y is the point below x in Z(Qp). The numbers

θy(uµ∨(p)) vary analytically in x.

Now by (3.2.1.1), the slopes of the crystalline Frobenius for ρss
x0

are given by

−〈sp(2α+ 3β) + β − λ0 − ρ, µ∨〉,

for µ∨ as in (3.4.3.1). Therefore, for x ∈ Σ̃c sufficiently close to x0, the slopes for T1,x + T2,x + T3,x

are given by

−〈sp(2α+ 3β) + β − λx − ρ, µ∨〉.

By definition of Z, for any x ∈ Σ̃c we have

λx = λ0 + nx(c1(2α+ 3β) + c2(α+ 2β))

for some integer nx > 0. Thus for x sufficiently close to x0, the slopes of the crystalline Frobenius

for T1,x + T2,x + T3,x are given by

−〈sp(2α+ 3β) + β − λx − ρ, µ∨〉

for µ∨ as in (3.4.3.1), and are therefore given by

±(2sp − (k − 1)− nx(2c1 + c2)), ±(sp − ((k − 2)/2)− nx(c1 + c2)), ±(sp − (k/2)− nxc1), 0.

By above, the Hodge–Tate weights for T1,x are

±(k − 1 + nx(2c1 + c2)), 0,

those for T2,x are

((k − 2)/2) + nxc1, −((k/2) + nx(c1 + c2)),
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and those for T3,x are

(k/2) + nx(c1 + c2), −(((k − 2)/2) + nxc1).

The Hodge polygon for T3,x therefore ends at (2, nxc2 + 1). But, since c1 6= c2, it is then impossible

for the Newton polygon for T3,x to meet the Hodge polygon at the end points for nx sufficiently

large; the closest we can get is for T3,x to have slopes

−(sp − ((k − 2)/2)− nx(c1 + c2)), (sp − (k/2)− nxc1),

in which case the Newton polygon ends at (2,−1 + nxc2). This is a contradiction, so we have

excluded Case 1.

Case 2. Arguing exactly as in Case 1 above, for x ∈ Σ̃c, we get crystalline pseudorepresentations

T1,x and T2,x, where T2,x has Hodge–Tate weights

((k − 2)/2) + nxc1, −((k/2) + nx(c1 + c2)),

and the slopes of T1,x + T2,x are given again by

±(2sp − (k − 1)− nx(2c1 + c2)), ±(sp − ((k − 2)/2)− nx(c1 + c2)), ±(sp − (k/2)− nxc1), 0.

Then the Hodge polygon for T2,x ends at (2,−1−nxc2). This is again a contradiction since no pair

of slopes from the list above can sum to −1− nxc2.

Case 3. This can be dealt with in a completely analogous way as Case 2.

3.5 The lattice L

We will now construct a lattice in the Galois representation attached to the pseudorepresentation

T considered above. We will show that the specialization of this lattice at the point y0 is an extension

which factors through the short root parabolic subgroup of G2, and we will use this extension to

construct the desired cocycle in the symmetric cube Bloch–Kato Selmer group.
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3.5.1 Construction of L

We continue to assume throughout that Conjectures 3.2.1.1 and 3.2.2.1 hold.

Let us first take a moment to summarize the constructions made in Section 3.4, because they

will be used here. First of all, at the beginning of Section 3.4.3, we constructed an affinoid curve Z.

It is reduced and irreducible, and it is finite over a line L in weight space X. The line L contains a

Zariski dense subset Σc of classical weights which become increasingly regular.

We also have the continuous G2-pseudocharacter ΘZ of GQ over O(Z) which, via the representa-

tion R7 : G2 → GL7, gives rise to a continuous pseudorepresentation T : GQ → O(Z). By Theorem

3.4.1.2, this gives us a representation ρZ : GQ → G2(Frac(O(Z))), and also the representation R7◦ρZ

of which T is the trace. Standard arguments show that there is a finitely generated extension R of

O(Z) in Frac(O(Z)) such that R7 ◦ ρZ takes values in GL7(R), and is continuous with this target.

(See, for example, the proof of Lemma 6 in [Tay91].) By simply passing to this extension, we will

assume that R7 ◦ ρZ takes values in O(Z). By passing to the normalization, we will also assume

that O(Z) is integrally closed, and therefore Dedekind. The continuity of T implies that R7 ◦ ρZ

preserves a projective O(Z)-module P of rank 7 in Frac(O(Z))7.

Now let A be the completed local ring of the base change of O(Z) to Qp at the maximal ideal

corresponding to y0 ∈ Z(Qp). Then A is a discrete valuation ring. Let m be its maximal ideal. Let

PA = P ⊗OZ A. This is a Galois-stable free A-submodule of Frac(A)7 of rank 7. The reduction of

PA modulo m is the same as the specialization of P at y0.

We now construct another lattice LZ in the space of R7 ◦ ρZ. We need to separate the construc-

tion into two cases based on Lemma 3.4.3.1, namely when the pseudorepresentation T is absolutely

irreducible, and when it is not. But first, to start, we pick g0 ∈ GQ such that ρF (−k/2)(g0) has

eigenvalues γ6, γ7 ∈ Qp, and such that the numbers

γ1 = γ−1
7 , γ2 = γ−1

6 , γ3 = γ6γ
−1
7 , γ4 = 1, γ5 = γ7γ

−1
6 , γ6, γ7 (3.5.1.1)

are all distinct.
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Construction of L when T is absolutely irreducible

Because T is assumed absolutely irreducible here, R7 ◦ ρZ is irreducible. Let v′7 be a vector in

the specialization Py0 of P at y0 which is an eigenvector of the specialization of ρy0(g0) of ρZ at y0

with eigenvalue γ7. This is possible since by construction

ρss
y0
∼= ρF (−(k − 2)/2)⊕Ad2 ρF ⊕ ρF (−k/2),

and therefore the eigenvalues of ρy0(g0) are given exactly by γ1, . . . , γ7.

Take w̃7 ∈ P mapping to v′7 under specialization at y0. Consider the sublattice LZ of P generated

over O(Z)[GQ] by w̃7, and let L = LZ ⊗A ⊂ PA; this lattice L is the same as the sublattice of PA

generated over A[GQ] by ṽ7. Because T is irreducible, the lattices LZ and L are of full rank 7. By

passing to a finite normal extension of O(Z) and localizing, we may assume LZ is free.

Let L be the reduction of L modulo m. This is the same as the specialization of LZ at y0. Then

Lss ∼= ρss
y0

, and so by construction, we have either

L ∼

ρF (−(k − 2)/2) ∗3 ∗2
0 Ad2 ρF ∗1
0 0 ρF (−k/2)

 , (3.5.1.2)

with ∗1 and ∗2 nontrivial, or

L ∼

ρF (−(k − 2)/2) 0 ∗2
∗3 Ad2 ρF ∗1
0 0 ρF (−k/2)

 , (3.5.1.3)

again with ∗1 and ∗2 nontrivial; this latter case is the same as

L ∼

Ad2 ρF
t∗3 ∗1

0 ρF (−(k − 2)/2) ∗2
0 0 ρF (−k/2)

 .
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Construction of L when T is absolutely reducible

In this case, by passing to a finite normal extension of O(Z) and localizing, we may assume by

Lemma 3.4.3.1 that T = T1 + T2 where

T1,y0 = Tr(Ad2 ρF ), T2,y0 = Tr(ρF (−(k − 2)/2)) + Tr(ρF (−k/2)).

We may further assume P = P1⊕P2 with P1 and P2 having respective Galois actions ρZ,1 and ρZ,2

whose respective specializations ρy0,1 and ρy0,2 at y0 satisfy

ρy0,1
∼= Ad2 ρF , ρss

y0,2
∼= ρF (−(k − 2)/2)⊕ ρF (−k/2).

Now let v′7 be a vector in Py0,2 which is an eigenvector for ρy0,2(g0) with eigenvalue γ7. Let

w̃7 ∈ P2 mapping to v′7 under specialization at y0. Consider the sublattice LZ,2 of P2 generated

over O(Z)[GQ] by w̃7. Let LZ,1 = P1, and LZ = LZ,1 ⊕ LZ,2.

We also let L2 = LZ ⊗A, and L1 = P1 ⊗A. Then letting L = L1 ⊕ L2, we have L ⊂ PA. By

passing to a finite normal extension of O(Z) and localizing, we may assume LZ is free.

Let L be the reduction of L modulo m. This time, we have by construction,

L ∼

ρF (−(k − 2)/2) 0 ∗2
0 Ad2 ρF 0
0 0 ρF (−k/2)

 , (3.5.1.4)

with ∗2 nontrivial.

Construction of a basis of L

Let u6 and u7 be eigenvectors for ρF (−k/2)(g0) in the space of ρF (−k/2), with respective

eigenvalues γ6 and γ7. We view ρF (−(k − 2)/2) as ρF (−k/2)∨, and we let {u1, u2} be the basis of

ρF (−(k − 2)/2) dual to {u7, u6}. We also view Ad2 ρF as a subspace of ρF (−k/2) ⊗ ρF (−k/2)∨,

and we let {u3, u4, u5} be the basis of Ad2 ρF corresponding to

{u6 ⊗ u∨7 , u7 ⊗ u∨7 − u6 ⊗ u∨6 , u7 ⊗ u∨6 }
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in ρF (−k/2)⊗ ρF (−k/2)∨. For g ∈ GQ, let us write

ρF (−k/2)(g) =

(
g66 g67

g76 g77

)

in the basis u6, u7 of ρF (−k/2). Let us also write

d(g) = det ρF (−k/2)(g) = g66g77 − g67g76.

Then we have

ρF (−(k − 2)/2)(g) =
1

d(g)

(
g66 −g67

−g76 g77

)
in the basis u1, u2, and we have

(Ad2 ρF )(g) =
1

d(g)

 g2
66 2g66g67 −g2

67

g66g76 g66g77 + g67g76 −g67g77

−g2
76 −2g76g77 g2

77


in the basis u3, u4, u5.

Let ρL denote the action of GQ on L, and ρL that on L. Assume first L has the form displayed

in (3.5.1.2). Pick a basis v1, . . . , v7 of L satisfying the following properties: The vectors v6, v7 map

respectively to u6, u7 in the quotient ρF (−k/2); v3, v4, v5 are vectors in the subrepresentation

(
ρF (−(k − 2)/2) ∗3

0 Ad2 ρF

)

which map respectively to u3, u4, u5 in the quotient Ad2 ρF ; and the vectors v1, v2 are, respectively,

the vectors u1, u2 in the subrepresentation ρF (−(k− 2)/2). Then in this basis, ρL(g0) has the form

ρL(g0) =



γ−1
7 ∗ ∗ ∗ ∗ ∗

γ−1
6 ∗ ∗ ∗ ∗ ∗

γ6γ
−1
7 ∗ ∗

1 ∗ ∗
γ7γ
−1
6 ∗ ∗

γ6

γ7


.

Then since all the entries on the diagonal of this matrix are distinct by assumption, it is possible

to modify the basis v1, . . . , v7 so that it still has the properties listed above, but all the asterisks
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are zero. That is, we can and will assume that actually,

ρL(g0)vi = γivi, i = 1, . . . , 7, (3.5.1.5)

where each γi is defined as in (3.5.1.1).

Similarly, if instead L has the form displayed in (3.5.1.3), then we can pick a basis v1, . . . , v7 of

L satisfying the following properties: The vectors v6, v7 map respectively to u6, u7 in the quotient

ρF (−k/2); v3, v4, v5 are, respectively, the vectors u3, u4, u5 in the subrepresentation Ad2 ρF ; v1, v2

are vectors in the subrepresentation

(
ρF (−(k − 2)/2) 0

∗3 Ad2 ρF

)

which map respectively to u1, u2 in the quotient ρF (−(k − 2)/2); and (3.5.1.5) holds.

Finally, if L has the form displayed in (3.5.1.3), then T is reducible, and we let L1 and L2 be

the reductions of L1 and L2, respectively, modulo m. Then we pick a basis v1, . . . , v7 of L satisfying

the following properties: The vectors v6, v7 are in L2 and map respectively to u6, u7 in the quotient

ρF (−k/2); v3, v4, v5 are, respectively, the vectors u3, u4, u5 in the subrepresentation Ad2 ρF ; v1, v2

are, respectively, the vectors u1, u2 in the subrepresentation ρF (−(k − 2)/2) of L2; and (3.5.1.5)

holds.

In any case, we have a basis v1, . . . , v7 of L which are eigenvectors for ρL(g0) with respective

eigenvalues as in (3.5.1.5). By Hensel’s lemma, we have eigenvectors ṽ1, . . . , ṽ7 in L for ρL(g0), with

respective eigenvalues γ̃1, . . . , γ̃7, such that

ṽi ≡ vi (mod m),

and

γ̃i ≡ γi (mod m).

By Nakayama’s lemma, ṽ1, . . . , ṽ7 form a basis for L.
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The alternating trilinear form on L.

We know that ρA factors through G2(Frac(A)). By the remarks made in Section 3.1.2, ρA

therefore preserves a generic alternating trilinear form 〈·, ·, ·〉∼ on Frac(A)
7
. Let ṽ∨1 , . . . , ṽ

∨
7 be the

dual basis of ṽ1, . . . , ṽ7 in the dual of the space Frac(A)
7
, and write

〈·, ·, ·〉∼ =
∑

1≤i<j<k≤7

ãijkṽ
∨
i ∧ ṽ∨j ∧ ṽ∨k ,

for some ãijk ∈ Frac(A). Then for any triple (i, j, k) with 1 ≤ i < j < k ≤ 7, we have

ãijk = 〈vi, vj , vk〉∼ = 〈g0vi, g0vj , g0vk〉∼ = γ̃iγ̃j γ̃kãijk.

Thus ãijk = 0 for all such triples (i, j, k) except possibly

(i, j, k) = (1, 4, 7), (1, 5, 6), (2, 4, 6), (2, 3, 7), (3, 4, 5),

and ãijk is nonzero for at least one of these triples (i, j, k). Let B be the ring obtained from A by

adjoining ãijk for these five triples (i, j, k). By scaling 〈·, ·, ·〉∼, we may assume that ãijk is integral

for these five triples (i, j, k), and that ãijk ∈ B× for at least one such (i, j, k). If mB is the maximal

ideal of B, and we write aijk ∈ Qp for the reduction of ãijk modulo mB, then this means

aijk 6= 0 for at least one (i, j, k) = (1, 4, 7), (1, 5, 6), (2, 4, 6), (2, 3, 7), (3, 4, 5).

Furthermore, if T is reducible, then by replacing L2 with cL2 for a suitable c ∈ A, we may assume

the valuation of ã345 is small enough so that we instead have

aijk 6= 0 for at least one (i, j, k) = (1, 4, 7), (1, 5, 6), (2, 4, 6), (2, 3, 7).
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Finally, write 〈·, ·, ·〉 for the reduction of 〈·, ·, ·〉∼ modulo mB. Then 〈·, ·, ·〉 is a nontrivial alter-

nating trilinear form on L preserved by the action of GQ, and

〈·, ·, ·〉 =
∑

1≤i<j<k≤7

aijkv
∨
i ∧ v∨j ∧ v∨k .

3.5.2 The shape of L modulo m

Let us begin by summarizing the construction of the previous section. We have a lattice LZ in

our representation R7 ◦ ρZ whose specialization L at y0 is of one of the following three forms: We

either have

L ∼

ρF (−(k − 2)/2) ∗3 ∗2
0 Ad2 ρF ∗1
0 0 ρF (−k/2)

 , (3.5.2.1)

with ∗1 and ∗2 nontrivial, or

L ∼

ρF (−(k − 2)/2) 0 ∗2
∗3 Ad2 ρF ∗1
0 0 ρF (−k/2)

 , (3.5.2.2)

again with ∗1 and ∗2 nontrivial, or

L ∼

ρF (−(k − 2)/2) 0 ∗2
0 Ad2 ρF 0
0 0 ρF (−k/2)

 , (3.5.2.3)

with ∗2 nontrivial. We will eventually rule out the possibility that L has the shape displayed in

(3.5.2.2) or (3.5.2.3).

To do this, we use the alternating trilinear form constructed in the previous section. Let

v1, . . . , v7 be the basis of L constructed in the previous section. Then we saw that there are

numbers a147, a156, a237, a246, and a345 in Qp, at least one of which is nonzero, such that the

trilinear form

〈·, ·, ·〉 = a147v
∨
1 ∧ v∨4 ∧ v∨7 +a156v

∨
1 ∧ v∨5 ∧ v∨6 +a237v

∨
2 ∧ v∨3 ∧ v∨7 +a246v

∨
2 ∧ v∨4 ∧ v∨6 +a345v

∨
3 ∧ v∨4 ∧ v∨5

is preserved by the action of GQ on L. Here v∨1 , . . . , v
∨
7 is the dual basis to v1, . . . , v7. Furthermore,

if L has the form (3.5.2.3), we have that one of a147, a156, a237, a246 is nonzero.
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For g ∈ GQ, let (gij) be the matrix of g in the basis v1, . . . , v7. Then we have the following

relations from the previous section:

(
g11 g12

g21 g22

)
=

1

d(g)

(
g66 −g67

−g76 g77

)
, (3.5.2.4)

and g33 g34 g35

g43 g44 g45

g53 g54 g55

 =
1

d(g)

 g2
66 2g66g67 −g2

67

g66g76 g66g77 + g67g76 −g67g77

−g2
76 −2g76g77 g2

77

 , (3.5.2.5)

for any g ∈ GQ.

We will now study the numbers a147, a156, a237, a246, and a345 using the matrix coefficients gij

and the fact that g ∈ GQ preserves the form 〈·, ·, ·〉. Our goal is to prove that (3.5.2.1) holds, that

a147 = a156 = a237 = −a246 6= 0, and that a345 6= 0. This will force the action of g ∈ GQ on L to

factor through, not just G2, but even its short root parabolic subgroup.

Lemma 3.5.2.1. One of a147, a156, a246, a237 is nonzero.

Proof. We assumed the conclusion of the lemma to be true when (3.5.2.3) holds. Thus we may

assume either (3.5.2.1) or (3.5.2.2) holds. Then one of the matrix coefficients

g36, g46, g56, g37, g47, g57

is nonzero for some g ∈ GQ.

Now assume for sake of contradiction that all of a147, a156, a246, a237 are zero. Then a345 6= 0.
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We then compute

0 = a156(g−1)13 = 〈g−1v3, v5, v6〉

= 〈v3, gv5, gv6〉

= a345(g45g56 − g55g46) + a237(g75g26 − g25g76)

= a345(g45g56 − g55g46),

0 = a246(g−1)23 = 〈g−1v3, v4, v6〉

= 〈v3, gv4, gv6〉

= a345(g44g56 − g54g46) + a237(g74g26 − g24g76)

= a345(g44g56 − g54g46).

We thus get

a345

(
g44 g54

g45 g55

)(
g56

−g46

)
= 0

Since a345 6= 0 and d(g) 6= 0, (3.5.2.5) gives

(
g66g77 + g67g76 −g67g77

−2g76g77 g2
77

)(
g56

−g46

)
= 0.

Now we have

det

(
g66g77 + g67g76 −g67g77

−2g76g77 g2
77

)
= g2

77(g66g77 − g67g76) = d(g)g2
77,

which is zero only when g77 is zero. Since F is not CM (it is level 1) and hence ρF has big image,

g77 = 0 only for g in a measure zero subset of GQ. For such g, we can invert the matrix above and

we find that

g56 = g46 = 0

for all g outside a subset of GQ of measure zero. By continuity of ρL, g56 = g46 = 0 for all g.

Now we have to repeat this argument a couple more times with different matrix coefficients.
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We have

0 = a147(g−1)13 = 〈g−1v3, v4, v7〉

= 〈v3, gv4, gv7〉

= a345(g44g57 − g54g47) + a237(g74g27 − g24g77)

= a345(g44g57 − g54g47),

0 = a237(g−1)23 = 〈g−1v3, v3, v7〉

= 〈v3, gv3, gv7〉

= a345(g43g57 − g53g47) + a237(g73g27 − g23g77)

= a345(g43g57 − g53g47).

Thus,

a345

(
g43 g53

g44 g54

)(
g57

−g47

)
= 0,

and so (
2g66g67 −g2

67

g66g77 + g67g76 −g67g77

)(
g57

−g47

)
= 0.

The determinant of the 2 by 2 matrix above is −d(g)g2
66, and so the argument from above applies

to show that g57 = g47 = 0 for all g.

Finally, we have

0 = a156(g−1)15 = 〈g−1v5, v5, v6〉

= 〈v5, gv5, gv6〉

= a345(g35g46 − g45g36) + a156(g65g16 − g15g66)

= a345(g35g46 − g45g36),

0 = a237(g−1)15 = 〈g−1v5, v3, v7〉

= 〈v5, gv3, gv7〉

= a345(g33g47 − g43g37) + a156(g63g17 − g13g67)

= a345(g33g47 − g43g37).
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Because we already know g46 = g47 = 0, this reduces to

g45g36 = g43g37 = 0.

by (3.5.2.5) this is the same as

−g67g77g36 = g66g76g37.

By a similar argument as above, this forces g36 = g37 = 0.

This is a contradiction, since one of

g36, g46, g56, g37, g47, g57

is nonzero as we said above. Therefore one of a147, a156, a246, a237 must be nonzero, as desired.

Lemma 3.5.2.2. We have

a147 = a156 = a237 = −a246.

Proof. We either have

g13 = g14 = g15 = g23 = g24 = g25 = 0,

or

g31 = g41 = g51 = g32 = g42 = g52 = 0.

In either case, we find (
(g−1)11 (g−1)12

(g−1)21 (g−1)22

)
=

(
g11 g12

g21 g22

)−1

.

By (3.5.2.4), this equals (
(g−1)11 (g−1)12

(g−1)21 (g−1)22

)
=

(
g77 g67

g76 g66

)
.

Now we use this to compute

a156g77 = a156(g−1)11 = 〈g−1v1, v5, v6〉

= 〈v1, gv5, gv6〉

= a156(g55g66 − g65g56) + a147(g45g76 − g75g46).
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Since g65 = g75 = 0, this gives

a156g77 = a156g77g55g66 + a147g45g76.

By (3.5.2.5), this is

a156g77d(g) = a156g77g
2
77g66 − a147g77g67g76,

or, after rearranging,

a156g77g67g76 = a147g77g67g76.

But by ρF having big image, g77g67g76 6= 0 for some g. Thus a156 = a147.

Next we compute

a237g66 = a237(g−1)22 = 〈g−1v2, v3, v7〉

= 〈v2, gv3, gv7〉

= a237(g33g77 − g73g37) + a246(g43g67 − g63g47)

= a237g33g77 + a246g43g67

= d(g)−1(a237g
2
66g77 + a246g66g76g67).

Thus, after rearranging, we find

−a237g66g76g67 = a246g66g76g67.

We therefore have a237 = −a246.
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Finally, we compute

a156g67 = a156(g−1)12 = 〈g−1v2, v5, v6〉

= 〈v2, gv5, gv6〉

= a237(g35g76 − g75g36) + a246(g45g66 − g65g46)

= a237g35g76 + a246g45g66

= d(g)−1(−a237g
2
67g76 − a246g67g77g66)

= d(g)−1a237g67(−g67g76 + g77g66)

= a237g67

where the second-to-last line follows because a237 = −a246. Thus it follows that a156 = a237, and

this completes the proof.

By the two previous lemmas, we can (and will) assume

a147 = a156 = a237 = 1, a246 = −1.

Assume now that

g13 = g14 = g15 = g23 = g24 = g25 = 0.

Then Ad2 ρF is a subrepresentation of L. The quotient L/Ad2 ρF is the extension E of the form

(
ρF (−(k − 2)/2) ∗2

0 ρF (−k/2)

)

with ∗2 nontrivial. This extension E is therefore given by

E ∼


g11 g12 g16 g17

g21 g22 g26 g27

0 0 g66 g67

0 0 g76 g77

 .

Lemma 3.5.2.3. Assume that

g13 = g14 = g15 = g23 = g24 = g25 = 0
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for all g, so that we have the extension E as above. Then the exterior square ∧2E has a subrepre-

sentation a nontrivial extension of the form

(
χcyc ∗

0 1

)
.

Proof. We first use the following fact: If

(
A B
0 D

)

is an invertible matrix with n by n blocks, then

(
A B
0 D

)−1

=

(
A−1 −A−1BD−1

0 D−1

)
.

It follows from this that

(
(g−1)16 (g−1)17

(g−1)26 (g−1)27

)
= − 1

d(g)

(
g77 g67

g76 g66

)(
g16 g17

g26 g27

)(
g77 −g67

−g76 g66

)
.

Thus, computing the product, we find in particular,

(
(g−1)16

(g−1)26

)
= − 1

d(g)

(
g2

77g16 + g77g67g26 − g77g76g17 − g67g76g27

g77g76g16 + g77g66g26 − g2
76g17 − g76g66g27

)
. (3.5.2.6)

Thus we compute

− 1

d(g)
(g2

77g16 + g77g67g26 − g77g76g17 − g67g76g27) =a156(g−1)16

=〈g−1v6, v5, v6〉

=〈v6, gv5, gv6〉

=a246(g25g46 − g45g26)

+ a156(g15g56 − g55g16)

=(g45g26 − g55g16)

=− 1

d(g)
(g67g77g26 − g2

77g16),
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where, in the last line, we used (3.5.2.5). Hence

g77g76g17 + g67g76g27 = 0

and it follows (again from ρF having big image) that

g77g17 + g67g27 = 0 (3.5.2.7)

We also compute

− 1

d(g)
(g2

77g16 + g77g67g26 − g77g76g17 − g67g76g27) =a147(g−1)16

=〈g−1v6, v4, v7〉

=〈v6, gv4, gv7〉

=a246(g24g47 − g44g27)

+ a156(g14g57 − g54g17)

=
1

d(g)
(g44g27 − g54g17)

=− 1

d(g)
((g66g77 + g76g67)g27 + 2g77g76g17).

But, of course, this equals a156(g−1)16, since a147 = a156, and so we get from above,

(g66g77 + g76g67)g27 + 2g77g76g17 = g67g77g26 − g2
77g16.

Rearranging gives

g76(g77g17 + g67g27) + g77(g77g16 + g76g17 + g67g26 + g66g27) = 0.

By (3.5.2.7), the first term in this sum is zero, so we get

g77(g77g16 + g76g17 + g67g26 + g66g27) = 0.
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Hence

g77g16 + g76g17 + g67g26 + g66g27 = 0. (3.5.2.8)

Next we compute

− 1

d(g)
(g77g76g16 + g77g66g26 − g2

76g17 − g76g66g27) =a237(g−1)26

=〈g−1v6, v3, v7〉

=〈v6, gv3, gv7〉

=a246(g23g47 − g43g27)

+ a156(g13g57 − g53g17)

=
1

d(g)
(g43g27 − g53g17)

=
1

d(g)
(g66g76g27 + g2

76g17).

Therefore,

g77g76g16 + g77g66g26 = 0,

and so

g76g16 + g66g26 = 0. (3.5.2.9)

With this preparation we can now proceed to prove the lemma. The extension E has basis

v1, v2, v6, v7. Therefore, the exterior square ∧2E has the basis

v2 ∧ v1, (v7 ∧ v1 + v2 ∧ v6), v6 ∧ v1, (v7 ∧ v1 − v2 ∧ v6), v7 ∧ v2, v7 ∧ v6.

We now compute part of the matrix of g in this basis using (3.5.2.4). We have

g(v2 ∧ v1) = gv2 ∧ gv1

=
1

d(g)
(g77v2 − g67v1) ∧ (−g76v2 + g66v1)

=
1

d(g)
(g77g66 − g67g76)v2 ∧ v1

=
1

d(g)
v2 ∧ v1.
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We also have

g(v7 ∧ v1 + v2 ∧ v6) =gv7 ∧ gv1 + gv2 ∧ gv6

=
1

d(g)
(g77v7 + g67v6 + g27v2 + g17v1) ∧ (−g76v2 + g66v1)

+
1

d(g)
(g76v7 + g66v6 + g26v2 + g16v1) ∧ (−g77v2 + g67v1)

=
1

d(g)
(g66g27 + g76g17 − g67g26 − g77g16)v2 ∧ v1 +

1

d(g)
(g67g66 − g66g67)

+
1

d(g)
(g66g77 − g67g76)v7 ∧ v1 +

1

d(g)
(−g67g76 + g66g77)v6 ∧ v2

+
1

d(g)
(−g77g76 + g76g77)v7 ∧ v2

=
1

d(g)
(g67g26 + g77g16)v2 ∧ v1 + (v7 ∧ v1 + v2 ∧ v6),

where, in the last line, we used (3.5.2.8).

This computes the first two columns of g in the basis chosen above; these two columns begin

with (
d(g)−1 ∗

0 1

)
,

and the rest of the entries are zero, showing that this extension is a subrepresentation of ∧2E. Here

the asterisk denotes

∗ = d(g)−1(g67g26 + g77g16).

Note that d(g) = det ρF (−k/2)(g) = χ−1
cyc(g), so as long as ∗ is nontrivial, this is the desired

extension.

So assume for sake of contradiction that ∗ is trivial. Then

g67g26 + g77g16 = 0.

Combining this with (3.5.2.9) gives

(
g77 g67

g76 g66

)(
g16

g26

)
= 0.
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Since the matrix (
g77 g67

g76 g66

)
is invertible, this implies g16 = g26 = 0. But then (3.5.2.8) becomes

g76g17 + g66g27 = 0.

Along with (3.5.2.7), this gives (
g77 g67

g76 g66

)(
g17

g27

)
= 0.

Like before, this implies g17 = g27 = 0 as well, which implies that E is a trivial extension. This is

a contradiction, and the lemma is proved.

We are now in a position to use p-adic Hodge theory to rule out the possibility that Ad2 ρF is

a subrepresentation of L.

Lemma 3.5.2.4. One of

g13, g14, g15, g23, g24, g25

is nonzero for some g ∈ GQ.

Proof. Assume for sake of contradiction that

g13 = g14 = g15 = g23 = g24 = g25 = 0.

Then Ad2 ρF is a subrepresentation of L with quotient given by the extension E from above. By

Lemma 3.5.2.3, the exterior square ∧2E contains as a subrepresentation a nontrivial extension

(
χcyc ∗

0 1

)
.

Let us call this extension E′. It is unramified at all primes except p because L is, and we will show

now that E′ has to also be crystalline at p. This will be a contradiction since E′ will represent a

nontrivial class in the Bloch–Kato Selmer group

H1
f (Qp,Qp(1)),

240



which itself is trivial.

So to get started, recall that we have the O(Z)-lattice LZ. The specialization of LZ at y0 is L.

For y ∈ Σc, the specialization Ly of LZ at y is crystalline at p with Hodge–Tate weights given by

−〈λ+ ρ, µ∨〉,

and crystalline Frobenius eigenvalues given by

θy(uµ∨(p))
−1p〈λ+ρ,µ∨〉,

for

µ∨ ∈ {0,±α∨,±(α∨ + β∨),±(2α∨ + β∨)}.

Recall that the functions of y given by θy(uµ∨(p)) are analytic on Z, and

θy0(uµ∨(p)) = α〈2α+3β,µ∨〉
p p〈β,µ

∨〉.

We will apply Kisin’s lemma (Lemma 3.3.1.2) to various exterior powers of LZ. The hypotheses

of that lemma are satisfied because the weights of points in Σc are increasingly regular. The

Hodge–Tate weights 〈λ0 + ρ, µ∨〉 of L are given in increasing order by

−(k − 1), −k
2
,−k − 2

2
, 0,

k − 2

2
,
k

2
, k − 1,

corresponding respectively to the coweights

− (2α∨ + β∨), −(α∨ + β∨), −α∨, 0, α∨, α∨ + β∨, 2α∨ + β∨. (3.5.2.10)

The corresponding values of θy(uµ∨(p))
−1p〈λ0+ρ,µ∨〉 are, in order,

p−(k−1)α2
p, p

−(k−2)/2αp, p
−k/2αp, 1, pk/2α−1

p , p(k−2)/2α−1
p , pk−1α−2

p .

Now it follows from Proposition 3.3.2.5 that E is semistable. Write D = Dcrys(ρF (−k/2)), and
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let u3, u4 ∈ D be eigenvectors for the crystalline Frobenius with respective eigenvalues pk/2α−1
p and

p−(k−2)/2αp. Since these numbers are distinct by Lemma ??, u3, u4 are linearly independent. Then

by Corollary 3.3.2.3, there is a basis w1, w2, w3, w4 of Dst(E) such that, in this basis, the crystalline

Frobenius φE for Dst(E) is given by

φE = diag(p(k−2)/2α−1
p , p−k/2αp, p

k/2α−1
p , p−(k−2)/2αp)

and the monodromy operator NE for Dst(E) is given by

NE =

(
0 B
0 0

)
,

for some B ∈M2(Qp). Write

B =

(
b11 b12

b21 b22

)
.

We claim first that b12 = b22 = 0. To show this, we apply Kisin’s lemma to ∧2L, as was inspired

by [Urb13b]. This shows that

Dcrys(∧2L)φ=p−(k−1)α2
p·p−(k−2)/2αp 6= 0.

Since Ad2 ρF⊗E is the only subquotient of ∧2L that can contribute an eigenvector for the crystalline

Frobenius with this eigenvalue, it follows that

Dcrys(Ad2 ρF ⊗ E)φ=p−(k−1)α2
p·p−(k−2)/2αp 6= 0.

Now

Dst(Ad2 ρF ⊗ E) = Dcrys(Ad2 ρF )⊗Dst(E)

because Ad2 ρF is crystalline, and the monodromy operator on this space is given by 1 ⊗ NE . It

follows that

Dst(Ad2 ρF ⊗ E)φ=p−(k−1)α2
p·p−(k−2)/2αp 6= 0.

This space is generated by vectors of the form v′ ⊗ w4 where v′ ∈ Dcrys(Ad2 ρF ) is a crys-

talline Frobenius eigenvector with eigenvalue p−(k−1)α2
p (again we are using Lemma ??). Therefore
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Dcrys(Ad2 ρF ⊗E) must include a vector v′⊗w4 of this type, which is thus in the kernel of 1⊗NE .

Hence NEv4 = 0, which implies b12 = b22 = 0.

Next we claim b11 = 0. To do this, we apply the same argument, but to the dual (∧2L)∨ of ∧2L

(or, equivalently, to ∧5L). The specializations L∨y for y ∈ Σc have the same Hodge–Tate weights

and corresponding crystalline Frobenius eigenvalues as Ly. So this gives

Dcrys((∧2L)∨)φ=p−(k−1)α2
p·p−(k−2)/2αp 6= 0.

It follows that

Dcrys(Ad2 ρF ⊗ E∨)φ=p−(k−1)α2
p·p−(k−2)/2αp 6= 0.

We also have

Dst(Ad2 ρF ⊗ E) = Dcrys(Ad2 ρF )⊗Dst(E)∨.

Let w∨1 , w
∨
2 , w

∨
3 , w

∨
4 be the dual basis to w1, w2, w3, w4. Then the monodromy operator NE∨ on

Dst(E)∨ is given in this basis by

NE∨ =

(
0 0
− tB 0

)
.

So by a similar argument as above, it follows that a vector v′⊗w∨1 , with v′ as above, is in the kernel

of NE∨ . Thus the first column of the matrix representing NE∨ is zero; in particular b11 = 0.

Now we come to the representation ∧2E. We claim that

Dst(∧2E)φ=1 = Dcrys(∧2E)φ=1.

From this it will follow that the extension E′ is crystalline, and we will be done.

To prove the claim, we note that Dst(∧2E)φ=1 is the span of v1 ∧ v4 and v2 ∧ v3. But

N(v1 ∧ v4) = (NEv1) ∧ v4 + v1 ∧ (NEv4) = v1 ∧ (b12v1 + b22v2) = 0,

and

N(v2 ∧ v3) = (NEv2) ∧ v3 + v2 ∧ (NEv4) = v2 ∧ (b11v1 + b21v2) = b21v2 ∧ v2 = 0,

so this proves the claim, and hence also the lemma.
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It follows from the lemma that L has the shape

L ∼

ρF (−(k − 2)/2) ∗3 ∗2
0 Ad2 ρF ∗1
0 0 ρF (−k/2)

 ,

as the other two possible shapes have just been ruled out.

We now prove a lemma that will show that L factors through G2(Qp).

Lemma 3.5.2.5. We have a345 6= 0.

Proof. Assume on the contrary that a345. We will get a contradiction to Lemma 3.5.2.4. We

compute

a156(g−1)13 = 〈g−1v3, v5, v6〉

= 〈v3, gv5, gv6〉

= a345(g45g56 − g55g46) + a237(g75g26 − g25g76)

= −a237g76g25,

hence

(g−1)13 = −g76g25.

We also compute

a237(g−1)25 = 〈g−1v5, v3, v7〉

= 〈v5, gv3, gv7〉

= a345(g33g47 − g43g37) + a156(g63g17 − g13g67)

= −a156g67g13,

and hence

(g−1)25 = −g67g13.

Therefore,

(g−1)13 = −g76g25 = g76(g−1)67(g−1)13 = −d(g)−1g67g76(g−1)13.

244



Because the image of ρF is big, d(g)−1g67g76 = 0 only for a measure zero set of g ∈ GQ. Thus

we must have (g−1)13, and hence g13, is identically zero, and by the equations above g25 is also

identically zero.

We also compute

a156(g−1)15 = 〈g−1v5, v5, v6〉

= 〈v5, gv5, gv6〉

= a345(g35g46 − g45g36) + a156(g65g16 − g15g66)

= −a156g66g15,

and hence

(g−1)15 = −g66g15.

Thus

(g−1)15 = g66(g−1)66(g−1)15 = d(g)−1g66g77(g−1)15.

Like above, this forces g15 to be identically zero.

Similarly, we compute

a237(g−1)23 = 〈g−1v3, v3, v7〉

= 〈v3, gv3, gv7〉

= a345(g43g57 − g53g47) + a237(g73g27 − g23g77)

= −a237g77g23,

and hence

(g−1)23 = −g77g23.

Thus

(g−1)23 = g77(g−1)77(g−1)23 = d(g)−1g77g66(g−1)23,

and once again, this forces g15 to be identically zero.
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Finally, we have

a156(g−1)14 =〈g−1v4, v5, v6〉

=〈v4, gv5, gv6〉

=a345(g55g36 − g35g56) + a147(g75g16 − g15g76)

+ a246(g65g26 − g25g66)

=0,

where the vanishing at the end is because g15 = g25 = 0. Similarly, we have

a237(g−1)24 =〈g−1v4, v3, v7〉

=〈v4, gv3, gv7〉

=a345(g53g37 − g33g57) + a147(g73g17 − g13g77)

+ a246(g63g27 − g23g67)

=0

Thus g14 and g24 are identically zero. This is a contradiction and finishes the proof.

3.5.3 The symmetric cube Selmer group

We now have the representation L, which is of the form

L ∼

ρF (−(k − 2)/2) ∗3 ∗2
0 Ad2 ρF ∗1
0 0 ρF (−k/2)


where ∗1, ∗2 and ∗3 are all nontrivial. Writing again v1, . . . , v7 for our chosen basis of L, we have

that this representation preserves the alternating trilinear form

〈·, ·, ·〉 = v∨1 ∧ v∨4 ∧ v∨7 + v∨1 ∧ v∨5 ∧ v∨6 + v∨2 ∧ v∨3 ∧ v∨7 − v∨2 ∧ v∨4 ∧ v∨6 + a345v
∨
3 ∧ v∨4 ∧ v∨5 ,

for some nonzero a345 ∈ Qp. From here on we write a = a345.

By Lemma 3.1.2.1, the representation L factors through the G2-subgroup Ga(Qp) of GL7(Qp).
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Because of its shape, by Proposition 3.1.2.3, L factors though the short root parabolic Pa,β(Qp).

For g ∈ GQ, let us continue to write

(
g66 g67

g76 g77

)

for the bottom block of g in the basis v1, . . . , v7, and

d(g) = g66g77 − g67g76

for its determinant. Then d(g) = χ−1
cyc(g). Write gij as before for the other entries, and also write

g′ij = d(g)gij . Then we have

(g′ij) =



g66 −g67 g′13 g′14 g′15 g′16 g′17

−g76 g77 g′23 g′24 g′25 g′26 g′27

g2
66 2g66g67 −g2

67 g′36 g′37

g66g76 g66g77 + g67g76 −g67g77 g′46 g′47

−g2
76 −2g76g77 g2

77 g′56 g′57

g′66 g′67

g′76 g′77


.

Let us write E for the extension given by

E =
1

d(g)


g66 −g67 g′13 g′14 g′15

−g76 g77 g′23 g′24 g′25

g2
66 2g66g67 −g2

67

g66g76 g66g77 + g67g76 −g67g77

−g2
76 −2g76g77 g2

77

 . (3.5.3.1)

It is an extension

0→ ρF (−(k − 2)/2)→ E → Ad2 ρF → 0,

and it is a nontrivial extension by Lemma 3.5.2.4.

We want to show E is semistable at p. Most of our constructions in this chapter up until now,

including that of E, depended on a choice of root αp of the Hecke polynomial of F at p. However,

certain choices of αp may lead to problems when showing E is semistable. But it turns out that if

one choice of αp is problematic, we can switch αp for the other root pk−1α−1
p and show that this

other choice is no longer problematic. We make this precise in the following lemma.
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Lemma 3.5.3.1. Notation as above, there is a choice of αp such that

Dcrys(Sym2(ρF )(−1))φ=p3−2kα2
p ∩ Fil0Dcrys(Sym2(ρF )(−1) = 0.

For such a choice of αp, the extension E constructed above is semistable.

Proof. Let us begin with either choice of αp. We apply Kisin’s lemma (Lemma 3.3.1.2) to the

lattice LZ. As in the proof of Lemma 3.5.2.4, this shows that

Dcrys(L)φ=p−(k−1)α2
p 6= 0,

and hence that

Dcrys(E)φ=p−(k−1)α2
p 6= 0.

Now consider the twist E(k − 2). This is an extension

0→ ρF ((k − 2)/2)→ E(k − 2)→ Ad2 ρF (k − 2)→ 0.

We wish to apply Lemma 3.3.1.1 to E(k − 2). The representation ρF ((k − 2)/2) has Hodge–Tate

weights which are strictly negative, and Fil0 Ad2 ρF (k − 2) is 2-dimensional.

In fact, let us write

Ad2 ρF (k − 2) = Sym2(ρF )(−1).

Let w1, w2 be a basis of Dcrys(ρF ) such that Fil1(Dcrys(ρF )) is generated by w1. Write

w11 = w1 ⊗ w1[−1], w12 = w1 ⊗ w2[−1], w22 = w2 ⊗ w2[−1]

for the corresponding basis of

Dcrys(Sym2(ρF )(−1)) = Sym2(Dcrys(ρF ))[−1].

Then

Fil0Dcrys(Sym2(ρF )(−1))

248



is generated by w11 and w12.

Now we know from above that the image of Dcrys(E(−1))φ=p3−2kα2
p in

Dcrys(Sym2(ρF )(−1)) = DdR(Sym2(ρF )(−1))

is nontrivial. Call this image D′. It is equal to

Dcrys(Sym2(ρF )(−1))φ=p3−2kα2
p .

Write aw1 + bw2, for some a, b ∈ Qp, for a nonzero element in Dcrys(ρF )φ=p−(k−1)αp . Then D′ is

spanned by

a2w11 + 2abw12 + b2w22.

If D′ ∩ Fil0Dcrys(Sym2(ρF )(−1)) were nontrivial, then this would force b = 0, and so w1 would

be an eigenvector for the crystalline Frobenius for Dcrys(ρF ) with eigenvalue p−(k−1)αp. If this

is the case, then we make the same construction of this extension E but with the roots αp and

pk−1α−1
p switched. Then the above argument shows instead that the other eigenvector, call it w, for

the crystalline Frobenius in Dcrys(ρF ) would have w2[−1] ∈ D′. But writing w = a′w1 + b′w2 with

a′, b′ ∈ Qp, we necessarily have b′ 6= 0 (for otherwise w would be a multiple of w1, a contradiction

to the fact that the Hecke polynomial at p has distinct roots for a level 1 form). Then in this case

we now have

D′ ∩ Fil0Dcrys(Sym2(ρF )(−1)) = 0.

Thus we can apply Lemma 3.3.1.1 to show that E(k − 2), and hence E, is de Rham. But a de

Rham extension of crystalline representations is semistable, so we are done.

Lemma 3.5.3.2. Let V2 be a 2-dimensional vector space with basis e1, e2 and

h =

(
h11 h12

h21 h22

)
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be a 2 by 2 matrix acting on V in this basis. Then h acts through the matrix


h3

11 3h2
11h21 3h11h

2
21 h3

21

h2
11h21 2h11h12h21 + h2

11h22 2h11h22h21 + h12h
2
21 h22h

2
21

h11h
2
12 2h11h22h12 + h2

12h21 2h11h12h21 + h11h
2
22 h2

22h21

h3
12 3h22h

2
12 3h2

22h12 h3
22


on the basis

e3
1, e

2
1e2, e1e

2
2, e

3
2

of Sym3(V ).

Proof. This is a straightforward computation.

We are now ready to prove the main theorem of this thesis. Recall that we are writing Ad3 for

the representation Sym3(Std)⊗ det−1 of GL2.

Theorem 3.5.3.3. Let F be a cuspidal holomorphic eigenform of level 1 and weight k, with p-adic

Galois representation ρF . Then under Conjectures 3.2.1.1 and 3.2.2.1, the Bloch–Kato Selmer

group

H1
f (Q, (Ad3 ρF )∨(k/2))

is nontrivial.

Proof. We need to construct a nontrivial class in H1
f (Q, (Ad3 ρF )∨(k/2)). This is the same as

constructing a nontrivial extension E′ of Galois representations over Qp,

0→ (Ad3 ρF )∨(k/2)→ E′ → Qp → 0

which is unramified at all primes ` 6= p and which is crystalline at p. By duality, this is the same

as constructing a nontrivial extension E′′,

0→ Qp → E′′ → (Ad3 ρF )(−k/2)→ 0

which, again, is unramified at all primes ` 6= p and crystalline at p. We will construct E′′ as a twist

of a subrepresentation of ∧2E, where E is the extension discussed at the beginning of this section,

and then verify that it satisfies these ramification and crystallinity properties.
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Recall that the action of g ∈ GQ on E has the matrix expression (3.5.3.1) in the basis v1, . . . , v5.

For i, j ∈ {1, 2, 3, 4, 5}, write

vij = vi ∧ vj .

We compute the action of g on ∧2E in the basis

v12, v13, (v23 − v14), (v24 + v15), v25, (2v23 + v14), (v24 − 2v15), v34, v35, v45.

More precisely, we compute the first five columns of the matrix of g in this basis.

For reference, here is the matrix of g in the basis v1, . . . , v5 of E:

E =
1

d(g)


g66 −g67 g′13 g′14 g′15

−g76 g77 g′23 g′24 g′25

g2
66 2g66g67 −g2

67

g66g76 g66g77 + g67g76 −g67g77

−g2
76 −2g76g77 g2

77

 .

For the first column of the matrix of g on ∧2E, we compute

d(g)2gv12 = (g66v1 − g76v2) ∧ (−g67v1 + g77v2) = (g66g77 − g67g76)v12 = d(g)v12.

For the second column, we have

d(g)2gv13 =(g66v1 − g76v2) ∧ (g′13v1 + g′23v2 + g2
66v3 + g66g76v4 − g2

76v5) =

=(g76g
′
13 + g66g

′
23)v12 + g66v

3 − g2
66g76(v23 − v14)− g66g

2
76(v24 + v15) + g3

76v25.

For the third, we have

d(g)2g(v23 − v14)

=(−g67v1 + g77v2) ∧ (g′13v1 + g′23v2 + g2
66v3 + g66g76v4 − g2

76v5)

− (g66v1 − g76v2) ∧ (g′14v1 + g′24v2 + 2g66g67v3 + (g66g77 + g67g76)v4 − g77g76v5)

=(−g77g
′
13 − g67g

′
23 − g76g

′
14 − g66g

′
24)v12 − 3g2

66g67v13

+ (g2
66g67 + 2g66g67g76)(v23 − v14) + (g67g

2
76 + 2g66g77g76)(v23 − v14)− 3g77g

2
76v25.
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For the fourth, we have

d(g)2g(v24 + v15)

=(−g67v1 + g77v2) ∧ (g′14v1 + g′24v2 + 2g66g67v3 + (g66g77 + g67g76)v4 − g77g76v5)

+ (g66v1 − g76v2) ∧ (g′15v1 + g′25v2 − g2
67v3 − g77g67v4 + g2

77v5)

=(−g77g
′
14 − g67g

′
24 + g76g

′
15 + g66g

′
25)v12 − 3g66g

2
67v13

+ (g2
67g76 + 2g66g77g67)(v23 − v14) + (g66g

2
77 + 2g77g67g76)(v23 − v14)− 3g77g

2
76v25.

Finally, for the fifth column, we have

d(g)2gv25 =(−g67v1 + g77v2) ∧ (g′15v1 + g′25v2 − g2
67v3 − g77g67v4 + g2

77v5) =

=(−g67g
′
15 − g77g

′
25)v12 + g67v

3 − g77g
2
67(v23 − v14)− g2

77g67(v24 + v15) + g3
77v25.

Thus the first five columns of the matrix of g acting on ∧2E begin with the matrix

1

d(g)2


d(g) c1(g) c2(g) c3(g) c4(g)

g3
66 −3g2

66g67 −3g66g
2
67 g3

67

−g2
66g76 g2

66g67 + 2g66g67g76 g2
67g76 + 2g66g77g67 −g77g

2
67

−g66g
2
76 g67g

2
76 + 2g66g77g76 g66g

2
77 + 2g77g67g76 −g2

77g67

g3
76 −3g77g

2
76 −3g77g

2
76 g3

77

 ,

and the rest of the entries of these first five columns are zero; here we write

c1(g) = g76g
′
13 + g66g

′
23,

c2(g) = −g77g
′
13 − g67g

′
23 − g76g

′
14 − g66g

′
24,

c3(g) = −g77g
′
14 − g67g

′
24 + g76g

′
15 + g66g

′
25,

c4(g) = −g77g
′
15 − g67g

′
25.

Now by Lemma 3.5.3.2, the matrix above, when conjugated by

diag(1, 1, 1,−1,−1),
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gives an extension of the symmetric cube of the representation

g 7→
(
g66 −g76

−g67 g77

)

by d(g) = χ−1
cyc(g). This symmetric cube representation is the symmetric cube of

d(g)(ρF (−k/2))∨ = d(g)ρF (−(k − 2)/2) = ρF (−k/2),

and therefore equals

(Sym3 ρF )(−3k/2) = (Ad3 ρF )(−(k + 2)/2).

Twisting by 1 thus gives an extension E′′ of Qp by (Ad3 ρF )(−k/2). It is unramified at all ` 6= p

because the original lattice LZ was, and if we choose the right root of the Hecke polynomial of F

at p (which we assume we have done) then it is semistable at p because E is, by Lemma 3.5.3.1.

We just need to verify that E′′ is a nontrivial extension, and that it is crystalline at p.

To see E′′ is nontrivial, assume otherwise. Then

c1(g) = c2(g) = c3(g) = c4(g) = 0

for all g ∈ GQ. By Lemma 3.1.2.4, we also have the relations

2g77g
′
13 + 2g67g

′
23 − g76g

′
14 − g66g

′
24 = 0

and

g77g
′
14 − g67g

′
24 − 2g76g

′
15 + 2g66g

′
25 = 0.

Altogether, this gives the following linear system of relations:


g76 g66

g77 g67 g76 g66

2g77 2g67 −g76 −g66

g77 g67 −g76 −g66

g77 g67 2g76 2g66

g67 g77




g′13

g′23

g′14

g′24

g′15

g′25

 = 0.
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A quick row reduction brings the 6 by 6 matrix in this relation to


g76 g66

g77 g67

−3g76 −3g66

g77 g67

3g76 3g66

g77 g67

 .

The determinant of the above matrix is −9d(g)3 6= 0, and so it is invertible, forcing

g′13 = g′23 = g′14 = g′24 = g′15 = g′25 = 0.

This contradicts Lemma 3.5.2.4, proving that the extension E′′ is nontrivial.

It remains to show E′′ is crystalline. We already know it is semistable. As it is an extension

0→ Qp → E′′ → (Ad3 ρF )(−k/2)→ 0,

its crystalline Frobenius eigenvalues are

1, p(3k−2)/2α−3
p , pk/2α−1

p , p−(k−2)/2αp, p
−(3k−4)/2α3

p.

Let N be the monodromy operator for E′′. Then the relation Nφ = pφN shows that if N is

nontrivial, then we must have that one of

p(3k−2)/2α−3
p , pk/2α−1

p , p−(k−2)/2αp, p
−(3k−4)/2α3

p

equals p. But this would force either

α3
p ∈ {p(3k−4)/2, p(3k−2)/2}

or

αp ∈ {p(k−2)/2, pk/2}.
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In this first case, we would then have that

αp = ζpkp−2/3 or ζpkp−1/3,

where ζ is a third root of unity. This is impossible, since αp is a p-Weil number of weight (k−1)/2.

Now let ap be the pth Fourier coefficient of F . Then in the second case, we must have

ap = αp + pk−1α−1
p = p(k−2)/2 + pk/2,

regardless of whether αp is p(k−2)/2 or pk/2. But then

p(k−2)/2 + pk/2 = p(k−1)/2(p1/2 + p−1/2),

and since p1/2+p−1/2 > 2 for any prime p, this would violate Deligne’s theorem that the Ramanujan

conjecture holds for F . Thus we must have N = 0 and E′′ is crystalline, as desired.
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[Bla85] Brian E. Blank. “Knapp-Wallach Szegö integrals and generalized principal series repre-
sentations: The parabolic rank one case”. In: Journal of Functional Analysis 60 (1985),
pp. 127–145.
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ture]. Cambridge University Press, Cambridge, 1995.

[Mom81] Fumiyuki Momose. “On the l-adic representations attached to modular forms”. In: J.
Fac. Sci. Univ. Tokyo Sect. IA Math. 28.1 (1981), pp. 89–109.

[PR94] Bernadette Perrin-Riou. “Représentations p-adiques ordinaires”. In: 223. With an ap-
pendix by Luc Illusie, Périodes p-adiques (Bures-sur-Yvette, 1988). 1994, pp. 185–220.

[PS83] I. I. Piatetski-Shapiro. “On the Saito-Kurokawa lifting”. In: Invent. Math. 71.2 (1983),
pp. 309–338.

[Pra18] Dipendra Prasad. Reducible principal series representations, and Langlands parameters
for real groups. 2018. arXiv: 1705.01445v2 [math.RT].

258

https://arxiv.org/abs/1609.04223
https://arxiv.org/abs/2005.04786
https://arxiv.org/abs/1705.01445v2


[Rib76] Kenneth A. Ribet. “A modular construction of unramified p-extensions of Q(µp)”. In:
Invent. Math. 34.3 (1976), pp. 151–162.

[Sha10] Freydoon Shahidi. Eisenstein series and automorphic L-functions. Vol. 58. American
Mathematical Society Colloquium Publications. American Mathematical Society, Prov-
idence, RI, 2010.

[Ski09] Christopher Skinner. “Galois representations, Iwasawa theory, and special values of L-
functions”. unpublished. 2009.

[SU06a] Christopher Skinner and Eric Urban. “Sur les déformations p-adiques de certaines représentations
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Appendix A: Background on eigenvarieties

The purpose of this appendix is to recall the theory set up in Urban’s paper [Urb11] while also

correcting an error; specifically we will correct Theorem 1.4.2 there. In this theorem, Urban inter-

prets a formula from Franke’s paper [Fra98] about (g,K)-cohomology in terms of the cohomology

of locally symmetric spaces. The formula is almost correct, except for some considerations involv-

ing disconnectedness of maximal compact subgroups at infinity. The justification of the formula

given in Urban’s paper is also erroneous for another reason which involves convergence of Eisenstein

series. We will correct both of these aspects of this formula below. Then we will explain how this

correction affects the rest of the results in Urban’s paper; it does so only in a minor way.

A.1.1 Franke’s formula and the cuspidal character distribution

We start by setting the stage for the formula of Franke. Let G be a reductive group over Q

with complexified Lie algebra g. Let Kmax be a maximal compact subgroup of the group G(A) of

adelic points of G, and let Kmax factor as Kmax = Kf,maxK∞,max. Let AG be the maximal split

torus in the center of G. We fix a minimal parabolic Q-subgroup Pmin of G.

Then for any compact open subgroup Kf ⊂ Kf,max, we can consider the locally symmetric

space

XG(Kf ) = G(Q)\G(A)/AG(R)◦KfK
◦
∞,

where the symbol (·)◦ denotes the connected component of the identity of the group which is

decorates.

Fix a Cartan subgroup t in g. Say t is contained in the complexified Lie algebra of the Levi of

Pmin. Given an ordering on the roots of t in g compatible with Pmin and an integral weight λ of t,

let Vλ be the irreducible representation of G(C) of highest weight λ. Then VM
λ naturally defines

a local system on XG(Kf ) for any compact open subgroup Kf ⊂ Kf,max, and these local systems
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are compatible under changing Kf . For any i, we can then consider the cohomology space

H i(XG(Kf ), Vλ)

as well as the space H i(XG, Vλ), defined by

H i(XG, Vλ) = lim−→
Kf

H i(XG(Kf ), Vλ).

This latter space naturally carries an action of the Hecke algebra C∞c (G(Af )), as well as an action

of the group π0(K∞,max) of components of K∞,max; it is the action of this group of components that

was overlooked in Urban’s paper. Indeed, up to a central twist, the cohomology space H i(XG, Vλ)

is the (g0,K
◦
∞,max)-cohomology of the space Aλ(G)⊗Vλ; here, g0 is the complexified Lie algebra of

G0 where G = G0AG is the Langlands decomposition of G, and Aλ(G) is the space of automorphic

forms on G which are killed by a power of the annihilator of Vλ in the center of the universal

enveloping algebra of g, as is shown in [Fra98] and [FS98]. The (g0,K∞,max)-cohomology of this

same space therefore computes the π0(K∞,max)-invariants of the space H i(XM , V
M
λ ), and similarly

for any intermediate subgroup between K∞,max and K◦∞,max in place of K∞,max.

Let us write

H i
cusp(XG, Vλ)

for the cuspidal cohomology; it may be defined as the image of the (m0,K
◦
∞,max)-cohomology of

A0
λ(G)⊗ Vλ, where A0

λ(G) is the space of cusp forms in Aλ(G).

Now let P be a standard (with respect to Pmin) parabolic subgroup of G with Langlands

decomposition P = M0APN , and let M = M0AP . For f ∈ C∞c (G(Af )), let fM ∈ C∞c (M(Af )) be

defined by

fM (m) =

∫
Kf,max

∫
N(Af )

f(kmnk−1) dn dk, (A.1.1.1)

where the Haar measure of Kf,max is 1, and the Haar measure on N(Af ) is normalized with respect

to the Iwasawa decomposition to satisfy

∫
G(Af )

f(g) dg =

∫
Kf,max

∫
N(Af )

∫
M(Af )

f(mnk) dmdndk.
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Let W be the Weyl group of t in g, and let m be the complexified Lie algebra of M . We define

WP = {w ∈W | w−1γ > 0 for all simple roots γ > 0 in m},

and

WP
Eis = {w ∈WP | (w−1γ)|m is dominant for all simple roots γ in m}. (A.1.1.2)

We will write ρ for half the sum of the positive roots of t in g, and ρP for half the sum of the

positive roots of t in the complexified Lie algebra of N . We also write, for any w ∈ W and any

weight λ,

w ∗ λ = w(λ+ ρ)− ρ.

We will also write l(w) for the length of a Weyl group element w. Also, we write V ∨λ for the dual

of Vλ.

Then we have the following theorem, which corrects Theorem 1.4.2 in [Urb11].

Theorem A.1.1.1. Let λ be a dominant regular weight of t. Let K∞ be an open subgroup of

K∞,max. Then for any f ∈ C∞c (G(Af )), we have

Tr(f |H∗(XG, V
∨
λ )π0(K∞)) =∑

P

∑
w∈WP

Eis

(−1)l(w)+dim(N) Tr(fM |H∗cusp(XM , V
M,∨
w∗λ+2ρP

)π0(K∞∩P (R))),

where VM
λ denotes the highest weight λ representation of M , the first sum is over all standard

parabolic subgroups P = MN of G, and the traces are computed as the alternating sum over the

degree of cohomology of traces on each cohomology space;

Tr(f |H∗(XG, V
∨
λ )π0(K∞)) =

∑
i

(−1)i Tr(f |H i(XG, V
∨
λ )π0(K∞)),

and similarly for the trace on the right hand side.

Proof. This follows from the equality of formulas (1) and (2) in Section 7.7 of Franke’s paper

[Fra98], as well as Poincaré duality as explained in section 1.4 of [Urb11]. Note that Franke’s

formula involved the (m0,K∞ ∩ P (R))-cohomology of the discrete spectrum. But the discrete
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spectrum splits into the cuspidal spectrum and the residual spectrum, and as is explained in the

paper of Li–Schwermer [LS04], the residual spectrum does not contribute to cohomology because

λ is regular.

We remark that Urban makes the claim in [Urb11] that the Eisenstein series contributing to the

cohomology of V ∨λ for regular λ are in the region of convergence; this does not seem to always be

true, but it does not affect this result because of results in the paper of Li–Schwermer cited above.

Having to take invariants by π0(K∞∩P (R)) in this theorem means that the definition cuspidal

character distribution I†0(·, λ) from Section 4.6 of [Urb11] must be modified, and we describe how

to make this modification in the next section while recalling the relevant objects.

A.1.2 The cuspidal character distribution

We continue with the setting of the previous section, and in particular we will work with our

reductive group G. We must now assume G(R) has discrete series and that G is quasisplit. Let T

be a maximal torus in G. We assume our fixed minimal parabolic Pmin contains T . We write U for

the unipotent radical of Pmin, so Pmin = TU .

We now introduce weight space. Let L be a finite extension of Qp. When G is split over Q or

semisimple (as is the case for all groups considered in the main body of this Chapter 2) we write

X(L) = Homcont(T (Zp), L×).

In general, we refer to Section 4.3.2 of [Urb11] for the definition that needs to be used.

The assignment L 7→ X(L) is represented by a rigid analytic space X which we call weight space.

We call λ ∈ X(L) arithmetic if it can be factored as λ = λalgε for some finite order character ε of

T (Zp) and an algebraic weight λalg of T .

Next, let

T− = {t ∈ T (Qp) | tU(Zp)t−1 ⊂ U(Zp)},

and

T−− =

t ∈ T−
∣∣∣∣∣∣
⋂
n≥0

tU(Zp)t−1 = {1}

 .

264



We will introduce the Hecke algebras denoted Up and Hp and the ideal H′p of Hp.

Define the Hecke algebra Up by

Up = Zp[T−/T (Zp)].

We fix a model of G over Zp. Let m > 0 be an integer, and define

Im = {g ∈ G(Zp) | (g mod pm) ∈ Pmin(Z/pmZ)}.

Then Im is the Iwahori subgroup of depth m in G(Zp) corresponding to Pmin. The algebra Up then

may be identified with the subalgebra of C∞c (Im\G(Zp)/Im,Zp) generated by the operators

ut =
1

Vol(Im)
char(ImtIm).

It is commutative.

Let

Hp = Up ⊗Zp C
∞
c (G(Apf ),Qp),

and let H′p be the ideal in Hp generated by ut⊗fp where t ∈ T−− and fp ∈ C∞c (G(Apf ),Qp). These

Hecke algebras act, for example, on admissible representations of G(Af ) by convolution.

Let the maximal compact subgroup Kf,max of G(Af ) factorize as G(Zp)Kp
f,max, where Kp

f,max

is a maximal compact subgroup of G(Apf ). Fix a finite extension L of Qp, and let λ ∈ X(L) an

L-valued weight of T . There is a space Dλ(L), defined in Section 3.2.6 of [Urb11], which defines

compatible local systems on XG(ImK
p
f ) for compact open subgroups Kp

f ⊂ K
p
f,max. As in Chapter

4 of [Urb11], the cohomology spaces of these local systems fit together to define a space

H∗(XG,Dλ(L)).

Here, we are using the notation XG in place of Urban’s notation S̃G. This cohomology space is a

module for Hp which is admissible in the sense that each element of Hp defines an endomorphism

of finite rank. Because of how this space can be defined as the cohomology of a local system, it

also has an action of π0(K∞,max) which commutes with that of Hp.
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We then consider the finite slope subspace

H∗fs(XG,Dλ(L)),

as defined in Section 4.3 of [Urb11]. This is also a module for Hp and it carries a commuting action

of π0(KG
∞). We will not need the precise definitions of these spaces here. Instead, in the next

section, we will recall certain results of Urban which relate these spaces to classical cohomology

spaces; we use only these results Chapter 2.

Now we define the overconvergent character distributions of Urban. For K∞ an open subgroup

of K∞,max, f in H′p, and λ ∈ X(L), let

I†G(f, λ;K∞) = Tr(f,H∗fs(XG,Dλ(L))π0(K∞)).

We then define a character distribution I†G,0(·, λ;K∞) inductively on the rank of G, similarly to Sec-

tion 4.6 of [Urb11]. The definition will make use of character distributions denoted I†G,M (·, λ;K∞)

and I†G,M,w(·, λ;K∞), where M is a Levi of a standard parabolic P in G and w ∈WP
Eis (see (A.1.1.2)

for this notation).

If the rank of G is 0, we define

I†G,0(·, λ;K∞) = I†G,G(·, λ;K∞) = I†G,G,1(·, λ;K∞) = I†G(·, λ;K∞).

Here the right hand side defines all the terms before it.

Next, assume we have made appropriate definitions for when the rank of G is strictly less than

some r > 0. Let f ∈ H′p. Then when the rank of G equals r, we define for M a Levi of a standard

parabolic P in G and w ∈WP
Eis,

I†G,M,w(f, λ;K∞) = I†M,0(f reg
M,w, w ∗ λ+ 2ρP ;K∞ ∩ P (R)),
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where f reg
M,w is the regularized constant term of f as defined in Urban’s paper; we recall that if G is

split, and if f = ut ⊗ fp ∈ H′p and w ∈WP , then by definition,

f reg
M,w = uw(t),M ⊗ f

p
M ,

where fpM is a constant term, defined as in (A.1.1.1) (but without a factor at p). In general (when

G is not split) the regularized constant term is defined as on p. 50 of [Urb11].

Then we set

I†G,M (·, λ;K∞) =
∑

w∈WP
Eis

(−1)l(w)+dim(N)I†G,M,w(·, λ;K∞),

where N is the unipotent radical of P . Finally, we set

I†G,0(·, λ;K∞) = I†G(·, λ;K∞)−
∑
M 6=G

I†G,M (·, λ;K∞),

where the sum is over all standard Levi subgroups of G other than G itself.

For λ = λalgε ∈ X(L) arithmetic, with ε of conductor pm, and for f = ut ⊗ fp ∈ Hp, we also

define the character distribution Icl
G(·, λ,K∞) by

Icl
G(f, λ;K∞) = |λalg(t)|−1 Tr(f |H∗(XG, V

∨
λalg(L)(ε))π0(K∞)).

We will not need to define V ∨
λalg(L)(ε) in general here, but for ε = 1, the local system it defines is

the same as that defined by V ∨
λalg but with coefficients in L instead of C. (We are viewing L as a

subfield of C here.)

We take the opportunity here to note the normalization by |λalg(t)|−1 that appears in this

definition. This is important, as it affects computations in Chapter 2. We also similarly define

Icl
G,0(·, λ,K∞) by

Icl
G,0(f, λ;K∞) = |λalg(t)|−1 Tr(f |H∗cusp(XG, V

∨
λalg(L)(ε))π0(K∞)).

Then the results of Sections 4.6 and 4.7 in Urban’s paper all have π0(K∞)-invariant analogues,

proved in exactly the same way as described in those sections. Note that, even if one just wants
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to know those results for K∞ = K◦∞,max, it is still necessary to prove them for all K∞ in order

to apply the induction arguments needed; even though K◦∞,max is connected, it can be the case

that K◦∞,max ∩ P (R) is disconnected for a given P . In fact this happens for all proper parabolic

subgroups of G when G = G2.

As a consequence of the results of Urban, the character distributions I†G,M,w(·, λ;K∞) are ef-

fective finite slope character distributions, and one can apply the theory developed in Chapter 5 of

Urban’s paper to construct eigenvarieties for them. We explain this in more detail in the coming

sections.

A.1.3 Multiplicities

We now recall some results of Urban about the overconvergent character distributions. We

retain the notation of the previous section; a good deal of notation was just introduced, so we warn

the reader that it may be wise to review it.

Let w ∈ W , and let f ∈ Hp with f = ut ⊗ fp, where fp ∈ C∞c (G(Apf ),Qp) and t ∈ T−. For

λ = λalgε an arithmetic weight of T (Zp), we define

fw,λ = |(w ∗ λalg − λalg)(t)|−1ut ⊗ fp.

We extend the map f 7→ fw,λ to a Qp-linear automorphism of Hp by linearity. Then we have the

following theorem of Urban.

Theorem A.1.3.1. Fix an open subgroup K∞ of K∞,max. Then for any f ∈ Hp and λ = λalgε

arithmetic, we have

Icl
G(f, λ;K∞) =

∑
w∈W

(−1)l(w)I†G(fw,λ, w ∗ λ;K∞).

Proof. This is just Theorem 4.5.4 in [Urb11], except that we are keeping track of the π0(K∞,max)-

action as well.

Next we briefly discuss p-stabilizations. Let m > 0 be an integer, and write

I ′m = {g ∈ G(Zp) | (g mod pm) ∈ U(Z/pmZ)}.
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This is a subgroup of the Iwahori subgroup Im. Here we recall that Pmin = TU where U is the

unipotent radical of Pmin. Then

Im/I
′
m
∼= T (Z/pmZ).

Let τ be a smooth admissible representation of G(Af ). Assume there is some finite order character

ε of T (Zp) factoring through T (Z/pmZ) such that τ I
′
m contains a vector on which Im acts via ε

through the quotient Im/I
′
m. Then τ I

′
m ⊗ ε−1 has an Im-fixed vector and therefore receives an

action of Hp. An irreducible subquotient of τ I
′
m ⊗ ε−1 for this action is called a p-stabilization of

τ . If τ comes as the finite part of a cohomological automorphic representation appearing in the

cohomology of V ∨
λalg for some algebraic weight λ, then we say such a p-stabilization is of weight λ

where λ = λalgε.

Let σ be an irreducible admissible Hp-module. Then Up acts through scalars on σ because Up

is commutative. For t ∈ T−, let at be the eigenvalue corresponding to ut acting on σ. If at 6= 0

for some (equivalently, all) t, then we say σ is of finite slope. In this case we define a character

µσ ∈ X∗(T )⊗Q by

vp(µσ(λ∨(t))) = vp(at)

for all algebraic cocharacters λ∨ of T . The character µσ is called the slope of σ.

For σ again an irreducible admissible Hp-module, we have that for any f ∈ Hp, the trace of f

on σ is well defined. So we write in this case

Jσ(f) = Tr(f |σ).

Then we have the following theorem.

Theorem A.1.3.2. Fix a finite extension L of Qp. Then for any irreducible admissible finite

slope Hp-module σ, any λ ∈ X(L), and any open subgroup K∞ of K∞,max, there is an integer

mi(σ, λ;K∞) such that for any f ∈ H′p, we have

Tr(f |H∗fs(XG,Dλ(L))π0(K∞)) =
∑
σ

mi(σ, λ;K∞)Jσ(f).

Proof. This is Proposition 4.3.5 in [Urb11], except that once again we must take into account the
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action of π0(K∞,max) on the objects involved.

For any σ, λ, and K∞ as in the theorem, we can define

m†(σ, λ;K∞) =
∑
i

(−1)imi(σ, λ;K∞).

Then we have

I†G(·, λ;K∞) =
∑
σ

m†(σ, λ;K∞)Jσ.

We call m†(σ, λ;K∞) the overconvergent multiplicity of σ.

Similarly we can define multiplicities

m†0(σ, λ;K∞), mcl(σ, λ;K∞), mcl
0 (σ, λ;K∞),

by the requirements that

I†G,0(f, λ;K∞) =
∑
σ

m†0(σ, λ;K∞)Jσ(f),

Icl
G(f, λ;K∞) =

∑
σ

mcl(σ, λ;K∞)Jσ(f),

Icl
G,0(f, λ;K∞) =

∑
σ

mcl
0 (σ, λ;K∞)Jσ(f).

To see that the first of these multiplicities is well defined, we combine the above theorem with the

relation (when G is split)

Tr(f reg
M,w|σM ) = Tr(f | Ind

G(Apf )

M(Apf )
(σM )),

where M is a the Levi of a standard parabolic P , w ∈ WP , f = ut ⊗ fp ∈ H′p with t ∈ T−,

and σM is a p-stabilization of a smooth admissible representation of M(Af ). This shows (by

induction) that the distributions I†G,M,w(·, λ;K∞) satisfy the conclusion of Theorem A.1.3.2 because

I†M,0(·, λ;K∞∩P (R)) does. The other two multiplicities are well defined by the admissibility of the

cohomology spaces used to define them.

We note that if G is not split, the same argument still works because the definition of f reg
M,w in

that case differs from ours by a character of T (Qp).

270



We now give a few tools to compute overconvergent multiplicities in terms of classical ones. The

first of these tools can be used to simplify computations involving Theorem A.1.3.1. Let X∗(T )

be the group of algebraic characters of T . Let us write X∗(T )Q,+ for the set of rational characters

whose projection onto X∗(T/ZG), where ZG is the center of G, is in the Q≥0-span of the simple

roots of T in X∗(T )⊗Q. Then we have the following theorem.

Theorem A.1.3.3. Let λ = λalgε be an arithmetic weight and let K ′∞ be an open subgroup of

K∞,max. Let σ be an irreducible admissible Hp-module with slope µ. Assume µ /∈ X∗(T )Q,+. Then

m†(σ, λ;K ′∞) = 0.

Proof. As explained in [Urb11], this just follows from the fact that H∗fs(XG,Dλ(L)) has an integral

structure.

If σ is an irreducible admissible Hp-module with slope µ, and λ = λalgε is an arithmetic weight

of T , then the twisted distribution σw,λ defined via

fw,λ 7→ Jσ(f)

corresponds to a module of slope µ+ w ∗ λalg − λalg. If for all w 6= 1, we have

(µ+ w ∗ λalg − λalg) /∈ X∗(T )Q,+,

then we say µ is noncritical with respect to λ. In this case, by Theorems A.1.3.3 and A.1.3.1, Jσ

is a constituent of Icl
G(f, λ;K∞) if and only if it is a constituent of I†G(f, λ;K∞).

Finally, we state one last result about multiplicities. Let L be a finite extension of Qp. We say

a Qp-linear map J : H′p → L is a finite slope character distribution if for all finite slope Hp-modules

σ, there is an integer mJ(σ) such that

J(f) =
∑
σ

mJ(σ)Jσ(f),

for all f ∈ H′p, and such that for any f , there are only finitely many σ’s for which Jσ(f) 6= 0 (so that

the sum makes sense). Moreover, J is called effective if all of the integers mJ(σ) are nonnegative.
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Theorem A.1.3.4. Let q(G) = (1/2) dim(G(R)/K∞,max). Then for any standard parabolic P =

MN in G, any w ∈ WP
Eis, any arithmetic weight λ of T (Zp), and any open compact subgroup K∞

of K∞,max, the character distribution

(−1)q(G)I†G,M,w(·, λ;K∞)

is an effective finite slope character distribution.

Proof. This is Corollary 4.7.4 in [Urb11] except, as usual, we must keep track of the action of

π0(K ′∞).

A.1.4 Eigenvarieties

We retain the setting of the previous section, and fix an open subgroup K∞ ⊂ K∞,max and an

open compact subgroup Kp
f ⊂ Kp

f,max. Let S be the smallest set of primes (not including p or ∞)

away from which Kp
f is hyperspecial. We work with the weight space X in this section. Recall this

is a rigid analytic space over Qp. For any rigid analytic space Z, let O(Z) be the ring of global

analytic functions on Z. So O(X) is the ring of analytic functions on X.

Definition A.1.4.1. A Qp-linear map J : H′p → O(X) is called an X-family of effective finite slope

character distributions if for every λ ∈ X(Qp), the composition Jλ = λ ◦ J : H′p → Qp is a finite

slope character distribution.

By construction, when multiplied by the appropriate sign as in Theorem A.1.3.4, the overcon-

vergent character distributions I†G,0(·, λ,K ′∞) and I†G,M,w(·, λ,K ′∞) fit into X-families of effective

finite slope character distributions, denoted respectively by I†G,0(·;K ′∞) and I†G,M,w(·,K ′∞).

Now let

RS,p = Up ⊗Zp C
∞
c (KS∪{p}

max \G(AS∪{p}f )/KS∪{p}
max ,Zp).

Also let

Hp(Kp
f ) = Up ⊗Zp C

∞
c (Kp

f\G(AS∪{p}f )/Kp
f ,Qp).

Then RS,p ⊂ Hp(Kp
f ) ⊂ Hp. A p-stabilization of an irreducible smooth admissible representation τ

of G(Af ), such that τ has a fixed vector by Kp
f , will induce a Zp-algebra homomorphism RS,p → Qp.
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Now let R̂S,p be the p-adic completion of RS,p, and let

R̃S,p = R̂S,p[ut, t ∈ T−].

Then the characters of R̂S,p that extend to characters of R̃S,p are those of finite slope. The algebra

R̃S,p is given the topology so that R̂S,p is open in R̃S,p with its p-adic topology.

For L a finite extension of Qp, define RS,p(L) to be the set of continuous Zp-algebra homomor-

phisms R̃S,p → L. Actually, this definition makes sense for any algebraic extension L of Qp, and so

we can consider RS,p(Qp). We give RS,p(Qp) a topology by the metric

|θ − θ′| = sup
f∈R̂S,p

|θ(f)− θ′(f)|, θ, θ′ ∈ RS,p(Qp).

Given J an X-family of effective finite slope character distributions, in Section 5 of [Urb11],

Urban constructs eigenvarieties EJ,Kp
f

as subsets of X(Qp) ×RS,p(Qp). We do not recall here the

precise construction, but instead we will state the properties of them we will need. Note that points

in X(Qp) × RS,p(Qp) are just pairs (θ, λ) where θ is continuous Qp-valued character of R̃S,p and

λ is a weight in X(Qp). The eigenvarieties EJ,Kp
f

are ringed spaces whose underlying topological

spaces are subspaces of X(Qp)×RS,p(Qp). One can then give them the structure of a rigid analytic

variety.

Note that EJ,Kp
f

has an obvious map to X given on Qp-points by the projection X(Qp) ×

RS,p(Qp)→ X(Qp). This is a map of rigid analytic spaces.

Now given θ a character of R̃S,p and λ ∈ X(Qp), let mJ(θ, λ) be the integer such that

Jλ(f) =
∑
θ

mJ(θ, λ)θ(f).

Here the sum is over all such θ. Then mJ(θ, λ) ≥ 0 because J is effective. We have the following

theorem.

Theorem A.1.4.2. Let J be an X-family of effective finite slope character distributions. Then the

eigenvariety EJ,Kp
f

is an equidimensional rigid analytic space over Qp of dimension dim(X). It is

locally finite over X. Furthermore, (θ, λ) ∈ X(Qp)×RS,p(Qp) is a point of EJ,Kp
f
(Qp) if and only if
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mJ(θ, λ) > 0.

Proof. This is part of Theorem 5.3.7 in [Urb11]. The local finiteness follows from point (ii) of that

theorem, as the spectral varieties ZJ(f) there are locally finite over weight space.

This theorem is a result about analytic families of characters of R̃S,p, and we would like to

upgrade it to a theorem about character distributions Hp(Kp
f ) → Qp. We can do this at the

expense of shrinking weight space. The resulting family will be a rigid analytic space which is finite

over the part of the eigenvariety which sits above an open subdomain in X.

Let σ be an irreducible admissible finite slope representation of Hp(Kp
f ), and define mJ(σ, λ)

to be the integer such that for any f ∈ Hp(Kp
f ), we have

Jλ(f) =
∑
σ

mJ(σ, λ) Tr(f |σ).

Here the sum is over all such σ. Then we have the following theorem.

Theorem A.1.4.3. Let J be an X-family of effective finite slope character distributions. Let

λ0 ∈ X(Qp) and let σ0 be an irreducible admissible finite slope representation of Hp(Kp
f ). Given

any irreducible admissible finite slope representation σ of Hp(Kp
f ), write θσ for its restriction to

RS,p.

Assume mJ(σ0, λ0) > 0. Then there are

• an open affinoid subdomain U ⊂ X,

• an open affinoid subdomain W ⊂ EJ,Kp
f

which is finite and generically flat over U,

• a finite flat covering V of W,

• a point x0 ∈ V(Qp) above (θ0, λ0) ∈ EJ,Kp
f
,

• for all x ∈ V(Qp), a nonempty finite set Πx of irreducible admissible finite slope representa-

tions of Hp(Kp
f ),

• for every σ ∈ Πx, an integer mx(σ) > 0,

• a nontrivial Qp-linear map IV : Hp(Kp
f )→ O(V),
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satisfying the following properties:

• For every x ∈ V(Qp), if we write λx for the image of x in X(Qp), then we have that if σ ∈ Πx,

then mJ(σ, λx) > 0;

• For all x ∈ V(Qp) we have

x ◦ IV =
∑
σ∈Πx

mx(σ);

• We have that Πx consists of one representation σx and mJ(σ) = mJ(λx, σx) is constant for

all x in a Zariski dense subset of V(Qp);

• We have that σ0 ∈ Πx0;

• If θW : RS,p → O(W) is the character corresponding to W, then for any f ∈ RS,p and

f ′ ∈ Hp(Kp
f ), we have

IV(ff ′) = θW(f)IW(f ′).

Proof. This is Proposition 5.3.10 in [Urb11].

Applied to the cuspidal overconvergent distribution (−1)q(G)I†G,0(·, λ;K∞), one can deduce the

following.

Theorem A.1.4.4. Let λ0 ∈ X(Qp) be arithmetic and let σ0 be an irreducible admissible finite

slope representation of Hp(Kp
f ). Assume m†0(σ0, λ0) 6= 0. Then there are

• an open affinoid subdomain U ⊂ X,

• a finite cover w : V→ U,

• a point y0 ∈ V(Qp) with w(y0) = λ0,

• a Zariski dense subset Σ ⊂ V(Qp) with w(y) arithmetic regular for every y ∈ Σ,

• for each y ∈ Σ, a nonempty finite set Πy of finite slope p-stabilizations of irreducible, coho-

mological, cuspidal automorphic representations of G of weight w(y) and level away from p

given by Kp
f ,

• a Zp-algebra homomorphism θV : RS,p → O(V),
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• a nontrivial Qp-linear map IV : Hp(Kp
f )→ O(V),

satisfying the following properties:

• The specialization of θV at the point y0 is θ0;

• The representation σ0 is an irreducible component of the specialization of IV at y0;

• For each y ∈ Σ and each σ ∈ Πy, the specialization of θV at y occurs in the representation of

RS,p on σK
p
f ;

• For each y ∈ Σ, the specialization Iy of IV at y satisfies

Iy(f) =
∑
σ∈Πy

mcl(σ,w(y);K∞) Tr(f |σ),

for f ∈ Hp(Kp
f );

• The set w(Σ) contains all sufficiently regular dominant algebraic weights in X(Qp);

• There is a Zariski closed subset of U such that for y ∈ Σ with w(y) not in this closed subset,

Πy only contains one representation.

Proof. This is Theorem 5.4.4 in [Urb11], except that the last two points in the statement is refined;

the second-to-last statement follows from the proof this theorem in [Urb11], stating that we can

consider Σ to be the set of classical points with noncritical weights. The last point follows from

the proof of Proposition 5.3.10 (b) in [Urb11].
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