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Abstract

Some exactly solvable models and their asymptotics

Mark Rychnovsky

In this thesis we present three projects studying exactly solvable models in the KPZ

universality class and one project studying a generalization of the SIR model from epidemiology.

The first chapter gives an overview of the results and how they fit into the study of KPZ

universality when applicable. Each of the following 4 chapters corresponds to a published or

submitted article.

In the first project we study an oriented first passage percolation model for the evolution of

a river delta. We show that at any fixed positive time, the width of a river delta of length L

approaches a constant times L2/3 with Tracy-Widom GUE fluctuations of order L4/9. This result

can be rephrased in terms of a particle system generalizing pushTASEP. We introduce an exactly

solvable particle system on the integer half line and show that after running the system for only

finite time the particle positions have Tracy-Widom fluctuations.

In the second project we study n-point sticky Brownian motions: a family of n diffusions

that evolve as independent Brownian motions when they are apart, and interact locally so that the

set of coincidence times has positive Lebesgue measure with positive probability. These

diffusions can also be seen as n random motions in a random environment whose distribution is

given by so-called stochastic flows of kernels. For a specific type of sticky interaction, we prove

exact formulas characterizing the stochastic flow and show that in the large deviations regime, the

random fluctuations of these stochastic flows are Tracy-Widom GUE distributed. An equivalent



formulation of this result states that the extremal particle among n sticky Brownian motions has

Tracy-Widom distributed fluctuations in the large n and large time limit. These results are proved

by viewing sticky Brownian motions as a diffusive limit of the exactly solvable beta random walk

in random environment.

In the third project we study a class of probability distributions on the six-vertex model,

which originate from the higher spin vertex model. For these random six-vertex models we show

that the behavior near their base is asymptotically described by the GUE-corners process.

In the fourth project we study a model for the spread of an epidemic. This model

generalizes the classical SIR model to account for inhomogeneity in the infectiousness and

susceptibility of individuals in the population. A first statement of this model is given in terms of

infinitely many coupled differential equations. We show that solving these equations can be

reduced to solving a one dimensional first order ODE, which is easy to solve numerically. We use

the explicit form of this ODE to characterize the total number of people who are ever infected

before the epidemic dies out. This model is not related to the KPZ universality class.
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Chapter 1: Introduction

1.1 KPZ universality

In 1986 Kardar, Parisi, and Zhang [116] studied the time evolution of randomly growing inter-

faces a prototypical model: the KPZ equation. The KPZ equation is a stochastic partial differential

equation with one spatial dimension and one time dimension describing the height of an interface

h(t, x) at time t ≥ 0 above position x ∈ R. The equation reads

∂t h(t, x) = ∂xx h + (∂x h(t, x))2 + ζ(t, x),

where ζ(t, x) is a space-time white noise. They predicted that in the long time t scaling limit many

growing interfaces would share important behavior with the KPZ equation, particularly that the

interface would have fluctuations of scale t1/3 and that these fluctuations should decorrelate at

spatial scale t2/3. This prediction was quite prescient and a broad class of models with this scaling

behavior are now called the KPZ universality class.

Though originally conceived as a class of growing interfaces, the KPZ unversality class also

contains a wide range of interacting particle systems, random matrices, traffic models, directed

polymers, and stochastic PDEs. Each of these models can be transformed to reveal a growing

interface which contains:

1. Growth in the direction normal to the interface. In the KPZ equation this is given by the

(∂x h(t, x))2 term.

2. A smoothing force similar to surface tension, so that deep valleys and sharp peaks tend to

shrink. In the KPZ equation this is given by the ∂xx h(t, x) term.
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3. A random driving force with short scale correlations in space and time. In the KPZ equation

this is given by the space-time white noise ζ(t, x).

In addition to shared scaling behavior, numerics and some theoretical results have demonstrated

universality for the probability distributions describing the t1/3 scale fluctuations. Several distri-

butions from random matrix theory are possible depending on the initial conditions of the model,

but of particular interest to us is the Tracy-Widom distribution which corresponds to an interface

growing from a single point or "droplet".

Although many models lie in the KPZ universality class, much of our understanding comes

from a few "exactly solvable" models whose algebraic structure allows for the derivation of exact

formulas. These exact formulas give a way to study the universal limit behavior, and when the

limit behavior of an exactly solvable model is proven, it suggests that other similar models have

similar limit behavior.

Chapters 2,3, and 4 of this thesis will present projects which analyze exactly solvable models

in the KPZ universality class.

1.1.1 The Tracy-Widom GUE distribution

The Tracy-Widom Gaussian unitary ensumble (GUE) distribution gives the fluctuations we

expect to see when a growth model in the KPZ universality class starts from a single point. For

example if a fire is started in the center of piece of paper, the fluctuations between the burnt and

unburnt regions of the paper will be Tracy-Widom GUE distributed in the long time limit.

This distribution first appeared in the context of random matrix theory in [189]. We will intro-

duce it in this context. Let A be an n by n matrix with independent identically distributed complex,

mean 0, variance 1 Gaussian entrees. Then the Hermitian random matrix

M =
A + A∗
√

2

is a GUE distributed random matrix. Because this matrix is Hermitian, all of its eigenvalues are
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real. This probability measure on matrices is called the Gaussian Unitary Ensemble (GUE).

As the size n of a GUE matrix goes to∞, the largest eigenvalue has asymptotics

λ1 = 2
√

n + n−1/6χTW,

where χTW has the Tracy-Widom GUE distribution.

A careful study of this limit can be used to arrive at a formula for the Tracy-Widom GUE

distribution which we give now.

Definition 1.1.1. For any contour C and any measurable function K : C × C → C, which we will

call a kernel, the Fredholm determinant det(1 + K)L2(C) is defined by

det(1 + K)L2(C) = 1 +
∞∑

k=1

1
k!

∫
Ck

det(K(xi, x j))1≤i,j≤k

k∏
i=1

dxi, (1.1)

provided the right hand side converges absolutely.

Consider the kernel

K(x, y) =
Ai(x)Ai′(y) − Ai′(x)Ai(y)

x − y
,

where Ai(x) is the Airy function

Ai(x) =
1

2πi

∫ ∞eiπ/3

∞e−iπ/3
ez3/3−zxdz. (1.2)

The integration bounds in the definition of the Airy function are shorthand for integrating over a

contour which goes from∞e−iπ/3 to 0, then from 0 to∞eiπ/3.

The Tracy-Widom distribution has distribution function

FGUE(y) = det(1 − KAi)L2(y,∞). (1.3)

A few years after its discovery in the context of random matrix theory the Tracy-Widom distri-

bution was found to describe the limit behavior of the longest increasing subsequence of a permu-
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tation in [16] and the current across an edge of an interacting particle system in [112]. These were

the first major hints of the role of the Tracy-Widom distribution in the KPZ universality class and

were quickly followed by many other appearances of the Tracy-Widom GUE distribution.

1.2 Directed polymers

Directed polymers were first introduced in [108] in the context of statistical physics and re-

ceived their first rigorous mathematical treatment in [109]. A directed polymer in (1+1) dimension

is a random probability measure on up-right paths in Z2
≥0. There are two sources of randomness.

The first is a random environment which comes from assigning random variables wv to either each

vertex (or we to each edge) in Z2
≥0. Once the environment is chosen, the weight of an up-right

path is given by the product of the random variables assigned to each vertex (or to each edge) in

the path raised to the power of the inverse temperature β > 0. In the final measure on paths, the

probability of choosing any path π is proportional to the weight of that path. It is worth noting

that in the zero temperature limit (β→ ∞) only the path of maximum weight will occur. If all the

wv (or we) are greater than 1 this zero temperature limit is a last passage percolation model with

weights log(we), and if wv (or we) are less than 1 the limit is a first passage percolation model with

weights − log(we).

One prediction of KPZ universality is that the free energy of a wide class of directed polymers

should have Tracy-Widom GUE fluctuations with scaling exponent 1/3. The first positive temper-

ature exactly solvable polymer model on the lattice was the (vertex weighted) log-gamma polymer

introduced in [170]. The scale of the fluctuations of its free energy was confirmed to be 1/3 in the

same paper, and the fluctuations were shown to be Tracy-Widom distributed in [66, 42].

We are particularly interested in an exactly solvable (edge weighted) polymer called the beta

random walk in random environment (RWRE). This model was introduced and its fluctuations

were shown to be Tracy-Widom distributed with scaling exponent 1/3 in [23].
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1.2.1 The beta random walk in random environment

In this section we define the beta random walk in random environment, which is a probability

measure on directed lattice paths in Z × Z≥0. We will be particularly interested in two limits of the

beta random walk in random environment for which we prove KPZ type limit theorems.

Definition 1.2.1. The beta random walk in random environment (beta RWRE) depends on two

parameters α > 0 and β > 0. Let {w(x,t)}x∈Z,t∈Z≥0 be iid beta distributed random variables with

parameters α, β. Recall that a beta random variable w with parameters α, β > 0 is defined by

P(w ∈ dx) = 1x∈[0,1]
xα−1(1 − x)β−1

B(α, β)
dx,

where B(α, β) = Γ(α)Γ(β)
Γ(α+β) . We will call the values of the random variables w(x,t) for all x ∈ Z, t ∈ Z≥0

the random environment.

After sampling the random environment, we begin k independent random walks (X1(t), ...,Xk(t))

from position ®x0. Each random walker has jump distribution

P(X(t + 1) = x + 1|X(t) = x) = w(x,t) P(X(t + 1) = x − 1|X(t) = x) = 1 − w(x,t).

We will use ®X ®x(t) = (X x1
1 (t), ...,X

xk
k (t)) to refer to the position of k independent random walks

started from (x1, ..., xk) at time t. Unless another initial condition is specified, ®X(t) = (X1(t), ...,Xk(t))

will refer to the position of k random walkers started from the origin.

We will interpret this as a physical system where the random walks are trajectories of indistin-

guishable particles and the random environment accounts for microscopic fluctuations we cannot

measure. Mathematically this means that we cannot tell what environment we are in, so we will

average our probability measure on particle trajectories over all realizations of the random envi-

ronment. Before averaging, the transition probabilities of our particles are called quenched, and

after averaging the transition probabilities are called annealed.

We use the symbol P with bold font for the quenched probability measure on paths, which is
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obtained by conditioning on the environment. The usual symbols P (resp. E) will be used to denote

the measure (resp. the expectation) of the environment.

Explicitly the annealed measure on particle trajectories says that when n particles are in the

same position x at time t, then exactly k of these particles move to position x + 1 (and the rest

move to position x − 1) at time t + 1 with probability

φ(k |n) = E
[(

n
k

)
wk

x,t(1 − wx,t)
n−k

]
=

(
n
k

)
(α)k(β)n−k

(α + β)n
, (1.4)

where (α)k = α(α + 1)...(α + k − 1) is the ascending Pochhammer symbol.

Note that any single annealed trajectory of the beta RWRE is just a simple random walk and

the random environment has no effect. However, if we consider multiple annealed trajectories,

then even though we have averaged out the environment, the paths are still correlated by the fact

that they were run through the same environment pre-averaging, not through independent copies.

In particular, they do not behave as simple random walks when they meet.

Central to the exact solvability of the beta RWRE is a non-commutative binomial formula

related to the transition probabilities in (1.4).

Theorem 1.2.2. If X and Y generate an associative algebra and satisfy the commutation relation

Y X =
1

α + β + 1
X X +

α + β − 1
α + β + 1

XY +
1

α + β + 1
YY,

then we have the following non-commutative binomial identity:

(
α

α + β
X +

β

α + β
Y
)n

=

n∑
k=0

(
n
k

)
(α)k(β)n−k

(α + β)n
X jY n− j . (1.5)

The commutativity relation in this theorem is equivalent to the n = 2 case of the identity.

Loosely speaking, thinking of X and Y as operators acting on a collection of n-particles, this

identity allows one to factor the generator for the beta RWRE for n-particles (corresponding to

RHS of (1.5)) into a product of n copies of the beta RWRE generator acting on a single particle
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(corresponding to LHS of (1.5)) provided the one particle generators satisfy a boundary condition

when two particles are in the same position (corresponding to the n = 2 case of (1.5)). This is

part of a procedure called the coordinate Bethe ansatz which is one common method of producing

exactly solvable models.

The beta RWRE was originally introduced in [23] where exact formulas, and KPZ limit the-

orems for the model were derived. They realized the identity (1.5) as a special case of a more

general non-commutative binomial formula which [158] proved and used to develop a more gen-

eral exactly solvable model called the q-Hahn TASEP. We will be particularly interested in two

results from [23].

Consider the quenched probability P(X(t) > x) in the beta random walk in random environ-

ment, where X(t) is the path of a single particle that starts from 0 at time 0. It satisfies the following

formula which will be a starting point for producing exact formulas for two degenerations of the

beta RWRE that we study.

Theorem 1.2.3 ([23, Theorem 1.13]). For u ∈ C \R>0 and α, β > 0, fix t ∈ Z≥0 and x ∈ {−t, ..., t}

with the same parity. Then

E[euP(X(t)>x)] = det(I − KRW
u )L2(C0),

where C0 is a small positively oriented contour that contains 0 and does not contain the points

−α − β and −1, and KRW
u : L2(C0) → L

2(C0) is defined in terms of its kernel

KRW
u (v, v

′) =
1

2πi

∫ 1
2+i∞

1
2−i∞

π

sin(πs)
(−u)s

gRW(v)

gRW(v + s)
ds

s + v − v′
,

where

gRW(v) =

(
Γ(v)

Γ(α + v)

) (t−x)/2 (
Γ(α + β + v)

Γ(α + v)

) (t+x)/2
Γ(v).

We also draw attention to the KPZ limit theorem.
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Theorem 1.2.4. [23, Theorem 1.15] For 0 < θ < 1/2 and α = β = 1, we have that

lim
t→∞
P
©­­«

log
(
P
(
X(t) > x(θ)t)

)
+ I

(
x(θ)

)
t

t1/3σ
(
x(θ)

) 6 y
ª®®¬ = FGUE(y), (1.6)

where

x(θ) =
1 + 2θ

θ2 + (θ + 1)2
, I(x(θ)) =

1
θ2 + (θ + 1)2

, σ(θ) =

(
2I(x(θ))2

1 − I(x(θ))

) 1
3

In the following sections we will discuss two limits of the beta RWRE. Theorem 1.2.3 will give

rise to exact formulas for both of these models. Much of our attention in the next two sections will

focus on proving analogs of Theorem 1.2.4 for these limits of the beta RWRE.

1.2.2 Bernoulli-exponential first passage percolation

This section is an overview of the work in Chapter 2. We are interested in the behavior of a zero

temperature limit of the beta random walk in random environment called Bernoulli-exponential

first passage percolation (FPP). Bernoulli-exponential FPP models the growth of a river delta in

Z2
≥0. The model depends on two parameters a, b > 0. At time 0, we begin with a river which starts

from the origin and follows an up-right path in Z2
≥0 chosen so that at each step the river goes up

with probability a/(a+ b) and right with probability b/(a+ b)(thick black line in Figure 1.1). This

means the initial river will have approximate slope a/b.

As time passes the river erodes its banks creating forks. At each vertex which the river leaves

in the rightward (respectively upward) direction, it takes an amount of time distributed as an ex-

ponential random variable with rate a (resp. b) for the river to erode through its upward (resp.

rightward) bank. Once the river erodes one of its banks at a vertex, the flow at this vertex branches

to create a tributary (see gray paths in Figure 1.1). The path of the tributary is selected by the same

rule as the path of the time 0 river, except that when the tributary meets an existing river it joins the

river and follows the existing path. The full path of the tributary is added instantly when the river

8



(0,0)

Figure 1.1: A sample of the river delta (Bernoulli-exponential FPP percolation cluster) near the
origin. The thick black random walk path corresponds to the river (percolation cluster) at time 0.
The other thinner and lighter paths correspond to tributaries added to the river delta (percolation
cluster) at later times.

erodes its bank.

In this model the river is infinite, and the main object of study is the set of vertices included

in the river at time t, i.e. the percolation cluster. We will also refer to the shape enclosed by the

outermost tributaries at time t as the river delta (see Figure 1.2 for a large scale illustration of the

river delta).

Now we give a more precise definition in terms of first passage percolation following [23].

Definition 1.2.5 (Bernoulli-exponential first passage percolation). Let Ee be a family of indepen-

dent exponential random variables indexed by the edges e of the lattice Z2
≥0. Each Ee is distributed

as an exponential random variable with parameter a if e is a vertical edge, and with parameter b

if e is a horizontal edge. Let (ζi,j) be a family of independent Bernoulli random variables with

parameter b/(a + b). We define the passage time te of each edge e in the lattice Z2
≥0 by

te =


ζi,j Ee if e is the vertical edge (i, j) → (i, j + 1),

(1 − ζi,j)Ee if e is the horizontal edge (i, j) → (i + 1, j).

9



Figure 1.2: The percolation cluster for 400×400 Bernoulli-exponential FPP at time 1 with a = b =
1. Paths occurring earlier are shaded darker, so the darkest paths occur near t = 0 and the lightest
paths occur near t = 1.
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We define the point to point passage time TPP(n,m) by

TPP(n,m) = min
π:(0,0)→(n,m)

∑
e∈π

te.

where the minimum is taken over all up-right paths π from (0,0) to (n,m). We define the percolation

cluster C(t), at time t, by

C(t) =
{
(n,m) : TPP(n,m) ≤ t

}
.

At each time t, the percolation cluster C(t) is the set of points visited by a collection of up-right

random walks in the quadrant Z2
≥0. C(t) evolves in time as follows:

• At time 0, the percolation cluster contains all points in the path of a directed random walk

starting from (0,0), because at any vertex (i, j) we have passage time 0 to either (i, j + 1) or

(i + 1, j) according to the independent Bernoulli random variables ζi,j .

• At each vertex (i, j) in the percolation cluster C(t), with an upward (resp. rightward) neighbor

outside the cluster, we add a random walk starting from (i, j) with an upward (resp. rightward)

step to the percolation cluster with exponential rate a (resp. b). This random walk will almost

surely hit the percolation cluster after finitely many steps, and we add to the percolation cluster

only those points that are in the path of the walk before the first hitting point (see Figure 1.1).

Define the height function Ht(n) by

Ht(n) = sup{m ∈ Z≥0 |TPP(n,m) ≤ t)}, (1.7)

so that (n,Ht(n)) is the upper border of C(t).

Bernoulli-exponential first passage percolation is the zero temperature limit of the beta random

walk in random environment in the following sense: Set αε = εa and βε = εβ and refer to the

parameter ε > 0 as temperature. If X(t) is a beta RWRE with parameters αε, βε and Ht(n) is the

11



height function of a Bernoulli-exponential first passage percolation with parameters a, b, then for

all m,n ≥ 0, we have

−ε log ((P(X(n + m) = m − n))
ε→0
−−−→ TPP(n,m),

in distribution. Recall P(X(n + m) = m − n) is the probability that the the beta RWRE X(t) is

at position m − n at time n + m, and that this probability is random as it depends on the random

environment. The change of variables in this limit come from rotating the beta RWRE 45 degrees

and scaling by 1√
2

so that the walk trajectories become up-right paths in Z2
≥0.

Results

The study of the large scale behavior of passage times TPP(n,m) was initiated in [23]. At large

times, the upper border of the percolation cluster (described by the height function Ht(n)) has GUE

Tracy-Widom fluctuations on the scale n1/3.

Theorem 1.2.6 ([23, Theorem 1.19]). Fix parameters a, b > 0. For any θ > 0 and x ∈ R,

lim
n→∞
P

(
Hτ(θ)n − κ(θ)n

ρ̃(θ)n1/3 ≤ x
)
= FGUE(x), (1.8)

where FGUE is the GUE Tracy-Widom distribution (see Definition 2.2.3) and κ(θ), τ(θ), ρ̃(θ) =

κ′(θ)
τ′(θ) ρ(θ) are functions defined in [23] by

κ(θ) :=
1
θ2 −

1
(a+θ)2

1
(a+θ)2 −

1
(a+b+θ)2

,

τ(θ) :=
1

a + θ
−

1
θ
+ κ(θ)

(
1

a + θ
−

1
a + b + θ

)
=

a(a + b)
θ2(2a + b + 2θ)

,

ρ(θ) :=
[

1
θ3 −

1
(a + θ)3

+ κ(θ)

(
1

(a + b + θ)3
−

1
(a + θ)3

)]1/3
.

Note that as θ ranges from 0 to∞, κ(θ) ranges from +∞ to a/b and τ(θ) ranges from +∞ to 0.
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Remark 1.2.7. In [23] the limit theorem is incorrectly stated as

lim
n→∞
P

(
mini≤n TPP(i, κ(θ)n) − τ(θ)n

ρ(θ)n1/3 ≤ x
)
= FGUE(x),

but following the proof in [23, Section 6.1], we can see that the inequality and the sign of x should

be reversed. Further, we have reinterpreted the limit theorem in terms of height function Ht(n)

instead of passage times TPP(n,m) using the relation (1.7).

We are interested in the fluctuations of Ht(n) for large n but fixed time t. Let us scale θ in (1.8)

above as

θ =

(
na(a + b)

2t

)1/3
,

so that

τ(θ)n = t +O(n−1/3).

Let us introduce constants

λ =

(
a(a + b)

2t

)1/3
, d =

3a(a + b)
2bλ

, σ =

(
3a(a + b)λ

2b3

)1/3
. (1.9)

Then, we have the approximations

κ(θ)n =
a
b

n + dn2/3 + o(n4/9),

ρ̃(θ)n1/3 = σn4/9 + o(n4/9).

Thus, formally letting θ and n go to infinity in (1.8) suggests that for a fixed time t, it is natural to

scale the height function as

Ht(n) =
a
b

n + dn2/3 + σn4/9χn,

and study the asymptotics of the sequence of random variables χn.

We find the following.
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Theorem 1.2.8. Fix parameters a, b > 0. For any t > 0 and x ∈ R,

lim
n→∞
P

(
Ht(n) − a

bn − dn2/3

σn4/9 ≤ x

)
= FGUE(x),

where FGUE is the GUE Tracy-Widom distribution.

Note that the heuristic argument presented above to guess the scaling exponents and the ex-

pression of constants d and σ is not rigorous, since Theorem 1.2.6 holds for fixed θ. Theorem

1.2.6 could be extended without much effort to a weak convergence uniform in θ for θ varying in a

fixed compact subset of (0,+∞). However the case of θ and n simultaneously going to infinity re-

quires more careful analysis. Indeed, for θ going to infinity very fast compared to n, Tracy-Widom

fluctuations would certainly disappear as this would correspond to considering the height function

at time τ(θ)n ≈ 0, which corresponds to a simple random walk and gives Gaussian fluctuations on

the n1/2 scale.

The scaling exponents in Theorem 1.2.8 might seem unusual, but the preceding heuristic com-

putation explains how they result from rescaling a model which has the usual KPZ scaling ex-

ponents. A similar situation occurs for scaling exponents of the height function of directed last

passage percolation in thin rectangles [17, 33] and for the free energy of directed polymers [13]

under the same limit.

1.2.3 Other interpretations of the model

There are several equivalent interpretations of Bernoulli-exponential first passage percolation.

We will present the most interesting here.

A particle system on the integer line

The height function of the percolation cluster Ht(n) is equivalent to the height function of an

interacting particle system we call geometric jump pushTASEP, which generalizes pushTASEP

(the R = 0 limit of PushASEP introduced in [44]) by allowing jumps of length greater than 1. This
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model is similar to Hall-Littlewood pushTASEP introduced in [91], but has a slightly different

particle interaction rule.

Definition 1.2.9 (Geometric jump pushTASEP). Let Geom(q) denote a geometric random variable

with P(Geom(q) = k) = qk(1 − q). Let 1 ≤ p1(t) < p2(t) < ... < pi(t) < ... be the positions

of ordered particles in Z≥1. At time t = 0 the position n ∈ Z≥0 is occupied with probability

b/(a+b). Each particle has an independent exponential clock with parameter a, and when the clock

corresponding to the particle at position pi rings, we update each particle position p j in increasing

order of j with the following procedure. (pi(t−) denotes the position of particle i infinitesimally

before time t.)

• If j < i, then p j does not change.

• pi jumps to the right so that the difference pi(t)− pi(t−) is distributed as 1+Geom(a/(a+ b))

• If j > i, then

– If the update for p j−1(t) causes p j−1(t) ≥ p j(t−), then p j(t) jumps right so that p j(t) −

p j−1(t) is distributed as 1 + Geom(a/(a + b)).

– Otherwise p j does not change.

– All the geometric random variables in the update procedure are independent.

Another way to state the update rule is that each particle jumps with exponential rate a, and

the jump distance is distributed as 1 + Geom(a/(a + b)). When a jumping particle passes another

particle, the passed particle is pushed a distance 1 + Geom(a/(a + b)) past the jumping particle’s

ending location (see Figure 1.3).

The height function Ht(n) at position n and time t is the number of unoccupied sites weakly to

the left of n. If we begin with the distribution of (n,Ht(n)) in our percolation model, and rotate the

first quadrant clockwise 45 degrees, the resulting distribution is that of (n,Ht(n)). The horizontal
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Figure 1.3: This figure illustrates a single update for geometric jump pushTASEP. The clock cor-
responding to the leftmost particle rings, activating the particle. The first particle jumps 2 steps
pushing the next particle and activating it. This particle jumps 1 step pushing the rightmost particle
and activating it. The rightmost particle jumps 3 steps, and all particles are now in their original
order, so the update is complete.

segments in the upper border of the percolation cluster correspond to the particle positions, thus

Ht(n) = pt(n) − n = sup{k : Ht(n + k) ≥ k}.

A direct translation of Theorem 2.1.4 gives:

Corollary 1.2.10. Fix parameters a, b > 0. For any t > 0 and x ∈ R,

lim
n→∞
P
©­­«

pt(n) −
(

a+b
b

)
n − dn2/3

σn4/9 ≤ x
ª®®¬ = FGUE(x),

where FGUE(x) is the Tracy-Widom GUE distribution.

To the authors knowledge Corollary 1.2.10 is the first result in interacting particle systems

showing Tracy-Widom fluctuations for the position of a particle at finite time.
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Degenerations

If we set b = 1, t′ = t/a, and let a→ 0, then in the new time variable t′ each particle performs a

jump with rate 1 and with probability going to 1, each jump is distance 1, and each push is distance

1. This limit is pushTASEP on Z≥0 where every site is occupied by a particle at time 0. Recall that

in pushTASEP, the dynamics of a particle are only affected by the (finitely many) particles to its

left, so this initial data makes sense.

We can also take a continuous space degeneration. Let x be the spatial coordinate of geometric

jump pushTASEP, and let exp(λ) denote an exponential random variable with rate λ. Choose a

rate λ > 0, and set b = λ
n , x
′ = x/n,a = n−λ

n , and let n → ∞. Then our particles have jump

rate n−λ
n → 1, jump distance Geom(1−λ/n)

n → exp(λ), and push distance Geom(1−λ/n)
n → exp(λ).

This is a continuous space version of pushTASEP on R≥0 with random initial conditions such that

the distance between each particle position pi and its rightward neighbor pi+1 is an independent

exponential random variable of rate λ. Each particle has an exponential clock, and when the

clock corresponding to the particle at position pi rings, an update occurs which is identical to

the update for geometric jump pushTASEP except that each occurrence of the random variable

1 + Geom(a/(a + b)) is replaced by the random variable exp(λ).

1.3 Sticky Brownian motions

This section is an overview of the work in Chapter 3. We will study the behavior of a diffusive

limit of the beta RWRE called sticky Brownian motion. The definition of sticky Brownian motion

is somewhat technical and we will introduce some background first.

1.3.1 Definitions

Recall that the local time of a Brownian motion Bt at the point a is defined by the almost-sure

limit

`a
t (B) = lim

ε→0

1
2ε

∫ t

0
1a−ε≤Bs≤a+εds = lim

ε→0

1
ε

∫ t

0
1a≤Bs≤a+εds.
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For a continuous semimartingale Xt , the natural time scale is given by its quadratic variation 〈X,X〉t

and we define the local time as the almost sure limit [164, Corollary 1.9, Chap. VI]

`a
t (X) = lim

ε→0

1
ε

∫ t

0
1a≤Xs≤a+εd〈X,X〉t .

Feller initiated the study of Brownian motions sticky at the origin in [77], while studying general

boundary conditions for diffusions on the half line.

Definition 1.3.1. Brownian motion sticky at the origin can be defined as the weak solution to the

system of stochastic differential equations

dXt = 1{Xt,0}dBt, (1.10)∫ t

0
1Xs=0ds =

1
2λ
`0

t (X),

where Bt is a Brownian motion. Reflected Brownian motion sticky at the origin can be defined as

Yt = |Xt | where Xt is a Brownian motion sticky at the origin.

Remark 1.3.2 (Time change). Brownian motion sticky at the origin can be viewed as a time change

of Brownian motion in a construction due to Ito and McKean [110]. Consider the Brownian motion

Bt , and define the continuous increasing function A(t) = t + 1
2λ`

0
t (B). Let T(t) = A−1(t) and set

Xt = BT(t). We see that Xt is a usual Brownian motion when Xt , 0, because the local time of

Bt only increases when Bt = 0. When Xt = 0 time slows down. We know
∫ t

0 1Xs>0ds = T(t), so∫ t
0 1Xs=0ds = t − T(t) = 1

2λ`
0
T(t)(B) =

1
2λ`

0
t (X). This type of time change can be used to produce

many processes with sticky interactions.

Remark 1.3.3 (Discrete limit). Reflected Brownian motion sticky at the origin Yt can also be viewed

as the diffusive limit of a sequence of random walks which tend to stay at 0. For small ε > 0, let Zε
t

be a discrete time random walk on Z≥0, which behaves as a simple symmetric random walk when

it is not at the point 0. When Zε
t is at the point 0, at each time step it travels to 1 with probability ε

and stays at 0 with probability 1 − ε. The diffusive limit εZ2λε
ε−2t

converges to Yt weakly as ε → 0.
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Figure 1.4: Left panel: Random walk Z1/5
t leaving 0 with probability 1/5, up to time 25. Right

panel: Reflected Brownian motion sticky at 0 obtained by the scaling limit of Zε
t .

To understand this convergence see equation (1.12), and note that the drift of the limiting motion

at 0 is equal to 2λ because in each unit of time there are ε−2 opportunities to jump from 0 to ε and

the proportion of these opportunities that is taken is approximately 2λε. The analogous statement

is also true for Brownian motion sticky at the origin. See Figure 1.4 where a simulation of Z1/5
t is

shown alongside Yt .

From Remark 1.3.2 and the Tanaka Formula for reflected Brownian motion it is easy to see that

Yt is a weak solution to the system of stochastic differential equations

dYt =
1
2

d`0
t (Y ) + 1{Yt>0}dBt, (1.11)

1{Yt=0}dt =
1

4λ
d`0

t (Y ),

Equations (1.11) is equivalent to the single SDE

dYt = 2λ1{Yt=0}dt + 1{Yt>0}dBt, (1.12)

in the sense that a weak solution to one is a weak solution to the other [76]. Existence and

uniqueness of weak solutions to (1.10) and (1.11) can be found in [76] and references therein.
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Nonexistence of strong solutions to equations (1.10) and (1.11) was first shown in [57] and

[197] (see also [76] for a more canonical arguments which would more easily generalize to other

sticky processes). Several other works have been published on the existence of solutions to similar

SDEs with indicator functions as the coefficient of dBt or dt including [114, 29]. A more complete

history of these SDEs can be found in [76].

We wish to study the evolution of n particles in one spatial dimension where the difference

between any pair of particles is a Brownian motion sticky at the origin. First we do this for a pair

of sticky Brownian motions.

Definition 1.3.4. The stochastic process (X1(t),X2(t)) is a pair of Brownian motions with sticky

interaction if each Xi is marginally distributed as a Brownian motion and

〈X1,X2〉(t) =
∫ t

0
1X1(s)=X2(s)ds, (1.13)∫ t

0
1X1(s)=X2(s)ds =

1
2λ
`0

t (X1 − X2). (1.14)

In other words (X1(t),X2(t)) are sticky Brownian motions if they evolve as independent Brownian

motions when they are at different positions and their difference is a Brownian motion sticky at 0

(see a simulation in Fig. 1.5). The parameter λ can be understood as the rate (in a certain excursion

theoretic sense) at which the two particles split when they are at the same position.

One can use Tanaka’s formula to show that equation (1.14) is equivalent to saying

|X1(t) − X2(t)| − 2λ
∫ t

0
1X1(s)=X2(s)ds (1.15)

is a martingale. Howitt and Warren [104] made this observation and generalized this martingale

problem for a family of n particles with pairwise sticky interaction, which we call n-point sticky

Brownian motions. In the most general case, the stickiness behaviour cannot be characterized

uniquely by a single parameter λ. One needs to define for each k, l ≥ 1 the “rate” at which a group

of k + l particles at the same position will split into two groups of respectively k and l coinciding

20



-1

1

-1

1

Figure 1.5: Left panel: Two Brownian motions with sticky interaction. Right panel: 3-point sticky
Brownian motions. Not only do the paths stick pairwise, but sometimes all 3 paths may stick
together. Both simulations are discretizations of sticky Brownian motions using the beta RWRE
with ε = 0.02 (see Section 3.1.3).

particles. Following the notations in [104, 166, 169] this rate is denoted

(
k + l

k

)
θ(k, l).

Furthermore, we impose that the law of n-point sticky Brownian motions are consistent in the

sense that any subsets of k particles for k ≤ n follow the law of the k-point sticky Brownian

motions. This implies the relation θ(k + 1, l) + θ(k, l + 1) = θ(k, l). Under this relation, the family

of nonnegative real numbers θ(k, l) can be equivalently (see [166, Lemma A.4]) characterized by

a measure ν on [0,1] such that

∫ 1

0
xk−1(1 − x)l−1ν(dx) = θ(k, l).

The following definition of n-point sticky Brownian motions from [169] is a reformulation of

the Howitt-Warren martingale problem [104]. See Figure 1.5 and Figure 1.6 for simulations of

n-point Brownian motions.

Definition 1.3.5 ([169, Theorem 5.3]). A stochastic process ®X(t) = (X1(t), ...,Xn(t)) started from

®X(0) will be called n-point sticky Brownian motions if it solves the following martingale problem

called the Howitt-Warren martingale problem with drift β and characteristic measure ν.
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Figure 1.6: Left panel: 50 point-sticky Brownian motions using the same discretization as in Fig.
1.5. Because of the stickiness, the number of trajectories seems much smaller than 50. Right panel:
50 independent Brownian motions.

• (i) ®X is a continuous, square integrable martingale.

• (ii) The processes Xi and X j have covariation process

〈Xi,X j〉(t) =
∫ t

0
1Xi(s)=Xj (s)ds, for t ≥ 0, i, j = 1, ...,n.

• (iii) Consider any ∆ ⊂ {1, ...,n}. For ®x ∈ Rn, let

f∆(®x) := max
i∈∆
{xi} and g∆(®x) := |{i ∈ ∆ : xi = f∆(®x)}|,

where |S | denotes the number of elements in a set S. Then

f∆( ®X(t)) −
∫ t

0
β+(g∆( ®X(t))ds

is a martingale with respect to the filtration generated by ®X , where

β+(1) := β and β+(m) := β + 2
∫

ν(dy)
m−2∑
k=0
(1 − y)k = β + 2

m−1∑
k=1

θ(1, k).

Remark 1.3.6. Definition 1.3.5 generalizes the definition of 2-point sticky Brownian motions be-

cause each particle marginally evolves as a Brownian motion, and the marginal distribution of any
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pair of particles is that of a 2 point Brownian motion stickiness parameter λ = β+(2). Further, the

consistency of the n-point motion is clear from property (iii).

We will be interested in a particular exactly solvable case of the Howitt-Warren Martingale

problem.

Definition 1.3.7. An n-point stochastic process (B1(t), ...,Bn(t)) will be called the n-point uniform

sticky Brownian motions with stickiness λ if it solves the Howitt-Warren Martingale problem with

drift β = 0 and characteristic measure

ν(dx) = 1x∈[0,1]
λ

2
dx.

This choice corresponds to choosing the fragmentation rates θ(k, l) = B(k, l), where B(k, l) =

Γ(k)Γ(l)
Γ(k+l) denotes the beta function.

In order to realize the n-point sticky Brownian motions as a family of independent random

motions in a random environment, we need to introduce the notion of stochastic flows of kernels.

Let B be the Borel σ-algebra of R. For any s ≤ t, a random probability kernel, denoted Ks,t(x, A),

for x ∈ R and A ∈ B, is a measurable function defined on some underlying probability space Ω,

such that, for each (x,ω) ∈ R × Ω, it defines a probability measure on R. In order to interpret this

as the random probability that a particle arrives in A at time t after starting in position x at time s,

the kernel needs to satisfy the following additional hypotheses.

Definition 1.3.8 ([169, Definition 5.1]). A family of random probability kernels (Ks,t)s≤t on R is

called a stochastic flow of kernels if the following conditions are satisfied.

(i) For any real s ≤ t ≤ u and x ∈ R, almost surely Ks,s(x, A) = δx(A), and

∫
R

Ks,t(x, dy)Kt,u(y, A)dy = Ks,u(x, A)

for all A ∈ B.

23



(ii) For any t1 ≤ t2 ≤ ... ≤ tk , the random kernels (Kti,ti+1)
k−1
i=1 are independent.

(iii) For any s ≤ u and t real, Ks,u and Ks+t,u+t have the same finite dimensional distributions.

Remark 1.3.9. Additional continuity hypotheses were given in the original definition of a stochas-

tic flow of kernels in [133], but we will only be interested in Feller processes for which these

hypotheses are automatically satisfied.

The n-point motion of a stochastic flow of kernels is a family of n stochastic processes X1, ...,Xn

on R with transition probabilities given by

P(®x, d ®y) = E

[
n∏

i=1
K0,t(xi, dyi)

]
. (1.16)

Every consistent family of n-point motions that is Feller, is the n-point motion of some stochas-

tic flow of kernels [133]. Any solution to the Howitt-Warren martingale problem is a consistent

family as was noted after Definition 1.3.5, and is Feller by [104]. So any solution to the Howitt-

Warren martingale problem is the n-point motion of some stochastic flow of kernels.

Definition 1.3.10. A stochastic flow of kernels whose n-point motions solve the Howitt-Warren

martingale problem is called a Howitt-Warren flow. The stochastic flow corresponding to the spe-

cial case of the Howitt-Warren martingale problem considered in Definition 1.3.7 (that we called

the uniform Howitt-Warren martingale problem), is sometimes called the Le Jan-Raimond flow,

after the paper [135], following the terminology used in [169, 166].

In condition (i) of Definition 1.3.8, if we assume that we can move the quantifier "almost

surely" so it occurs before choosing s, t,u and x, then we can sample all Ks,t and almost surely

these kernels define the transition kernels for some continuous space-time Markov process. Con-

ditionally on the kernels we can describe the n-point motion as independent stochastic processes

which evolve according to the transition kernels Ks,t . Put simply the n-point motion can be seen as

continuous space time random motions in a random environment which is given by the set of all

transition kernels Ks,t . In [166] (see also [169, Section 5]) it is shown that the change in quantifiers
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in (i) necessary for this description can be done for Howitt-Warren flows. The random environment

is explicitly constructed [166, Section 3] (see also [169, Section 5]) and consists of a Brownian

web 1 plus a marked Poisson process at special points of the Brownian web [148]. The random

motions in this environment essentially follow the Brownian web trajectories, except at these spe-

cial points where they may turn left or right with a random probability. For Howitt-Warren flows

such that
∫

q(1 − q)−1ν(dq) < ∞ (which is not true for the Le Jan-Raimond flow), the random

environment can also be constructed (see [166, Section 4]) using the Brownian net [179, 168].

Note that when starting from a set of particles on the real line and assuming that these particles

will branch and coalesce following paths given by either the Brownian net or the Brownian web,

the positions of the particles at a later time are given by a Pfaffian point process [85]. This type of

evolution of Brownian particles is also related to random matrix theory, in particular the Ginibre

evolution [191, 190, 192] (the evolution of real eigenvalues in a Ginibre matrix with Brownian

coefficients), but these results do not seem directly related our results.

Results

Our first result is a Fredholm determinant formula for the Laplace transform of the uniform

Howitt-Warren stochastic flow of kernels K0,t(0, [x,∞)), or Le Jan-Raimond flow.

First recall the definition of the gamma function

Γ(z) =
∫ ∞

0
xz−1e−xdx,

and the polygamma functions

ψ(θ) = ∂z log Γ(z)|z=θ, ψi(θ) = (∂z)
iψ(z)|z=θ .

Theorem 1.3.11. Let K0,t(0, [x,∞)) denote the kernel of the uniform Howitt-Warren flow with stick-

1The Brownian web was introduced in [11], see also [185].
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iness parameter λ > 0. For u ∈ C \ R>0, and x > 0, we have

E[euK0,t (0,[x,∞))] = det(I − Ku)L2(C), (1.17)

(the R.H.S is a Fredholm determinant, see Definition 1.1.1), where

Ku(v, v
′) =

1
2πi

∫ 1/2+i∞

1/2−i∞

π

sin(πs)
(−u)s

g(v)

g(v + s)
ds

s + v − v′
,

and

g(v) = Γ(v) exp
(
λxψ0(v) +

λ2t
2
ψ1(v)

)
.

where C is a positively oriented circle with radius 1/4 centered at 1/4. (It is important that this

contour passes through zero at the correct angle. The actual radius of the circle C does not matter.)

Remark 1.3.12. We use two very different notions of kernels, which are both denoted by the letter

K . We will reserve the font K for stochastic flows of kernels, and the usual font K for the kernels

of L2 operators arising in Fredholm determinants.

We reach Theorem 1.3.11 by taking a limit of a similar Fredholm determinant formula [23,

Theorem 1.13] for the beta RWRE defined in Section 3.1.3. Theorem 1.3.11 is proved in Section

3.4.

We perform a rigorous saddle-point analysis of the Laplace transform formula (1.17) to obtain

a quenched large deviation principle for the uniform Howitt-Warren stochastic flow.

Theorem 1.3.13. Let λ > 0 and x ≥ 1.35. Let Ks,t be the kernel of a uniform Howitt-Warren flow.

Then we have the following convergence in probability

1
t

log K0,t(0, [xt,∞)) −−−−→
t→∞

−λ2J(x/λ), (1.18)

where

J(x) = max
θ∈R>0

{
1
2
ψ2(θ) + xψ1(θ)

}
. (1.19)
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The condition x ≥ 1.35 is technical and is addressed in Remark 1.3.16. We expect that the

limit holds almost surely. This should follow from subadditivity arguments, though we do not

pursue this in the current work (see [163] for an almost sure quenched large deviation principle

for discrete random walks). We emphasize that in Theorem 1.3.13, the rate function J(x) is ex-

pressed explicitly using well-known special functions, which is in contrast with what one would

obtain using subadditivity arguments. Another large deviation principle was shown in [69] for the

empirical distribution of a certain class of n-point sticky Brownian motions, but this does not seem

to be related to the present Theorem 1.3.13.

Remark 1.3.14. The annealed2 analogue of this large deviation principle just describes the tail

behavior of a standard Brownian motion. Indeed,

1
t

logE[K0,t(0, [xt,∞))] = −x2/2.

It can be easily checked that λ2J(x/λ) > x2/2 which, in the context of directed polymers, means

that the model exhibits strong disorder. Note that the sign of the inequality is consistent with

Jensen’s inequality (assuming (1.18) holds in L1). The inequality becomes an equality in the

λ→∞ limit, which corresponds to Brownian motions with no stickiness.

When uniform sticky Brownian motions are viewed as random walks in a random environment,

Theorem 1.3.13 gives a large deviation principle whose rate function is deterministic despite the

randomness of the environment. The random variable log K0,t does depend on the environment,

but its fluctuations are small enough that they are not detected by the large deviation principle.

We prove that the model is in the KPZ universality class in the sense that the random lower order

corrections to the large deviation principle, or equivalently the fluctuations of log K0,t , are Tracy-

Widom GUE distributed and are of order t1/3.

Theorem 1.3.15. Let Ks,t be the kernel of a uniform Howitt-Warren flow with stickiness parameter

2In the context of random walks in random environment and directed polymers, the (limiting) quenched free energy
or rate function is the limit obtained for almost every environment and the annealed analogues correspond to the same
quantities for the averaged environment.
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λ > 0. Let 0 < θ < 1. We have

lim
t→∞
P

(
log(K0,t(0, [x(θ)t,∞)) + λ2J(x(θ)/λ)t

t1/3σ(θ)
< y

)
= FGUE(y),

where FGUE(y) is the cumulative density function of the Tracy-Widom distribution (defined in

1.1.1), and

x(θ) = −
λ

2
ψ3(θ)

ψ2(θ)
, σ(θ) =

λ2/3

21/3

(
−1
2
ψ4(θ) −

x(θ)
λ

ψ3(θ)

) 1
3

. (1.20)

Theorem 1.3.15 comes from applying a rigorous steep descent analysis to the Fredholm deter-

minant in Theorem 1.3.11. The parametrization of functions J and σ arising in the limit theorem

via the variable θ may appear unnatural at this point. It will appear more natural in the proof as θ

is the location of the critical point used in the steep descent analysis. We expect that there should

exist another interpretation of the parameter θ. It should naturally parametrize stationary measures

associated with the uniform Howitt-Warren flow, and KPZ scaling theory [173, 126] would predict

the expressions for J(x) and σ(θ) given above. This approach would require to degenerate to the

continuous limit the results from [18] and we leave this for future investigation (the analogue of

parameter θ in the discrete setting is denoted λ(ξ) in [18, Theorem 2.7]).

Remark 1.3.16. Note that x(θ) is a decreasing function of θ and the technical hypothesis θ < 1

corresponds to approximately 1.35 ≤ x(θ). Similarly J(x) is an increasing function of x and θ < 1

corresponds approximately to 1.02 < J(x(θ)). We expect Theorem 1.3.15 to hold for all θ > 0,

and Theorem 1.3.13 to hold for all x > 0, however if θ ≥ 1 we pick up additional residues while

deforming the contours of our Fredholm determinant during the asymptotic analysis which make

the necessary justifications significantly more challenging.

More generally, we believe that the result of Theorem 1.3.11 should be universal and hold for

more general Howitt-Warren flows under mild assumptions on the characteristic measure ν. This

would be analogous to a conjecture that for discrete polymer models the fluctuations of the free

energy are Tracy-Widom distributed as long as the weights of the polymer have finite fifth moments
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[7, Conjecture 2.6]. Moreover, based on [162, Theorem 4.3], we expect that the random variable

log K0,t(0, [xt, xt + a)),

for any a > 0, satisfies the same limit theorems as log K0,t(0, [xt,+∞)) in Theorem 1.3.13 and

Theorem 1.3.15, with the same constants (the prediction that the constant σ(θ) should remain the

same is suggested by the results of [183]).

Following [23] we can state a corollary of Theorem 1.3.15. In general, tail probability estimates

provide information about the extremes of independent samples. In the present case, we obtain

that the largest among n uniform sticky Brownian motions fluctuates asymptotically for large n

according to the Tracy-Widom distribution. We will see that the result is very different from the

case of n independent Brownian motions, as can be expected from the simulations in Figure 1.6.

Corollary 1.3.17. Let c ∈ [1.02,∞), let x0 be such that λ2J(x0/λ) = c, let θ0 be such that x(θ0) =

x0, and let {Bi(t)} be uniform n-point sticky Brownian motions with stickiness parameter λ > 0

and scale n as n = ect , then

lim
t→∞
P

(
maxi=1,...,n{Bi(t)} − t x0

t1/3σ(θ0)/(λ2J′(x0/λ))
≤ y

)
= FGUE(y). (1.21)

The proof of Corollary 1.3.17 is very similar to the proof of [23, Corollary 5.8] and uses the

fact that after conditioning on the environment we are dealing with independent motions along

with our strong control of the random variable K0,t(0, [xt,∞)) from Theorem 1.3.15. The details of

the proof can be found at the end of Section 3.2.

1.4 Boundary-weighted stochastic six vertex model

This section is an overview of the work in Chapter 4. We will study a version of the six vertex

model with a boundary condition leading to an interesting phase diagram.

29



Consider a family of six-vertex models on the half-infinite strip Dn = Z≥0 × {1, . . . ,n} where

n ∈ N. Specifically, the state space of the models is the set Pn consisting of all collections of n

up-right paths, with nearest neighbor steps in Dn with the paths starting from the points {(0, i) :

1 ≤ i ≤ n} and exiting the top boundary. We add the additional condition, that no two paths can

share a horizontal or vertical edge, see Figure 1.7.

Figure 1.7: An example of a path collection
π in P5. Here λ3

1(π) = 5, λ3
2(π) = 4, λ3

3(π) =
2

i1 = 2

j1 = 1

i2 = 3

j2 = 0

Figure 1.8: An example of a vertex of
type (i1, j1; i2, j2) = (2,1; 3,0)

In the next few paragraphs we explain the types of probability measures we put on Pn (they

are given in equation (1.23) below), but to accomplish this we need a bit of notation. A signature

of length n is a nonincreasing sequence λ = (λ1 ≥ λ2 ≥ · · · ≥ λn) with λi ∈ Z. We use Signn

to denote the set of all signatures of length n, and use Sign+n for the set of such signatures with

λn ≥ 0. To each collection of n up-right paths π ∈ Pn one can identify a sequence of signatures

λi(π) ∈ Sign+i for i = 1, . . . ,n, where (λi
1(π), λ

i
2(π), . . . , λ

i
i(π)) are the ordered x-coordinates at

which the paths in π intersect the horizontal line y = i + 1/2, see Figure 1.7.

Given an up-right path collection π ∈ Pn, each vertex is given a vertex type based on four

numbers (i1, j1; i2, j2), where i1 and j1 denote the number paths entering the vertex vertically and

horizontally respectively, while i2 and j2 denote the number of paths leaving the vertex vertically

and horizontally respectively, see Figure 1.8. For complex parameters s and u we define the fol-

lowing vertex weights
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w1 = w(0,0; 0,0) = 1, w2 = w(1,1; 1,1) =
u − s−1

1 − su

w2 = w(1,0; 1,0) =
1 − s−1u
1 − su

, w4 = w(0,1; 0,1) =
u − s
1 − su

,

w5 = w(1,0; 0,1) =
(1 − s2)u

1 − su
, w6 = w(0,1; 1,0) =

1 − s−2

1 − su
.

(1.22)

This nonintuitive parametrization of weights by s and u comes from [46], where it is important in

defining a higher spin generalization of the six-vertex model. Later in (4.8) we present the higher

spin vertex weights, and one obtains the weights in (1.22) by setting q = s−2 in (4.8).

For π ∈ Pn we let π(i, j) denote the vertex type of the vertex at position (i, j) in the path

collection π. Given complex numbers s and u, and a function f : Sign+n → C we define the weight

of a path collection π ∈ Pn by

W f (π) = f (λn(π))

∞∏
i=1

n∏
j=1

w(π(i, j)).

All but finitely many π(i, j) are equal to (0,0; 0,0) and have weight 1 by (1.22), so the product

is well defined. If one chooses u and s in C and the function f so that the weights W f (π) are

nonnegative, not all zero and summable then one can use the weights W f (π) to define a probability

measure on Pn through

P f (π) = (Z f )−1 · W f (π), where Z f :=
∑
π∈Pn

W f (π). (1.23)

Equation (1.23) gives the general form of the measures we will study. In plain words P f is the usual

six-vertex measure except that the path collections π are reweighted based on their top boundary,

namely λn(π), through the boundary weight function f . See Figure 1.9

Remark 1.4.1. When we go to our main results we will take u > s > 1 above. In the usual weight

parametrization of the six-vertex model we have that

a1 = 1, a2 =
u − s−1

su − 1
, b1 =

1 − s−1u
1 − su

, b2 =
u − s
su − 1

, c1 =
(1 − s2)u

1 − su
, and c2 =

1 − s−2

su − 1
.
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λ1 = 6λ2 = 4λ3 = 2

1

2

3

height n = 3

1 2 3 4 5 6

Figure 1.9: An example of a path configuration in the boundary-weighted six vertex model which
demonstrates the boundary term λ3 = λ.

We mention that the latter weights are the absolute values of those in (4.1), where ultimately the

sign difference will be absorbed in the boundary weight function f of the model so thatW f (π) ≥ 0

for all π ∈ Pn. Associated with the six weights is an anisotropy parameter ∆, given by

∆(a1,a2, b1, b2, c1, c2) =
a1a2 + b1b2 − c1c2

2
√

a1a2b1b2
, (1.24)

which is believed to be directly related with the qualitative and quantitative properties of the model,

see [153]. The choice of weights as in (4.1) with u > s > 1 corresponds to ∆ > 1, which is known

as the ferroelectric phase of the six-vertex model.

There are many different choices of parameters and functions f that lead to meaningful mea-

sures in (1.23). For example, if f (λ) = 0 unless λn−i+1 = i − 1 for i = 1, . . . ,n the measure in

P f becomes the six-vertex model with domain wall boundary condition (DWBC), [123]. Another

special case of the measures in (4.2) includes the case when u > s > 1 and

f (λ) = Gc
λ(ρ) := (−1)n · 1m0=0

∞∏
i=1

1mi≤1

n∏
j=1
(−s)λj , (1.25)

where λ = 0m01m12m2 . . . . In the latter notation mi is the number of times i appears in the list

(λ1, . . . , λn) and 1E is the indicator function of the set E . With this choice of parameters and

function f , the measure P f becomes what is known as stochastic six-vertex model, see e.g. [98],
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[39], with parameters

b1 =
1 − s−1u
1 − su

, b2 =
s2 − su
1 − su

.

For a quick proof of the latter statement we refer the reader to [46, Section 6.5].

A prediction in [50], which has been very recently partially verified in [3], states that the pure

states µ of the ferroelectric six-vertex model are parametrized by a slope (s, t) ∈ [0,1]2, where s

and t denote the probabilities that a given vertical and horizontal edge is occupied under µ. For a

certain open lens-shaped set H ⊂ [0,1]2 one has the following characterization of pure states for

the ferroelectric six-vertex model (here H = H ∪ ∂H):

1. Nonexistence: If (s, t) ∈ H, then there are no pure states µs,t of slope (s, t).

2. KPZ States: If (s, t) ∈ ∂H, then µs,t should exhibit Kardar-Parisi-Zhang (KPZ) behavior.

3. Liquid States: If (s, t) ∈ (0,1)2\H, then µs,t should exhibit Gaussian free field (GFF) behavior.

4. Frozen States: If (s, t) is on the boundary of [0,1]2, then µs,t should be frozen.

From the above conjectural classification, [3] established the nonexistence statement (1) and proved

the existence and uniqueness of KPZ states (2) for all (s, t) ∈ ∂H. It is worth mentioning that the

above classification sharply contrasts the one for dimer models. Specifically, the pure states in

dimer models were classified in [171] and [120] and they come in three types. The first is frozen,

where the associated height function is basically deterministic; the second is gaseous, where the

variance of the height function is bounded but non-zero; the third is liquid, where the hight func-

tion fluctuations diverge logarithmically in the lattice size. In particular, for dimer models there

are no Nonexistence or KPZ pure states.

Going back to our previous discussion, the stochastic six-vertex model considered in [39],

which corresponds to f as in (1.25), was shown to asymptotically have a phase diagram that

consists of two frozen regions, i.e. regions where the local behavior of the model is described

by Frozen States, and a non-frozen region, where one observes solely KPZ States, see Figure

33



Figure 1.10: The left picture represents a sample of P f with f as in (1.25) for the param-
eters n = 100, u = 2, s−2 = 0.5. The picture on the right side depicts the phase diagrams
for these measures when n is large. The regions I and I I correspond to Frozen States and
region I I I corresponds to KPZ States

1.10. More specifically, in [39] it was shown that the one-point marginals of the height function

h(x, y), which at a location (x, y) counts the number of horizontal edges crossed by the vertical

segment connecting (x,0) and (x, y) in the non-frozen region I I I of Figure 1.10 are asymptotically

governed by the GUE Tracy-Widom distribution [189]. This type of behavior is characteristic of

models in the KPZ universality class described in Section 1.1. For the DWBC six-vertex model a

very different phase diagram is expected, although we emphasize that it has not been established

rigorously. Specifically, for the DWBC it is expected that as n becomes large the model again

develops macroscopic frozen regions that are separated by a non-frozen region where one observes

solely Liquid States. The only instance where this has been rigorously established is when ∆ = 0,

which is the free fermion point of the model, see [118], [119]. We emphasize that this is no

longer in the ferroelectric phase so one should be cautious when comparing to Figure 1.10. When

∆ = 0 the six-vertex model falls into the framework of the dimer models, which is what enables its

precise mathematical analysis. We mention; however, that there are non-rigorous physics works

and numerical simulations that indicate that for ∆ < 1 the six vertex model with DWBC has solely

Liquid States in the non-frozen region, and by analogy with the dimer models the fluctuations of

those are no longer KPZ, but rather governed by a suitable pullback of the Gaussian free field, [96].

In the ferroelectric ∆ > 1 case similar heuristics suggest that one observes only frozen states [59,

34



180].

The above paragraphs explain that by picking different boundary weight functions f we can

obtain qualitatively different phase diagrams for our six-vertex model. We will consider a very

special class of boundary functions f . This class will be described fully in Chapter 4 as we prove

these results. In the remainder of this section we explain the very high level motivations that have

guided our choice of f .

First of all, our discussion above indicates that for the stochastic six-vertex model of [39] the

non-frozen region consists entirely of KPZ States, while for the DWBC (at least conjecturally) it

consists solely of Liquid States (or states with Gaussian statistics). A natural question is whether

we can find a boundary weight function f for which both types of pure states co-exist in the non-

frozen region of the model. A second point is that, for general functions f , the asymptotic analysis

for P f is prohibitively complicated – indeed even for the DWBC the phase diagram is largely

conjectural, and so one is inclined to consider special boundary weight functions f for which the

analysis of the model is tractable. Our choice of f is motivated by our desire that the resulting

model satisfies these two properties.

We study a special case of (1.23) when the boundary weight function f is given by

f (λ) =
∑

µ∈Sign+n

Gc
µ(ρ)G

c
λ/µ(v, . . . , v). (1.26)

In (1.26) the function Gc
µ(ρ) is as in (1.25) and the functions Gc

λ/µ
are a remarkable class of sym-

metric rational functions, which were introduced in [34]. The definition of Gc
λ/µ

is given in Defini-

tion 4.2.1, and these functions depend on M complex variables v1, . . . , vM that have all been set to

the same complex number v in (1.26). We mention that Gc
λ/µ

are one-parameter generalizations of

the classical (skew) Hall-Littlewood symmetric functions [142] and carry the name of (skew) spin

Hall-Littlewood symmetric functions, see [49].

One can check that if v−1 > u > s > 1 then the measure P f from (1.23) with f as in (1.26) is a

well-defined probability measure, see Section 4.2.2. We will denote this measure by PN,M
u,v .
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Even though the choice of f in (1.26) seems complicated we emphasize that the resulting

measure P f enjoys many remarkable properties and its asymptotic structure appears to be rich and

interesting. We elaborate on these points in the next few paragraphs, summarizing some results

from [71] where this model was studied in detail.

First of all, the choice of f as in (1.26) makes the model integrable and the distribution P f

analogous to the ascending Macdonald processes of [36]. What plays the role of the (skew) Mac-

donald symmetric functions Pλ/µ and their duals Qλ/µ is a class of symmetric rational functions

Fλ/µ and their duals Gc
λ/µ

that were mentioned above. The functions Fλ/µ,Gc
λ/µ

enjoy many of the

same properties as the Macdonald symmetric functions, including branching rules, orthogonality

relations, (skew) Cauchy identities and so on. One consequence of the integrability of the model

that can be appreciated by readers unfamiliar with symmetric function theory is that the partition

function Z f for our choice of f in (1.26) takes the following extremely simple product form

Z f = (s−2; s−2)n

(
1 − s−1u
1 − su

)n (
1 − s−2uv

1 − uv

)nM

, where (a; q)m = (1 − a)(1 − aq) · · · (1 − aqm−1).

The latter formula for the partition function is recalled in Section 4.2.2.

Another consequence of the integrability of the model is the fact that it is self-consistent in the

following sense. Suppose that we sample a path collection π on Pn according to Pn,M
u,v and then

project the path collection to the first k rows where 1 ≤ k ≤ n. The resulting path collection is now

a random element in Pk and its distribution is precisely Pk,M
u,v – we recall this in Lemma 4.2.12.

This self-consistency of the measures Pn,M
u,v for n ∈ N allows us for example to define a measure on

up-right paths on the whole of Z2
≥0 whose projection to the bottom n rows has law Pn,M

u,v .

Yet another consequence of the integrability of the model is given by the fact that for fixed n

and varying m ∈ Z≥0 the measures Pn,M
u,v can be stochastically linked as we next explain. One can

interpret the distribution Pn,m
u,v as the time m distribution of a Markov chain {Xm}

∞
m=0 taking values

in Pn for each m. This Markov chain is started from the stochastic six-vertex model at time zero,
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Figure 1.11: The pictures represent samples of the Markov chain {Xm}
∞
m=0 when n = 50 at times

m = 0, m = 50 and m = 100. The parameters of the process are s−2 = 0.5, u = 2 and all v = 0.25

and its dynamics are governed by sequential update rules. For more details and a precise formu-

lation we refer the reader to [46, Section 6] as well as [71, Section 8] where an exact sampling

algorithm of this process was developed. For a pictorial description of how the configurations Xm

evolve as time increases see Figure 1.11. This interpretation is similar to known interpretations of

the Schur process and Macdonald process as fixed time distributions of certain Markov processes,

see [35, 36].

The above few paragraphs explained some of the structure and relationships between the mea-

sures PN,M
u,v for varying N,M ∈ N. These measures arise as degenerations of the higher-spin vertex

models that were studied in [46], which is the origin of their integrability. For our purposes, the

main consequence of the integrability of the model that is utilized is that one has formulas for the

one-dimensional projections of PN,M
u,v that are suitable for asymptotic analysis . This is what makes

the analysis of the model tractable.

Our primary probabilistic interest in the measures PN,M
u,v comes from the fact that as N,M →∞

the phase diagram of the model (at least conjecturally) exhibits all three types of pure states –

Frozen, Liquid and KPZ. The presence of all three types of pure states is the second high-level

motivation behind our choice of f as in (1.26) and we illustrate the phase diagram in Figure 1.12.

The phase diagram in Figure 1.12, which corresponds to PN,M
u,v when N and M are large, should

be compared to the one in Figure 1.10, which corresponds to the stochastic six-vertex model or
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Figure 1.12: The picture on the left represent a sample of PN,M
u,v with N = M = 100, u = 2,

s−2 = 0.5, v = 0.25. The picture on the right represents the (conjectural) phase diagram of the
model as N,M →∞

equivalently to the measure PN,0
u,v (recall that the measures PN,m

u,v were stochastically linked through

a Markov chain with time zero distribution gave precisely by the stochastic six-vertex model). At

least based on the simulations one observes that as the vertex model evolves in time m = 0, . . . ,M

the frozen regions I and I I from the stochastic six-vertex model in Figure 1.10 begin to deform and

a new frozen region, denoted by I I I in Figure 1.12 and consisting of vertices of type (0,1; 0,1), is

formed near the origin. With this new frozen region two new points IV and V are formed. These are

sometimes referred to as turning points and they arise where two different frozen regions meet each

other. Furthermore, our prediction is that, under the Markovian dynamics evolving the six-vertex

model, the KPZ cone (i.e. region I I I in Figure 1.10) that is present at time m = 0 is translated

away from the origin to region V II and a new GFF region (denoted by V I in Figure 1.12) takes

its place. We mention here that the exact nature of the Markovian dynamics is not important for

our analysis. The reason we mention it is to emphasize that the stochastic six-vertex model and

the measures PN,M
u,v we consider here are related to each other and the presence of the KPZ region

V II in PN,M
u,v can be traced back to the presence of region I I I in PN,0

u,v . If the same dynamics are run

from a different initial configuration one may very well see a completely different phase diagram

than the one in Figure 1.12.
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As can be seen from Figure 1.12 the asymptotics of PN,M
u,v as N,M → ∞ appear to be quite

complex. A long term program, initiated in [71], is to rigorously establish the phase diagram in

Figure 1.12. So far only the asymptotics near the point IV have been understood. Specifically,

in [71] it was shown that near IV a certain configuration of empty edges converges to the GUE-

corners process, we define the latter here. Recall that the Gaussian Unitary Ensemble (GUE) is

a measure on Hermitian matrices {Xi j}
k
i,j=1 with density proportional to e−Tr(X2)/2 with respect to

Lebesgue measure. For 1 ≤ r ≤ k, let λr
1 ≤ λr

2 ≤ · · · ≤ λr
r denote the ordered eigenvalues of

the submatrix {Xi j}
r
i,j=1 of X . The joint law of the eigenvalues {λ j

i }1≤i≤ j≤k is called the GUE-

corners process of rank k (or the GUE-minors process). The appearance of the GUE-corners

process has been established in related contexts for random lozenge tilings in [113, 149, 154] and

the uniform six-vertex model with domain-wall boundary conditions [95]. It is believed to be a

universal scaling limit near points separating two different frozen regions such as the point IV .

This work, is a continuation of the program initiated in [71] of establishing the phase diagram

in Figure 1.12. Specifically, in Figure 1.12 the point V is another turning point we will show that

the statistics of the model PN,M
u,v near this point are also described by the GUE-corners process.

Before we state our main result we give our choice of parameters and some notation.

Definition 1.4.2. We assume that v,u, s ∈ (0,∞) satisfy v−1 > u > s > 1. With this choice of

parameters we define the constants

a =
v
(
u − s−1) (

s−1u − 1
)

(1 − uv)(1 − s−2uv)
, b =

(s2 − 1)
(u − s)(1 − su)

c =
1
2

(
a

(
1

(u − s)2
−

s2

(1 − su)2

)
−

s−4v2

(1 − s−2uv)2
+

v2

(1 − uv)2

)
, d =

−
√

2c
b

.

(1.27)

If v−1 > u > s > 1 one observes that

a > 0, b < 0, c > 0, d > 0.

See Lemma 4.5.1 in the main text for a verification of this fact.
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Figure 1.13: A demonstration of the particle positions λi
j(π). Theorem 1.4.4 says that these particle

positions after appropriate recentering and rescaling converge to the GUE-corners process.

Remark 1.4.3. The choice v−1 > u > s > 1 in Definition 1.4.2 corresponds to choosing b2 > b1.

This condition is essential because if b1 > b2 then all the up-right paths will end up packed against

the left boundary with high probability.

The main result of Chapter 4 is as follows.

Theorem 1.4.4. Suppose that u, v, s,a, d are as in Definition 1.27 and k ∈ N is given. Suppose

that N(M) is a sequence of integers such that N(M) ≥ k for all M and let PN,M
u,v be the measure on

collections of paths π ∈ PN as earlier in the section. Define the random vector Y (N,M; k) through

Y j
i (N,M; k) =

λ
j
j−i+1(π) − aM

d
√

M
for 1 ≤ i ≤ j ≤ k, (1.28)

See Figure 1.13. Then the sequence Y (N,M; k) converges weakly to the GUE-corners process of

rank k as M →∞.

Remark 1.4.5. In (1.28) we reverse the order of λ j
i because the usual convention for signatures

λ = (λ1, . . . , λn) demands that λi be sorted in decreasing order, while for the eigenvalues of a

random matrix the usual convention is that they are sorted in increasing order.

We mention here that while the asymptotic behaviors near IV and V are similar, the arguments

used to establish the two results are quite different. The arguments in [71] rely on a remarkable

class of difference operators, which can be used to extract averages of observables for PN,M
u,v near

40



the left boundary of the model. These observables become useless for accessing the asymptotic

behavior of the base of the model and consequently our approach in Part 4 is completely different,

and arguably more direct as we explain here. In the remainder of this section we give an outline

of our approach to proving Theorem 1.4.4. The discussion below will involve certain expressions

that will be properly introduced in Chapter 4, and which should be treated as black boxes for the

purposes of the outline.

Using the integrability of the model we obtain the formula

PN,M
u,v (λ

k
1 (π) = µ1, · · · , λ

k
1 (π) = µk) ∝ Fµ([u]k) · f (µ; [v]M, ρ),

for any µ = (µ1, . . . , µk) ∈ Sign+k for a certain function Fµ(·) defined in section 4.2. A general-

ization of this fact appears as Lemma 4.2.12 in Chapter 4. We then derive certain combinatorial

estimates for Fµ([u]k) and a contour integral formula for f (µ; [v]M, ρ) in Section 4.3, which are

both suitable for studying the M → ∞ limit of these expressions (for the function Fµ([u]k) the

dependence on M is reflected in the scaling of the signature µ). The limit of the contour inte-

gral formula for f (µ; [v]M, ρ) is derived in Section 4.5 using a steepest descent argument, while

the combinatorial estimates for Fµ([u]k) prove sufficient for taking its limit. Combining our two

asymptotic results for Fµ([u]k) and f (µ; [v]M, ρ) we can prove that the sequence of random vectors

in Rk , given by Y k(N,M) =
(
Y k

1 (N,M; k), . . . ,Y k
k (N,M; k)

)
with Y (N,M; k) as in Theorem 1.4.4

converges to the measure of the ordered eigenvalues of a random GUE matrix µk
GUE(dx1, ..., dxk),

given by

µk
GUE(dx1, ..., dxk) = 1{xk > xk−1 > · · · > x1}

(
1
√

2π

) k

·
1∏k−1

i=1 i!
·

∏
1≤i< j≤k

(xi − x j)
2

k∏
i=1

e−
xi
2 dxi .

The last statement appears as Proposition 4.4.3 in the text.

The above paragraph explains how we show that the top row of Y (N,M; k) converges to the top

row of the GUE-corners process of rank k. To obtain the full convergence statement we combine

our top row convergence statement with the general formalism, introduced in [71], involving Gibbs
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measures on interlacing arrays. In more detail, the top-row convergence of Y (N,M; k) and the

interlacing conditions

λi+1
1 (π) ≥ λ

i
1(π) ≥ λ

i+1
2 (π) ≥ λ

i
2(π) ≥ · · · ≥ λ

i
i(π) ≥ λ

i+1
i+1(π),

for i = 1, . . . , k − 1 are enough to conclude the tightness of the full vector Y (N,M; k) as M → ∞.

For each N,M the measures PN,M
u,v satisfy what we call the six-vertex Gibbs property and in the

M →∞ limit this property becomes what is known as the continuous Gibbs property, see Section

4.4.2. Combining the latter statements, one can conclude that any subsequential limit of Y (N,M; k)

as M →∞ has top row distribution µk
GUE(dx1, ..., dxk) and satisfies the continuous Gibbs property,

and these two characteristics are enough to identify this limit with the GUE-corners process of

rank k. As the sequence Y (N,M; k) is tight and all subsequential limits are the same and equal to

the GUE-corners of rank k, we conclude the weak convergence of Y (N,M; k). This argument is

given in Section 4.4.2.

1.5 The method of steepest descent

Much of our work in Chapters 2,3 and 4 goes into taking asymptotics of exact integral formulas

for observables of our models. An important piece of each of these asymptotic analyses is the

method of steepest descent (also called saddle point approximation).

The method steepest descent is a procedure for finding the asymptotics of an integral of the

form

IM =

∫
C

eM f (z)dz,

as M → ∞, where f is a holomorphic function and C is an integration contour in the complex

plane. The technique is to find a critical point z0 of f and deform the contour C so that it passes

through z0 in such a way that Re[ f (z)] decays quickly as z moves along the contour C away

from z0. In this situation eM f (z0)/eM f (z) has exponential decay in M . We use this, along with

specific information about our f and C, to argue that the integral can be localized at z0, i.e. the
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asymptotics of
∫
C∩Bε(z0)

eM f (z)dz are the same as those of IM (Bε(z0) is a ball of radius ε around

0 in the complex plane). Then we Taylor expand f near z0 and show that sufficiently high order

terms do not contribute to the asymptotics. This converts the first term of the asymptotics of IM

into a simpler integral that we can often evaluate. The most difficult step in this procedure is

usually finding a deformation of the contour C on which you can prove that Re[ f (z)] has a unique

maximum at the point z0.

In Chapters 2 and 3 the steepest descent argument begins with Fredholm determinant formulas

det(1 − K)L2(C) (see Definition 1.1.1) where the kernel K(u, v) is written as a single integral over

some contourD. Loosely speaking we perform a steepest descent argument on both the contour C

and the contour D to arrive at a recognizable Fredholm determinant formula (1.3) for the cumula-

tive density function of the Tracy-Widom GUE distribution. Both these steepest descent arguments

involve a double critical point of f (z) so we end up with integrals of eg(z) where g is the third order

Taylor expansion of f . This eventually leads to the appearance of the Airy function (1.2) in the

asymptotics.

In Chapter 4 the steepest descent argument begins with a k fold integral over a single contour.

We apply the same steepest descent argument in each variable to obtain the probability density

function for the eigenvalues of a matrix in the Gaussian unitary ensemble. This steepest descent

argument involves a single critical point z0 for the function f (z), so we end up with integrals of

eg(z) where g is a second order Talyor expansion of f around z0. These are Gaussian integrals and

upon evaluating them we retain a Gaussian probability density function in each variable.

1.6 An Epidemiology model for inhomogeneous populations

The final chapter of this thesis will study a model for the spread of a disease. This model is not

related to the KPZ universality class. The SIR (Susceptible Infected Recovered) model, introduced

in [121], is one of the simplest models for the growth of an epidemic. It involves dividing the

population into three compartments: those who are susceptible, those who are infected, and those

who are recovered, and writing differential equations for the sizes of these compartments over
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time. When S is the size of the susceptible compartment, I is the size of the infected compartment,

and R is the size of the recovered component the equations are

∂tSt = −βSt It,

∂t It = βSt It − γIt,

∂t Rt = γIt,

and S + I + R = 1, where β > 0 is the infection rate and γ > 0 is the recovery rate.

A standard short time approximation for this model is given by assuming that St ∼ 1 for small t.

This turns the equation for It into the simpler equation ∂t It ∼ (β−γ)It , with solution It ∼ I0et(β−γ).

This approximation leads to an important quantity called the basic reproduction rate R0 =
β
γ for the

classical SIR model. R0 is the typical number of secondary infections caused by a single infection.

If R0 > 1 the infection will spread and if R0 < 1 the infection will decay exponentially until it dies

off in the classical SIR model.

Features like vaccines, incubation time, loss of immunity, births, and deaths can be added into

the model quite naturally through simple modifications of the differential equations or through

adding additional compartments. However the SIR model involves a few essential assumptions

which are more difficult to change. First, the model is mean field, meaning that it assumes the

population is fully mixed so the amount of interaction between any two people in the population is

the same. Second, the model is deterministic. A fully realistic model for diseases should include

randomness coming from factors like how much a given infected person interacts with others while

they are infected, and which of the people they interact with end up getting infected. The SIR

model assumes that this randomness entirely washes out for a sufficiently large population which

at least early in an epidemic will not be true. Third, the SIR model assumes that the population

is homogeneous, i.e. there is no variability in how susceptible or infectious different people in

the population are. None of these conditions can be relaxed without significantly changing the

framework of the model.

Relaxing the assumption of homogeneity in the population is our focus in Chapter 5. We will
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set the infection rate β in the SIR model to be the product of a susceptibility parameter s and an

infectivity parameter σ. Then we let the susceptibility s and the infectivity σ be random variables

whose joint law p(σ, s)dσds we will specify. Instead of dividing the entire population into three

compartments S, I, and R, for each choice of s and σ we divide the population with the given

values of s and σ into three compartments S(σ, s), I(σ, s) and R(σ, s). We then write a set of

infinitely many coupled differential equations for these components.

St(σ, s)+It(σ, s) + Rt(σ, s) = p(σ, s),

∂t It(σ, s) = St(σ, s)s
∫

σ′It(σ
′, s′) dσ′ ds′ − γIt(σ, s),

∂t Rt(σ, s) = γIt(σ, s),

where S(σ, s) + I(σ, s) + R(σ, s) = p(σ, s) for all σ and s.

This inhomogeneous version of the SIR model is not entirely new. The case where suscepti-

bility varies but infectivity does not appeared in [93, 129]. Our main contribution is finding the

(unique) exact solution for these infinitely many coupled differential equations up to a time change

that solves an explicit ODE. The solution takes the form

It(σ, s) + Rt(σ, s) = p(σ, s) − S0(σ, s)e−sE[σ]ν(t),

It(σ, s) = −S0(σ, s) e−sE[σ]ν(t) + e−γt (p(σ, s) − R0(σ, s)
)
+ γS0(σ, s)

∫ t

0
dt′e−γ(t−t ′)−sE[σ]ν(t ′).

(1.29)

where the time change ν(t) is the unique solution to the equation

∂tν(t) = (1 − γν(t)) −
1
E[σ]

∫ (
σS0(σ, s)e−sE[σ]ν(t)

)
dσ ds,
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Figure 1.14: Comparison of epidemic spread for log-normal and Gamma distributions of infectivity
and susceptibility with standard deviation ζ . The cases of independent or completely correlated
σ and s are shown. We take E[s] = E[σ] = 0.6 and γ = 1/8 with initial conditions I0(σ, s) =
10−4p(σ, s).

with ν(0) = 0. Numerically solving for ν(t) is quite easy and several numerical solutions for the

total number of people who have been infected up to time t are shown in Figure 1.14.

We use this exact solution to show that in the limit where the initial infected population is taken

close to zero in an appropriate sense, the total number of people who are ever infected before the

disease dies out (called the final epidemic size Ω∞) is given by

Ω∞ = 1 − E[e−sE[σ]L] (1.30)

where L is the unique positive root of

L −
1
γ
+

1
γE[σ]

E[σe−sE[σ]L] = 0, (1.31)

if such a root exists. If no positive root exists then the infection begins with exponential decay

rather than exponential growth, and as the beginning infected population is taken to zero, Ω∞ = 0.

We also give a short time approximation of the solution to the inhomogeneous SIR model
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started with R0(σ, s) = 0 and I0(σ, s) � p(σ, s). This approximate solution is

It(σ, s) ∼ Cse(E[σs]−γ)t .

An important upshot is that if a sufficiently small proportion of the population begins infected

then the evolution of the disease depends very little on the initial conditions. In this short time

approximation the initial distribution I0 contributes only to the constant C. From this short time

time approximation we see that the correct generalization for the reproduction rate for this inho-

mogeneous SIR model is R0 =
E[σs]
γ , and sure enough when analyzing (1.31) one can see that a

positive solution exists if and only if R0 > 1.

It is worth mentioning that the form of (1.30) and (1.31) allows us to show that if the marginal

distributions of s and ω are fixed, then the joint law that maximizes the final epidemic size Ω∞

is given by the percentile coupling where the nth most susceptible person is also the nth most

infectious person. Similarly if s and σ are independent with E[σ] and E[s] fixed, then the final

epidemic size Ω∞ is maximized when s and σ are delta masses. This case where the distribution

of susceptibility and infectiousness in the population are given by delta masses is just the classical

SIR model.
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Chapter 2: Tracy-Widom asymptotics for a river delta model

This chapter is based on the article [26] written by myself and Guillaume Barraquand.

2.1 Model and results

First passage percolation was introduced in 1965 to study a fluid spreading through a random

environment [99]. This model has motivated many tools in modern probability, most notably King-

man’s sub-additive ergodic theorem (see the review [14] and references therein); it has attracted

attention from mathematicians and physicists alike due to the simplicity of its definition, and the

ease with which fascinating conjectures can be stated.

The Kardar-Parisi-Zhang (KPZ) universality class has also become a central object of study in

recent years [63]. Originally proposed to explain the behavior of growing interfaces in 1986 [115],

it has grown to include many types of models including random matrices, directed polymers, in-

teracting particle systems, percolation models, and traffic models. Much of the success in studying

these has come from the detailed analysis of a few exactly solvable models of each type.

We study an exactly solvable model at the intersection of percolation theory and KPZ uni-

versality: Bernoulli-exponential first passage percolation (FPP). Here is a brief description (see

Definition 2.1.1 for a more precise definition). Bernoulli-exponential FPP models the growth of a

river delta beginning at the origin in Z2
≥0 and growing depending on two parameters a, b > 0. At

time 0, the river is a single up-right path beginning from the origin chosen by the rule that when-

ever the river reaches a new vertex it travels north with probability a/(a + b) and travels east with

probability b/(a + b) (thick black line in Figure 2.1). The line with slope a/b can be thought of as

giving the direction in which the expected elevation of our random terrain decreases fastest.

As time passes the river erodes its banks creating forks. At each vertex which the river leaves
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(0,0)

Figure 2.1: A sample of the river delta (Bernoulli-exponential FPP percolation cluster) near the
origin. The thick black random walk path corresponds to the river (percolation cluster) at time 0.
The other thinner and lighter paths correspond to tributaries added to the river delta (percolation
cluster) at later times.

in the rightward (respectively upward) direction, it takes an amount of time distributed as an ex-

ponential random variable with rate a (resp. b) for the river to erode through its upward (resp.

rightward) bank. Once the river erodes one of its banks at a vertex, the flow at this vertex branches

to create a tributary (see gray paths in Figure 2.1). The path of the tributary is selected by the same

rule as the path of the time 0 river, except that when the tributary meets an existing river it joins the

river and follows the existing path. The full path of the tributary is added instantly when the river

erodes its bank.

In this model the river is infinite, and the main object of study is the set of vertices included

in the river at time t, i.e. the percolation cluster. We will also refer to the shape enclosed by the

outermost tributaries at time t as the river delta (see Figure 2.2 for a large scale illustration of the

river delta).

The model defined above can also be seen as the low temperature limit of the beta random walk

in random environment (RWRE) model [23], an exactly solvable model in the KPZ universality

class. Bernoulli-exponential FPP is particularly amenable to study because an exact formula for

the distribution of the percolation cluster’s upper border (Theorem 2.1.5 below) can be extracted
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Figure 2.2: The percolation cluster for 400×400 Bernoulli-exponential FPP at time 1 with a = b =
1. Paths occurring earlier are shaded darker, so the darkest paths occur near t = 0 and the lightest
paths occur near t = 1.

from an exact formula for the beta RWRE [23]. We perform an asymptotic analysis on this formula

to prove that at any fixed time, the width of the river delta satisfies a law of large numbers type

result with fluctuations converging weakly to the Tracy-Widom GUE distribution (see Theorem

2.1.4). Our law of large numbers result was predicted in [23] by taking a heuristic limit of [23,

Theorem 1.19]; we present this non-rigorous computation in Section 2.1.3. We also give other

interpretations of this result. In Section 2.1.5 we introduce an exactly solvable particle system and

show that the position of a particle at finite time has Tracy-Widom fluctuations.

2.1.1 Definition of the model

We now define the model more precisely in terms of first passage percolation following [23].

Definition 2.1.1 (Bernoulli-exponential first passage percolation). Let Ee be a family of indepen-
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dent exponential random variables indexed by the edges e of the lattice Z2
≥0. Each Ee is distributed

as an exponential random variable with parameter a if e is a vertical edge, and with parameter b

if e is a horizontal edge. Let (ζi,j) be a family of independent Bernoulli random variables with

parameter b/(a + b). We define the passage time te of each edge e in the lattice Z2
≥0 by

te =


ζi,j Ee if e is the vertical edge (i, j) → (i, j + 1),

(1 − ζi,j)Ee if e is the horizontal edge (i, j) → (i + 1, j).

We define the point to point passage time TPP(n,m) by

TPP(n,m) = min
π:(0,0)→(n,m)

∑
e∈π

te.

where the minimum is taken over all up-right paths from (0,0) to (n,m). We define the percolation

cluster C(t), at time t, by

C(t) =
{
(n,m) : TPP(n,m) ≤ t

}
.

At each time t, the percolation cluster C(t) is the set of points visited by a collection of up-right

random walks in the quadrant Z2
≥0. C(t) evolves in time as follows:

• At time 0, the percolation cluster contains all points in the path of a directed random walk

starting from (0,0), because at any vertex (i, j) we have passage time 0 to either (i, j + 1) or

(i + 1, j) according to the independent Bernoulli random variables ζi,j .

• At each vertex (i, j) in the percolation cluster C(t), with an upward (resp. rightward) neighbor

outside the cluster, we add a random walk starting from (i, j) with an upward (resp. rightward)

step to the percolation cluster with exponential rate (a) (resp. b). This random walk will almost

surely hit the percolation cluster after finitely many steps, and we add to the percolation cluster

only those points that are in the path of the walk before the first hitting point (see Figure 2.1).
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Define the height function Ht(n) by

Ht(n) = sup{m ∈ Z≥0 |TPP(n,m) ≤ t)}, (2.1)

so that (n,Ht(n)) is the upper border of C(t).

2.1.2 History of the model and related results

Bernoulli-exponential FPP was first introduced in [23], which introduced an exactly solv-

able model called the beta random walk in random environment (RWRE) and studied Bernoulli-

exponential FPP as a low temperature limit of this model (see also the physics works [184, 183]

further studying the Beta RWRE and some variants). The beta RWRE was shown to be exactly

solvable in [23] by viewing it as a limit of q-Hahn TASEP, a Bethe ansatz solvable particle system

introduced in [158]. The q-Hahn TASEP was further analyzed in [41, 64, 193], and was recently

realized as a degeneration of the higher spin stochastic six vertex model [5, 34, 46, 67], so that

Bernoulli-exponential FPP fits as well in the framework of stochastic spin models.

Tracy-Widom GUE fluctuations were shown in [23] for Bernoulli-exponential FPP (see Theo-

rem 2.1.2) and for Beta RWRE. In the Beta RWRE these fluctuations occur in the quenched large

deviation principle satisfied by the random walk and for the maximum of many random walkers in

the same environment.

The connection to KPZ universality was strengthened in subsequent works. In [65] it was

shown that the heat kernel for the time reversed Beta RWRE converges to the stochastic heat

equation with multiplicative noise. In [18] it was shown using a stationary version of the model

that a Beta RWRE conditioned to have atypical velocity has wandering exponent 2/3 (see also

[54]), as expected in general for directed polymers in 1+ 1 dimensions. The stationary structure of

Bernoulli-exponential FPP was computed in [182] (In [182] Bernoulli-exponential FPP is referred

to as the Bernoulli-exponential polymer).

The first occurrence of the Tracy-Widom distribution in the KPZ universality class dates back to
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the work of Baik, Deift and Johansson on longest increasing subsequences of random permutations

[16] (the connection to KPZ class was explained in e.g. [159]) and the work of Johansson on

TASEP [112]. In the past ten years, following Tracy and Widom’s work on ASEP [188, 186,

187] and Borodin and Corwin’s Macdonald processes [36], a number of exactly solvable 1 + 1

dimensional models in the KPZ universality class have been analyzed asymptotically. Most of

them can be realized as more or less direct degenerations of the higher-spin stochastic six-vertex

model. This includes particle systems such as exclusion processes (q-TASEP [43, 21, 157, 156] and

other models [24, 15, 91, 193]), directed polymers ([37, 42, 38, 68, 125, 151]), and the stochastic

six-vertex model [6, 4, 22, 39, 45].

2.1.3 Main result

The study of the large scale behavior of passage times TPP(n,m) was initiated in [23]. At

large times, the fluctuations of the upper border of the percolation cluster (described by the height

function Ht(n)) has GUE Tracy-Widom fluctuations on the scale n1/3.

Theorem 2.1.2 ([23, Theorem 1.19]). Fix parameters a, b > 0. For any θ > 0 and x ∈ R,

lim
n→∞
P

(
Hτ(θ)n − κ(θ)n

ρ̃(θ)n1/3 ≤ x
)
= FGUE(x), (2.2)

where FGUE is the GUE Tracy-Widom distribution (see Definition 2.2.3) and κ(θ), τ(θ), ρ̃(θ) =

κ′(θ)
τ′(θ) ρ(θ) are functions defined in [23] by

κ(θ) :=
1
θ2 −

1
(a+θ)2

1
(a+θ)2 −

1
(a+b+θ)2

,

τ(θ) :=
1

a + θ
−

1
θ
+ κ(θ)

(
1

a + θ
−

1
a + b + θ

)
=

a(a + b)
θ2(2a + b + 2θ)

,

ρ(θ) :=
[

1
θ3 −

1
(a + θ)3

+ κ(θ)

(
1

(a + b + θ)3
−

1
(a + θ)3

)]1/3
.

Note that as θ ranges from 0 to∞, κ(θ) ranges from +∞ to a/b and τ(θ) ranges from +∞ to 0.
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Remark 2.1.3. In [23] the limit theorem is incorrectly stated as

lim
n→∞
P

(
mini≤n TPP(i, κ(θ)n) − τ(θ)n

ρ(θ)n1/3 ≤ x
)
= FGUE(x),

but following the proof in [23, Section 6.1], we can see that the inequality and the sign of x should

be reversed. Further, we have reinterpreted the limit theorem in terms of height function Ht(n)

instead of passage times TPP(n,m) using the relation (2.1).

In this Chapter, we are interested in the fluctuations of Ht(n) for large n but fixed time t. Let us

scale θ in (2.2) above as

θ =

(
na(a + b)

2t

)1/3
,

so that

τ(θ)n = t +O(n−1/3).

Let us introduce constants

λ =

(
a(a + b)

2t

)1/3
, d =

3a(a + b)
2bλ

, σ =

(
3a(a + b)λ

2b3

)1/3
. (2.3)

Then, we have the approximations

κ(θ)n =
a
b

n + dn2/3 + o(n4/9),

ρ̃(θ)n1/3 = σn4/9 + o(n4/9).

Thus, formally letting θ and n go to infinity in (2.2) suggests that for a fixed time t, it is natural to

scale the height function as

Ht(n) =
a
b

n + dn2/3 + σn4/9χn,

and study the asymptotics of the sequence of random variables χn.

Our main result is the following.

54



Theorem 2.1.4. Fix parameters a, b > 0. For any t > 0 and x ∈ R,

lim
n→∞
P

(
Ht(n) − a

bn − dn2/3

σn4/9 ≤ x

)
= FGUE(x),

where FGUE is the GUE Tracy-Widom distribution.

Note that the heuristic argument presented above to guess the scaling exponents and the ex-

pression of constants d and σ is not rigorous, since Theorem 2.1.2 holds for fixed θ. Theorem

2.1.2 could be extended without much effort to a weak convergence uniform in θ for θ varying in a

fixed compact subset of (0,+∞). However the case of θ and n simultaneously going to infinity re-

quires more careful analysis. Indeed, for θ going to infinity very fast compared to n, Tracy-Widom

fluctuations would certainly disappear as this would correspond to considering the height function

at time τ(θ)n ≈ 0, that is a simple random walk having Gaussian fluctuations on the n1/2 scale. We

explain in the next section how we shall prove Theorem 2.1.4.

The scaling exponents in Theorem 2 might seem unusual, although the preceding heuristic

computation explains how they result from rescaling a model which has the usual KPZ scaling

exponents. A similar situation occurs for scaling exponents of the height function of directed last

passage percolation in thin rectangles [17, 33] and for the free energy of directed polymers [13]

under the same limit.

2.1.4 Outline of the Proof

Recall that given an integral kernel K : C2 → C, its Fredholm determinant is defined as

det(1 + K)L2(C) :=
1

2πi

∞∑
n=0

1
n!

∫
Cn

det[K(xi, x j)]
n
i,j=1dx1...dxn.

To prove Theorem 2.1.4 we begin with the following Fredholm determinant formula for P(Ht(n) <

m), and perform a saddle point analysis.
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Theorem 2.1.5 ([23, Theorem 1.18]).

P(Ht(n) < m) = det(I − Kn)L2(C0),

where C0 is a small positively oriented circle containing 0 but not −a−b, and Kn : L2(C0) → L
2(C0)

is defined by its integral kernel

Kn(u,u′) =
1

2πi

∫ 1/2+i∞

1/2−i∞

ets

s
g(u)

g(s + u)
ds

s + u − u′
, where (2.4)

g(u) =
(a + u

u

)n ( a + u
a + b + u

)m 1
u
. (2.5)

Remark 2.1.6. Note that [23, Theorem 1.18] actually states P(Ht(n) < m) = det(I + Kn)L2(C0),

instead of det(I − Kt,n)L2(C0) due to a sign mistake.

This result was proved in [23] by taking a zero-temperature limit of a similar formula for the

Beta RWRE obtained using the Bethe ansatz solvability of q-Hahn TASEP and techniques from

[36, 43]. The integral (2.4) above is oscillatory and does not converge absolutely, but we may

deform the contour so that it does. We will justify this deformation in Section 2.2.

Theorem 2.1.4 is proven in Section 2 by applying steep descent analysis to det(1−Kn), however

the proofs of several key lemmas are deferred to later sections. The main challenge in proving

Theorem 2.1.4 comes from the fact that, after a necessary change of variables ω = n−1/3u, the

contours of the Fredholm determinant are being pinched between poles of the kernel Kn at ω = 0

and ω = −a−b
n1/3 as n→ ∞. In order to show that the integral over the contour near 0 does not affect

the asymptotics, we prove bounds for Kn near 0, and carefully choose a family of contours Cn on

which we can control the kernel. This quite technical step is the main goal of Section 3. Section 4

is devoted to bounding the Fredholm determinant expansion of det(1−Kn)L2(Cn), in order to justify

the use of dominated convergence in Section 2.
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2.1.5 Other interpretations of the model

There are several equivalent interpretations of Bernoulli-exponential first passage percolation.

We will present the most interesting here.

A particle system on the integer line

The height function of the percolation cluster Ht(n) is equivalent to the height function of an

interacting particle system we call geometric jump pushTASEP, which generalizes pushTASEP

(the R = 0 limit of PushASEP introduced in [44]) by allowing jumps of length greater than 1. This

model is similar to Hall-Littlewood pushTASEP introduced in [91], but has a slightly different

particle interaction rule.

Definition 2.1.7 (Geometric jump pushTASEP). Let Geom(q) denote a geometric random variable

with P(Geom(q) = k) = qk(1 − q). Let 1 ≤ p1(t) < p2(t) < ... < pi(t) < ... be the positions

of ordered particles in Z≥1. At time t = 0 the position n ∈ Z≥0 is occupied with probability

b/(a+b). Each particle has an independent exponential clock with parameter a, and when the clock

corresponding to the particle at position pi rings, we update each particle position p j in increasing

order of j with the following procedure. (pi(t−) denotes the position of particle i infinitesimally

before time t.)

• If j < i, then p j does not change.

• pi jumps to the right so that the difference pi(t)− pi(t−) is distributed as 1+Geom(a/(a+ b))

• If j > i, then

– If the update for p j−1(t) causes p j−1(t) ≥ p j(t−), then p j(t) jumps right so that p j(t) −

p j−1(t) is distributed as 1 + Geom(a/(a + b)).

– Otherwise p j does not change.

– All the geometric random variables in the update procedure are independent.
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Figure 2.3: This figure illustrates a single update for geometric jump pushTASEP. The clock cor-
responding to the leftmost particle rings, activating the particle. The first particle jumps 2 steps
pushing the next particle and activating it. This particle jumps 1 step pushing the rightmost particle
and activating it. The rightmost particle jumps 3 steps, and all particles are now in their original
order, so the update is complete.

Another way to state the update rule is that each particle jumps with exponential rate a, and

the jump distance is distributed as 1 + Geom(a/(a + b)). When a jumping particle passes another

particle, the passed particle is pushed a distance 1 + Geom(a/(a + b)) past the jumping particle’s

ending location (see Figure 2.3).

The height function Ht(n) at position n and time t is the number of unoccupied sites weakly to

the left of n. If we begin with the distribution of (n,Ht(n)) in our percolation model, and rotate the

first quadrant clockwise 45 degrees, the resulting distribution is that of (n,Ht(n)). The horizontal

segments in the upper border of the percolation cluster correspond to the particle positions, thus

Ht(n) = pt(n) − n = sup{k : Ht(n + k) ≥ k}.

A direct translation of Theorem 2.1.4 gives:

Corollary 2.1.8. Fix parameters a, b > 0. For any t > 0 and x ∈ R,

lim
n→∞
P
©­­«

pt(n) −
(

a+b
b

)
n − dn2/3

σn4/9 ≤ x
ª®®¬ = FGUE(x),
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where FGUE(x) is the Tracy-Widom GUE distribution.

To the authors knowledge Corollary 2.1.8 is the first result in interacting particle systems show-

ing Tracy-Widom fluctuations for the position of a particle at finite time.

Degenerations

If we set b = 1, t′ = t/a, and a → 0, then in the new time variable t′ each particle performs a

jump with rate 1 and with probability going to 1, each jump is distance 1, and each push is distance

1. This limit is pushTASEP on Z≥0 where every site is occupied by a particle at time 0. Recall that

in pushTASEP, the dynamics of a particle are only affected by the (finitely many) particles to its

left, so this initial data makes sense.

We can also take a continuous space degeneration. Let x be the spatial coordinate of geometric

jump pushTASEP, and let exp(λ) denote an exponential random variable with rate λ. Choose a

rate λ > 0, and set b = λ
n , x
′ = x/n,a = n−λ

n , and let n → ∞. Then our particles have jump

rate n−λ
n → 1, jump distance Geom(1−λ/n)

n → exp(λ), and push distance Geom(1−λ/n)
n → exp(λ).

This is a continuous space version of pushTASEP on R≥0 with random initial conditions such that

the distance between each particle position pi and its rightward neighbor pi+1 is an independent

exponential random variable of rate λ. Each particle has an exponential clock, and when the

clock corresponding to the particle at position pi rings, an update occurs which is identical to

the update for geometric jump pushTASEP except that each occurrence of the random variable

1 + Geom(a/(a + b)) is replaced by the random variable exp(λ).

A benchmark model for travel times in a square grid city

The first passage times of Bernoulli-exponential FPP can also be interpreted as the minimum

amount of time a walker must wait at streetlights while navigating a city [61]. Consider a city,

whose streets form a grid, and whose stoplights have i.i.d exponential clocks. The first passage

time of a point (n,m) in our model has the same distribution as the minimum amount of time a

walker in the city has to wait at stoplights while walking n streets east and m streets north. Indeed
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at each intersection the walker encounters one green stoplight with zero passage time and one

red stoplight at which they must wait for an exponential time. Note that while the first passage

time is equal to the waiting time at stoplights along the best path, the joint distribution of waiting

times of walkers along several paths is different from the joint passage times along several paths

in Bernoulli-exponential FPP.

2.1.6 Further directions

Bernoulli-exponential FPP has several features that merit further investigation. From the per-

spective of percolation theory, it would be interesting to study how long it takes for the percolation

cluster to contain all vertices in a given region, or how geodesics from the origin coalesce as two

points move together.

From the perspective of KPZ universality, it is natural to ask: what is the correlation length of

the upper border of the percolation kernel, and what is the joint law of the topmost few paths.

Under diffusive scaling limit, the set of coalescing simple directed random walks originating

from every point of Z2 converges to the Brownian web [80, 81]. Hence the set of all possible

tributaries in our model converges to the Brownian web. One may define a more involved set

of coalescing and branching random walks which converges to a continuous object called the

Brownian net ([148], [179], see also the review [167]). Thus, it is plausible that there exist a

continuous limit of Bernoulli-Exponential FPP where tributaries follow Brownian web paths and

branch at a certain rate at special points of the Brownian web used in the construction of the

Brownian net.

After seeing Tracy-Widom fluctuations for the edge statistics it is natural to ask whether the

density of vertices inside the river along a cross section is also connected to random matrix eigen-

values and whether a statistic of this model converges to the positions of the second, third, etc.

eigenvalues of the Airy point process.
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2.1.7 Notation and conventions

We will use the following notation and conventions.

• Bε(x) will denote the open ball of radius ε > 0 around the point x.

• Re[x] will denote the real part of a complex number x, and Im[x] denotes the imaginary

part.

• C and γ with any upper or lower indices will always denote an integration contour in the

complex plane. K with any upper or lower indices will always represent an integral kernel.

A lower index like γr , Cn, or Kn will usually index a family of contours or kernels. An upper

index such as γε, Cε, or Kε will indicate that we are intersecting our contour with a ball of

radius ε, or that the integral defining the kernel is being restricted to a ball of radius ε.
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2.2 Asymptotics

2.2.1 Setup

The steep descent method is a method for finding the asymptotics of an integral of the form

IM =

∫
C

eM f (z)dz,

as M → ∞, where f is a holomorphic function and C is an integration contour in the complex

plane. The technique is to find a critical point z0 of f , deform the contour C so that it passes through
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z0 and Re[ f (z)] decays quickly as z moves along the contour C away from z0. In this situation

eM f (z0)/eM f (z) has exponential decay in M . We use this along with specific information about our

f and C, to argue that the integral can be localized at z0, i.e. the asymptotics of
∫
C∩Bε(z0)

eM f (z)dz

are the same as those of IM . Then we Taylor expand f near z0 and show that sufficiently high order

terms do not contribute to the asymptotics. This converts the first term of the asymptotics of IM

into a simpler integral that we can often evaluate.

In Section 2.1 we will manipulate our formula for P(h(n) < m), and find a function f1 so that the

kernel Kn can be approximated by an integral of the form
∫
λ+iR en1/3[ f1(z)− f1(ω)]dz. Approximating

Kn in this way will allow us to apply the steep descent method to both the integral defining Kn and

the integrals over C0 in the Fredholm determinant expansion.

For the remainder of the Chapter we fix a time t > 0, and parameters a, b > 0. All constants

arising in the analysis below depend on those parameters t,a, b, though we will not recall this

dependency explicitly for simplicity of notation.

We also fix henceforth

m =
⌊a

b
n + dn2/3 + n4/9σx

⌋
. (2.6)

We consider Kn and change variables setting z̃ = s + u, dz̃ = ds to obtain

K̃n(u,u′) =
1

2πi

∫ 1/2+u+i∞

1/2+u−i∞

et(z̃−u)

(z̃ − u)(z̃ − u′)
g(u)
g(z̃)

dz̃.

In the following lemma, we change our contour of integration in the z̃ variable so that it does not

depend on u.

Lemma 2.2.1. For every fixed n,

K̃n(u,u′) =
1

2πi

∫
n1/3λ+iR

et(z̃−u)

(z̃ − u)(z̃ − u′)
g(u)
g(z̃)

dz̃.

Proof. Choose the contour C0 to have radius 0 < r < min[1/4, λ]. This choice of r means that

we do not cross C0 when deforming the contour 1/2 + u + iR to λ + iR. In this region K is a
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holomorphic function, so this deformation does not change the integral provided that for M real,

1
2πi

∫ n1/3λ+iM

1/2+u+iM

et(z̃−u)

(z̃ − u)(z̃ − u′)
g(u)
g(z̃)

dz̃ −−−−−−→
M→±∞

0.

This integral converges to 0 because for all z̃ ∈ [n1/3λ−iM,1/2+u−iM]∪[n1/3λ+iM,1/2+u+iM]

we have ���� 1
(z̃ − u)(z̃ − u′)g(z̃)

���� ∼ 1
M
,

as M →∞.

�

Set

h̃n(z) = −n log
(

a + z
z

)
− m log

(
a + z

a + b + z

)
, so that eh̃n(z) =

z
g(z)

.

Then

Kn(u,u′) =
1

2πi

∫
n1/3λ+iR

et z̃+h̃n(z̃)

etu+h̃n(u)

z̃
u

dz̃
(z̃ − u)(z̃ − u′)

.

Now perform the change of variables

z = n−1/3 z̃,ω = n−1/3u,ω′ = n−1/3u′.

If we view our change of variables as occuring in the Fredholm determinant expansion, then due

to the dωis, we see that scaling all variables by the same constant does not change the Fredholm

determinant det(1 − Kn)L2(C). Thus our change of variables gives

Kn(ω,ω
′) =

1
2πi

∫
λ+iR

en1/3t(z−ω)

(z − ω)(z − ω′)
ehn(z)−hn(ω) z

ω
dz

where

hn(z) = h̃n(n1/3z) = −n log
(

a + n1/3z
n1/3z

)
− m log

(
a + n1/3z

a + b + n1/3z

)
.
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Remark 2.2.2. The contour for ω, ω′ becomes n−1/3C0 after the change of variables, but Kn(ω,ω
′)

is holomorphic in most of the complex plane. Examining of the poles of the integrand for Kn(ω,ω
′),

we see that we can deform the contour for ω,ω′ in any way that does not cross the line λ + iR,

the pole at −(a + b)/n1/3, or the pole at 0, without changing the Fredholm determinant det(I −

Kn)L2(n−1/3C0).

Taylor expanding the logarithm in the variable n gives

hn(z) = −n1/3
(

a(a + b)
2z2 −

bd
z

)
− n1/9

(
−bσx

z

)
+ rn(z).

Here rn(z) = O(1) in a sense that we make precise in Lemma 2.2.7. The kernel can be rewritten as

Kn(ω,ω
′) =

1
2πi

∫
λ+iR

exp(n1/3( f1(z) − f1(w)) + n1/9( f2(z) − f2(ω)) + (rn(z) − rn(ω)))

(z − ω)(z − ω′)
z
ω

dz

where

f1(z) = tz −
a(a + b)

2z2 +
bd
z
, f2(z) =

bσx
z
. (2.7)

We have approximated the kernel as an integral of the form
∫

en1/3[ f1(z)− f1(ω)]dz. To apply the

steep-descent method, we want to understand the critical points of the function f1. We have

f ′1(z) = t+
a(a + b)

z3 −
db
z2 , f ′′1 (z) = −

3a(a + b)
z4 +

2bd
z3 , f ′′′1 (z) =

12a(a + b)
z5 −

6bd
z4 . (2.8)

Where a, b are the parameters associated to the model. Let the constant λ be as defined in (4.51),

then 0 = f ′1(λ) = f ′′1 (λ) = 0, and

f ′′′1 (λ) =
3a(a + b)

λ5 = 2
(

bσ
λ2

)3
= 2

(
− f ′2(λ)

x

)3

,

is a positive real number. σ is defined in equation (4.51).

Recall the definition of the Tracy-Widom GUE distribution, which governs the largest eigen-

64



value of a gaussian hermitian random matrix.

Definition 2.2.3. The Tracy-Widom distribution’s distribution function is defined as FGUE(x) =

det(1 − KAi)L2(x,∞), where KAi is the Airy kernel,

KAi(s, s′) =
1

2πi

∫ e2πi/3∞

e−2πi/3∞
dω

1
2πi

∫ eπi/3∞

e−πi/3∞
dz

ez3/3−zs

eω3/3−ωs′
1

(z − ω)
.

In the above integral the two contours do not intersect. We can think of the inner inte-

gral following the contour (e−πi/3∞,1] ∪ (1, eπi/3∞), and the outer integral following the contour

(e−2πi/3∞,0] ∪ (0, e2πi/3∞). Our goal through the rest of the Chapter is to show that the Fredholm

determinant det(I − Kn) converges to the Tracy-Widom distribution as n→∞.

2.2.2 Steep descent contours

Definition 2.2.4. We say that a path γ : [a, b] → C is steep descent with respect to the function f

at the point x = γ(0) if d
dtRe[ f (γ(t))] > 0 when t > 0, and d

dtRe[ f (γ(t))] < 0 when t < 0.

We say that a contour C is steep descent with respect to a function f at a point x, if the contour

can be parametrized as a path satisfy the above definition. Intuitively this statement means that as

we move along the contour C away from the point x, the function f is strictly decreasing.

In this section we will find a family of contours γr for the variable z and so that γr is steep

descent with respect to Re[ f1(z)] at the point λ, and study the behavior of Re[ f1]. The contours Cn

for ω are constructed in Section 2.3.

Lemma 2.2.5. The contour λ + iR is steep descent with respect to the function Re[ f1] at the point

λ.

Proof. We have that

d
dy
Re[ f1(λ + iy)] = −Im[ f ′1(λ + iy)] = −Im

[
t +

a(a + b)
(λ + iy)3

−
bd

λ + iy

]
.

Now using the relation 2bdλ = 3a(a + b) and computing gives
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d
dy
Re[ f1(λ + iy)] =

−4a(a + b)y3

(λ2 + y2)3
.

This derivative is negative when y > 0 and positive when y < 0.

�
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Figure 2.4: The level lines of the function Re[ f1(z)] at value Re[ f1(λ)]. In this image we take
a = b = t = 1.

Now we describe the contour lines of Re[ f1(z)] seen in Figure 2.4. Re[ f1] is the real part

of a holomorphic function, so its level lines are constrained by its singularities, and because the

singularities are not too complicated, we can describe its level lines. The contour lines of the real

part of a holomorphic function intersect only at critical points and poles and the number of contour

lines that intersect will be equal to the degree of the critical point or pole. We can see from the

Taylor expansion of f1 at λ, that there will be 3 level lines intersecting at λ with angles π/6, π/2,

and 5π/6. From the form of f1, we see that there will be 2 level lines intersecting at 0 at angles

π/4 and 3π/4, and that a pair of contour lines will approach i∞ and −i∞ respectively with Re[z]

approaching f1(λ)/t. This shows that, up to a noncrossing continuous deformation of paths, the

lines in Figure 2.4 are the contour lines Re[ f1(z)] = f1(λ). We can also see that on the right side of

the figure, tz will be the largest term of Re[ f1(z)], so our function will be positive. This determines

the sign of Re[ f1(z)] in the other regions.

Our contour λ + iR is already steep descent, but we will deform the tails, so that we can use
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e−2πi/3∞

e2πi/3∞

0

λ + ir

λ − ir

λ

λ + iε

λ − iε

Figure 2.5: The contour γr is the infinite piecewise linear curve formed by the union of the vertical
segment and the two semi infinite rays, oriented from bottom to top. The bold portion of this
contour near λ is γεr .

dominated convergence in the next section.

Definition 2.2.6. For any r > 0, define the contour γr = (e−2πi/3∞, λ − ri) ∪ [λ − ri, λ + ri] ∪ (λ +

ri, e2πi/3∞) and γεr = γr ∩ Bε(λ). These contours appear in Figure 2.5.

Because for any fixed n, we have ehn(z) → 1 as |z | → ∞, z
ω(z−ω)(z−ω′) has linear decay in z, and

en1/3t(z−ω) has exponential decay in z, we can deform the vertical contour λ + iR to the contour γr .

Thus

Kn(ω,ω
′) =

∫
γr

en1/3t(z−ω)

(z − ω)(z − ω′)
ehn(z)−hn(ω) z

ω
dz.

The function Re[ f1] is still steep descent on the contour γr with respect to the point λ. Lemma

2.2.5 shows thatRe[ f1] is steep descent on the segment [λ−ri, λ+ri], and on (e−2πi/3∞, λ−ri)∪(λ+

ri, e2πi/3∞) we inspect f ′1(z) and note that for z sufficiently large, the constant term t dominates the

other terms. Because our paths are moving in a direction with negative real component the contour

γr is steep descent.

Up to this point we have been concerned with contours being steep descent with respect to
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Re[ f1], but the true function in our kernel is exp(n1/3t(z − ω) + hn(z) − hn(ω)). To show that γr is

steep descent with respect to this function, we will need to control the error term n1/3tz + hn(z) −

n1/3 f1(z) = n1/9 f2(z) + rn(z). The following lemma gives bounds on this error term away from

z = 0.

Lemma 2.2.7. For any N, ε > 0 there is a constant C depending only on ε,N such that

| f2(ω)| ≤ C and |rn(ω)| ≤ C, (2.9)

for all n ≥ N, and ω ≥ |a+b|+ε
N1/3 .

Similarly for any δ > 0, there exists Nδ and C′ depending only on δ, such that

| f ′2(ω)| ≤ C′ and |r′n(ω)| ≤ C′, (2.10)

for all n ≥ Nδ, and ω satisfying |ω| ≥ δ.

Lemma 2.2.7 is proved in Section 2.3.

At this point we have a contour γr for the variable z, which is steep descent with respect to

Re[ f1]. We want to find a suitable contour for ω. The following lemma shows the existence of

such a contour Cn, where property (c) below takes the place of being steep descent. This lemma

is fairly technical and its proof is the main goal of Section 2.3. To see why observe that the

function n1/3 f1(ω) does not approximate n1/3tω − hn(ω) well when ω is near 0. The fact that the

contribution near 0 is negligible is nontrivial because the function n1/3tω − hn(ω) has poles at 0

and −a−b
n1/3 , and our contour Cn is being pinched between them; we will use Lemma 2.2.8 to show

that the asymptotics of det(1 − Kn)L2(Cn) are not affected by these poles

Lemma 2.2.8. There exists a sequence of contours {Cn}n≥N such that:

(a) For all n, the contour Cn encircles 0 counterclockwise, but does not encircle (−a − b)n−1/3.

(b) Cn intersects the point λ at angles −π/3 and −2π/3.
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(c) For all ε > 0, there exists η,Nε > 0 such that for all n > Nε, ω ∈ Cn \ C
ε
n and z ∈ γr , we

have

Re[n1/3t(z − ω) + hn(z) − hn(ω)] ≤ −n1/3η,

where Cεn = Cn ∩ Bε(λ).

(d) There is a constant C such that for all ω ∈ Cn,

Re[n1/3t(λ − ω) + hn(λ) − hn(ω)] ≤ n1/9C.

The next lemma allows us to control Re[n1/3tz + hn(z)] on the contour γr .

Lemma 2.2.9. For all ε > 0, and for sufficiently large r, there exists C,Nε > 0, such that for all

ω ∈ Cn, and z ∈ γr \ γ
ε
r , then

Re[hn(z) − hn(ω) + n1/3t(z − ω)] ≤ −n−1/3C.

Proof. We have already shown that γr is steep descent with respect to f1(z).

By Lemma 2.2.7, |rn | ≤ C, | f2 | ≤ Cn1/9 away from 0. We have

hn(z) − hn(ω) + n1/3t(z − ω) =n1/3( f1(z) − f1(ω)) + n1/9( f2(z) − f2(ω)) + (rn(z) − rn(ω))

≤ n1/3( f1(z)− f1(ω)) + n1/9C + C ≤ n1/3( f1(z) − f1(ω) + δ),

for any sufficiently small δ > 0. Because f1(z) is decreasing as we move away from λ, we have

n1/3tz + hn(z) < n1/3tλ + hn(λ) + Cn1/9.
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Thus by 2.2.7, we have that for all ε > 0 there exists C such that for z ∈ γr \ γ
ε
r ,

Re[hn(z) − hn(λ) + n1/3t(z − λ)] ≤ −n1/3C.

By Lemma 2.2.8 (d), we have

Re[hn(λ) − hn(ω) + n1/3t(λ − ω)] ≤ n1/9C,

for ω ∈ Cn. This completes the proof �

2.2.3 Localizing the integral

In this section we will use Lemma 2.2.8 and Lemma 2.2.9 to show that the asymptotics of

det(1 − Kn)L2(Cn) do not change if we replace Cn with Cεn = Cn ∩ Bε(λ), and replace the contour γr

defining Kn with the contour γεr = γr ∩ Bε(0).

First we change variables setting z = λ + n−1/9z,ω = λ + n−1/9ω, and ω′ = λ + n−1/9z.

Definition 2.2.10. Define the contours D0 = [−i∞, i∞], and Dδ
0 = D0 ∩ Bδ(0). (We will often use

δ = n1/9ε.)

Our change of variables applied to the kernel Kε
n gives

K
ε

n(ω,ω
′
) =

1
2πi

∫
Dn1/9ε

0

1
(z − ω)(z − ω′)

(λ + n−1/9z)
(λ + n−1/9ω)

en1/3 f1(λ+n−1/9z)− f1(λ+n−1/9ω)

× en1/9 f2(λ+n−1/9z)− f2(λ+n−1/9ω)ern(λ+n−1/9z)−rn(λ+n−1/9ω)dz. (2.11)

Definition 2.2.11. The contours C−1 and Cε
−1 are defined as C−1 = (e−2πi/3∞,−1) ∪ [−1, e2πi/3∞)

and Cε
−1 = C−1 ∩ Bn1/9ε(−1).

By changing variables, for each m we have

∫
(Cεn )

m

det(Kε
n (ωi,ω j))

m
i,j=1dω1...dωm =

∫
(Cn

1/9ε
−1 )m

det(Kε

n(ωi,ω j))
m
i,j=1dω1...dωm.
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This equality follows, because after rescaling the contour Cε
n , we can deform it to the contour

Cn1/9ε
−1 without changing its endpoints. The previous equality implies

det(1 − Kε
n )L2(Cεε )

= det(1 − K
ε

n)L2(Cn
1/9ε
−1 )

.

We will make this change of variables often in the following arguments. Given a contour such

as Cn or γr , we denote the contour after the change of variables by Cn or γr . Now we are ready to

localize our integrals.

Proposition 2.2.12. For any sufficiently small ε > 0,

lim
n→∞

det(1 − Kn(ω,ω
′))L2(C) = lim

n→∞
det(1 − Kε

n (ω,ω
′))L2(Cεn )

,

where

Kε
n =

1
2πi

∫
γεr

en1/3t(z−ω)+hn(z)−hn(ω)

(z − ω)(z − ω′)
z
w

dz.

Proof. The proof will have two steps, and will use several lemmas that are proved in Section 4. In

the first step we localize the integral in the z variable and show that limn→∞ det(1 − Kn)L2(Cε) =

limn→∞ det(1 − Kε
n )L2(Cε) using dominated convergence. In order to prove this, we appeal to Lem-

mas 2.4.1 and 2.4.2 to show that the Fredholm series expansions are indeed dominated. In the

second step we localize the integral in the ω,ω′ variables by using Lemma 2.4.3 to find an upper

bound for det(1 + Kn)L2(Cn) − det(1 + Kn)L2(Cεn )
. Then we appeal to Lemma 2.4.4 to show that this

upper bound converges to 0 as n→∞.

Step 1: By Lemma 2.2.9, for any ε > 0, there exists a C′,N > 0 such that if ω ∈ Cn and

z ∈ γr \ γ
ε
r , then for all n > N ,

Re[hn(z) − hn(ω) + n1/3t(z − ω)] ≤ −n1/3C′.
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We bound our integrand on γr \ γ
ε
r , ω,ω′ ∈ Cεn ,�����ehn(z)−hn(ω)+n1/3t(z−ω)

(z − ω)(z − ω′)
z
ω

����� ≤ C
δ2 ze−n1/3C ′ pointwise

−−−−−−−→
n→∞

0.

(the δ2 comes from the fact that |z − ω| ≥ δ). By Lemma 2.2.7, there exists a η > 0 such that for

sufficiently large n, �����ehn(z)−hn(ω)+n1/3t(z−ω)

(z − ω)(z − ω′)
z
ω

����� <
�����en1/3( f1(z)− f1(ω)+η)

(z − ω)(z − ω′)
z
ω

����� .
The linear term of f1(z) in (2.7) implies

1
2πi

∫
γr

�����en1/3( f1(z)− f1(ω)+η)

(z − ω)(z − ω′)
z
ω

����� dz < ∞.

In the previous inequality we should write |dz | instead of dz. We will often omit the abso-

lute value in the dω portion of the complex integral when the integrand is a positive real valued

function.

So for each ω,ω′, by dominated convergence

1
2πi

∫
γr\γ

ε
r

ehn(z)−hn(ω)+n1/3t(z−ω)

(z − ω)(z − ω′)
z
ω

dz → 0 as n→∞,

So limn→∞ Kε
n (ω,ω

′) = limn→∞ Kn(ω,ω
′).

Now by Lemma 2.4.1, and 2.4.2, both Fredholm determinant expansions det(1 − Kn)L2(Cε)

and det(1 − Kε
n )L2(Cε), are absolutely bounded uniformly in n. Thus we can apply dominated

convergence to get

lim
n→∞

det(1 − Kn)L2(Cε) = lim
n→∞

det(1 − Kε
n )L2(Cε). (2.12)
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Step 2: In the expansion

det(1 − Kn)L2(Cn) =

∞∑
m=0

1
m!

∫
(Cn)

m

det(Kn(ωi,ω
′
j))

n
i,j=1dω1, ..., dωm.

The mth term can be decomposed as the sum

∫
(Cεn )

m

det(Kn(ωi,ω j))
n
i,j=1dω1...dωm +

∫
Cmn \(C

ε
n )

m

det(Kn(ωi,ω j))
n
i,j=1dω1...dωm.

Lemma 2.4.3 along with Hadamard’s bound on the determinant of a matrix in terms of it’s row

norms, implies that when ω1 ∈ Cn \ C
ε
n and ω2, ...,ωm ∈ C

n,

| det(Kn(ωi,ω j))
m
i,j=1 | ≤ mm/2Mm−1/2L4n4/9e−n1/3η → 0 as n→∞. (2.13)

Now let R be the maximum length of the paths Cn. The rescaled paths Cn will always have

length less than n1/9R. We have

∫
Cmn \(C

ε
n )

m

| det(Kn(ωi,ω j))
m
i,j=1 |dω1...dωm

≤ m
∫
Cn\C

ε
n

dω1

∫
Cm−1
n

| det(Kn(ωi,ω j))
m
i,j=1 |dω2...dωm

≤ m
∫
Cn\C

ε

n

dω1

∫
C
m−1
n

| det(Kn(ωi,ω j))
m
i,j=1 |dω2...dωm

≤

∫
Cn\C

ε

n

dω1

∫
C
m−1
n

mm/2M (m−1)/2L4n4/9e−n1/3ηdω2...dωm

≤ m(n1/9R)mmm/2M (m−1)/2L4n4/9e−n1/3η

≤ e−n1/3η(n1/9)mm1+m/2(MR)mn4/9. (2.14)

The first inequality follows from symmetry of the integrand in the ωi. In the second inequality,

we change variables from ωi to ωi. In the third inequality we use the first inequality of (2.13).

In the fourth inequality, we use the fact that the total volume of our multiple integral is less than
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(n1/9R)m. In the fifth inequality we rewrite and use Mm > M (m−1)/2.

So we have

∞∑
m=1

1
m!

∫
Cmn \(C

ε
n )

m

| det(Kn(ωi,ω j))
m
i,j=1 |dω1...dωm

≤

∞∑
m=1

1
m!

e−n1/3η(n1/9)mm1+m/2(MR)mn4/9

= n4/9e−n1/3η
∞∑

m=1

1
m!
(MRn1/9)mm1+m/2 (2.15)

Applying Lemma 2.4.4 with C = MRn1/9 gives.

n4/9e−n1/3η
∞∑

m=1

1
m!
(MRn1/9)mm1+m/2 ≤ n4/9e−n1/3

16(MRn1/9)4e2(MR)2n2/9
−−−−→
n→∞

0.

Thus

lim
n→∞

det(1 − Kn)L2(Cn) = lim
n→∞

det(1 − Kn)L2(Cεn )
. (2.16)

Combining (2.12) and (2.16) concludes the proof of Proposition 2.11.

�

2.2.4 Convergence of the kernel

In this section we approximate hn(z) − hn(ω)+ n1/3t(z−ω) by its Taylor expansion near λ, and

show that this does not change the asymptotics of our Fredholm determinant.

Proposition 2.2.13. For sufficiently small ε > 0,

lim
n→∞

det(1 − Kε
n )L2(Cεε )

= lim
n→∞

det(1 − K(x))L2(C−1),
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where

K(x)(u,u
′
) =

1
2πi

∫
D′

es3/3−xs

eu3−xu

dz
(z − u)(z − u′)

,

and

D′ = (e−πi/3∞,0) ∪ [0, eπi/3∞).

Proof. Let

K(ω,ω′) =
1

2πi

∫
D′

dz
(z − ω)(z − ω′)

e f ′′′1 (λ)(z
3
−ω3
)/6+ f ′2 (λ)(z−ω), (2.17)

We have seen in Section 2.2.3 that

det(1 − Kε
n (ω,ω

′))L2(Cεε )
= det(1 − K

ε

n(ω,ω
′
))

L2(Cn
1/9ε
−1 )

.

The proof will have two main steps. In the first step we use dominated convergence to show

that

lim
n→∞

det(1 − K
ε

n(ω,ω
′
))

L2(Cn
1/9ε
−1 )

= lim
n→∞

det(1 − K (x)(ω,ω
′
))

L2(Cn
1/9ε
−1 )

.

In the second step we control the tail of the Fredholm determinant expansion to show that

lim
n→∞

det(1 − K (x)(ω,ω
′
))

L2(Cn
1/9ε
−1 )

= det(1 − K (x)(ω,ω
′
))L2(C−1).

In step 1 we will use Lemma 2.4.1 to establish dominated convergence.

Step 1: We have the following pointwise convengences

λ + n−1/9z
λ + n−1/9ω

→ 1,

and for z = λ + n−1/9 z̄,ω = λ + n−1/9ω,

n1/3( f1(z)− f1(ω))+n1/9( f2(z)− f2(ω))+rn(z)−rn(ω) →
1
6

f ′′′1 (λ)(z
3
−ω3
)+ f ′2(λ)(z−ω). (2.18)

Because z is purely imaginary, for each ω,ω′, the exponentiating the right hand side of (2.18) gives
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a bounded function of z and z/ω ≤ |λ+ε |
|λ−ε | . The left hand side of (2.18) can be chosen to be within

δ/n1/9 of the right hand side by choosing ε small by Taylor’s theorem, because all the functions on

the left hand side are holomorphic in Bε(λ). Thanks to the quadratic denominator 1
(z−ω)(z−ω′) , we

can apply dominated convergence to get

K
ε

n(ω,ω
′
)

pointwise
−−−−−−−→

n→∞

1
2πi

∫
iR

dz
(z − ω)(z − ω′)

e f ′′′1 (λ)(z
3
−ω3
)/6+ f ′2 (λ)(z−ω). (2.19)

Because the integrand on the right hand side of (2.19) has quadratic decay in z, we can deform the

contour from γ0 to D′ without changing the integral, so the right hand side is equal to K(ω,ω′)

from 2.17. Now by Lemma 2.4.1 we can apply dominated convergence to the expansion of the

Fredholm determinant det(1 − K
ε

n)L2(Cn
1/9ε
−1 )

, to get

lim
n→∞

det(1 − K
ε

n)L2(Cn
1/9ε
−1 )

= lim
n→∞

det(1 − K)
L2(Cn

1/9ε
−1 )

.

Step 2: Now we make the change of variables s = −( f ′2(λ)/x)z, u = −( f ′2(λ)/x)ω, and u′ =

−( f ′2(λ)/x)ω
′. Keeping in mind that −2( f ′2(λ)/x)

3 = f ′′′1 (λ), we get

K(ω,ω′) = K(x)(u,u′) =
1

2πi

∫
D′

es3/3−xs

eu3/3−xu

ds
(s − u)(s − u′)

.

Recall the expansion:

det(1 − K(x))L2(Cε
−1)
=

∞∑
m=0

(−1)m

m!

∫
Cm
−1

det(K(x)(ωi,ω j))
m
i,j=1dω1...dωm,

where C−1 = (e−2πi/3∞,1] ∪ (1, e2πi/3∞), and Cm
−1 is a product of m copies of C−1.

| det(1 − K(x))L2(C−1) − det(1 − K(x))L2(Cε
−1)
| ≤

∞∑
m=0

(−1)m

m!

∫
Cm
−1\(C

n1/9ε
−1 )m

| det(K(x)(ωi,ω j))
m
i,j=1 |dω1...dωm,
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so to conclude the proof of the proposition, we are left with showing that

∞∑
m=0

1
m!

∫
Cm
−1\(C

n1/9ε
−1 )m

| det(K(x)(ωi,ω j))
m
i,j=1 |dω1...dωm −−−−→

n→∞
0 (2.20)

Note that

∫
Cm
−1\(C

n1/9ε
−1 )m

| det(K(x)(ωi,ω j))
m
i,j=1 |dω1...dωm ≤

m
∫
C−1\C

n1/9ε
−1

∫
Cm−1
−1

| det(K(x)(ωi,ω j))
m
i,j=1 |dω1...dωm.

Set

M1 =

∫
D′
|ze f ′′′1 (λ)z

3
/6+ f ′2 (λ)z |dz < ∞.

Then K(x)(ω,ω′) ≤ M1e−|ω|
3−x |ω|, and Hadamard’s bound gives

| det(K(x)(ωi,ω j))
m
i,j=1 | ≤ mm/2Mm

1

m∏
i=1
|e−ω

3
i /3+xωi |.

We have

∫
C−1\C

n1/9ε
−1

∫
Cm−1
−1

| det(K(x)(ωi,ω j))
m
i,j=1 |dω1...dωm

≤ M1

∫
C−1\C

n1/9ε
−1

∫
Cm−1
−1

m∏
i=1
|e−ω

3
i /3+xωi |dω1...dωm

≤ m1+m/2Mm
1 Mm−1

2

∫
C−1\C

n1/9ε
−1

|e−ω
3
1+xω1 |dω1, (2.21)

where M2 =
∫
C−1
|e−ω

3−xω |dω < ∞ because −ω3 lies on the negative real axis. (2.21) goes to zero

because n1/9ε →∞. So

∫
C−1\C

n1/9ε
−1

∫
Cm−1
−1

���det(K(x)(ωi,ω j))
m
i,j=1

��� dω1...dωm −−−−→
n→∞

0.
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Note also that

∫
Cm
−1\(C

n1/9ε
−1 )m

���det(K(x)(ωi,ω j))
m
i,j=1

��� dω1...dωm ≤

∫
Cm
−1

| det(K(x)(ωi,ω j))
m
i,j=1 |dω1...dωm

≤ m1+m/2M1Mm
2 .

By Stirling’s approximation
∞∑

m=0

1
m!

m1+m/2Mm
1 Mm

2 < ∞.

So by dominated convergence (2.20) holds which concludes the proof of Proposition 2.2.13. �

2.2.5 Reformulation of the kernel

Now we use the standard det(1 + AB) = det(1 + BA) trick [37, Lemma 8.6] to identify det(1 −

K(x))L2(C−1) with the Tracy-Widom cumulative distribution function.

Lemma 2.2.14. For x ∈ R,

det(1 − K(x))L2(C−1) = det(1 − KAi)L2(x,∞).

Proof. First note that because Re[z − ω] > 0 along the contours we have chosen, we can write

1
z − ω

=

∫
R+

e−λ(z−ω)dλ.

Now let A : L2(C−1) → L2(R+), and B : L2(R+) → L2(C−1) be defined by the kernels

A(ω,λ) = e−ω
3/3+ω(x+λ), (2.22)

B(λ,ω′) =
∫ eπi/3∞

e−πi/3∞

dz
2πi

ez3/3−z(x+λ)

z − ω′
. (2.23)
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We compute

AB(ω,ω′) =
∫
R+

e−ω
3/3+ω(x+λ)

∫ eπi/3∞

e−πi/3∞

dz
2πi

ez3/3−z(x+λ)

z − ω′

=
1

2πi

∫ eπi/3∞

e−πi/3∞

ez3/3−zx

eω3/3−ωx

dz
(z − ω)(z − ω′)

= K(x)(ω,ω′).

Similarly,

BA(s, s′) =
1

2πi

∫ e2πi/3∞

e−2πi/3∞
dω

1
2πi

∫ eπi/3∞

e−πi/3∞
dz

ez3/3−z(x+s)

eω3/3−ω(x+s′)

1
(z − ω)

= KAi(x + s, x + s′).

Because both A and B are Hilbert-Schmidt operators, we have

det(1 − K(x))L2(C) = det(1 − AB)L2(R+) = det(1 − BA)L2(R+)

= det(1 − KAi)L2(x,∞) = FGUE(x).

�

2.3 Constructing the contour Cn

This section is devoted to constructing the contours Cn and proving Lemma 2.2.8. We will

prove several estimates for n1/3ω + hn(ω); then we will construct the contour Cn, and prove it

satisfies the properties of Lemma 2.2.8. We begin by proving that we can approximate n1/3ω +

hn(ω) by n1/3 f1(ω) away from 0.

2.3.1 Estimates away from 0: proof of Lemma 2.2.7

Both inequalities for | f2 | = bσx
ω follow from the fact that f2 and f ′2 are bounded on C \ Bε(0).

Let y = 1/ω, and let m = n−1/9. Define the function g(y,m) = rn(ω). First we prove (2.9). Note

that hn(ω) is holomorphic in y and m except when n = ∞, n1/3ω = 0,−a− b. By Taylor expanding
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hn(ω), we see that rn(ω) = g(y,m) is holomorphic in y and m, except at points (y,m) such that

n1/3ω = 0,−a − b, in particular there is no longer a pole when n = ∞. Thus for any N , g(y,m)

is holomorphic with variables y and m, in the region U = {(y,m) : n > N,ω > |a + b|/N1/3},

because in this region n1/3ω > |a + b|. The region Uε = {(y,m) : n > N,ω ≥ |a+b|+ε
N1/3 } is compact

in the variables y and m, and because Uε ⊂ U, the function g(y,m) is holomorphic in the region

Uε. Thus g(y,m) = rn(ω) is bounded by a constant C in the region Uε.

Now we prove (2.10). For any δ, pick an arbitrary ε and an Nδ large enough that |a+b|+ε
N1/3
δ

≤ δ.

Because g(y,m) = rn(ω) is holomorphic in the variables y and m in the compact set Uε, the

function ∂
∂yg(y,m) = −ω

2r′n(ω), is also holomorphic in y,m. So |ω2r′n(ω)| ≤ C on Uε. We rewrite

as |r′n(ω)| ≤ C/|ω|2, and this gives |r′n(ω)| ≤
C
|δ |2
≤ C′, on the set Uε ∩ (N × Bδ(0)c). But by our

choice of Nδ, we have Uε ∩ (N × Bδ(0)c) is just the set {(y,m) : n ≥ Nδ, |ω | ≥ δ}.

2.3.2 Estimates near 0

The function n1/3 f1(ω) only approximates −n1/3tω − hn(ω) well away from 0. In this section

we give two estimates for −n1/3tω − hn(ω): one in Lemma 2.3.1 when ω is of order n−1/3 and one

in Lemma 2.3.3 when ω is of order nδ−1/3 for δ ∈ (0,1/3). Together with Lemma 2.2.7 which gives

an estimate when ω is of order 1, this will give us the tools we need to control −n1/3tω − hn(ω)

along Cn. First to prove the bound in Lemma 2.3.1, we choose a path which crosses the real axis at

−a, between the poles at 0 and −a − b before rescaling h̃n to hn. We show that after the rescaling,

we can bound Re[−n−1/3ω − hn(ω)] on this path for small ω.

Lemma 2.3.1. Fix any c0 > 1 and let s = c0(a+ b). For C = log
(√

s2 + a2
)
− log(s) > 0, we have

lim sup
n→∞

1
n

sup
y∈[−s,s]

Re[hn(λ) − hn(in−1/3y − n−1/3a)] < −C.

Proof. Let y ∈ [−s, s] and expand eRe[hn(λ)−hn(iy−an−1/3)] to get

(
y√

y2 + a2

)n (
y√

y2 + b2

)m (
n1/3λ

n1/3λ + a

)n (
a + b + n1/3λ

n1/3λ + a

)m

.
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The third factor is always less than 1. For sufficiently large n, the second factor times the fourth

factor is less than 1, because |y | ≤ |s | while n1/3λ→∞. We can bound the first factor by����� y√
y2 + a2

�����n ≤ (
s

√
s2 + a2

)n

= e−nC,

with C = log
(√
(s2 + a2)

)
− log(s). �

Next we will prove the estimate for ω of order nδ−1/3. In this proof we will consider ω of the

form ω = −n−1/3a + inδ−1/3c(a + b), choose c sufficiently large, then let n→∞. The largest term

in the expansion of −n−1/3ω − hn(ω) will be of order n1−2δ

c2 . We introduce the following definition

to let us ignore the terms which are negligible compared to n1−2δ

c2 uniformly in δ.

Definition 2.3.2. Let A and B be functions depending on n and c, we say A ∼δ B or A is δ-

equivalent to B, if for sufficiently large c and n,

|A − B | ≤
n2/3−2δ

c2 M1 +
n1−3δ

c3 M2 +
n4/9−δ

c
M3.

for some constants M1,M2,M3 independent of c and n.

Now we prove the estimate.

Lemma 2.3.3. For all δ ∈ (0,1/3), setting ω = −n−1/3a + inδ−1/3c(a + b), gives

Re[n1/3tω + hn(ω)] ∼δ Re[n1/3 f1(ω)] ∼δ M
n1−2δ

c2 ,

where ∼δ is defined in Definition 8.

The proof of this Lemma 2.3.3 comes from Taylor expanding hn and keeping track of the order

of different terms with respect to n and c.

Proof. Recall that

hn(ω) = −n log
(
1 +

a
n1/3ω

)
+ m log

(
1 +

b
a + n1/3ω

)
. (2.24)
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For |n1/3ω| > a and |a + n1/3ω | > b, we can Taylor expand in n1/3ω to get

hn(ω) = −n
∞∑

k=1

(−1)k+1

k

(
a

n1/3ω

) k

+ m
∞∑

k=1

(−1)k+1

k

(
b

a + n1/3ω

) k

.

Letω = −n−1/3a+inδ−1/3c(a+b) for δ ∈ (0,1/3), so |n1/3ω|, |a+n1/3ω | > nδc(a+b) > c(a+b),

for a constant c to be determined later. If c > 2, we have

∞∑
k=1

����( a
n1/3ω

)����k ≤ ∞∑
k=1

(
b

nδc(a + b)

) k

≤
a

nδc(a + b)

∞∑
k=0

(
1
2

) k

≤
2a

nδc(a + b)
=

n−δ

c
M, (2.25)

and

∞∑
k=1

����( b
a + n1/3ω

)����k ≤ ∞∑
k=1

(
a

nδc(a + b)

) k

≤
a

nδc(a + b)

∞∑
k=0

(
1
2

) k

=
2a

nδc(a + b)
=

n−δ

c
M . (2.26)

In what follows, we will use (2.25) or (2.26) when we say that an infinite sum is δ-equivalent

to its first term.

We examine the first term in (2.24).

−n
∞∑

k=1

(−1)k+1

k

(
a

n1/3ω

) k

= −

(
a

n1/3ω

)
+

1
2

(
a

n1/3ω

)2
− n

∞∑
k=3

(−1)k+1

k

(
a

n1/3ω

) k

,

∼δ −

(
a

n1/3ω

)
+

1
2

(
a

n1/3ω

)2
.

where the δ−equivalence follows because
����n ∑∞

k=3
(−1)k+1

k

(
a

n1/3ω

) k
���� ≤ n1−3δ

c3 M for some M by (2.25).

Recall that

m
∞∑

k=1

(
b

a + n1/3ω

) k

=
[(a

b

)
n + dn2/3 + σxn4/9

] ∞∑
k=1

(
b

a + n1/3ω

) k

.
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We decompose this series as three sums. First the
( a

b

)
n term gives

a
b

n
∞∑

k=1

(−1)k+1

k

(
b

a + n1/3ω

) k

=

n
(a

b

) (
b

a + n1/3ω

)
−

n
2

(a
b

) (
b

a + n1/3ω

)2
+

a
b

n
∞∑

k=3

(−1)k+1

k

(
b

a + n1/3ω

) k

∼δ n
(a

b

) (
b

a + n1/3ω

)
−

n
2

(
b

a + n1/3ω

)2
,

because
����−a

bn
∑∞

k=1
(−1)k+1

k

(
b

a+n1/3ω

) k
���� ≤ Mn1−3δ/c3 for some M . The second term is

dn2/3
∞∑

k=1

(−1)k+1

k

(
b

a + n1/3ω

) k

= dn2/3
(

b
a + n1/3ω

)
− dn2/3

∞∑
k=2

(−1)k+1

k

(
b

a + n1/3ω

) k

∼δ dn2/3
(

b
a + n1/3ω

)

because
����dn2/3 ∑∞

k=2
(−1)k+1

k

(
b

a+n1/3ω

) k
���� ≤ Mn2/3−2δ/c2 for some M . The third term is

n4/9σx
∞∑

k=1

(−1)k+1

k

(
b

a + n1/3ω

) k

∼δ 0,

because the full sum
����n4/9σx

∑∞
k=1

(−1)k+1

k

(
b

a+n1/3ω

) k
���� ≤ Mn4/9−δ

c for some M . Now we have shown

− n log
(
1 +

a
n1/3ω

)
∼δ −n2/3 a

ω
+ n1/3 a2

2ω2 , (2.27)

m log
(
1 +

b
a + n1/3ω

)
∼δ

n
(a

b

) (
b

a + n1/3ω

)
− n

( a
2b

) (
b

a + n1/3ω

)2
+ dn2/3

(
b

a + n1/3ω

)
. (2.28)
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Adding (2.27) and (2.28) together yields

hn(ω) ∼δ −n2/3 a
ω
+ n1/3 a2

2ω2 + n
(a

b

) (
b

a + n1/3ω

)
− n

( a
2b

) (
b

a + n1/3ω

)2
+ dn2/3

(
b

a + n1/3ω

)
. (2.29)

Adding the first and third terms from (2.29) gives the following cancellation.

− n2/3 a
ω
+ n

(a
b

) (
b

a + n1/3ω

)
=

− n2/3 a
ω
+ n2/3 a

ω

[
1 −

a
n1/3ω

+

∞∑
k=2
(−1)k

(
a

n1/3ω

) k
]
∼δ −n1/3 a2

ω2 ,

thus

hn(ω) ∼δ −n1/3
(

a2

2ω2

)
− n

( a
2b

) (
b

a + n1/3ω

)2
+ dn2/3

(
b

a + n1/3ω

)
.

When we expand b
a+n1/3ω

= b
n1/3ω
+

(
b

n1/3ω

) ∑∞
k=1

(
−a

n1/3ω

) k
,we see that because n1/3ω ∼δ nδic(a+b),

the sum is of order 1/c times the first term. So we can take only the first terms in our expansion,

just as when we Taylor expand. This approximation leads the n2/3 terms to cancel giving

hn(ω) ∼δ −n1/3
(

a2 + ab
2ω2

)
+ dn1/3

(
b
ω

)
∼δ n1/3 ( f1(ω) − tω) .

This implies that Re[n1/3tω + hn(ω)] ∼δ Re[n1/3 f1(ω)]. Completing the first δ-equivalence in

the statement of Lemma 2.3.3.

Now observe that in

Re[n1/3 f1(ω)] = Re
[
n1/3

(
tω −

a(a + b)
2ω2 +

bd
ω

)]
,

we can bound the first term |Re[n1/3tω]| ≤ nδM . We can bound the third term by Re
[
n1/3 bd

ω

]
≤
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M n2/3−δ

c . For the second term, we have
���a(a+b)

2ω2

��� ∼δ (
a(a+b)

2

) (
n1−2δ

c

)
. Thus

Re[n1/3 f1(ω)] ∼δ

(
a(a + b)

2

) (
n1−2δ

c

)
.

This gives the second δ-equivalence in the statement of Lemma 2.3.3, and completes the proof. �

2.3.3 Construction of the contour Cn

To construct the contour Cn we will start with lines departing from λ at angles e±2πi/3, and with

a vertical line −n1/3a + iR. We will cut both these infinite contours off at specific values q and p

respectively which allow us to use our estimates from the previous section on these contours. We

will then connect these contours using the level set {z : Re[− f1(z)] = − f1(λ) − ε}. The rest of

this section is devoted to finding the values p and q, showing that our explanation above actually

produces a contour, and controlling the derivative of f1 on the vertical segment near 0.

We note

f1(λ) = 3t2/3
(

a(a + b)
2

)1/3
> 0, (2.30)

and let

p =

√
1
3

(
a(a + b)

2t

)2/3
> 0. (2.31)

By simple algebra, we see that Re[− f1(±iy)] < Re[− f1(λ)] < 0, when y < p, with equality at

y = p.

Lemma 2.3.4. d
dyRe[− f1(n−1/3a + iy)] is positive for y ∈ [n−1/3 |a + b|, p], and negative for y ∈

[−n−1/3 |a + b|,−p].

Proof. We compute

d
dy
Re[ f1(n−1/3a + iy)] = − Im(Re[ f1(n−1/3a + iy)]) (2.32)

= −
y3a(a + b)
|n−1/3a + iy |6

+
a2(a + b)n−2/3y

|n−1/3a + iy |6
+

3a2(a + b)bn−1/3y

2bλ |n−1/3a + iy |4
. (2.33)
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Note that for y ∈ [n−1/3 |a + b|, p] ∪ [−n−1/3 |a + b|,−p], we have |n−1/3a + iy | ∼ |y |, so the first

term of (2.33) is of order y−3 and the third term of (2.33) is of order y−3n−1/3. So for large enough

n, the third term of (2.33) is very small compared to the first term. For y = ±n−1/3 |a + b|,we have

|n−1a(a+b)4 | = |y3a(a+b)| > |a(a+b)n−2/3ay | = |a2(a+b)2n−1/3 |, and the derivative of y3a(a+b)

is larger than the derivative of a(a+ b)n−2/3ay for y ∈ [n−1/3 |a+ b|, p] ∪ [−n−1/3 |a+ b|,−p], so the

first term of (2.33) has larger norm than the second term for y ∈ [n−1/3 |a+b|, p]∪[−n−1/3 |a+b|,−p].

Thus the sign d
dyRe[− f1(n−1/3a+ iy)] is determined by the first term of (2.33) in these intervals. �

Now we can define the contour Cn. We will give the definition, and then justify that it gives a

well defined contour.

Definition 2.3.5. Let q > 0 be a fixed real number such that for 0 < y ≤ q, d
dyRe[− f1(λ ±

ye±2πi/3)] < 0. Let

s = max
{
Re[− f1(λ + qe−2πi/3)],Re[− f1(λ + qe2πi/3)],

Re[− f1(n−1/3(a − i|a + b|))],Re[− f1(n−1/3(a + i|a + b|))]
}
. (2.34)

Let α be the contourline α = {ω : Re[− f1(ω)] = s}, and define the set

Sn = {λ + ye±2πi/3 : 0 ≤ y ≤ q} ∪ α ∪ [−an−1/3 − ip,−an−1/3 + ip].

For sufficiently large n, define the path Cn to begin where α intersects {λ + ye−2πi/3 : 0 ≤ y ≤ q},

follow the path {λ + ye−2πi/3 : 0 ≤ y ≤ q} toward y = 0, then follow the path {λ + ye2πi/3 :

0 ≤ y ≤ q} until it intersects α. Cn then follows α in either direction (pick one arbitrarily) until it

intersects [−an−1/3 − ip,−an−1/3 + ip] in the upper half plane. Cn then follows the path [−an−1/3 −

ip,−an−1/3+ip] toward −an−1/3−ip until it intersects α in the negative half plane. Then Cn follows

α in either direction (pick one arbitrarily) until it reaches its starting point where it intersects

{λ + ye−2πi/3 : 0 ≤ y ≤ q}. See Figure 2.6

We see that the q in Definition 2.3.5 exists by applying Taylor’s theorem along with the fact that
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f ′′′1 (λ) > 0, and the f ′1(λ) = f ′′1 (λ) = 0.

Lemma 2.3.6. The sets {λ + ye2πi/3 : 0 ≤ y ≤ q} and {λ + ye−2πi/3 : 0 ≤ y ≤ q} both intersect α

at exactly one point. Lemma 2.3.7 and Lemma 2.3.6 will show that Cn is a well defined contour.

This follows from the definition of q and s.

Lemma 2.3.7. There exists N > 0 such that for all n > N, the sets [n−1/3+ in−1/3 |a+b|,n−1/3a+p]

and [−an−1/3 − n−1/3 |a + b|,−an−1/3 − p] both intersect α exactly once.

Proof. This is true because

Re[− f1(−n−1/3(a ± i|a + b|))] < Re[− f1(λ)]. (2.35)

by the contour lines in Figure 2.4. This in addition to Lemma 2.3.4, and (2.30) implies the lemma.

�

2.3.4 Properties of the contour Cn: proof of Lemma 2.2.8

Most of the work is used to prove part (c). The idea of this proof is to patch together the

different estimates from the beginning of Section 2.3. Away from 0 we use Lemma 2.2.7 and the

fact that the contour is steep descent near λ. Very near 0 on the scale n−1/3 we use Lemma 2.3.1.

Moderately near 0 we use Lemma 2.3.3, and our control of the derivative of f1 on the vertical strip

of Cn near 0. This last argument allows us to get bounds uniform in δ ∈ (0,1/3) when ω is on the

scale n1/3−δ.

Proof of Lemma 2.2.8. (a) and (b) follow from the definition of Cn. By a slight modification of the

proof of Lemma 2.8, we see that for z ∈ γr ,

Re[hn(z) − hn(λ) + n1/3t(z − λ) ≤ n1/9C, (2.36)
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Figure 2.6: Cn is the thick, colored piecewise smooth curve, the contour lines {z : Re[− f1(z)] =
f1(λ)} are the thin black curves. On the right side of the image we see Cn as a thick blue curve
sandwiched between the contour lines. On the left we zoom in near 0 and see Cn pass the real axis
as a dotted line to the left of zero. The contour lines meet at the point 0 on the left and λ on the right.
We will now describe what section of the proof of Theorem 2.2.8 bounds hn(z)−hn(ω)+nt1/3(z−ω)
on different portions of Cn. The diagonal segments of Cn near λ are bounded in (ii). The curved
segments in the right image, and the solid dark blue vertical segments at the top and bottom of the
left image are bounded in (i). The dark red dashed segment that crosses the real axis in the left
image is distance O(n−1/3) from 0 and is bounded in (iii). The green dotted segments in the left
image are distance O(nδ−1/3) from 0 for δ ∈ (0,1) and are bounded in (iv).
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so to show (c) it suffices to show that for ω ∈ Cn \ C
ε
n , we have

Re[hn(λ) − hn(ω) + n1/3t(λ − ω)] ≤ −n−1/3η. (2.37)

Below we split the contour into 4 pieces and bound each separately. See Figure 2.6.

(i) By Lemma 2.3.4 and the construction of Cn, we have Re[− f1(ω)] ≤ s < Re[− f1(λ)] for

ω ∈ Cn \ ({λ + ye±2πi/3 : 0 ≤ y ≤ q} ∪ [n−1/3(−a − i|a + b|),n−1/3(−a + i|a + b|)]).

So we can apply Lemma 2.2.7 and the fact that f2 is bounded outside a neighborhood of

0 to show that for any c1 < 0, we have Re[hn(z) − hn(λ) + n1/3t(z − λ)] ≤ −n−1/3η for

ω ∈ Cn \ ({λ + ye±2πi/3 : 0 ≤ y ≤ q} ∪ [−n−1/3a − ic1 |a + b|,−n−1/3a + ic1 |a + b|]).

(ii) By the definition of q, The contour {λ + ye±2πi/3 : 0 ≤ y ≤ q} is steep descent with

respect to the function f1 at the point λ, so we can apply Lemma 2.2.7 and the fact that f2 is

bounded outside a neighborhood of 0 to show Re[hn(z) − hn(λ) + n1/3t(z − λ)] ≤ −n−1/3η

for ω ∈ {λ + ye±2πi/3 : 0 ≤ y ≤ q} \ Bε(λ).

(iii) By Lemma 2.3.1, for any c0, we have Re[hn(z) − hn(λ) + n1/3t(z − λ)] ≤ −n−1/3η for all

ω ∈ [n−1/3(−a − ic0 |a + b|),n−1/3(−a − ic0 |a + b|)].

(iv) Now we bound theRe[hn(z)−hn(λ)+n1/3t(z−λ)] on the last piece of our contour [n−1/3(−a−

ic0 |a + b|),−n−1/3a + ic1 |a + b|] ∪ [−n−1/3a − ic1 |a + b|,n−1/3(−a − ic0 |a + b|)]. We will do

this by fixing a constant c > c1, and bounding the function on ω = n−1/3a + inδ−1/3c(a + b)

for all pairs n > N, δ ∈ (0,1/3) such that n1/3 ≤ c1/c.

By Lemma 2.3.3, we have that when ω = n−1/3a + inδ−1/3c(a + b), there exist constants

M1,M2,M3, such that

Re[n1/3tω + hn(ω) − n1/3 f1(ω)] ≤
n2/3−2δ

c2 M1 +
n1−3δ

c3 M2 +
n4/9−δ

c
M3,
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and

f1(ω) ∼δ M
n1−2δ

c2 .

First we consider the case when δ ∈ (0,1/3 − ε). In this case, for any r > 0 we can choose c

and Nr large enough that for all n > Nr ,

n2/3−2δ

c2 M1 +
n1−3δ

c3 M2 +
n4/9−δ

c M3

Re[n1/3 f1(ω)]
< r/2,

uniformly for all δ ∈ (0,1/3 − ε). In this case we also have that, by Lemma 2.2.7,

|Re[n1/3tz + hn(z)]| ≤ n1/3 f1(λ) + n1/9 f2(λ) + C.

By potentially increasing Nr , we have that for all n > Nr

|Re[n1/3tz + hn(z)]|
Re[n1/3 f1(ω)]

≤ r/2.

By Lemma 2.3.4 and (2.35), for all pairs n, δ such that nδ−1/3 < c/c1, there is an η > 0 such

that

Re[− f1(ω)] ≤ Re[− f1(λ)] − 2η < −2η.

setting r = 1/2 gives

Re[n1/3t(z − ω) + hn(z) − hn(ω)] ≤ Re[−n1/3 f1(ω)] +
1
2
Re[n−1/3 f1(ω)] < −ηn1/3.

Now we prove the case δ ∈ (1/3 − ε,1/3). Note that in the expression

Re[n1/3tω + hn(ω) − n1/3 f1(ω)] ≤
n2/3−2δ

c2 M1 +
n1−3δ

c3 M2 +
n4/9−δ

c
M3,

when n is sufficiently large, we can bound the right hand side by (M1 + M2)n3ε ≤ (r/2)n1/3
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for any r > 0. We also have

|Re[n1/3tλ − hn(λ) − n1/3 f1(λ)]| ≤ n1/9 f1(λ) + C ≤ (r/2)n1/3.

The first inequality comes from Lemma 2.2.7, and the second holds for large enough n. By

Lemma 2.3.4 and (2.35), for all pairs n, δ such that nδ−1/3 < c/c1, there is an η > 0 such that

Re[− f1(ω)] ≤ Re[− f1(λ)] − 2η < −2η.

Setting r = η gives

Re[n1/3t(λ − ω) + hn(λ) − hn(ω)] ≤ n1/3
Re[ f1(λ) − f1(ω)] + n1/3η ≤ −ηn1/3.

The c1 in part (i) can be chosen as small as desired, the c in part (iv) has already been chosen, and

the c0 in part (iv) can be chosen as large as desired. Choose c1 < c < c0 to complete the proof of

(c).

Given inequalities (2.36) and (2.37), part (d) follows if we can show

Re[n1/3t(λ − ω) + hn(λ) − hn(ω)],

for ω ∈ Cεn . Indeed this follows from Lemma 2.2.7 and the fact that the contour {λ+ ye±2πi/3 : 0 ≤

y ≤ q} is steep descent with respect to the function Re[− f1] at the point λ.

�

2.4 Dominated convergence

In this section we carefully prove that the series expansion for det(1 − Kn)L2(Cεn )
gives an ab-

solutely convergent series of integrals bounded uniformly in n. This allows us to use dominated

convergence when we localize the integral in Proposition 2.2.12, and again when we approximate
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the kernel by its Taylor expansion in Proposition 2.2.13. First we zoom in on a ball of radius

epsilon and show that we can absolutely bound det(1 − Kε
n)L2(Cεn )

uniformly in n.

Lemma 2.4.1. For any sufficiently small ε > 0, and sufficiently large r, there exists a function

F(ω,ω′), such that for all ω,ω′ ∈ Cn1/9ε
−1 , z ∈ Dn1/9ε

0 , n > N the integrand of K
ε

n(ω,ω
′
) in equation

(2.11) is absolutely bounded by F(ω,ω′, z), and

∞∑
m=0

∫
(Cn

1/9ε
−1 )m

������det

(∫
Dn1/9ε

0

F(ωi,ω j, z)dz

)m

i,j=1

������ dω1...dωm < ∞. (2.38)

Proof. For ω,ω′ ∈ Cε
−1, and z ∈ Dε

0 , we have

���� λ + n−1/9z
λ + n−1/9ω

���� ≤ ����λ + ελ − ε

���� ,
and by Taylor approximation, we have the additional bounds

n1/3( f1(λ + n−1/9z) − f1(λ + n−1/9ω)) ≤ ( f ′′′1 (λ) + δ1)(z3
− ω3
), (2.39)

n1/9( f2(λ + n−1/9z) − f2(λ + n−1/9(ω))) ≤ ( f ′2(λ) + δ2)(z − ω), (2.40)

rn(λ + n−1/9z) − rn(λ + n−1/9ω) ≤ Cn−1/9(z − ω) ≤ Cε ≤ δ3. (2.41)

Note that in these bounds we can make δ1, δ2, δ3 as small as desired by choosing ε small.

Equations (2.39) and (2.40) follow from the fact that f1, and f2 are holomorphic in the compact set

Bε(λ). And equation (2.41) follows from Lemma 2.2.7. Note that alongD0, z is purely imaginary,

so (2.39),(2.40), and (2.41) show that the full exponential in the integrand in (2.11) is bounded

above by

e2δ3 e−( f
′′′

1 (λ)−δ1)ω
3
−( f ′2 (λ)−δ2)ω. (2.42)

We choose ε small enough that δ1 < f ′′′1 (λ), so that (2.42) has exponential decay as ω goes to ∞
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in directions e±2πi/3. Set

F(ω,ω′, z) =
����(λ + ελ − ε

)
e2δ3 e−( f

′′′
1 (λ)−δ1)ω

3
−( f ′2 (λ)−δ2)

1
(z + 1)(z + 1)

���� .
By the sentence preceeding (2.42) F absolutely bounds the integrand of K

ε

n. Now set L1 =

|λ+ε |
|λ−ε | e

2δ3
∫
D0

1
(z+1)(z+1)dz so that 2e2δ3

∫
D0

1
(z−ω)(z−ω′)dz ≤ L1. Then

∫
Dε

0

F(ω,ω′, z) ≤ L1

���e−( f ′′′1 (λ)−δ1)ω
3
−( f ′2 (λ)−δ2)

��� , (2.43)

By Hadamard’s bound������det

(∫
Dn1/9

0 ε
F(ωi,ω

′
j, z)dz

)m

i,j=1

������ ≤ mm/2Lm
1

m∏
i=1

���e−( f ′′′1 (λ)−δ)ω
3
−( f ′2 (λ)−δ)ω

��� .
Now because δ1 < f ′′′1 (λ), we can set

S =
∫
Cn

1/9ε
−1

���e−( f ′′′1 (λ)−δ)ω
3
−( f ′2 (λ)−δ)ω

��� dω < ∞.

Then we have the bound,

∫
(Cn

1/9ε
−1 )m

������det

(∫
Dn1/9ε

0

F(ωi,ω
′
j, z)dz

)m

i,j=1

������ dω1...dωm ≤ mm/2(SL1)
m.

So by Stirling’s approximation

∞∑
m=0

∫
(Cn

1/9ε
−1 )m

������det

(∫
Dn1/9ε

0

F(ωi,ω j, z)dz

)m

i,j=1

������ dω1...dωm < ∞.

�

The next lemma completes our dominated convergence argument, by controlling the contribu-

tion to det(I − Kn)L2(Cεn )
of z ∈ γr \ γ

ε
r .

Lemma 2.4.2. For any sufficiently small ε > 0, and sufficiently large r, there is a function
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G(ω,ω′, z), and a natural number N, such that for all ω,ω′ ∈ C
ε

n and z ∈ γr , n > N, the in-

tegrand of Kn(ω,ω
′
) is absolutely bounded by G(ω,ω′, z), and

∞∑
m=0

1
m!

∫
(C

ε
)m

�����det
(∫

γr

G(ωi,ω j, z)dz
)m

i,j=1

����� dωi ...dω j < ∞, (2.44)

where γr and C
ε

n are the rescaled contours of γr and Cε
n respectively.

Proof. Let G = F for z ∈ γεr . We decompose the integral along γr in three parts: the integral

along γεr , the integral along (e−2πi/3∞,−r) ∪ (r, e2πi/3∞) and the integral along [−r,−ε] ∪ [ε,r].

For z ∈ γr \ γ
ε
r we have the following bounds

|en1/3t(z−ω)+hn(z)−hn(ω) | ≤ |en1/3( f1(z)− f1(ω))+n1/9C2+C3 |

≤ |en1/3( f1(z)− f1(ω)+δ) |

≤ |en1/3( f1(z)− f1(λ)+δ) | |en1/3( f1(λ)− f1(ω)) |. (2.45)

Where the first inequality follows from Lemma 2.2.7. If we choose δ < η/2, and recall that if

z ∈ γr \ γ
ε
r , then f1(z) − f1(λ) < −η, so f1(z) − f1(λ)+ δ < −η/2 < 0. So if we wish we can bound

(2.45) by either of the following expressions

|en1/3( f1(λ)− f1(ω)) | (2.46)

|en1/9(−tz+tλ) | |en1/3( f1(λ)− f1(ω)) | (2.47)

The bound (2.47) follows from the fact that we can choose r large enough so that | f1(z)+tz | ≤ δ

outside Br(0). Then because the exponent in the first factor of (2.45) is negative, for large enough

n we can remove the constant δ in return for reducing n1/3 to n1/9.

Now for z ∈ [−r,−ε] ∪ [ε,r], we have

94



��� z
ω

��� ≤ ���� r + λλ − ε

���� , ���� 1
(z − ω)(z − ω′)

���� ≤ 1.

So for z ∈ [−r,−ε] ∪ [ε,r], we set

G(ω,ω′, z) =
���� r + λλ − ε

���� ���� 1
(z − ω)(z − ω′)

���� ���en1/3( f1(λ)− f1(ω))
��� .

Using the above bounds and (2.46) we see that the integrand of Kn is absolutely bounded by

G in this region. Set L2 =
∫

iR
r+λ
λ−ε

1
(z+1)(z+1)dz so that the integral of G on the rescaled contour of

[−r,−ε] ∪ [ε,r] is bounded by L2 |en1/3( f1(λ)− f1(ω)) |.

For z ∈ (e−2πi/3∞,−r) ∪ (r, e2πi/3∞), we have

���� 1
(z − ω)(z − ω′)

���� ≤ 1.

So for z ∈ (e−2πi/3∞,−r) ∪ (r, e2πi/3∞), we set

G(ω,ω′, z) =
��� z
ω

��� ���et(λ−z)
��� ���e(− f ′′′1 (λ)+δ)ω

��� .
Thus by (2.47), we can see that the integrand of Kn is absolutely bounded by G in this region.

Now let L3 =
∫
(e−2πi/3∞,−r]∪[r,e2πi/3∞)

��� λ+z
λ−ε

��� |et(λ−z) |dz. For all n, the integral of G over the rescaled

contour (e−2πi/3∞,−r] ∪ [r, e2πi/3∞) is bounded above by L3 |e(− f ′′′1 (λ)+δ)ω
3
|.

Let γr be the rescaled contour γr in the variable z

∫
γr

Gdz ≤ (L1 + L2 + L3)e(− f ′′′1 (λ)+δ)ω
3
≤ Le(− f ′′′1 (λ)+δ)ω

3
, (2.48)

where the constant L comes from (2.43). Thus we have bounded
∫
γr

Gdz by a constant times a

term which has exponential decay as ω→ e±2πi/3∞. The same argument as in Lemma 2.4.1 shows

that
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∞∑
m=0

1
m!

∫
(Cε)m

�����det
(∫

γεr

G(ωi,ω j, z)dz
)m

i,j=1

����� dωi ...dω j < ∞.

�

Lemma 2.4.3. Let ω1 ∈ Cn \ C
ε
n and ω2, ..,ωm ∈ C

n. There exist positive constants M, L4, η > 0

so that for sufficiently large n, we have

|Kn(ωi,ω j)| ≤ M

and

|Kn(ω1,ωi)| ≤ L4n4/9e−n1/3η,

for all i, j.

Proof. By Lemma 2.2.8, for any ε > 0, there exists a N,C > 0, such that if v ∈ Cn \ C
ε
n , and

z ∈ γr , then for all sufficiently large n, we have

Re[hn(z) − hn(ω) + n1/3t(z − ω)] ≤ −n1/3η.

For z ∈ γr and ω,ω′ ∈ Cn \ C
ε
n , n > N we have the following bounds:

1
(z − ω)(z − ω′)

≤

(
2
ε

)2
,

1
ω
≤

n1/3

a
,

and

|en1/3t(z−ω)+hn(z)−hn(ω) | ≤ |en1/3( f1(z)− f1(ω)+δ) | (2.49)

≤ |en1/3( f1(z)− f1(λ) | |en1/3( f1(λ)− f1(ω)+δ) | (2.50)

where (2.49) follows from (2.2.7) and the fact that f2 is bounded away from 0. Note that for z ∈ γr ,
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| f1(z) − f1(λ)| ≤ 0, and for ω,ω′ ∈ Cn \ C
ε
n , f1(λ) − f1(ω)+ δ < −η, so (2.50) is bounded above by

|e( f1(z)− f1(λ) | |e−n1/3η |.

Thus if we set L4 =
22

aε2

∫
γr
|z | |e f1(z)− f1(λ) |dz < ∞, we get

|Kn(ω,ω
′)| ≤ L4n1/3e−n1/3η .

So if we change the variable of integration to dz = n1/9dz gives.

|Kn(ω,ω
′
)| ≤ L4n4/9e−n1/3η for ω,ω′ ∈ Cn \ C

ε
n (2.51)

Let ω1 ∈ Cn \ C
ε
n and ω2, ..,ωm ∈ C

n, then for i , 1,

|Kn(ω1,ωi)| ≤ L4n4/9e−n1/3η,

|Kn(ωi,ω j)| ≤ max[Le(− f ′′′1 (λ)+δ)ω
3
, L4n4/9e−n1/3η] ≤ M . (2.52)

The first equality follows from (2.48) and the second inequality holds for large n, when we set

M = max[L4, L] because − f ′′′1 (λ) + δ < 0. �

The last thing we need to complete the proof of Theorem 2.1.4 is to bound (2.15) from Propo-

sition (2.2.3). We do so in the following lemma.

Lemma 2.4.4. For any C > 1, we have

∞∑
m=1

1
m!

Cmm1+m/2 ≤ 16C4e2C2
.

Proof. We have
m1+m/2

m!
≤

m2m/2

(bm/2c)!
,
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so that

∞∑
m=1

1
m!

Cmm1+m/2 ≤

∞∑
m=1

m
(bm/2c)!

(2C2)m/2

≤

∞∑
k=1

2k(2C2)k

k!
+

∞∑
k=1

(2k + 1)(2C2)k+1

k!

≤ 16C4e2C2
.

�
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Chapter 3: Large deviations for sticky Brownian motions

This chapter is based on the article [25] written by myself and Guillaume Barraquand.

3.1 Introduction and main results

Families of interacting Brownian motions have been related to random matrix theory in a num-

ber of works. For instance at any fixed time nonintersecting Brownian motions have the same

distribution as the eigenvalues of a matrix from the Gaussian unitary ensemble (GUE) [74]. Cer-

tain statistics of families of Brownian motions with asymmetric reflections also have Tracy-Widom

GUE distributed fluctuations [195] as the number of particles goes to +∞. There are many other

examples (see for instance [28, 97, 152, 174, 78, 150, 36, 37]), and the ubiquitous occurrence of

the GUE can be understood in the framework of the Kardar-Parisi-Zhang (KPZ) universality class.

This framework predicts that in spatial dimension 1, many growth models, interacting particle sys-

tems and directed polymer models have Tracy-Widom fluctuations in the cube-root time scale, for

appropriate initial data. This class is extremely broad and is not yet clearly delineated. In particular

one may expect that many families of interacting Brownian motions fall in the KPZ universality

class and are related to random matrix theoretic distributions. The examples cited above all deal

with families of Brownian motions with repulsive interaction; in this chapter we study a family of

Brownian motions with attractive interaction called sticky Brownian motions.

In 1952 Feller introduced a reflected Brownian motion sticky at the origin which evolves as a

Brownian motion everywhere except at origin, and has its reflection off the origin slowed down

so that the total time its trajectory spends at the origin has positive Lebesgue measure [77]. This

motion’s law can be characterized by a single stickiness parameter which determines how much

time it spends at the origin. More recently, using stochastic flows and Dirichlet forms [133, 135]
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or through a martingale problem [104, 105], several authors have defined families of n-particle

diffusions where the distance between each pair of particles is a reflected Brownian motion sticky

at the origin.

These n-point sticky Brownian motions describe the evolution of mesoscopic particles with

attractive interaction at a scale smaller than their radius; this situation is common in the study of

colloids [103]. Sticky Brownian motions are the diffusive scaling limit of various models: discrete

random walks in random environment [105, 9], certain families of exclusion processes with a

tunable interaction [160], and storage processes [100]. Using the language of stochastic flows of

kernels, sticky Brownians motion can be described as independent motions in a space-time i.i.d.

random environment [135, 132, 168, 169].

In this chapter we restrict our attention to a specific one-parameter family of sticky Brownian

motions which we will call uniform sticky Brownian motions where the multiparticle interactions

are completely determined by the two particle interactions. Within this restricted class, we prove a

quenched large deviation principle (Theorem 3.1.13) for the random heat kernel (referred to below

as the uniform Howitt-Warren stochastic flow of kernels). We then prove that the random lower

order corrections to the large deviation principle, which come from the random environment, are

Tracy-Widom GUE distributed in the large time limit (Theorem 3.1.15). This gives a positive an-

swer, in the case of uniform sticky Brownian motions, to a question posed in [169, Section 8.3 (4)].

Our results can be rephrased to say that as time and the number of particles n are simultaneously

sent to infinity, the position of the extremal particle of n uniform sticky Brownian motions has

Tracy-Widom GUE distributed fluctuations (Corollary 3.1.17).

We prove these results by viewing uniform sticky Brownian motions as the limit of a dis-

crete exactly solvable model: the beta random walk in random environment (RWRE). Using exact

formulas for the latter, we prove a Fredholm determinant formula for the Laplace transform of

the random heat kernel associated to sticky Brownian motions. We then perform rigorous saddle

point asymptotics to prove the Tracy-Widom GUE limit theorem. We also provide mixed mo-

ment formulas for the stochastic flow of kernels, which yield concise formulas for the probability
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distribution at time t of the maximum of n-point sticky Brownian motions started from arbitrary

particle positions (Proposition 3.1.22). Though we uncover the integrability of the model by de-

generating earlier results, this allows us to bring the techniques of integrable probability to bear on

sticky Brownian motions and stochastic flows, which occur as the scaling limit of many stochastic

processes. On a more technical side the asymptotic analysis of the Fredholm determinant formula

for the beta RWRE was challenging and could only be performed for a very specific choice of

parameters; we overcome some of these challenges in Section 3 through a careful analysis of the

level lines of a meromorphic function with infinitely many poles.

We also describe intriguing connections (see Remark 3.1.24) between the uniform Howitt-

Warren (or Le Jan-Raimond) stochastic flow of kernels and the a priori ill-posed diffusion (consid-

ered in physics [131])

dXt = ξ(t,Xt)dt + dBt,

where ξ is a space time white noise independent from the driving Brownian motion B or of the

stochastic PDE

∂tv =
1
2
∂xxv + ξ∂xv,

associated to the above diffusion via the Kolmogorov backward equation.

3.1.1 Definitions

Before stating our main results, we need to introduce the notions of sticky Brownian motions

and stochastic flows of kernels. Recall that the local time of a Brownian motion Bt at the point a

is defined by the almost-sure limit

`a
t (B) = lim

ε→0

1
2ε

∫ t

0
1a−ε≤Bs≤a+εds = lim

ε→0

1
ε

∫ t

0
1a≤Bs≤a+εds.
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For a continuous semimartingale Xt , the natural time scale is given by its quadratic variation 〈X,X〉t

and we define the local time as the almost sure limit [164, Corollary 1.9, Chap. VI]

`a
t (X) = lim

ε→0

1
ε

∫ t

0
1a≤Xs≤a+εd〈X,X〉t .

Feller initiated the study of Brownian motions sticky at the origin in [77], while studying general

boundary conditions for diffusions on the half line.

Definition 3.1.1. Brownian motion sticky at the origin can be defined as the weak solution to the

system of stochastic differential equations

dXt = 1{Xt,0}dBt, (3.1)∫ t

0
1Xs=0ds =

1
2λ
`0

t (X),

where Bt is a Brownian motion. Reflected Brownian motion sticky at the origin can be defined as

Yt = |Xt | where Xt is a Brownian motion sticky at the origin.

Remark 3.1.2 (Time change). Brownian motion sticky at the origin can be viewed as a time change

of Brownian motion in a construction due to Ito and McKean [110]. Consider the Brownian motion

Bt , and define the continuous increasing function A(t) = t + 1
2λ`

0
t (B). Let T(t) = A−1(t) and set

Xt = BT(t). We see that Xt is a usual Brownian motion when Xt , 0, because the local time of

Bt only increases when Bt = 0. When Xt = 0 time slows down. We know
∫ t

0 1Xs>0ds = T(t), so∫ t
0 1Xs=0ds = t − T(t) = 1

2λ`
0
T(t)(B) =

1
2λ`

0
t (X). This type of time change can be used to produce

many processes with sticky interactions.

Remark 3.1.3 (Discrete limit). Reflected Brownian motion sticky at the origin Yt can also be viewed

as the diffusive limit of a sequence of random walks which tend to stay at 0. For small ε > 0, let Zε
t

be a discrete time random walk on Z≥0, which behaves as a simple symmetric random walk when

it is not at the point 0. When Zε
t is at the point 0, at each time step it travels to 1 with probability ε

and stays at 0 with probability 1 − ε. The diffusive limit εZ2λε
ε−2t

converges to Yt weakly as ε → 0.
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Figure 3.1: Left panel: Random walk Z1/5
t leaving 0 with probability 1/5, up to time 25. Right

panel: Reflected Brownian motion sticky at 0 obtained by the scaling limit of Zε
t .

To understand this convergence see equation (3.3), and note that the drift of the limiting motion at

0 is equal to 2λ because in each unit of time there are ε−2 opportunities to jump from 0 to ε and

the proportion of these opportunities that is taken is approximately 2λε. The analogous statement

is also true for Brownian motion sticky at the origin. See Figure 3.1 where a simulation of Z1/5
t is

shown alongside Yt .

From Remark 3.1.2 and the Tanaka Formula for reflected Brownian motion it is easy to see that

Yt is a weak solution to the system of stochastic differential equations

dYt =
1
2

d`0
t (Y ) + 1{Yt>0}dBt, (3.2)

1{Yt=0} =
1

4λ
d`0

t (Y ),

Equations (3.2) is equivalent to the single SDE

dYt = 2λ1{Yt=0}dt + 1{Yt>0}dBt, (3.3)

in the sense that a weak solution to one is a weak solution to the other [76]. Existence and

uniqueness of weak solutions to (3.1) and (3.2) can be found in [76] and references therein.
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Nonexistence of strong solutions to equations (3.1) and (3.2) was first shown in [57] and [197]

(see also [76] for a more canonical arguments which would more easily generalize to other sticky

processes). Several other works have been published on the existence of solutions to similar SDEs

with indicator functions as the coefficient of dBt or dt including [114, 29]. A more complete

history of these SDEs can be found in [76].

We wish to study the evolution of n particles in one spatial dimension where the difference

between any pair of particles is a Brownian motion sticky at the origin. First we do this for a pair

of sticky Brownian motions.

Definition 3.1.4. The stochastic process (X1(t),X2(t)) is a pair of Brownian motions with sticky

interaction if each Xi is marginally distributed as a Brownian motion and

〈X1,X2〉(t) =
∫ t

0
1X1(s)=X2(s)ds, (3.4)∫ t

0
1X1(s)=X2(s)ds =

1
2λ
`0

t (X1 − X2). (3.5)

In other words (X1(t),X2(t)) are sticky Brownian motions if they evolve as independent Brownian

motions when they are at different positions and their difference is a Brownian motion sticky at 0

(see a simulation in Fig. 3.2). The parameter λ can be understood as the rate (in a certain excursion

theoretic sense) at which the two particles split when they are at the same position.

One can use Tanaka’s formula to show that equation (3.5) is equivalent to saying

|X1(t) − X2(t)| − 2λ
∫ t

0
1X1(s)=X2(s)ds (3.6)

is a martingale. Howitt and Warren [104] made this observation and generalized this martingale

problem for a family of n particles with pairwise sticky interaction, which we call n-point sticky

Brownian motions. In the most general case, the stickiness behaviour cannot be characterized

uniquely by a single parameter λ. One needs to define for each k, l ≥ 1 the “rate” at which a group

of k + l particles at the same position will split into two groups of respectively k and l coinciding
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Figure 3.2: Left panel: Two Brownian motions with sticky interaction. Right panel: 3-point sticky
Brownian motions. Not only do the paths stick pairwise, but sometimes all 3 paths may stick
together. Both simulations are discretizations of sticky Brownian motions using the beta RWRE
with ε = 0.02 (see Section 3.1.3).

particles. Following the notations in [104, 166, 169] this rate is denoted

(
k + l

k

)
θ(k, l).

Furthermore, we impose that the law of n-point sticky Brownian motions are consistent in the

sense that any subsets of k particles for k ≤ n follow the law of the k-point sticky Brownian

motions. This implies the relation θ(k + 1, l) + θ(k, l + 1) = θ(k, l). Under this relation, the family

of nonnegative real numbers θ(k, l) can be equivalently (see [166, Lemma A.4]) characterized by

a measure ν on [0,1] such that

∫ 1

0
xk−1(1 − x)l−1ν(dx) = θ(k, l).

The following definition of n-point sticky Brownian motions from [169] is a reformulation of

the Howitt-Warren martingale problem [104]. See Figure 3.2 and Figure 3.3 for simulations of

n-point Brownian motions.

Definition 3.1.5 ([169, Theorem 5.3]). A stochastic process ®X(t) = (X1(t), ...,Xn(t)) started from

®X(0) will be called n-point sticky Brownian motions if it solves the following martingale problem

called the Howitt-Warren martingale problem with drift β and characteristic measure ν.
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Figure 3.3: Left panel: 50 point-sticky Brownian motions using the same discretization as in Fig.
3.2. Because of the stickiness, the number of trajectories seems much smaller than 50. Right panel:
50 independent Brownian motions.

• (i) ®X is a continuous, square integrable martingale.

• (ii) The processes Xi and X j have covariation process

〈Xi,X j〉(t) =
∫ t

0
1Xi(s)=Xj (s)ds, for t ≥ 0, i, j = 1, ...,n.

• (iii) Consider any ∆ ⊂ {1, ...,n}. For ®x ∈ Rn, let

f∆(®x) := max
i∈∆
{xi} and g∆(®x) := |{i ∈ ∆ : xi = f∆(®x)}|,

where |S | denotes the number of elements in a set S. Then

f∆( ®X(t)) −
∫ t

0
β+(g∆( ®X(t))ds

is a martingale with respect to the filtration generated by ®X , where

β+(1) := β and β+(m) := β + 2
∫

ν(dy)
m−2∑
k=0
(1 − y)k = β + 2

m−1∑
k=1

θ(1, k).

Remark 3.1.6. Definition 3.1.5 generalizes the definition of 2-point sticky Brownian motions be-

cause each particle marginally evolves as a Brownian motion, and the marginal distribution of any
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pair of particles is that of a 2 point Brownian motion stickiness parameter λ = β+(2). Further, the

consistency of the n-point motion is clear from property (iii).

We will be interested in a particular exactly solvable case of the Howitt-Warren Martingale

problem.

Definition 3.1.7. An n-point stochastic process (B1(t), ...,Bn(t)) will be called the n-point uniform

sticky Brownian motions with stickiness λ if it solves the Howitt-Warren Martingale problem with

drift β = 0 and characteristic measure

ν(dx) = 1x∈[0,1]
λ

2
dx.

This choice corresponds to choosing the fragmentation rates θ(k, l) = B(k, l), where B(k, l) =

Γ(k)Γ(l)
Γ(k+l) denotes the beta function. We explain below in Section 3.1.3 why this case is exactly

solvable.

In order to realize the n-point sticky Brownian motions as a family of independent random

motions in a random environment, we need to introduce the notion of stochastic flows of kernels.

Let B be the Borel σ-algebra of R. For any s ≤ t, a random probability kernel, denoted Ks,t(x, A),

for x ∈ R and A ∈ B, is a measurable function defined on some underlying probability space Ω,

such that it defines for each (x,ω) ∈ R×Ω a probability measure on R. In order to interpret this as

the random probability to arrive in A at time t starting at x at time s, the kernel needs to satisfy the

following additional hypotheses.

Definition 3.1.8 ([169, Definition 5.1]). A family of random probability kernels (Ks,t)s≤t on R is

called a stochastic flow of kernels if the following conditions are satisfied.

(i) For any real s ≤ t ≤ u and x ∈ R, almost surely Ks,s(x, A) = δx(A), and

∫
R

Ks,t(x, dy)Kt,u(y, A)dy = Ks,u(x, A)

for all A ∈ B.
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(ii) For any t1 ≤ t2 ≤ ... ≤ tk , the random kernels (Kti,ti+1)
k−1
i=1 are independent.

(iii) For any s ≤ u and t real, Ks,u and Ks+t,u+t have the same finite dimensional distributions.

Remark 3.1.9. Additional continuity hypotheses were given in the original definition of a stochas-

tic flow of kernels in [133], but we will only be interested in Feller processes for which these

hypotheses are automatically satisfied.

The n-point motion of a stochastic flow of kernels is a family of n stochastic processes X1, ...,Xn

on R with transition probabilities given by

P(®x, d ®y) = E

[
n∏

i=1
K0,t(xi, dyi)

]
. (3.7)

Every consistent family of n-point motions that is Feller, is the n-point motion of some stochas-

tic flow of kernels [133]. Any solution to the Howitt-Warren martingale problem is a consistent

family as was noted after Definition 3.1.5, and is Feller by [104]. So any solution to the Howitt-

Warren martingale problem is the n-point motion of some stochastic flow of kernels.

Definition 3.1.10. A stochastic flow of kernels whose n-point motions solve the Howitt-Warren

martingale problem is called a Howitt-Warren flow. The stochastic flow corresponding to the spe-

cial case of the Howitt-Warren martingale problem considered in Definition 3.1.7 (that we called

the uniform Howitt-Warren martingale problem), is sometimes called the Le Jan-Raimond flow,

after the paper [135], following the terminology used in [169, 166].

In condition (i) of Definition 3.1.8, if we assume that we can move the almost surely so it

occurs before choosing s, t,u and x, then we can sample all Ks,t and almost surely these kernels

define the transition kernels for some continuous space-time markov process. Conditionally on

the kernels we can describe the n-point motion as independent stochastic processes which evolve

according to the transition kernels Ks,t . Put simply the n-point motion can be seen as continuous

space time random motions in a random environment which is given by the set of all transition

kernels Ks,t . In [166] (see also [169, Section 5]) it is shown that the change in quantifiers in (i)
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necessary for this description can be done for Howitt-Warren flows. The random environment is

explicitly constructed [166, Section 3] (see also [169, Section 5]) and consists of a Brownian web

1 plus a marked Poisson process at special points of the Brownian web [148]. The random motions

in this environment essentially follow the Brownian web trajectories, except at these special points

where they may turn left or right with a random probability. For Howitt-Warren flows such that∫
q(1 − q)−1ν(dq) < ∞ (which is not true for the Le Jan-Raimond flow), the random environment

can also be constructed (see [166, Section 4]) using the Brownian net [179, 168].

Note that when starting from a set of particles on the real line and assuming that these particles

will branch and coalesce following paths given by either the Brownian net or the Brownian web,

the positions of the particles at a later time are given by a Pfaffian point process [85]. This type of

evolution of Brownian particles is also related to random matrix theory, in particular the Ginibre

evolution [191, 190, 192] (the evolution of real eigenvalues in a Ginibre matrix with Brownian

coefficients), but these results do not seem to be directly related to the present chapter.

Following [166], we define a measure valued Markov process called the Howitt-Warren process

by

ρt(dy) =
∫

ρ0(dx)K0,t(x, dy).

It describes how a measure on the real line is transported by the Howitt-Warren flow. We also

define a function valued Markov process called the dual smoothing process by

ζt(x) =
∫

K−t,0(x, dy)ζ0(y). (3.8)

This is a continuous analogue of the random average process [19]. For any fixed t, the processes

ρt and ζt are related via the equality in distribution (called duality in [166])

∫
ζ0(x)ρt(dx) =

∫
ζt(x)ρ0(dx).

1The Brownian web was introduced in [11], see also [185].
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Note that a different and stronger form of Markov (self-) duality was investigated in [52] and ap-

plied to characterize the distribution of 2-point sticky Brownian motions. The result was restricted

to 2-point motions and it is not clear if it translates in terms of stochastic flows of kernels.

The dual smoothing process was shown to lie in the Edwards-Wilkinson universality class

[199], in the sense that for any fixed x0 ∈ R,

Zn(t,r) :=
1

n1/4 ζnt(nx0 + r
√

n)

weakly converges as n goes to infinity – in the sense of finite dimensional marginals – to an explicit

Gaussian process related to the stochastic heat equation with additive noise. This result holds under

the assumption that at time t = 0, Zn(0, x) converges to a smooth profile2 (to which one may add

some Brownian noise). An analogous statement in the discrete setting was proved in [19].

In the sequel, we will study the distribution of the dual smoothing process when ζ0(y) = 1y>0

under a different scaling and we will see that the results are very different: instead of lying in the

Edwards-Wilkinson universality class, the model lies in the Kardar-Parisi-Zhang universality class.

3.1.2 Results

Our first result is a Fredholm determinant formula for the Laplace transform of the uniform

Howitt-Warren stochastic flow of kernels K0,t(0, [x,∞)), or Le Jan-Raimond flow. In terms of the

dual smoothing process, this corresponds to considering ζt(−x) with the initial condition ζ0(y) =

1y>0.

First recall the definition of the gamma function

Γ(z) =
∫ ∞

0
xz−1e−xdx,

2the deterministic part of the initial profile needs to be C1, and [199] assumes further that its derivative is bounded
and Hölder 1/2 + ε.
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and the polygamma functions

ψ(θ) = ∂z log Γ(z)|z=θ, ψi(θ) = (∂z)
iψ(z)|z=θ .

Theorem 3.1.11. Let K0,t(0, [x,∞)) denote the kernel of the uniform Howitt-Warren flow with stick-

iness parameter λ > 0. For u ∈ C \ R>0, and x > 0, we have

E[euK0,t (0,[x,∞))] = det(I − Ku)L2(C), (3.9)

(the R.H.S is a Fredholm determinant, see Definition 3.2.1 below), where

Ku(v, v
′) =

1
2πi

∫ 1/2+i∞

1/2−i∞

π

sin(πs)
(−u)s

g(v)

g(v + s)
ds

s + v − v′
,

and

g(v) = Γ(v) exp
(
λxψ0(v) +

λ2t
2
ψ1(v)

)
.

where C is a positively oriented circle with radius 1/4 centered at 1/4. (It is important that this

contour passes through zero at the correct angle. The actual radius of the circle C does not matter.)

Remark 3.1.12. We use two very different notions of kernels, which are both denoted by the letter

K . We will reserve the font K for stochastic flows of kernels, and the usual font K for the kernels

of L2 operators arising in Fredholm determinants.

We reach Theorem 3.1.11 by taking a limit of a similar Fredholm determinant formula [23,

Theorem 1.13] for the beta RWRE defined in Section 3.1.3. Theorem 3.1.11 is proved in Section

3.4.

We perform a rigorous saddle-point analysis of the Laplace transform formula (3.9) to obtain a

quenched large deviation principle for the uniform Howitt-Warren stochastic flow.

Theorem 3.1.13. Let λ > 0 and x ≥ 1.35. Let Ks,t be the kernel of a uniform Howitt-Warren flow.
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Then we have the following convergence in probability

1
t

log K0,t(0, [xt,∞)) −−−−→
t→∞

−λ2J(x/λ), (3.10)

where

J(x) = max
θ∈R>0

{
1
2
ψ2(θ) + xψ1(θ)

}
. (3.11)

The condition x ≥ 1.35 is technical and is addressed in Remark 3.1.16. We expect that the

limit holds almost surely. This should follow from subadditivity arguments, though we do not

pursue this in the present chapter (see [163] for an almost sure quenched large deviation principle

for discrete random walks). We emphasize that in Theorem 3.1.13, the rate function J(x) is ex-

pressed explicitly using well-known special functions, which is in contrast with what one would

obtain using subadditivity arguments. Another large deviation principle was shown in [69] for the

empirical distribution of a certain class of n-point sticky Brownian motions, but this does not seem

to be related to the present Theorem 3.1.13.

Remark 3.1.14. The annealed3 analogue of this large deviation principle just describes the tail

behavior of a standard Brownian motion. Indeed,

1
t

logE[K0,t(0, [xt,∞))] = −x2/2.

It can be easily checked that λ2J(x/λ) > x2/2 which, in the context of directed polymers, means

that the model exhibits strong disorder. Note that the sign of the inequality is consistent with

Jensen’s inequality (assuming (3.10) holds in L1). The inequality becomes an equality in the

λ→∞ limit, which corresponds to Brownian motions with no stickiness.

When uniform sticky Brownian motions are viewed as random walks in a random environment,

Theorem 3.1.13 gives a large deviation principle whose rate function is deterministic despite the

3In the context of random walks in random environment and directed polymers, the (limiting) quenched free energy
or rate function is the limit obtained for almost every environment and the annealed analogues correspond to the same
quantities for the averaged environment.
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randomness of the environment. The random variable log K0,t does depend on the environment,

but its fluctuations are small enough that they are not detected by the large deviation principle.

We prove that the model is in the KPZ universality class in the sense that the random lower order

corrections to the large deviation principle, or equivalently the fluctuations of log K0,t , are Tracy-

Widom GUE distributed on the t1/3 scale.

Theorem 3.1.15. Let Ks,t be the kernel of a uniform Howitt-Warren flow with stickiness parameter

λ > 0. Let 0 < θ < 1. We have

lim
t→∞
P

(
log(K0,t(0, [x(θ)t,∞)) + λ2J(x(θ)/λ)t

t1/3σ(θ)
< y

)
= FGUE(y),

where FGUE(y) is the cumulative density function of the Tracy-Widom distribution (defined below

in (3.22)), and

x(θ) = −
λ

2
ψ3(θ)

ψ2(θ)
, σ(θ) =

λ2/3

21/3

(
−1
2
ψ4(θ) −

x(θ)
λ

ψ3(θ)

) 1
3

. (3.12)

Theorem 3.1.15 comes from applying a rigorous steep descent analysis to the Fredholm de-

terminant in Theorem 3.1.11. The proof is given in Section 3.2 with some technical challenges

deferred to Section 3.3 and Appendix B. The parametrization of functions J and σ arising in the

limit theorem via the variable θ may appear unnatural at this point. It will appear more natural in

the proof as θ is the location of the critical point used in the steep descent analysis. We expect that

there should exist another interpretation of the parameter θ. It should naturally parametrize sta-

tionary measures associated with the uniform Howitt-Warren flow, and KPZ scaling theory [173,

126] would predict the expressions for J(x) and σ(θ) given above. This approach would require to

degenerate to the continuous limit the results from [18] and we leave this for future investigation

(the analogue of parameter θ in the discrete setting is denoted λ(ξ) in [18, Theorem 2.7]).

Remark 3.1.16. Note that x(θ) is a decreasing function of θ and the technical hypothesis θ < 1

corresponds to approximately 1.35 ≤ x(θ). Similarly J(x) is an increasing function of x and θ < 1
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corresponds approximately to 1.02 < J(x(θ)). We expect Theorem 3.1.15 to hold for all θ > 0,

and Theorem 3.1.13 to hold for all x > 0, however if θ ≥ 1 we pick up additional residues while

deforming the contours of our Fredholm determinant during the asymptotic analysis which make

the necessary justifications significantly more challenging.

More generally, we believe that the result of Theorem 3.1.11 should be universal and hold for

more general Howitt-Warren flows under mild assumptions on the characteristic measure ν. This

would be analogous to a conjecture that for discrete polymer models the fluctuations of the free

energy are Tracy-Widom distributed as long as the weights of the polymer have finite fifth moments

[7, Conjecture 2.6]. Moreover, based on [162, Theorem 4.3], we expect that the random variable

log K0,t(0, [xt, xt + a)),

for any a > 0, satisfies the same limit theorems as log K0,t(0, [xt,+∞)) in Theorem 3.1.13 and

Theorem 3.1.15, with the same constants (the prediction that the constant σ(θ) should remain the

same is suggested by the results of [183]).

Following [23] we can state a corollary of Theorem 3.1.15. In general, tail probability estimates

provide information about the extremes of independent samples. In the present case, we obtain

that the largest among n uniform sticky Brownian motions fluctuates asymptotically for large n

according to the Tracy-Widom distribution. We will see that the result is very different from the

case of n independent Brownian motions, as can be expected from the simulations in Figure 3.3.

Corollary 3.1.17. Let c ∈ [1.02,∞), let x0 be such that λ2J(x0/λ) = c, let θ0 be such that x(θ0) =

x0, and let {Bi(t)} be uniform n-point sticky Brownian motions with stickiness parameter λ > 0

and scale n as n = ect , then

lim
t→∞
P

(
maxi=1,...,n{Bi(t)} − t x0

t1/3σ(θ0)/(λ2J′(x0/λ))
≤ y

)
= FGUE(y). (3.13)
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The proof of Corollary 3.1.17 is very similar to the proof of [23, Corollary 5.8] and uses the

fact that after conditioning on the environment we are dealing with independent motions along

with our strong control of the random variable K0,t(0, [xt,∞)) from Theorem 3.1.15. The details of

the proof can be found at the end of Section 3.2.

3.1.3 Integrability for n-point uniform sticky Brownian motions

In 2013 Povolotsky [158] introduced the q-Hahn Boson, a three parameter family of Bethe

ansatz solvable discrete zero range processes, computed the Bethe ansatz eigenfunctions, and con-

jectured their completeness. The q-Hahn Boson and its eigenfunctions were further studied in [64]

where a Markov duality with the so-called q-Hahn TASEP, an interacting particle system closely

related to the q-Hahn Boson, was used to compute integral formulas for the q-moments and the

q-Laplace transform of the particle positions. The q-Hahn Boson eigenfunctions were also further

studied in [34, 40] where the completeness of eigenfunctions was proved and their Plancherel the-

ory was developed. In [23] a model of random walks in a one dimensional random environment,

called the beta RWRE, was introduced as the q→ 1 limit of the q-Hahn TASEP. All features of the

integrability of the model survive in the scaling limit. Uniform sticky Brownian motions are a limit

of the beta RWRE and we show in the present article that it inherits as well all the integrability of

the q-Hahn Boson. Note that the q-Hahn Boson fits into the more general framework of stochastic

higher spin 6 vertex models [34, 46, 67], so uniform sticky Brownian motions are also a limit of a

stochastic vertex model.

Definition 3.1.18. The beta random walk in random environment (beta RWRE) depends on two

parameters α > 0 and β > 0. Let {w(x,t)}x∈Z,t∈Z≥0 be iid beta distributed random variables with

parameters α, β. Recall that a beta random variable w with parameters α, β > 0 is defined by

P(w ∈ dx) = 1x∈[0,1]
xα−1(1 − x)β−1

B(α, β)
dx,

where B(α, β) = Γ(α)Γ(β)
Γ(α+β) . We will call the values of the random variables w(x,t) for all x ∈ Z, t ∈ Z≥0
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the random environment.

Given a random environment, we begin k independent random walks (X1(t), ...,Xk(t)) from

position ®x0. Each random walker has jump distribution

P(X(t + 1) = x + 1|X(t) = x) = w(x,t) P(X(t + 1) = x − 1|X(t) = x) = 1 − w(x,t).

We will use ®X ®x(t) = (X x1
1 (t), ...,X

xk
k (t)) to refer to the position of k independent random walks

started from (x1, ..., xk) at time t. Unless another initial condition is specified, ®X(t) = (X1(t), ...,Xk(t))

will refer to the position of k random walkers started from the origin.

We use the symbol P with bold font for the quenched probability measure on paths, which is

obtained by conditioning on the environment. Similarly we used the same fonts for the quenched

probability kernels K which describe transition probabilities after conditioning on the environment.

The usual symbols P (resp. E) will be used to denote the measure (resp. the expectation) on the

environment.

Note that any single trajectory of the beta RWRE is just a simple random walk and the random

environment has no effect. However, if we consider multiple paths on the same environment, they

are correlated by the environment. In particular, they do not behave as simple random walks when

they meet.

We consider now the continuous limit of the model. If we simply rescale space and time dif-

fusively, trajectories become Brownian motions P-almost-surely [161]. Moreover, ®X(t) converges

to a family of independent Brownian motions and the effect of the environment has vanished in

the limit. In order to keep a dependence on the environment, we need to rescale the weights w(x,t)

so that two paths at the same location have a high probability of staying together. This will be the

case if w(x,t) is close to either 0 or 1 with high probability, which, for a beta distributed random

variable, happens when both parameters go to 0. More precisely, choose a positive parameter λ

and set αε = βε = λε. We will be interested in the process ®Xε(t) = (X1,ε(t), ...,Xk,ε(t)), which

is obtained as the particle positions at time t of k random walkers in a beta distributed random
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environment with parameters αε, βε started from the origin.

Lemma 3.1.19. As ε → 0, the n-point beta random walk in random environment
(
ε ®Xε(ε−2t)

)
t≥0

with parameters αε = βε = λε weakly converges to an n-point uniform sticky Brownian motions

with stickiness parameter λ in the space of continuous functions equipped with the topology of

uniform convergence on compact sets.

Proof. We apply [169, Theorem 5.3] with drift β = 0, and ν(dx) = λ
21[0,1]dx. �

In fact random walks in a beta distributed random environment were the first random walk in

random environment shown to converge to sticky Brownian motions in [132], though this result

was shown on a torus. After reformulating sticky Brownian motions as a martingale problem,

Howitt and Warren extended this convergence to random walks in any random environment pro-

vided the random variables defining the environment have certain scaling limits [104, 105]. This

theorem was reformulated in [166, 169] to arrive at the form used above.

Now we quote a formula for the quenched probability P(X(t) > x) in the beta random walk

in random environment, where X(t) is the path of a single particle that starts from 0 at time 0.

This quantity is the analogue of K0,t(0, [x,∞)) in the case of the beta random walk in random

environment. It satisfies the following formula

Theorem 3.1.20 ([23, Theorem 1.13]). For u ∈ C\R>0 and α, β > 0, fix t ∈ Z≥0 and x ∈ {−t, ..., t}

with the same parity. Then

E[euP(X(t)>x)] = det(I − KRW
u )L2(C0),

where C0 is a small positively oriented contour that contains 0 and does not contain the points

−α − β and −1, and KRW
u : L2(C0) → L

2(C0) is defined in terms of its kernel

KRW
u (v, v

′) =
1

2πi

∫ 1
2+i∞

1
2−i∞

π

sin(πs)
(−u)s

gRW(v)

gRW(v + s)
ds

s + v − v′
,
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where

gRW(v) =

(
Γ(v)

Γ(α + v)

) (t−x)/2 (
Γ(α + β + v)

Γ(α + v)

) (t+x)/2
Γ(v).

Theorem 3.1.20 is the starting point for our study of the uniform sticky Brownian motion in

this chapter, in particular Theorem 3.1.11 is derived as a limit of this formula.

Remark 3.1.21. There is a sign mistake in [23, Theorem 1.13]. It reads E[euP(X(t)≥x)] = det(I +

KRW
u )L2(C0), but the right hand side should be det(1 − KRW

u )L2(C0). This is corrected in Theorem

3.1.20.

As we have already mentioned, the crucial tool underlying the exact solvability of the beta

RWRE is the Bethe ansatz. We will describe now the sense in which n-point uniform sticky

Brownian motions are also amenable to Bethe ansatz diagonalization. This could lead to another

proof of Theorem 3.1.11, though we do not provide, in this chapter, the necessary justifications to

make this alternative proof complete.

Let K be the kernel of a uniform Howitt-Warren flow, and let ®x ∈ Rk . We define the function

Φ
(k)
t (x1, . . . , xk) := E

[
K−t,0(x1, [0,+∞)) . . .K−t,0(xk, (0,+∞))

]
.

Note that since the random variables K−t,0(x, (0,+∞)) are bounded between 0 and 1, so are

the mixed moments Φ(k)t (x1, ..., xk). In particular the knowledge of Φ(k) uniquely determines their

distribution. For instance, we have for any u ∈ C

E
[
euK−t ,0(x,(0,+∞))

]
=

∞∑
k=0

uk

k!
Φ
(k)
t (x, . . . , x). (3.14)

where there are k occurrences of the variable x in the argument above.
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Proposition 3.1.22. For x1 ≥ · · · ≥ xk , and t > 0,

Φ
(k)
t (x1, . . . , xk) =∫

α1+iR

dw1
2iπ
· · ·

∫
αk+iR

dwk

2iπ

∏
16A<B6k

wB − wA

wB − wA − wAwB

k∏
j=1

exp

(
tλ2w2

j

2
+ λx jw j

)
1
w j
, (3.15)

where for i < j, 0 < αi <
αj

1+αj
. The value at t = 0 should be understood as

φ0(x1, ..., xk) = lim
t→0+

φt(x1, ..., xk).

Proposition 3.1.22 is proved in Section 3.5. We also show in Section 3.5.2 that Φ(k)t (®x) con-

verges, under appropriate scaling, to the moments of the stochastic heat equation with multiplica-

tive noise. This suggests that Howitt-Warren stochastic flows weakly converge in the weak noise

limit (λ→ +∞ with time and space rescaled) to the solution to the KPZ equation.

One may observe that (see details in Section 3.5.3) the right hand side of (3.15) satisfies the

following heat equation subject to boundary conditions


∂tu(t, ®x) = 1

2∆u(t, ®x), t ≥ 0, ®x ∈ R,

(∂i∂i+1 + λ(∂i − ∂i+1))u(t, ®x)|xi=xi+1 = 0.
(3.16)

Proposition 3.1.22 shows that (3.16) can be solved using coordinate Bethe ansatz, at least for

certain initial conditions. We refer to [62, Section 3.4.1] or [40] for background on coordinate

Bethe ansatz in a similar context. In general, Bethe ansatz eigenfunctions corresponding to this

problem can be parametrized by k complex numbers z1, . . . , zk and written as

Ψ®z(®x) =
∑
σ∈Sk

∏
1≤i< j≤k

zσ(i) − zσ( j) − 1
zσ(i) − zσ( j)

k∏
j=1

e
−
λxj
zj . (3.17)

Remark 3.1.23. It is natural (see Section 3.5.4) to associate to (3.16) the following Schrödinger
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type equation on Rk with point interactions

∂tv(t, ®x) =
1
2
∆v(t, ®x) +

1
2λ

∑
i, j

δ(xi − x j)∂xi∂xjv(t, ®x). (3.18)

We expect the operator 1
2∆+

1
2λ

∑
i, j δ(xi−x j)∂xi∂xj to be the generator of the n-point uniform sticky

Brownian motions, though we do not address in the present chapter the details necessary to make

rigorous sense of this statement. Note that similar operators appear in the study of turbulence, in

particular in Kraichnan’s model of passive scalar [32] and connections to sticky Brownian motions

have been noticed in the physics literature [87].

Remark 3.1.24. Using E[ξ(s, x)ξ(t, y)] = δ(t − s)δ(y − x) for a space-time white noise ξ, the

Schrödinger equation (3.18) is formally satisfied by the moments of the following stochastic PDE

(assuming the existence of such an object, see more details in Section 3.5.4)


∂tq(t, x) = 1

2∂xxq(t, x) + 1√
λ
ξ(t, x)∂xq(t, x),

q(0, t) = q0(x).
(3.19)

If ξ was a smooth and Lipschitz potential, the Kolmogorov backward equation would provide a

representation of the solution as

q(x, t) = E[q0(X0)|X−t = x],

where Xt is the random diffusion

dXt =
1
√
λ
ξ(Xt, t)dt + dBt, (3.20)

where the Brownian motion B is independent from ξ, and E denotes the expectation with respect to

B, conditionally on the environment ξ. For a space-time white noise drift, we have not found any

rigorous construction in the literature, and the fact that ξ is not smooth introduces three problems.
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First, when ξ is a white noise equation (3.20) is ill-defined. Second, If ξ were regularized to be

smooth in space but white in time equation (3.20) would be incorrect (This case is studied in [196]).

The final problem is explained in Remark 3.1.25.

Note that the same diffusion (3.20) is considered in the physics paper [131, Equation (2)] by Le

Doussal and Thiery and our results are consistent with some of their predictions (if we identify the

solution q(t, x) of (3.19) with the dual smoothing process (defined in (3.8)) of the Le Jan-Raimond

flow ζt(−x)). Moreover, if we interpret ξ as a velocity field, (3.19) can be seen as an advection-

diffusion equation as in Kraichnan’s model [124], a model of turbulent flow designed to explain

anomalous exponents not predicted by Kolmogorov theory of turbulence, we refer to the review

articles [172] for physics background or [128] for a more mathematical exposition. Note that the

series of physics works [55, 88, 32, 89, 90] on Kraichnan’s model were part of the motivation for

the work of Le Jan and Raimond [134, 133] on stochastic flows.

Remark 3.1.25. Despite the previous remark, one should not define the solution q(t, x) of the

stochastic PDE (3.19) as the dual smoothing process ζt(x) of the Le Jan-Raimond flow (defined in

(3.8)), even though the moments of both quantities satisfy the same evolution equation (see more

details in Section 3.5.4). Indeed, it was proved by Le Jan and Lemaire [136, 135] that the noise

generated by the Le Jan-Raimond flow of kernels is black, which implies that, if ξ is a space-time

white noise, there cannot be a probability space on which ζt(x) is a strong solution to (3.19).

Remark 3.1.26. We expect the Bethe ansatz eigenfunctions Ψ®z(®x) (3.17) to be orthogonal with

respect to a simple inner product and to form a basis of a large subspace of functions on Rk . These

properties would in principle allow to solve (3.16) for a large class of initial data, although we

expect concise integral formulas such as (3.73) only in a handful cases. Proofs of such statements

would likely come from degenerating the Plancherel theory [40, 41] for the q-Hahn Boson Bethe

ansatz eigenfunctions.
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3.1.4 Outline of the proofs

In Section 3.2 we begin with a Fredholm determinant formula for the Laplace transform of the

random kernel for a uniform Howitt-Warren flow, then apply a rigorous saddle point analysis to

show that the large deviation principle for this random kernel has Tracy-Widom corrections. For

readability we will delay some details of the arguments to Section 3.3 and Appendix B. Section 3.3

is devoted to constructing a contour which is needed for the saddle point analysis in the previous

section. This is one of the main challenges in our saddle point analysis and involves a study of

the level set of the real part of a certain meromorphic function. Appendix B provides the bounds

necessary to apply dominated convergence to our Fredholm determinant expansions in order to

make the saddle point analysis in Section 3.2 rigorous.

In Section 3.4 we derive the Fredholm determinant formula for the Laplace transform of the

point to half line probability for uniform sticky Brownian motions used in Section 3.2 as the limit

of a similar formula for the beta RWRE. The argument is straightforward but requires technical

bounds based on known asymptotics for the Gamma and PolyGamma functions. The proof is

divided into three steps and the idea of the argument can be understood after reading the first step

of the proof. The necessary bounds are provided in the latter two steps.

Section 3.5 is independent from the other sections and provides a proof of the mixed moment

formulas for the uniform sticky Brownian motions by taking a limit of similar formulas for the

beta RWRE. We also explain the relation between this moment formula and Bethe ansatz, the KPZ

equation and the diffusion (3.20)

Appendix A gives precise bounds on the Gamma and Polygamma function which are necessary

for the construction of the contours in our saddle point analysis.
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3.2 Asymptotic analysis of the Fredholm determinant

The overall goal of this section is to show that for large time, the fluctuations of the log of

the kernel of a uniform Howitt-Warren flow converges to the Tracy-Widom distribution (Theorem

3.1.15). We first use a trick from [36] to access the large time distribution of K0,t(0, [x,∞)) from

its Laplace transform without using Laplace inversion formula. Then we apply the method of

steep descent to the Fredholm determinant from Theorem 3.1.11 and prove that, in the appropriate

scaling limit, it converges to the cumulative density function of the Tracy-Widom distribution.

We first recall the definition of a Fredholm determinant.

Definition 3.2.1. For any contour C and any measurable function K : C × C → C, which we will

call a kernel, the Fredholm determinant det(1 + K)L2(C) is defined by

det(1 + K)L2(C) = 1 +
∞∑

k=1

1
k!

∫
Ck

det(K(xi, x j))1≤i,j≤k

k∏
i=1

dxi, (3.21)

provided the right hand side converges absolutely.

The Tracy-Widom distribution is defined by its cumulative density function

FGUE(x) = det(I − KAi)L2(x,∞), (3.22)
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where the Airy kernel KAi is defined as

KAi(x, y) =
1

2πi

∫ e
2πi
3 ∞

e−
2πi
3 ∞

dω
∫ e

πi
3 ∞

e−
πi
3 ∞

dz
e

z3
3 −zx

e
ω3
3 −ωy

1
(z − ω)

.

In this integral the contours for z and ω do not intersect. We may think of the integrating z over

the contour (e−
πi
3 ∞,1] ∪ (1, e πi

3 ∞) and the integral w over the contour (e−
2πi
3 ∞,0] ∪ (0, e 2πi

3 ∞).

Instead of inverting the Laplace transform in Theorem 3.1.11, we use a standard trick appearing

as Lemma 4.1.39 in [36] and take a limit of the Laplace transform to obtain the following formula

for the point to half line probability of sticky Brownian motions.

Proposition 3.2.2. Let Ku(v, v
′) be as defined in Theorem 3.1.11. For λ > 0, θ > 0, t > 0,

and arbitrary constants x(θ), J(x(θ)), σ(θ) depending on θ, if limt→∞ det(I − Kut (y))L2(C) is the

continuous cumulative density function of a random variable, then

lim
t→∞
P

(
log(K0,t(0, [x(θ)t,∞))) + λ2J(x(θ)/λ)t

t1/3σ(θ)
< y

)
= lim

t→∞
det(I − Kut (y))L2(C),

where ut(y) = −etλ2 J(x(θ)/λ)−t1/3σ(θ)y

Proof of Proposition 3.2.2. Set x = x(θ)t. Then

eut (y)K0,t (0,[x,∞)) = exp

(
−e

t1/3σ(θ)

(
tλ2J(x(θ)/λ)+log(K0,t (0,[x(θ)t ,∞))

t1/3σ(θ)
−y

) )
.

Considering the function ft(x) = exp(−et1/3σ(θ)x) and keeping in mind that σ(θ) > 0, we see that

ft(x) is strictly decreasing in x, it approaches 0 as x → ∞ and it approaches 1 as x → −∞. We

also see that as t →∞ this function converges to 1x<0 uniformly on the interval R \ [−δ, δ] for any

choice of δ > 0.

If we define the r shift f r
t (x) = ft(x − r), then

E[eut (r)K0,t (0,[x,∞))] = E

[
f r
t

(
tλ2J(x(θ)/λ) + log(K0,t(0, [x(θ)t,∞))

t1/3σ(θ)

)]
.
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By Theorem 3.1.11, limt→∞ E[eut (−y)K0,t (0,[x,∞))] = limt→∞ det(I − Kut (y))L2(C), and by assumption,

this is the continuous cumulative density function of a random variable. Using [36, Lemma 4.1.39],

completes the proof. �

3.2.1 Setup

Most of this Section 3.2 will be devoted to proving the following Proposition 3.2.3. Together

with Proposition 3.2.2 it proves Theorem 3.1.15.

Proposition 3.2.3. For λ > 0, t > 0, x > 0, and constants x(θ), J(x(θ)), σ(θ) from (3.12), we have

lim
t→∞

det(I − Kut (y))L2(C) = FGUE(y).

First we rewrite Kut (y) in order to apply the method of steep descent. Performing the change of

variables z = s + v gives

Kut (y)(v, v
′) =

1
2πi

∫
1/2+iR

π

sin(π(z − v))
e(z−v)(tλ

2 J(x(θ)/λ)−t1/3σ(θ)y)g(v)

g(z)
dz

z − v′
.

Here we have used the fact that the contour for v can be made arbitrarily small so that the contour

for z can be deformed from 1/2 + v + iR to 1/2 + iR without crossing poles of π
sin(π(z−v)) . Recall

that

g(v) = exp
(
λ2t
2
ψ1(v) + λxψ(v)

)
Γ(v),

so replacing x by xt gives

Kut (y)(v, v
′) =

1
2πi

∫
1/2+iR

π

sin(π(z − v))
et(h(z)−h(v))−t1/3σ(θ)y(z−v)Γ(v)

Γ(z)
dz

z − v′
,

where

h(z) := λ2J(x(θ)/λ)z −
λ2

2
ψ1(z) − λx(θ)ψ(z) = λ2/2

[
(ψ2(θ)z − ψ1(z)) −

ψ3(θ)

ψ2(θ)
(ψ1(θ)z − ψ(z))

]
.
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The definitions of x(θ), σ(θ) and J(x) in (3.12), (3.11) are tailored precisely so that

h′(θ) = h′′(θ) = 0.

This will allow us to perform a critical point analysis at θ. Recall (3.12) and note that 1
2ψ2(θ) +

xψ1(θ), is maximized at x(θ)/λ, so that we may alternatively define J(x(θ)/λ) by

J(x(θ)/λ) =
1
2
ψ2(θ) +

x(θ)
λ

ψ1(θ).

Then

h′(z) = J(x(θ)/λ) −
λ2

2
ψ2(z) − λx(θ)ψ1(z),

h′′(z) = −
λ2

2
ψ3(z) − λx(θ)ψ2(z),

and one can immediately check that h′(θ) = h′′(θ) = 0. We also have

h′′′(z) = −
λ2

2
ψ4(z) − λx(θ)ψ3(z) = −

λ2

2

(
ψ4(z) −

ψ3(z)
ψ2(z)

ψ3(z)
)
,

which means that 2σ(θ)3 = h′′′(θ). To control the sign of h′′′(θ), we need the following lemma.

Lemma 3.2.4. For any z > 0,

ψm(z)2 < ψm+1(z)ψm−1(z).

Proof. We adapt the proof of [23, Lemma 5.3]. The integral representation for polygamma func-

tions gives

ψm(z)2 =
∫ ∞

0

∫ ∞

0

e−zt−zu

(1 − e−t)(1 − e−u)
umtmdudt,

ψm−1(z)ψm+1(z) =
∫ ∞

0

∫ ∞

0

e−zt−zu

(1 − e−t)(1 − e−u)
um−1tm+1dudt.
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Symmetrizing the second formula in u and t gives

ψm−1(z)ψm+1(z) =
∫ ∞

0

∫ ∞

0

e−zt−zu

(1 − e−t)(1 − e−u)
um−1tm−1 u2 + t2

2
dudt .

comparing the integrands and using ab ≤ a2+b2

2 gives the result. �

Lemma 3.2.5. For all θ > 0, h′′′(θ) > 0.

Proof. We have ψ2(θ) < 0 for all θ > 0, this reduces the positivity of h′′′(θ) to the fact that

ψ4(z)ψ2(z) > ψ3(z)2, which follows from Lemma 3.2.4. �

3.2.2 Outline of the steep descent argument

Before going further we provide a brief outline of the steep descent argument that the rest

of this section will make precise. In this outline we will only describe pointwise convergence

of the integrand of Kut to that of KAi without justifying convergence for the Kernel itself or for

the Fredholm determinant. We will also ignore the contours of the Fredholm determinant det(I −

Kut )L2(C) and of the integral which defines the kernels. Consider

Kut (y)(v, v
′) =

1
2πi

∫
D

π

sin(π(z − v))
et(h(z)−h(v))−t1/3σ(θ)y(z−v)Γ(v)

Γ(z)
dz

z − v′
,

and assume that we can deform the contours C and D to C and D respectively so they pass

through θ at appropriate angles. Perform the change of variables v = θ + σ(θ)−1t−1/3ṽ, v′ =

θ + σ(θ)−1t−1/3ṽ′, z = θ + σ(θ)−1t−1/3 z̃. We know that h has a double critical point at θ, as h′(θ) =

h′′(θ) = 0 so we Taylor expand and use the large t approximations

h(θ + t−1/3ωz) → h(θ) +
z̃3

3
,

t−1/3π

sin(π(z − v))
→

1
z̃ − ṽ

,
Γ(v)

Γ(z)
→ 1.

So our kernel becomes

K(y)(ṽ, ṽ′) =
1

2πi

∫ e
πi
3 ∞

e−
πi
3 ∞

ez̃3/3−y z̃

eṽ3/3−yṽ
dz̃

(z̃ − ṽ)(z̃ − ṽ′)
.
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The Fredholm determinant of this kernel is then reformulated as the Fredholm determinant of the

Airy kernel on L2(R) using the identity det(1 + AB) = det(1 + BA) in Lemma 3.2.17.

This completes the brief formal critical point analysis. The main technical challenge is finding

contours C and D such that the integrals along these contours have (asymptotically as t → ∞) all

of their mass near θ (see Section 3.2.3 and Section 3.3). This is made more difficult in our case

because h is a function with infinitely many poles and it is difficult to explicitly enumerate its crit-

ical points. Once such contours are found, a careful argument is necessary to produce the bounds

needed to apply dominated convergence to the integral over D and to the Fredholm determinant

expansion (see Section 3.2.4 and Appendix B).

3.2.3 Steep descent contours

In order to perform our asymptotic analysis on det(I − Kut (y))L2(C), we need to find contours,

such that the real part of h (and therefore the norm of the integrand of Kut (y)(v, v
′)) can be bounded

above. In this section we find such contours for the z variable. The contour for the v, v′ variables

is more elaborate and will be constructed in Section 3.3.

Without loss of generality we may restrict our attention to λ = 1 in most of the remainder of

the chapter due to the fact that h(z)/λ2 does not depend on λ.

Lemma 3.2.6. The curve D = θ + iR is steep descent at the point θ with respect to the function

h(z). In other words ∂yRe[θ + iy] < 0 for y > 0 and ∂yRe[θ + iy] > 0 for y < 0.

Proof. By definition,

h(z) = λ2/2
[
(ψ2(θ)z − ψ1(z)) −

ψ3(θ)

ψ2(θ)
(ψ1(θ)z − ψ(z))

]
= λ2/2

[
(ψ2(θ) −

ψ3(θ)

ψ2(θ)
ψ1(θ))z − (ψ1(z) −

ψ3(θ)

ψ2(θ)
ψ(z))

]
,

and

h′(z) = λ2/2
[
(ψ2(θ) −

ψ3(θ)

ψ2(θ)
ψ1(θ)) − (ψ2(z) −

ψ3(θ)

ψ2(θ)
ψ1(z))

]
.
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Note that ∂yRe[h(θ + iy)] = −Im[h′(θ + iy)]. (ψ2(θ) −
ψ3(θ)
ψ2(θ)

ψ1(θ)) is a positive real by Lemma

3.2.4, and −ψ2(θ) is positive, so we have

A := −ψ2(θ)Im[h′(θ + iy)] = Im[ψ2(θ)ψ2(θ + iy) − ψ3(θ)ψ1(θ + iy)] > 0 for y > 0,

< 0 for y < 0.

These two statements are equivalent because the function is odd in y. Below we assume y > 0.

For n ≥ 1, we will use the Polygamma series expansion (A.1). First we note that

Im[ψ2(θ + iy)] = −2
∞∑

k=0

−3(t + k)2y + y3

((t + k)2 + y2)3
,

Im[ψ1(θ + iy)] =
∞∑

k=0

−2(t + k)y
((t + k)2 + y2)2

.

Using the series expansion,

A = 4
∞∑

m,n=0

1
(n + θ)3

−3(m + θ)2y + y3

((m + θ)2 + y2)3
− 6

∞∑
m,n=0

1
(n + θ)4

−2(m + θ)y
((m + θ)2 + y2)2

=

∞∑
m,n=0

1
(n + θ)3

−12(m + θ)2y + 4y3

((m + θ)2 + y2)3
+

1
(n + θ)4

12(m + θ)y
((m + θ)2 + y2)2

≥

∞∑
m,n=0

1
(n + θ)3

−12(m + θ)2y
((m + θ)2 + y2)3

+
1

(n + θ)4
12(m + θ)y
((m + θ)2 + y2)2

= B.

We will show that B > 0. set

Tn,m =
1

(n + θ)3
−12(m + θ)2y
((m + θ)2 + y2)3

+
1

(n + θ)4
12(m + θ)y
((m + θ)2 + y2)2

,

so B =
∑∞

n,m=0 Tn,m. We will prove the following claims for arbitrary y > 0 and θ > 0:

1. For 0 ≤ n ≤ m, Tn,m > 0.

2. For 0 ≤ n ≤ m, then either Tn,m
Tm,n

is positive, or
���Tn,mTm,n

��� ≥ 1.

Together these claims imply that if n ≤ m, then Tn,m + Tm,n > 0, thus B is positive.
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In the following two arguments we assume 0 ≤ n ≤ m.

• Proof of claim (1): Let

a =
1

(n + θ)4
12(m + θ)y
((m + θ)2 + y2)2

, b =
1

(n + θ)3
−12(m + θ)2y
((m + θ)2 + y2)3

,

so that Tn,m = a + b. a is positive and b is negative, so we need only show that
��a
b

�� > 1. We have

���a
b

��� = (m + θ)2 + y2

(m + θ)(n + θ)
>

(m + θ)2

(m + θ)(n + θ)
=

m + θ
n + θ

≥ 1.

which is true because we made the hypothesis that n 6 m.

• Proof of claim (2): Setting m = n + k for k ≥ 0 and simplifying gives

Tn,m

Tm,n
=
(n + k + θ)5((n + θ)2 + y2)3(k(n + k + θ) + y2))

(n + θ)5((n + k + θ)2 + y2)3(−k(n + θ) + y2)
. (3.23)

Note that
(n + k + θ)2

(n + k)2
≥
(n + k + θ)2 + y2

(n + k)2 + y2 . (3.24)

In the case that −k(n+θ)+y2 > 0, Tn,m
Tm,n

is positive so there is nothing to show. If −k(n+θ)+y2 ≤ 0,

then we have ����−(k(n + k + θ) + y2)

(k(n + θ) − y2)

���� = (n + k + θ) + y2/k
(n + θ) − y2/k

≥
(n + k + θ)
(n + θ)

. (3.25)

Then (3.23) and (3.25) give����Tn,m

Tm,n

���� ≥ (n + k + θ)6

(n + θ)6
((n + θ)2 + y2)3

((n + k + θ)2 + y2)3
≥ 1.

where the last inequality follows from (3.24). This completes the proof.

�
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θ

θ + t−1/3ε

θ + ε sin(φε) + iε cos(φε)

φε

Figure 3.4: The contour Dε(φε) is shown in bold, and is oriented in the +i direction. The dotted
line connecting θ and θ + ε sin(φε) + iε cos(φε) has length ε.

Lemma 3.2.6 will allow us to show that as t → ∞, the kernel Kut (y)(v, v
′), which is defined

as an integral over θ + iR is the same as the limit as t → ∞ of the same integral restricted to

[θ − iε, θ + iε]. This is formalized in Lemma 3.2.15.

We will actually use a slight deformation of the contour D.

Definition 3.2.7. In the following ε is positive, and φε is a small positive angle. LetDε(φε) be the

the union of the diagonal line segment [θ+t−1/3ε, θ+εei(π−φε)), and the vertical line [θ+ε sin(φε)+

i cos(φε), θ + ε sin(φε)+ i∞) along with both their reflections over the real axis, directed from −i∞

to i∞. See Figure 3.4.

Lemma 3.2.8. For sufficiently small ε and φε, there is an η > 0 such that for any z ∈ Dε,t(φε) \

Dε
ε,t(φε), Re[h(z) − h(θ)] < −η.

Proof of Lemma 3.2.8. Because h(ωz) = ωh(z), it is enough to prove the result in the upper half

plane. The idea of this argument is that because h is a holomorphic function in a neighborhood of

the contour D, Taylor expanding and choosing ε small allows us to bound the difference between

h′ on D and h′ on Dε,t(φε) in a large bounded set. We control the difference outside this large
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ball around 0 using a rigorous version of Stirling’s approximation to control h′(z) for |Im[z]| very

large.

First we control h′(z) for large |Im[z]|. As y → +∞, the only term of h(θ + iy) that does not

go to 0 is the term containing ψ(θ+ iy). Lemma A.0.3 allows us to approximate ψ(θ+ iy) and gives

h(θ + iy) ∼ −cψ(θ + iy) ∼ −c log(θ + iy), where c = −ψ3(θ)
ψ2(θ)

is positive. Thus as Im[z] → +∞,

h(z) → −∞ uniformly for Re[z] in a compact set. Thus there is a large M such that for Im[z] > M ,

z ∈ Dε,t(φε) \ D
ε
ε,t(φε), Re[h(z) − h(θ)] < −η.

Now we will control h′ on a bounded set. By Lemma 3.2.6 ∂yRe[h(θ + iy)] < 0 for y > 0.

Thus for some large M , on the compact set y ∈ [cos(φε)ε,M], ∂yRe[h(θ + iy)] has some negative

minimum. h′′(z) is analytic in the compact rectangle with corners θ + iε cos(φε), θ + εeiφ, θ + iM ,

θ+ε sin(φε)+ iM . Thus |h′′(z)| is bounded above by some R in this rectangle. Note that R depends

only on ε cos(φε) and M , and R is increasing in cos(φε). We can choose ε and φε so that ε cos(φε)

remains fixed, and ε sin(φε) becomes arbitrarily small. Choosing so that ε sin(φε)R < η guarantees

that ∂yRe[h(θ + sin(φε)ε + iy)] > 0 for y ∈ [cos(φε)ε,M]. Because R is increasing φε any smaller

choice of φε > 0 also works.

Similarly by analyticity of h, we can uniformly bound h′(z) on the line segment [θ+iε cos(φε), θ+

ε sin(φε) + i cos(φε)], and by Lemma 3.2.6 we know that Re[h(θ + iε cos(φε)) − h(θ)] < 0. Thus

for small enough ε sin(φε), Re[h(θ + ε sin(φε) + iε cos(φε)) − h(θ)] < −η. Again for a particular

choice of ε, φε, any smaller φε also works. �

Note that the kernel Kut (y) is equal to

Kut (y) =
1

2πi

∫
Dε(φε)

π

sin(π(z − v))
et(h(z)−h(v))−t1/3σ(θ)y(z−v)Γ(v)

Γ(z)
dz

z − v′
(3.26)

by Cauchy’s theorem and the decay of the integrand as Im[z] → ±∞.

Proposition 3.2.9. There exists a closed contour C passing through θ and 0 , such that for any
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ε > 0, there exists η > 0, such that for all v ∈ C \ Bε(θ),

Re[h(θ) − h(v)] < η.

The proof of Proposition 3.2.9 requires a detailed understanding of the level set Re[h(z)] =

h(θ). We will defer this proof to Section 3.3.

In the limit limt→∞ det(I − Kut (y))L2(C), Proposition 3.2.9 will allow us to restrict all contour

integrals over C in the Fredholm determinant expansion to integrals over C ∩ Bε(θ).

3.2.4 Localizing the integrals

We perform the change of variables v = θ + t−1/3ωv, v′ = θ + t−1/3ωv′, z = θ + t−1/3ωz. For

every complex contourM we will define ωM = {z : θ + t−1/3z ∈ M}. We will also define the

kernel ωKut by

ωKut (ωv,ωv
′) = t−1/3Kut (θ + t−1/3v, θ + t−1/3v′),

so that

det(I − ωKut )L2(ωM) = det(I − Kut )L2(M).

For any contourM we defineMε to beM ∩ Bε(θ). Let Kε
ut (y)
(v, v′) be defined as the right hand

side of (3.26) with the contour of integration Dε(φε) replaced by the cut off contour Dε(φε)
ε .

In this section we will use our control of the norm of the integrand of Kut (y)(v, v
′) to show that

lim
t→∞

det(I − Kut (y)(v, v
′))L2(C) = lim

t→∞
det(I − Kε

ut (y)
(v, v′))L2(Cε).

In this and the next section we will need several bounds in order to apply dominated convergence

to the kernel Kut (v, v
′) and the Fredholm determinant expansion det(I − Kut )L2(C). We give these

bounds now, but defer most of their proofs to Appendix B.

Lemma 3.2.10. For ε sufficiently small, t sufficiently large, and v, v′ ∈ C \ Cε, there are constants
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R2, η > 0 depending on ε such that

|Kut (v, v
′)| ≤ R2e−tη/4. (3.27)

For ε sufficiently small, and t sufficiently large, v ∈ C \ Cε, v′ ∈ C, for the same constants R2 and

η, we have

|ωKut (v, v
′)| ≤ R2e−tη/4. (3.28)

This property of the contour C stated in Proposition 3.2.9 is the main tool necessary to prove

Lemma 3.2.10. We defer the proof of Lemma 3.2.10 to Appendix B.

Lemma 3.2.11. For t > 1, and for all sufficiently small ε > 0, there exists a constant C1 > 0 such

that for v ∈ Cε and z ∈ Dε
ε,t(φε), the integrand of ωKε

ut (ωv,ωv
′) is bounded above by a positive

function of ωz,ωv,ωv′ which does not depend on t and whose integral over Dε
ε,t(φε) is finite. We

also have

ωKε
ut (ωv,ωv

′) ≤ C1e−t h
′′′(θ)
24 ωv3

.

Lemma 3.2.12. For all sufficiently small ε, for v, v′ ∈ Cε,

lim
t→∞
(Kut (v, v

′) − Kε
ut (v, v

′)) → 0.

The property of the contourDε
ε,t(φε) stated in Lemma 3.2.8 is the main tool in the proofs of Lemma

3.2.11 and Lemma 3.2.12. We will defer the proofs to Appendix B.

Lemma 3.2.13. For sufficiently small ε and t > 1, there exists a function ωHm(ωv,ωv
′) not de-

pending on t such that for all v ∈ Cε,ωHm(ωv,ωv
′) ≥

���det(ωKε
ut (ωvi,ωv j)

m
i,j=1)

��� andωHm(ωv,ωv
′) ≥���det(ωKut (ωvi,ωv j)

m
i,j=1)

���, and

1 +
∞∑

m=1

1
m!

∫
(ωCε)m

ωHm(ωv,ωv
′) ≤ 1 +

∞∑
m=1

1
m!

∫
(C0)m

ωHm(ωv,ωv
′) < ∞.

The Proof of Lemma 3.2.13 uses Lemma 3.2.11 and Lemma 3.2.12. We defer the proof to
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Appendix B.

Lemma 3.2.14. For any t > 0 and ε sufficiently small,

lim
t→∞

det(I − Kut )L2(C) = lim
t→∞

det(I − Kut )L2(Cε).

Proof.

det(I − Kut )L2(C) − det(I − Kut )L2(Cε) =

∞∑
m=1

1
m!

∫
Cm\(Cε)m

det
(
Kut (vi, v j)

)m
i,j=1

m∏
i=1

dvi

≤

∞∑
m=1

1
m!

∫
Cm\(Cε)m

���det
(
Kut (vi, v j)

)m
i,j=1

��� m∏
i=1

dvi . (3.29)

By Lemma 3.2.10, for vi ∈ C \ C
ε,

ωKut (ωvi,ωv j) ≤ R2e−tη/4.

By similar reasoning we can allow v j ∈ C \ C
ε without changing the bounds provided by Lemma

3.2.12 and 3.2.11. Thus for vi ∈ C
ε, v j ∈ C, we have

ωKut (ωvi,ωv j) ≤ C1e−t h
′′′(θ)
24 ωv3

+ η ≤ C1 + ε.

Set R3 = max[R2,C1 + ε]. Then for all vi, v j ∈ C,

ωKut (ωvi,ωv j) ≤ R3.

Using Hadamard’s bound with respect to the rows of | det(ωKut (ωvi,ωv j))
m
i,j=1 | with ωv1 ∈ ωC \

ωCε, and ωv j ∈ ωC for all j > 1 we obtain

| det(ωKut (ωvi,ωv j))
m
i,j=1 | ≤ mm/2Rm

3 e−tη/4. (3.30)
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Indeed, because | det
(
Kut (vi, v j)

m
i,j=1

)
| is positive, and unchanged by permuting the v1, ..., vm,

we have

∫
Cm\(Cε)m

���det
(
Kut (vi, v j)

)m
i,j=1

��� m∏
i=1

dvi ≤

∫
C\Cε

(∫
Cm−1

���det
(
Kut (vi, v j)

)m
i,j=1

��� m−1∏
i=1

dvi

)
dv1

≤

∫
ωC\ωCε

(∫
ωCm−1

���det
(
ωKut (ωvi,ωv j)

)m
i,j=1

��� m−1∏
i=1

dωvi

)
dωv1

≤

∫
ωC\ωCε

(∫
ωCm−1

mm/2Rm
3 e−tη/4

m−1∏
i=1

dωvi

)
dωv1

≤ mm/2(t1/3LR3)
me−tη/4. (3.31)

In the first inequality we are strictly increasing the set on which we are integrating. In the second

inequality we have changed variables from vi to ωvi. In the third inequality we have used (3.30).

And in the last equality we have used that C has a finite length L, so ωC has length t1/3L.

Thus

∞∑
m=1

1
m!

∫
Cm\(Cε)m

���det
(
Kut (vi, v j)

)m
i,j=1

��� m∏
i=1

dvi ≤

∞∑
m=1

mm/2(t1/3LR3)
me−tη/4

≤ e−tη/4
∞∑

m=1
m1+m/2(t1/3LR3)

m ≤ e−tη/4(16t1/3LR3)
4e2t2/3(LR3)

2
→ 0. (3.32)

In the first inequality we used (3.31). In the second inequality we multiplied each term of the sum

by m. In the third inequality, we use [27, Lemma 4.4] with C = (t1/3LR3). Together (3.29) and

(3.32) complete the proof. �

Lemma 3.2.15. For t > 0 and ε sufficiently small,

lim
t→∞

det(I − Kut )L2(Cε) = lim
t→∞

det(I − Kε
ut )L2(Cε).

Proof. First use Lemma 3.2.12 to obtain limt→∞ Kε
ut (v, v

′) = limt→∞ Kut (v, v
′), then Lemma 3.2.13

allows us to apply dominated convergence to the Fredholm determinant expansion. �
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3.2.5 Convergence to Tracy-Widom GUE distribution

Now we conclude the proof of Theorem 3.1.15 by identifying the limit of the Fredholm deter-

minant over localized contours from the previous section with the Fredholm determinant expansion

of FGUE(x).

Proposition 3.2.16. For t > 0 and ε sufficiently small,

lim
t→∞

det(I − Kε
ut )L2(Cε) = det(I − K(y))L2(C0)

where

K(y)(u,u′) =
1

2πi

∫
D0

es3/3−ys

eu3/3−yu

ds
(s − u)(s − u′)

,

and the contours are defined as

D0 = (e−πi/3∞,1) ∪ [1, eπi/3∞), C0 = (e−2πi/3∞,0) ∪ [0, e2πi/3∞).

Proof. First recall that det(I −Kε
ut )L2(Cε) = det(I −ωKε

ut )L2(ωCε). We have the following pointwise

limits in ωv,ωv′,ωz:

t−1/3π

sin(π(t−1/3(ωz − ωv))
t→∞
−−−−→

1
ωz − ωv

, (3.33)

et(h(z)−h(v)) t→∞
−−−−→ e

h′′′(θ)
6 ωz3− h′′′(θ)

6 ωv3
, (3.34)

Γ(θ + t−1/3ωv)

Γ(θ + t−1/3ωz)
t→∞
−−−−→ 0. (3.35)

Thus

lim
t→∞

t−1/3πΓ(θ + t−1/3ωv)et(h(z)−h(v))−σ(θ)y(ωz−ωv)

sin(π(t−1/3(ωz − ωv))Γ(θ + t−1/3ωz)(ωz − ωv′)
=

e
h′′′(θ)

6 ωz3−σ(θ)yωz

e
h′′′(θ)

6 ωv3−σ(θ)yωv

dωz
(ωz − ωv)(ωz − ωv′)

.

The left hand side is the integrand of ωKε
ut (ωv,ωv

′). Lemma 3.2.11 allows us to use dominated
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convergence to get

lim
t→∞

ωKut (ωv,ωv
′) = K′

(y)(ωv,ωv
′), (3.36)

where

K′
(y)(ωv,ωv

′) =

∫
D0(φε)

e
h′′′(θ)

6 ωz3−σ(θ)yωz

e
h′′′(θ)

6 ωv3−σ(θ)yωv

dωz
(ωz − ωv)(ωz − ωv′)

,

D0(φε) = (e(−
π
2 +φε)i∞, ε) ∪ [ε, e(

π
2 −φε)i∞).

The real part of h′′′(θ)
6 ωz3 is negative when z = eiφ with φ ∈ [ π2 − φε, π/3] ∪ [−(

π
2 − φε,−π/3],

so we can deform the contour D0(φε) to the contour D0 without changing the value of K′
(y)

. After

performing this change of contour and the change of variables s = σ(θ)ωz,u = σ(θ)ωv,u′ =

σ(θ)ωv′, where σ(θ) = (h′′′(θ)/2)1/3, we have

K′
(y)(ωv,ωv

′) = σ(θ)K(y)(u,u′). (3.37)

Note that

det(I − ωKε
ut )L2(ωCε) = det(I − 1ωv≤t1/3ε(ωv)K

ε
ut (ωv,ωv

′)1ωv′≤t1/3ε(ωv
′))L2(C0). (3.38)

By Lemma 3.2.13 we can apply dominated convergence to the Fredholm determinant expan-

sion on the right hand side of (3.38). Along with (3.36) and (3.37) we have

lim
t→∞

det(I − Kε
ut )L2(Cε) = det(I − K(y))L2(C0).

�

Lemma 3.2.17. For all y ∈ R,

det(I − K(y))L2(C0) = det(I − KAi)L2(y,+∞).

where KAi is defined in Definition 3.2.1.
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Proof. We apply [37, Lemma 8.6]. �

This reformulation is common in asymptotic analyses of Fredholm determinants. We are now

able to conclude.

Proof of Proposition 3.2.3. Together Lemma 3.2.14, Lemma 3.2.15, Proposition 3.2.16, and Lemma

3.2.17 yield

lim
t→∞

det(I − Kut )L2(C) = lim
t→∞

det(I − Kut )L2(Cε) = lim
t→∞

det(I − Kε
ut )L2(Cε) =

det(I − K(y))L2(C0) = det(I − KAi)L2(y,+∞). (3.39)

�

The proof of Corollary 3.1.17 is almost identical to the argument used to obtain [23, Corollary

5.8] from [23, Theorem 1.15]. We include it here for completeness.

Proof of Corollary 3.1.17. Observe that we can sample ect uniform sticky Brownian motions {Bi(t)}

by first sampling the kernels Ks,t and then sampling ect iid continuous random walks with these

kernels as transition probabilities. For any given kernel, the probability that none of the uniform

sticky Brownian motions is greater than r is given by

P
(

max
i=1,...,bect c

Bi(t) ≤ r
)
=

(
1 − K0,t(0, [r,∞))

) bect c
= exp

(
bectc log(1 − K0,t(0, [r,∞))

)
. (3.40)

We set r = xt = t x0 +
t1/3σ(θ0)y
λ2 J ′(x0/λ)

, and let θr be defined so that x(θr) = x.. Because these motions are

independent after conditioning on the environment,

P

(
max

i=1,...,bect c
Bi(t) ≤ r

)
= P

(maxi=1,...,bect c Bi(t) − t x0

t1/3σ(θ0)/(λ2J′(x0/λ))
≤ y

)
(3.41)

Use Theorem 3.1.15 to approximate

log(K0,t(0, [r,∞))) = −tλ2J(x/λ) + t1/3σ(θr)χt, (3.42)
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with χt converging weakly a GUE Tracy-Widom distributed random variable as t → ∞. Now

Taylor expand

λ2J(x/λ) = λ2J(x0/λ) + σ(θ0)t−2/3y +O(t−
4
3 ).

We can take the derivative of x(θ) and apply Lemma 3.2.4 to see that x is a decreasing continuous

surjective function of θ from R>0 → R>0. Thus we can define the inverse map θ(x) on R>0, and

Taylor expand

σ(θr) = σ(θ0) +
t−2/3σ′(θ0)θ

′(x0)σ(θ0)y

λ2J′(x0/λ)
+O(t−

4
3 ).

We can now expand the right hand side of (3.42) as

− tλ2J(x0/λ) + t1/3σ(θ)χt = −tλ2J(x0/λ) + σ(θ0)t1/3(χt − y) +O(t−1/3) +O(t−1/3χt) (3.43)

Choosing x0 so that λ2J(x0/λ) = c gives

P

(
max

i=1,...,bect c
Bi(t) ≤ r

)
= E exp

(
bectc log(1 − K0,t(0, [r,∞))

)
(3.44)

= E exp
(
−bectcK0,t(0, [r,∞)) +O(ectK0,t(0, [r,∞))2)

)
(3.45)

= E exp
(
−et1/3σ(θ0)(χt−y)+O(t−1/3(1+χt ))+O(K0,t (0,[r,∞))+O(ectK0,t (0,[r,∞))2)

)
(3.46)

The second equality is obtained by Taylor expanding the logarithm around 1. The third equality is

obtained by combining (3.42) and (3.43).

Now we control the error terms. The random variable χt converges in distribution, so by

Slutsky’s theorem, t−1/3(1 + χt) → 0 in probability. Recall that λ2J(x0/λ) = c to obtain

ectK0,t(0, [r,∞))2 = ect+2 log K0,t (0,[r,∞)) = e−ct+O(t1/3 χt ) = e−ct+t2/3O(t−1/3 χt ),

K0,t(0, [r,∞)) = elog K0,t (0,[r,∞)) = e−ct+O(t1/3 χt ) = e−ct+t2/3O(t−1/3 χt ).
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Since O(t−1/3χt) → 0 in probability, so do both O(ectK0,t(0, [r,∞))2) and O(K0,t(0, [r,∞))). Com-

bining this with (3.41) and the fact that exp(−et1/3 x) −−−−→
t→∞

1x<0, and using bounded convergence

completes the proof. �

3.3 Construction of steep descent contours

This section is devoted to constructing the contour C whose existence is stated in Proposition

3.2.9, and which is used in the asymptotic analysis of Section 2. The goal is first to study the level

set Re[−h(z)] = h(θ), show that it contains well behaved paths from θ to 0 in the complex plane,

and second to take the slight deformation Re[−h(z)] = h(θ) − ε and add small segments to a path

in this set to arrive at a contour from θ to 0 on which we can bound Re[−h(z)]. The first step is the

main difficulty.

Arguments of this type are often performed in cases where the function corresponding to our

h is a rational function or the log of a rational function and thus has a finite explicit set of critical

points and poles [39, 47, 36]. We will see that the infinite set of poles of h′, and the fact that we do

not explicitly know all zeros of h′ both lead to challenges that we overcome through careful use of

conservation of the number of paths in the level set of Re[h] and Re[h′] which enter and leave a

any compact set K .

Before studying the level sets, we will need some bounds. Rather than requiring very careful

bounds on Re[h(z)], we instead only find the sign of the derivative of Re[h(z)] along the real and

imaginary axis.

Lemma 3.3.1. For all y > 0, Im[ψ2(iy)] < 0.

Proof. We split the proof into 2 cases. For case 1 assume y > 1√
5
. Applying Lemma A.0.1

Im[ψ2(iy)] = −2Im
[

1
2(iy)2

+
1

2(iy3)
+

3
6(iy)4

+ R3
m(iy)

]
= −2

(
1

2y3 + Im[R
3
m(iy)]

)
≤
−1
y3 +

1
5y5 .
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Since y > 1√
5
, we have Im[ψ2(iy)] < 0. as desired.

For case 2 assume y ≤ 1√
5
. Using the zeroth order Laurent expansion of ψ2 around 0 gives

Im[ψ2(iy)] = Im
[
−2i
y3 − 2ζ(3) + R0

2(iy)
]
=
−2
y3 + Im

[
R0

2(iy)
]
≤
−2
y3 + 3!ζ(4)y.

Where ζ(·) is the Riemann zeta function. −2
y3 + 3!ζ(4)y has the same sign as −2

y4 + 3!ζ(4), and when

y ≤ 1√
5
,

−2
y4 + 3!ζ(4) ≤ −50 + 6ζ(4) < 0,

where we have used ζ(4) < 2. Thus we have Im[ψ2(iy)] ≤ 0. as well in case 2. �

Lemma 3.3.2. We have Im[h′(iy)] < 0 for y > 0, and Im[h′(iy)] > 0 for y < 0

Proof. Because h′(z) = h′(z), the two statements in this lemma are equivalent; we will prove the

first. Because ψ2(θ) < 0, this is equivalent to showing

A = A(θ, y) = Im[ψ2(θ)ψ2(iy) − ψ3(θ)ψ1(iy)] > 0.

For θ > 0, ψ3(θ) is positive and Im[ψ1(iy)] is negative, so the second term is positive. ψ2(θ) is

positive, and by Lemma 3.3.1 Im[ψ2(iy)] is negative, so the first term is positive �

Let

pθ(a) = ψ2(a) −
ψ3(θ)

ψ2(θ)
ψ1(a). (3.47)

So that h′(a) = p(θ) − p(a). We will often omit the θ subscript and simply write p(a).

Lemma 3.3.3. The function p satisfies p′(a) > 0 for all a < θ, and p′(a) < 0 for all a > θ.

Proof. By Lemma 3.2.4 we have ψ4(θ)ψ2(θ) − ψ3(θ)
2 > 0 for all θ > 0. After dividing by ψ2

2 (θ),

we get

∂θ
ψ3(θ)

ψ2(θ)
=

1
ψ2(θ)

(
ψ4(θ) −

ψ3(θ)
2

ψ2(θ)

)
> 0,
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so ψ3(θ)
ψ2(θ)

is increasing in θ. This implies

ψ3(a)
ψ2(a)

−
ψ3(θ)

ψ2(θ)
is


< 0 for a < θ,

> 0 for a > θ.

Multiplying by the negative term ψ2(a) gives

f ′(a) = ψ3(a) −
ψ3(θ)

ψ2(θ)
ψ2(a) is


> 0 for a < θ,

< 0 for a > θ.

�

Lemma 3.3.4. The function a 7→ Re[−h(a)] is increasing for a < t and decreasing in a for a > t.

Proof. h′(a) and h(a) are real for a ∈ R, so ∂aRe[−h(a)] = −h′(a). From (3.47), we see that

−h′(a) = p(a) − p(θ). Together with Claim 3.3.3 this gives that h′(a) is negative for a < t and

positive for a > t. This completes the proof. �

3.3.1 Contour curves and Contour paths

Now using the sign of the derivatives of Re[h(z)] along the real and imaginary axis, we begin

a more careful study of the level sets of Re[h(z)]. First we introduce a helpful way to think about

the level set of the real or imaginary part of an arbitrary meromorphic function by defining contour

curves and contour paths.

Let f be a meromorphic function on the complex plane. Let γ = {z ∈ C : Im[ f (z)] = 0}.

Then γ can be decomposed as a (potentially infinite) collection of differentiable curves which meet

only at critical points and poles of f .

Definition 3.3.5. We will call a maximal connected subset of the level set γ that does not contain

a critical point or a pole a contour curve of Im[ f (z)] = 0. Contour curves will be differentiable

paths with a critical point, a pole, or the point ∞ at either end. We assign an orientation to each
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0 1

Figure 3.5: An image of the levelset Im[ f (z)] = 0 for f (z) = z2

2 −
2z3

3 +
z4

4 . Because f ′(z) = z(z−1)2
we see a critical point at 0 and a double critical point at 1. On each contour curve we have drawn
an arrow indicating the direction in which Re[ f (z)] is increasing. In thick red we show the contour
path that starts at the point ∞, and exits its starting point along the contour curve in the lower
half plane that connects ∞ to 0. As indicated in the Definition 3.3.1 at each critical point the next
contour curve in the path is immediately counterclockwise to the previous contour curve.

contour curve so that Re[ f (z)] is an increasing function as we traverse the curve in the positive

direction. We will say that a contour curve exits one of its endpoints and enters the other based on

this orientation

We also define a notion of contour path, which connects a pole or the point infinity to another

pole or to the point ∞ and on which Re[ f (z)] goes from −∞ to ∞. To do this we need to make an

arbitrary choice of what to do at critical points.

Definition 3.3.6. A contour path of Im[ f (z)] = 0 is a subset of γ, which is also a path consisting of

a union of contour curves and critical points constructed by the following procedure. Choose a pole

or the point∞ to be the starting point of the contourpath. Select one contour curve which exits the

starting point. If this curve hits a critical point, then select the critical point and the contour curve

leaving the critical point immediately counterclockwise to the previous contour curve. Repeat this

step until you reach a pole or until you travel along a contour curve which is unbound in which

case we say you reach the point ∞ (If a pole or ∞ is never reached then repeat this step infinitely

many times). The contour path is the union of all contour curves and critical points selected by this

procedure. See Figure 3.5.

Note that every contour path is a piecewise-differentiable path with endpoints either at a pole or
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at the point ∞. Note also that if two contour-paths do not contain exactly the same set of contour-

curves, then they have no contour-curves in common. This is true because each outgoing contour

curve of a critical point has only one incoming curve immediately clockwise from it, and each

incoming contour curve has only one outgoing curve immediately counter-clockwise from it.

We choose an orientation on the level set Im[ f (z)] = 0 so that all contour curves and contour

paths are directed so that Re[ f (z)] is an increasing function in the chosen direction. Such an

orientation exists because we chose each contour path to exit a critical point along a contour curve

neighboring the contour curve at which they entered the critical point.

With these definitions in place we would intuitively like to say that for any bounded set that

does not contain a pole of f , the number of directed contour paths of γ entering the set is equal to

the number of directed contour paths leaving the set. We give a more precise definition of "entering

a set" then we state this conservation rigorously in Lemma 3.3.8.

Definition 3.3.7. We say the contour path γi(t) (parametrized at unit speed in the positive direction)

enters a set K at the point a if there is a ta and ε > 0 such that for t ∈ (ta − ε, ta], γi(t) < Int(K),

and for t ∈ (ta, ta + ε), γi(t) ∈ Int(K). We say a contour path γi(t) exits K at the point b if there is a

tb and ε > 0 such that for t ∈ (tb − ε, tb], γi(t) ∈ K , and for t ∈ (tb, tb + ε), γi(t) < K . Let [γ,K]in be

the multiset all of points at which a contour path in γ enters K (a point occurs n times in [γ,K]in

if n contour paths enter at that point). Let [γ,K]out be the multiset of all points at which a contour

path in γ exits K , similarly counted with multiplicity.

Lemma 3.3.8. Let f be a meromorphic function, and let K be a connected compact set, so that

no pole of f lies in K. If [γ,K]in consists of n points a1, ...,an, then [γ,K]out consists of n points

b1, ..., bn, so that there is a contour path in the set γ from ai to bi, and Re[ f (ai)] ≤ Re[ f (bi)] for

all i. Note the ais are not distinct if a critical point is on the boundary of K, and similarly for the

bi’s.

Proof. If K contains infinitely many critical points of f , then the derivative of f is 0, in which case

the lemma is trivial.
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Assume K ∩ γ has either no critical points, or 1 critical point of order r . At each critical point

of order r there are r incoming contour curves of γ and r outgoing contour curves of γ.

Enumerate all contour paths γi entering K and pair them so that γi enters K at the point ai. We

define the parametrization of γi by |γ′i (t)| = max[ 1
(∂zRe[ f ])(γi(t))

,1] so that ∂tRe[ f (γi(t))] ≥ 1. Re[ f ]

is bounded in K , so the path γi(t) eventually leaves K . Set ti = inf{t |γi(t) < K} and set bi = γi(ti),

then bi is the point at which γi(t) exits K . Thus there are at least n exit points b1, ..., bn, and we

have traversed γi(t) in the positive direction to get from ai to bi, so Re[ f (ai)] ≤ Re[ f (bi)]. To show

that there are only n points at which γ exits K we can follow the paths in reverse direction (i.e.

apply the same argument to − f ). To prove the lemma for m critical points in γ ∩ K , we proceed

by induction dividing K into one set containing m − 1 critical points, for which the lemma holds,

and one containing 1 critical point, for which the above argument yields the lemma, then delete all

entry and exit points along the shared boundary between the two sets.

�

Now we are in a position to see why, for a rational function g with a finite explicit set of critical

points and poles, we can find a contour curve in {z : Re[g(z)] = 0} from θ to ∞. Up to homotopy

there is a finite number of contour curve configurations so that each critical point or pole has the

correct number of incident contour curves (twice its order). This means if our sets of critical points

and poles are small we can rule out a few possible configurations by controlling Re[g(z)] or its

derivatives until the only remaining configurations have the desired curve.

We will follow the same general plan for our function h, however we will have to address the

fact that we are dealing with a nonexplicit set of critical points and an infinite set of poles. The

more difficult problem of critical points is addressed in Lemma 3.3.9 by examining level sets of

h′(z) using our conservation property for contour paths and our control of the sign of Re[h(z)]

along the real and imaginary axis.

Lemma 3.3.9. The only critical point of −h with nonnegative real part is at θ.

Proof. Recall −h′(z) = p(z) − p(θ), and p(θ) > 0. Thus if a is a critical point of −h, then
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Im[p(a)] = 0. We will examine the level set Im[p(z)] = 0 in the right half plane. p(z) differs

from h′(z) by a real number, so by Lemma 3.3.2 the level set Im[p(z)] = 0 does not intersect

the imaginary axis. As z → ∞, in the right half plane, p(z) → 0. Re[p(z)] is increasing along

contour paths of p, so no contour path of p can travel from ∞ to ∞. Thus every contour path for

Im[p(z)] = 0 must start or end at a pole, and the only pole of p(z) in the right half plane is at 0.

This pole has highest order term 1/z3 near 0, so there are at most 3 contour paths of Im[p(z)] in

the right half plane. One contour path begins at −∞ and travels along the real line (directed away

from 0], the other two contour paths are directed toward 0 with one above the real line and one

below the real line.

The point θ is a zero of p and a critical point of p with negative second derivative (because

h′′′(0) > 0)), so p is equivalent to −(z − θ)2 near θ. Thus p has contour curves entering θ along the

positive and negative real line, and has contour curves leaving parallel to the positive and negative

imaginary axis. By Lemma 3.3.3, there exists a contour curve directed from 0 to θ along the real

axis, and a contour curve directed from∞ to θ along the real axis.

We have p(z) = p(z), so it is enough to consider the level set of Im[p(z)] = 0 restricted to the

upper right quarter plane. In the upper right quarter plane, p(z) → 0 as |z | → ∞ uniformly in |z |.

Let Dθ be a disk centered at 0 intersected with the upper right quarter plane, with the disk chosen

large enough that Re[p(z)] < p(θ) > 0 for all z < Dθ in the upper right quarter plane. Let Dθ be

the set Dθ with an arbitrarily small circle around 0 removed, so Dθ contains no poles.

By Lemma 3.3.8, the contour path entering Dθ at θ must exit Dθ at a point b such that

Re[p(b)] > Re[p(θ)]. By our choice of Dθ this contour path cannot exit Dθ toward ∞, by Lemma

3.3.2 it cannot exit along the imaginary axis, and by Claim 3.3.3 it cannot exit along the real axis,

because the real axis is contained in the level set of Im[p(z)] = 0, and θ is the only critical point

along the real axis. Thus the contour path entering at θ must exit toward the pole at 0, so there is a

contour path α(t) of Im[p(z)] = 0 from θ to 0.

Furthermore the contour path α(t) connecting θ to 0 contains no critical points of h′ other than

θ. We prove this by contradiction. Assume α(t) has a critical point besides θ, then it has finitely
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many critical points because α(t) is contained in the compact set Dθ . Let zc be the critical point for

which Re[α(z)] is smallest. Let A be the compact set enclosed between α(t) and the line segment

[0, t]. Let A be A with an arbitrarily small circle around 0 removed. One contour line exits A at zc,

so by Lemma 3.3.8 there must be a contour line entering A at a point zb withRe[α(zb)] < Re[α(zc)].

Because c minimizes Re[α(z)] over all critical points of α(t), and no critical point occurs along the

real axis, we arrive at a contradiction.

We have classified the contour curves of Im[p(z)] = 0 in the right half plane as: one contour

curve with real part of p(z) increasing from θ to 0 along the real line, one contour curve with real

part of p(z) decreasing from θ to ∞ along the real line, one contour curve with real part of p(z)

increasing from θ to 0 above the real line, one contour curve with real part of p(z) increasing from

θ to 0 below the real line. Any critical point of −h must have Im[p(z)] = 0 and Re[p(z)] = p(θ).

Thus any critical point must be on one of the four contour lines described above or the critical

point θ, but every point z on these contour curves has been specified to have Re[p(z)] either strictly

greater than, or strictly less than p(θ). So θ is the only critical point of −h.

�

Now we can address the simpler problem that h has an infinite number of poles using the

conservation of contour paths and the the sign of the derivative of Re[h(z)] along the imaginary

axis. We do so in Lemma 3.3.10 and prove the existence of a contour curve in {z : Re[h(z)] = h(θ)}

with the desired properties.

Lemma 3.3.10. The contour curve γ1 for Re[h(z)] = h(θ) which exits θ at angle 5π
6 enters 0 at

angle π/4, and the contour curve γ2 for Re[h(z)] = h(θ) which exits θ at angle π
2 crosses the

positive imaginary axis.

Proof. Lemma A.0.1 shows that limy→∞ Im[ih(x + iy)] = limy→∞Re[−ψ(x + iy)] = −∞, and

that this convergence is uniform with respect to x for x ∈ [0, θ]. Let C be large enough that for all

y > C, Im[ih(x + iy)] < Im[ih(x + iy)] < h(θ), and consider the rectangle S = [0, θ] × [0, iC] in

the complex plane. Let S be S with an arbitrarily small open circle around 0 removed. Neither γ1
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nor γ2 can cross the line [iC, t + iC] because for z ∈ [iC, t + iC], Re[h(z)] < h(θ). Multiplying h

by i and applying Lemma 3.3.8 tells us that the contour curve γ1 enters S at θ, and must exit S at a

point b with Im[h(b)] > Im[h(θ)] = 0. It cannot exit S along [0, θ], because Im[h(t)] = 0 for all

t ∈ R.

Examining the critical point at θ shows that if we follow γ1 away from θ, then Re[−h(z)] is

positive for z immediately to the left of γ1 and negative immediately to the right. Thus if this

contour curve were to cross the imaginary axis, Re[−h] would be decreasing in a neighborhood of

the intersection. This contradicts Lemma 3.3.2 so γ1 cannot cross the imaginary axis.

The contour curve γ2, is left of the line θ + iR. Examining the critical point at θ shows that if

we follow this new contour away from θ, then Re[h(z)] is positive for z immediately to its right,

and negative for z immediately to its left. If this contour were to cross the line θ + iR then Re[h(z)]

would be increasing on this line in a neighborhood of the intersection. This contradicts Lemma

3.2.6, so γ2 cannot cross the line θ + iR. By Lemma 3.3.9, θ is the only critical point of h in

the right half plane, thus the contour line γ1 cannot cross γ2 to exit S on the right. Thus the only

possible place for γ1 to exit S is to the pole at 0. γ2 cannot cross γ1 to reach (0, t], we have already

shown that it does not cross [iC, t + iC] or θ + iR, and no other contour lines leave 0 into the upper

right half plane, so γ2 must cross the positive imaginary axis. �

Now we are prepared to prove Proposition 3.2.9 by deforming the contour curve found in

Lemma 3.3.10 so that it lies in the level set {z : Re[h(z)] = h(θ) − ε}.

Proof of Proposition 3.2.9. Because h(ωz) = ωh(z), it is enough to prove the lemma in the upper

half plane. As z → ∞, only one term of h becomes infinite, so h(z) ∼ −cψ(z) ∼ −c log(z) by

Lemma A.0.3, and as Im[z] → +∞, h(z) → −∞ uniformly for Re[z] in a compact set. Thus there

exists a large M such that for Im[z] > M , z ∈ Dε,t(φε) \ D
ε
ε,t(φε), Re[h(z) − h(θ)] < −η.

By Lemma 3.2.6 ∂yRe[h(θ + iy)] < 0 for y > 0. Thus for some large M , on the compact set

y ∈ [cos(φε)ε,M], ∂yRe[h(θ + iy)] has some negative minimum. The function h′′(z) is analytic in

the compact rectangle with corners θ+ iε cos(φε), θ+εeiφ, θ+ iM , θ+ε sin(φε)+ iM . Thus |h′′(z)|

is bounded above by some R in this rectangle. Note that R depends only on ε cos(φε) and M , and
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R is increasing in cos(φε). We can choose ε and φ so that ε cos(φε) remains fixed, and ε sin(φε)

becomes arbitrarily small. Choosing so that ε sin(φε)R < η guarantees that ∂yRe[h(θ + sin(φε)ε +

iy)] > 0 for y ∈ [cos(φε)ε,M]. Because R is increasing φε any smaller choice of φε > 0 also

works.

Similarly by analyticity of h, we can uniformly bound h′(z) on the line segment [θ+iε cos(φε), θ+

ε sin(φε) + i cos(φε)], and by Lemma 3.2.6 we know that Re[h(θ + iε cos(φε)) − h(θ)] < 0. Thus

for small enough ε sin(φε), Re[h(θ + ε sin(φε) + iε cos(φε)) − h(θ)] < −η. Again for a particular

choice of ε, φε, any smaller φε also works. �

3.4 Proof of the Fredholm determinant formula

In this section we will degenerate the Fredholm determinant formula in Theorem 3.1.20 for

the Laplace transform of the quenched point to half line probability of a beta RWRE to arrive at

the Fredholm determinant formula for the Laplace transform of K0,t(0, [x,∞)) given in Theorem

3.1.11.

Proof of Theorem 3.1.11. Let Xε(t) be X(t) be as in Definition 3.1.18 with parameters α = β = ελ.

By Lemma 3.1.19, we have K0,t(0, [x,∞)) = limε→0 P(εXε(ε−2t) ≥ x). Note that in the expression

for KRW
u (v, v

′), the only place where any of x, t, α, β appear is in the definition of gRW .

By Theorem 3.1.20 we can write

E
[
euP(εXε(ε−2t)≥x)

]
= det(I − KRW

u,ε )L2(C0). (3.48)

with

KRW
u,ε (v, v

′) =
1

2πi

∫ 1/2+i∞

1/2−i∞

π

sin(πs)
(−u)s

gRW
ε (v)

gRW
ε (v + s)

ds
s + v − v′

,

gRW
ε (v) =

(
Γ(v)

Γ(εa + v)

) (ε−2t−ε−1 x)/2 (
Γ(ε(a + b) + v)
Γ(εa + v)

) (ε−2t+ε−1 x)/2
Γ(v),

and C0 is a positively oriented circle around 1/2 with radius 1/2.
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We will take the limit of (3.48) as ε → 0. The expression eP(εXε(ε−2t)≥x) is bounded above by

e, so in the left hand side we can pass the limit through the expectation to get

lim
ε→0
E[eP(εXε(ε−2t)≥x)] = E[euK0,t (0,[x,∞))].

Thus to complete the proof, we only need to show that

lim
ε→0

det(I − KRW
u,ε )L2(C0) = det(I − Ku)L2(C). (3.49)

We prove (3.49) in three steps; step 1 gives the reason why this convergence should hold, while

steps 2 and 3 provide the bounds necessary to make the argument rigorous.

Step 1: First for fixed v, v′, s we show the integrand of KRW
u,ε (v, v

′) converges to the integrand of

Ku(v, v
′) as ε → 0.

By Taylor expanding in ε, and setting a = b = λ, we have

gRW
ε (v) =

(
1+ε2λ2ψ1(v)+O(ε3)

)ε−2t/2 (
1−ελψ(v)+O(ε2)

)−ε−1 x/2 (
1+ελψ(v)+O(ε2)

)ε−1 x/2
Γ(v).

Taking the limit as ε → 0 gives

lim
ε→0

gRW
ε (v) = g(v), for v ∈ C \ Z≤0. (3.50)

The limit (3.50) shows pointwise convergence of the integrand of KRW
u,ε (v, v

′) to the integrand of

Ku(v, v
′).

Additionally if K is a compact set which is separated from all poles of the Gamma function,

then the convergence in (3.50) is uniform for v ∈ K . This follows from the fact that the Lagrange

form of the remainder in the taylor expansions is bounded for v ∈ K , because Γ′′(v) is bounded

for v ∈ K . So we have shown that integrand of KRW
u,ε (v, v

′) converges to the integrand of Ku(v, v
′).
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uniformly for v in a compact set K that does not contain poles of the Gamma function.

Step 2: Now we prove that for fixed v, v′, the kernel KRW
u,ε (v, v

′) → Ku(v, v
′) as ε → 0. We do

this by proving bounds on the integrand of KRW
u,ε (v, v

′) in order to apply dominated convergence to

the pointwise convergence of the integrand in step 1.

For s ∈ 3/4 + iR, v ∈ B1/8(0), we have the following bounds

���� π

sin(πs)Γ(s + v)

���� ≤ 2π
eπ |Im[s]|

e
π
2 |Im[s+v]|−C+( 14+Re[v]) log |Im[s]|, (3.51)

|(−u)s | ≤ |u|3/4 (3.52)

Equation (3.51) follows from Lemma A.0.4 and Lemma A.0.7. Equation (3.52) follows from the

fact that u ∈ R. Note that for s = 3/4 + iy, |y | > M ,

�����( Γ(v + s + λε)2

Γ(v + s)Γ(v + s + 2λε)

)ε−2t/2
����� = exp(log(Γ(v + s + λε) − log(Γ(v + s)

+ log(Γ(v + s + λε) − log(Γ(v + s + 2λε)) ≤ 1. (3.53)

The last inequality can be seen by applying Stirling’s approximation in a precise way. For details

see Lemma A.0.5. Similarly for |y | > M ,�����( Γ(v)

Γ(v + s + 2λε)

)ε−1 x/2
����� = exp(log(Γ(v + s)) − Γ(v + s + 2λε)) < 1. (3.54)

The last inequality follows from an approximation of the Gamma function which is similar to

Stirling’s approximation. See Lemma A.0.6 for details. For the final s dependent term of the

integrand, there is a constant C > 0 such that

���� Γ(v + s)
gRW (v + s)

���� = �����( Γ(v + s + λε)2

Γ(v + s)Γ(v + s + 2λε)

)ε−2t/2 (
Γ(v + s)

Γ(v + s + 2λε)

)ε−1 x/2
����� ≤ C (3.55)

When y > M , (3.55) follows from x, t ≥ 0 along with (3.53) and (3.54). When y ≤ M , (3.55)
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follows from uniform convergence for s ∈ [3/4 − iM,3/4 + iM] of Γ(v+s)
gRW (v+s) to e−λxψ0(v)−

λ2t
2 ψ1(v).

By (3.51), (3.52), and (3.55) we see that for s ∈ 3/4 + iR the integrand of KRW
u,ε (v, v

′) is bounded,

and has exponential decay coming from (3.52) as Im[s] → ∞. Thus we can apply dominated

convergence to show that

lim
ε→0

KRW
u,ε (v, v

′) = Ku(v, v
′). (3.56)

Step 3: Now we complete the proof of (3.49) by bounding the full Fredholm determinant

expansion of det(I − KRW
u,ε )L2(C0) in order to apply dominated convergence to the pointwise conver-

gence of kernels proved in step 2.

Let Aε be a rectangle with corners at 1
8 + i1

8 , 1
8 − i1

8 , −λε + i1
8 , −λε − i1

8 , oriented in the

counterclockwise direction. The convergence in (3.50) is uniform on Aε \ Bδ(0), so for sufficiently

small ε > 0, and v ∈ Aε \ Bδ(0) there is a constant C such that

gRW
ε (v) ≤ C.

Now setting v = iy + λε, we need to control

gRW
ε (−λε + iy) = Γ(iy − λε)

(
Γ(iy + λε)Γ(iy − ε)

Γ(iy)2

)ε−2t/2 (
Γ(iy + λε)
Γ(iy − λε)

)ε−1 x/2
, (3.57)

for ε, y ≤ δ. Let R(z) = Γ[z] − 1/z and note that R(z) is holomorphic in a neighborhood of 0. By

Taylor’s theorem,

R(iy + 1 + ε) = R(iy + 1) + R′(iy + 1)ε + Rem(iy + 1, ε)ε2 (3.58)

R(iy + 1 − ε) = R(iy + 1) − R′(iy + 1)ε + Rem(iy + 1,−ε)ε2, (3.59)

where R(iy + 1), R′(iy + 1), Rem(iy + 1, ε), and Rem(iy + 1,−ε) are bounded uniformly for y ∈

(−δ, δ), ε ∈ (0, δ).
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(
Γ(iy + λε)Γ(iy − ε)

Γ(iy)2

)
=

1
iy+ε + R(iy + ε + 1)

1
iy + R(iy + 1)

1
iy−ε + R(iy − ε + 1)

1
iy + R(iy + 1)

(3.60)

=

(
(iy)2

(iy + ε)(iy − ε)

) ( (
1 + (iy + ε)

(
R(iy + 1) + R′(iy + 1)ε + Rem(iy + 1, ε)ε2) )

(1 + iyR(iy + 1))2

)
×

(
1 + (iy − ε)

(
R(iy + 1) − R′(iy + 1)ε + Rem(iy + 1,−ε)ε2

))
=

©­« 1
1 + ε2

y2

ª®¬
(
(1 + iyR(iy + 1))2 + ε2Rem1(iy + 1, ε)

(1 + iyR(iy + 1))2

)
,

where Rem1(iy + 1, ε) is bounded uniformly for y ∈ (−δ, δ), ε ∈ (0, δ). The first equality follows

from the definition of R and the second follows from (3.58) and (3.59). The third equality follows

expanding

(
1 + (iy + ε)

(
R(iy + 1) + R′(iy + 1)ε + Rem(iy + 1, ε)ε2

))
(3.61)

×

(
1 + (iy − ε)

(
R(iy + 1) − R′(iy + 1)ε + Rem(iy + 1,−ε)ε2

))
, (3.62)

and noting that the coefficient of ε0 is (1 + iyR(iy + 1))2, the coefficient of ε1 is 0. The fact that

Rem1(iy + 1, ε) is bounded comes from the fact that every coefficient of εk in the two terms of

(3.61) is bounded uniformly in y, ε.

Define

Rem2(iy + 1, ε) =
Rem1(iy + 1, ε)
(1 + iyR(iy + 1))2

. (3.63)
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We have that for x ∈ (0, δ), y ∈ (−δ, δ),�����(Γ(iy + λε)Γ(iy − ε)Γ(iy)2

)−1
����� = ����(1 + ε2

y2

) (
1

1 + ε2Rem2(iy + 1, ε)

)����
≥

����(1 + ε2

y2

)
(1 − ε2Rem2(iy + 1, ε))

����
≥

����1 + ε2
(

1
y2 − Rem2(iy + 1, ε) − ε2 Rem2(iy + 1, ε)

y2

)����
≥

(
1 + ε2 3

4y2

)
. (3.64)

The first equality follows from (3.60). The first inequality follows from the fact that for any 0 <

x < 1,
�� 1
1+x

�� ≥ |1 − x | ,. The final inequality may require us to choose a still smaller δ > 0 and

follows from the fact that Rem2(iy + 1, ε) is bounded.

By Laurent expanding the Gamma function around 0, we can see that

Γ(−λε + iy) ≤
1√

y2 + ε2
+ C ≤

1
y
+ C, (3.65)

for 0 < ε < δ and y ∈ (−δ, δ). We also have

((
Γ(iy + λε)Γ(iy − ε)

Γ(iy)2

)ε−2t/2
)−1

≥

(
1 + ε2 3

4y2

) ε−2t
2

≥ 1 +
3t

8y2

≥

(
1
y
+ C

)
≥ Γ(iy − ελ), (3.66)

for y sufficiently small. The first inequality follows from (3.64), the equality is Newton’s gener-

alized binomial theorem, the second inequality uses Bernoulli’s inequality. The third inequality is

true if y large in particular 1/y > 1 + 8C/3t. The fourth inequality follows (3.65).

Equation (3.66) implies

Γ(iy − λε)
(
Γ(iy + λε)Γ(iy − ε)

Γ(iy)2

)ε−2t/2
≤ 1. (3.67)
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By Taylor’s theorem, there exists a function Rem3(iy, ε)which is bounded for ε ∈ (0, δ), y ∈ (−δ, δ)

satisfying

Γ(iy + ε) =
1

iy + ε
+ Rem3(iy, ε)ε and Γ(iy − ε) =

1
iy − ε

+ Rem3(iy,−ε)ε.

Thus

Γ(iy + ε)
Γ(iy − ε)

=

1
iy+ε + Rem3(iy, ε)ε
1

iy−ε + Rem3(iy,−ε)ε
=

(
iy − ε
iy + ε

) (
1 + (iy + ε)Rem3(iy, ε)ε

1 + (iy − ε)Rem3(iy,−ε)ε

)
=

(
iy − ε
iy + ε

)
(1+Cε,yε),

where for any η we can choose δ small enough that Cε,y ≤ η. Thus for all ε ∈ (0, δ), y ∈ (−δ, δ),

(1 − ηε) ≤
����Γ(iy + ε)Γ(iy − ε)

���� ≤ (1 + ηε). (3.68)

This implies �����(Γ(iy + λε)Γ(iy − λε)

)ε−1 x/2
����� ≤ (1 + ηε)e−1 x/2 ≤ eηx/2. (3.69)

Together (3.57), (3.67), and (3.69) imply that for δ small, ε ∈ (0, δ), y ∈ (−δ, δ),

|gRW
ε (−λε + iy)| ≤ eηx/2.

Thus KRW
u,ε (v, v

′) is bounded by some C on the contour Aε. Hadamard’s bound implies that

det[Ku,ε(xi, x j)]
k
i,j=1

k!
≤

Ck k k/2

k!
,

where the right hand side decays at rate Ck

ek log(k)/2 by Stirling’s formula. Together with (3.56), and

the fact that the contours Aε are finite volume, this allows us to apply dominated convergence to

the Fredholm determinant expansion det(I − KRW
u,ε (v, v

′))L2(Aε)
, to get

lim
ε→0

det(I − KRW
u,ε )L2(Aε)

= det(I − Ku)L2(Aε)
. (3.70)
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We can deform the contourAε to C without crossing any poles of Ku(v, v
′) and we can deformAε

to C0 without crossing any poles of KRW
u,ε (v, v

′), so by (3.70)

lim
ε→0

det(I − KRW
u,ε )L2(C0)) = det(I − Ku)L2(C).

�

3.5 Moment formulas and Bethe ansatz

3.5.1 Proof of the moment formula Proposition 3.1.22

In this section we find moment formulas for kernels of uniform Howitt-Warren flows, by taking

the diffusive limit of [23, Proposition 3.4]. In order to state precisely how we use results from [23],

we first explain the connection between the beta RWRE and another model called the beta polymer,

which was also introduced in [23].

Definition 3.5.1 (beta polymer). The beta polymer is a probability measure on oriented lattice

paths constructed as follows. We consider paths in Z2 with allowed edges of the form (i, j) →

(i + 1, j) and (i, j) → (i + 1, j + 1). In other terms, we allow paths to make either right or up-right

steps. The measure depends on two parameters ν > µ > 0. Let {B(i,j)}i,jZ2 be a family of iid

random variables distributed according to the beta distribution with parameters ν, ν − µ. To each

horizontal edge e = (i − 1, j) → (i, j) we assign the Boltzmann weight we = Bi,j , and to each

diagonal edge e = (i − 1, j − 1) → (i, j) we associate the Boltzmann weight we = (1 − Bi,j).

For fixed points S,T ∈ Z2, the beta polymer is a measure on paths π : S → T such that the

probability of a path π is proportional to
∏

e∈π we. In this chapter, we are mostly interested in

paths between the half-line D := {(0, i) : i > 0} and any point of coordinates (t,n) for t > 0. The

associated partition function is defined as

Z(t,n) =
n∑

i=1

∑
π:(0,i)→(t,n)

∏
e∈π

we.
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By the definition of our Boltzmann weights, for t ≥ 0,n ∈ Z, the partition function Z(t,n) is

characterized by the following recurrence relation.


Z(t,n) = Bt,nZ(t − 1,n) + (1 − Bt,n)Z(t − 1,n − 1), if t > 0

Z(0,n) = 1n>0.

Note that this half line to point partition function is the same as the partition function Z(t,n) defined

in [23, Definition 1.2].

Now we rephrase the relation between the beta RWRE and the beta polymer from [23, Propo-

sition 1.6].

Proposition 3.5.2. Consider the beta RWRE with parameters α, β > 0 (see Definition 3.1.18) and

the beta polymer with parameters µ = α, ν = α + β. For t ≥ 0 and n1, . . . ,nk ∈ Z, we have the

following equality in distribution,

(Z(t,n1), ...,Z(t,nk)) = (P(X x1
1 (t) ≥ 0), ...,P(X xk

k (t) ≥ 0)) for xi = 2ni − 2 − t,

and

E

[
k∏

i=1
Z(t,ni)

]
= E

[
k∏

i=1
P(X xi

i (t) ≥ 0)

]
,

where these expectations are taken over the random environments of the beta polymer and the beta

RWRE respectively.

Proof. First note that although the beta RWRE was defined for positive time, we can apply a spatial

shift to our variables so that it is defined for all t > −L for any L ∈ Z. We will use this interpretation

when we describe a particle trajectory in the beta RWRE starting from a point with a negative time

coordinate. Consider the change of coordinates x = 2n − 2 − t and rewrite Z(t,n) in terms of (t, x).

This corresponds to transforming horizontal edges into diagonal down-right edges. Then, reversing

the time direction allows us to identify paths from D to (t,n) in the beta polymer with space-time

trajectories in the beta RWRE from the point x at time −t to the half line [0,+∞) at time 0, such
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that the Boltzmann weight of the beta polymer path is equal in distribution to the probability of the

beta RWRE trajectory. This equality in distribution also holds jointly for arbitrary collections of

paths. Finally, shifting all paths forward in time by t steps in the beta RWRE does not change their

law, thus we have the desired equality in distribution. �

Now we can prove the mixed moments formula (Proposition 3.1.22).

Proof of Proposition 3.1.22. We begin with the moment formula [23, Proposition 3.4], Using Propo-

sition 3.5.2 to rewrite Z(t,n) in terms of P(X x(t) ≥ 0) gives, for x1 ≥ · · · ≥ xk ,

E[P(X x1
1 (t) ≥ 0)...P(X xk

k (t) ≥ 0)] =

1
(2πi)k

∫
γ1

...

∫
γk

∏
A<B

zA − zB

zA − zB − 1

k∏
j=1

(
ν + z j

z j

) t+x
2 −1 (

µ + z j

ν + z j

) t dz j

z j + ν
. (3.71)

Where γk is a small contour around 0 and γi contains 1+ γ j for i < j, and all contours exclude −ν.

To choose the γi precisely, fix a small ak > 0 and define the contour γk = γ
ε
k to be a short vertical

line segment {−λε + iy : y ∈ [−ak,ak]} union a half circle a {−λε + ak eiθ : θ ∈ [−π/2, π/2]}.

Let construct γi = γ
ε
i in the same way with ai replacing ak and choose each ai large enough that

1 + γεi+1 is contained in γεi . Recalling Lemma 3.1.19 and taking ε → 0 in (3.71) gives

E[K−t,0(x1, [0,+∞))...K−t,0(xk, [0,+∞))] =

lim
ε→0

1
(2πi)k

∫
γε1

...

∫
γε
k

∏
A<B

zA − zB

zA − zB − 1

k∏
j=1

(2λε + z j

z j

) ε−2t+ε−1x
2

(
λε + z j

2λε + z j

)ε−2t dz j

z j
.

We simplify the product

k∏
j=1

(2λε + z j

z j

) ε−2t+ε−1x
2

(
λε + z j

2λε + z j

)ε−2t dz j

z j
=

k∏
j=1

(
1 +

2λε
z j

) ε−1x
2

(
(λε + z j)

2

z j(2λε + z j)

) ε−2t
2 dz j

z j
. (3.72)
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Taking the pointwise limit of the integrand suggests that

E[K−t,0(x1, [0,+∞))...K−t,0(xk, [0,+∞))] =∫
γ0

1

dz1
2πi

...

∫
γ0
k

dzk

2πi

∏
A<B

zA − zB

zA − zB − 1

k∏
j=1

exp

(
λ2t
2z2

j

+
λx j

z j

)
1
z j
, (3.73)

where now the contours γ0
k ,... γ0

1 all pass through 0 in the vertical direction and γ0
i contains 1 + γ0

j

for all i < j. We will justify this limit by applying dominated convergence at the end of the proof.

The condition αi <
αj

1+αj
for all i < j implies that if γ̄i is the circle centered at α−1

i /2 with radius

α−1
i /2 oriented in the counterclockwise direction, then 1 + γ̄ j is contained in γ̄i for all i < j. Thus

Cauchy’s theorem allows us to deform the integration contours γi to γ̄i in (3.73) without collecting

any residues.

We perform a change of variables w j = 1/z j on (3.73) and use the fact that the pointwise

inverse in the complex plane of a circle with center α−1/2 and radius α−1/2 is the line α + iR. We

obtain

E[K−t,0(x1, [0,+∞))...K−t,0(xk, [0,+∞))] =∫
α1+iR

dw1
2iπ
· · ·

∫
αk+iR

dwk

2iπ

∏
16A<B6k

wB − wA

wB − wA − wAwB

k∏
j=1

exp

(
tλ2w2

j

2
+ λx jw j

)
1
w j
. (3.74)

Now use dominated convergence to justify the the ε → 0 limit which gave (3.73). The contours

γi(ε) depend on ε and in order to apply dominated convergence, we perform the change of variables

zi = z̄i − λε in (3.72) so that our contours of integration change from γi[ε] to γi[0], and set

γ′i = γi[0].

Now that all our contours of integration do not depend on ε, all we need to do is bound the

integrand along these contours. The argument which allows us to apply dominated convergence to

get (3.73) is a simplified form of the argument which allows us to apply dominated convergence in
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the proof of Theorem 3.1.11. Taylor expanding shows that

(1 + εa)ε
−1 ε→0
−−−→ ea, uniformly in a for |a| < R.

Thus, uniformly for z j outside a neighborhood of 0,

(
1 +

2λε
z j

) ε−1x
2

−−−→
ε→0

e
λx
zj , (3.75)

and (
(λε + z j)

2

z j(2λε + z j)

) ε−2t
2

=

(
1 +

ε2λ2

z2
j + 2λzε

) ε−2t
2

−−−→
ε→0

e
λ2t
2z2

j . (3.76)

Now we bound the integrands along γi[ε] ∩ Bδ(0). Near 0 we have zi = −λε + iy, so������
(
1 +

2λε
z j

) ε−1x
2

������ =
���� λε + iy
−λε + iy

���� ε−1x
2

= 1, (3.77)

and �������
(
(λε + z j)

2

z j(2λε + z j)

) ε−2t
2

������� =
���� −y2

−y2 − λ2ε2

���� ε−2t
2

< 1. (3.78)

Together (3.75), (3.76), (3.77), and (3.78), and the fact that γεk has uniformly bounded length,

allow us to apply dominated convergence to (3.72) to obtain (3.73). This completes the proof. �

3.5.2 Limit to the KPZ equation

In this Section, we show that the moment formula from Proposition 3.1.22 converges to the

moments of the solution to the multiplicative noise stochastic heat equation with delta initial data,

which suggests that Howitt-Warren stochastic flows of kernels converge to the KPZ equation.

Consider Z(t, x) the solution to the multiplicative noise stochastic heat equation

∂t Z(t, x) =
1
2
∂xx Z(t, x) +

√
κξ(t, x)Z(t, x), t > 0, x ∈ R,
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where ξ is a space time white noise and κ > 0 is a parameter controlling the noise strength. This

stochastic PDE has attracted much attention recently because the solution to the KPZ equation

∂t h(t, x) =
1
2
∂xx h(t, x) +

1
2
(∂x h(t, x))2 +

√
κξ(t, x)

is given by h(t, x) = log Z(t, x). It is expected that models in the KPZ class which depend on

a tunable parameter controlling noise or asymmetry converge to the KPZ equation in the weak

asymmetry/noise scaling limit. We refer to [63] for background on these scalings and stochastic

PDEs.

Let

uκ(t, ®x) = E [Z(t, x1) . . . Z(t, xk] .

It was shown in [36, Section 6.2] (see also [92]) that for Dirac delta initial data u(0, ·) = δ0(·), the

function uκ can be written for x1 6 · · · 6 xk as

uκ(t, ®x) =
∫

r1+iR

dz1
2iπ
· · ·

∫
rk+iR

dzk

2iπ

∏
1≤A<B≤k

zA − zB

zA − zB − κ

k∏
j=1

exj zj+ t
2 z2

j , (3.79)

where the contours are such that ri > ri+1 + κ for all 1 6 i 6 k.

Recall the moments of the uniform Howitt-Warren flow

Φ
(k)
t (x1, . . . , xk) = E

[
K−t,0(x1, [0,+∞)) . . .K−t,0(xk, [0,+∞))

]
,

and recall that they depend on a noise parameter λ.

Proposition 3.5.3. Let γ > 0 and consider the scalings

T = λ2t, Xi = λ
2tγ + λxi . (3.80)

Let Kt(x, ·) be the kernel of the uniform Howitt-Warren stochastic flow with stickiness parameter
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λ. We have that for fixed t > 0 and x1 6 · · · 6 xk ,

lim
λ→∞

(λγ)k exp ©­« k
2

tλ2γ2 + λγ

k∑
j=1

x j
ª®¬Φ(k)T (−

®X) = uγ2(t, ®x).

Remark 3.5.4. Proposition 3.5.3 suggests that under the scalings (3.80),

Zλ(t, x) := γλetλ2γ2/2+λγxK−T (−X, [0,+∞))

weakly converges as λ goes to +∞ (in the space of continuous time space trajectories) to the

solution of the multiplicative noise stochastic heat equation Z(t, x) with Dirac delta initial data and

κ = γ2. Equivalently, log Zλ(t, x) would converge weakly to the solution to the KPZ equation with

narrow wedge initial data. The analogous statement for discrete random walks in space-time iid

random environment is proved in [65].

Proof. Consider (3.15) and perform the change of variables w j =
γ
λ +

zi
λ2 . For large enough λ, the

contour for zi may be chosen as ri + iR where ri+1 > ri + γ
2 for all 1 6 i 6 k. Under the scalings

(3.80), we have (dropping unnecessary indices)

T
2
λ2w2 − λXw =

t
2

z2 − xz − γxλ −
t
2
γ2λ2,

and we have the pointwise convergences

wb − wa

wb − wa − wawb
−−−−−→
λ→+∞

zb − za

zb − za − γ2 ,
1
λwi
−−−−−→
λ→+∞

1
γ
.

Moreover, it is easy to see that the ratios stay bounded for za, zb, zi belonging to their fixed vertical
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contours. Thus, by dominated convergence,

(λγ)k e
∑k

j=1
t
2γ

2λ2+γxiλΦ
(k)
T (−X1, . . . ,−Xk) −−−−−→

λ→+∞∫
r1+iR

dz1
2iπ
· · ·

∫
rk+iR

dzk

2iπ

∏
1≤A<B≤k

zB − zA

zB − zA − γ2

k∏
j=1

e
t
2 z2

j−xj zj .

We finally obtain (3.79) by the change of variables zi = −z̃i. �

3.5.3 Bethe Ansatz solvability of n-point uniform sticky Brownian motions

For x ∈ Rk and t ≥ 0, let u(t, ®x) be the right hand side of (3.74). We claim that u satisfies

∂tu =
1
2
∆u, (3.81)

(∂i∂i+1 + λ(∂i − ∂i+1))u|xi=xi+1 = 0. (3.82)

Indeed, for any w ∈ C, the function exp
(

tλ2w2

2 + λxw
)

is clearly a solution to (3.81). This

equation is linear and hence any superposition of solutions satisfies it, so does u(t, ®x).

Regarding the boundary condition (3.82), let us apply the operator ∂i∂i+1+λ(∂i−∂i+1) to u(t, ®x).

The operator can be brought inside the integrals in (3.74) and yields a multiplicative factor

λ2wiwi+1 + λ(λwi − λwi+1).

This factor cancels the denominator of

wB − wA

wB − wA − wAwB

when A = i, B = i+1, so that the integral in wi+1 does not have a pole anymore at wi+1 = wi/(1+wi).

Thus, by Cauchy’s theorem, one can shift the wi+1 contour from αi+1 + iR to αi + iR. Now that

variables wi and wi+1 are integrated on the same contour, we notice that for xi+1 = xi, the integrand

is antisymmetric with respect to exchanging wi and wi+1 (because of the factor wi − wi+1), and
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hence the integral is zero. Thus u(t, ®x) satisfies (3.82).

More generally, the function

Ψ®z(®x) =
∑
σ

∏
i< j

zσ(i) − zσ( j) − 1
zσ(i) − zσ( j)

k∏
j=1

e
λxj
zj , (3.83)

satisfies (3.81), (3.82) for any ®z ∈ (C \ {0})k .

The function u(0, ®x) is a linear superposition of Ψ®z(®x) which additionally satisfies the initial

condition for x1 > · · · > xk that

u(0, ®x) =
k∏

i=1
1xi>0.

Note that the function Φ(k)t (®x) := E[K−t,0(x1, [0,+∞))...K−t,0(xk, [0,+∞))] satisfies the same

initial condition.

The discrete analogue of Φ(k)t (®x) is E[P(X x1(t) > 0)...P(X xk (t) > 0)] (in the sense of Lemma

3.1.19). It was shown in [23, Section 3.1] using simple probabilistic considerations that the latter

quantity satisfies discretizations of (3.81), (3.82).

It would be interesting to provide a probabilistic explanation for why Φ
(k)
t (®x) must satisfy

(3.81), (3.82). Note that Φ(k)t (®x) is symmetric in the xi’s so that we need to understand it only in

the Weyl chamber Wk := {x ∈ Rk : x1 ≥ · · · ≥ xk}. Then (3.81), (3.82) should be regarded as

Kolmogorov’s backward equation for k-point uniform sticky Brownian motions. Inside the open

sector x1 > · · · > xk , it is clear that the generator should be given by the Laplacian (since k-point

sticky Brownian motions evolve as k independent Brownian motions), hence the heat equation

(3.81). However, we have not found in the literature a rigorous definition of the generator for

n-point uniform sticky Brownian motions and we are unable to deduce the boundary condition

(3.82) directly from the definition of uniform sticky Brownian motions. After the posting of the

manuscript on arXiv, we have learned from Jon Warren that it is possible to derive (3.81), (3.82)

directly from the martingale problem characterizing sticky Brownian motions, and this will be

explained in the forthcoming paper [48].
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3.5.4 A formal relation to diffusions with white noise drift

By analogy with the Lieb-Liniger model (we refer the reader to the book [86, Chap. 4] for

background on the Lieb Liniger model, or [36, Section 6] for its relation to the KPZ equation), it is

natural from the physics point of view to associate to the equation (3.81) with boundary condition

(3.82) the following PDE on Rk

∂tv(t, ®x) =
1
2
∆v(t, ®x) +

1
2λ

∑
i, j

δ(xi − x j)∂xi∂xjv(t, ®x). (3.84)

In order to see that (3.84) satisfies the boundary condition (3.82), integrate the equation over the

variable y = xi+1− xi in a neighborhood of 0, and use the fact that v(t, ®x) is symmetric in the xi’s for

symmetric initial condition. Assuming uniqueness of solutions to (3.81)+(3.82) and (3.84), their

restrictions to the Weyl chamber Wk := {x ∈ Rk : x1 ≥ · · · ≥ xk} must coincide, provided the

initial conditions coincide onWk .

Consider now the stochastic PDE


∂tq(t, x) = 1

2∂xxq(t, x) + 1√
λ
ξ(t, x)∂xq(t, x),

q(0, t) = q0(x).
(3.85)

It is not clear to us if a solution theory is available when ξ is a space-time white noise, although

this is the case we are ultimately interested in. However, if ξ is a smooth and Lipschitz potential,

the Kolmogorov backward equation provides a representation of the solution as

q(t, x) = E[q0(X0)|X−t = x],

where Xt is the random diffusion [131] (see also [32, Eq. (2.9)])

dXt =
1
√
λ
ξ(t,Xt)dt + dBt, (3.86)
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where the Brownian motion B is independent from ξ, and E denotes the expectation with respect

to B, conditionally on the environment ξ. For a white noise potential ξ depending only on space,

such diffusion can be constructed rigorously [181]. Note that q does not satisfy (3.85) for ξ white

in time and smooth in space due to Ito corrections in the derivation of (3.85) from (3.86).

Let

ṽ(t, ®x) := E [q(t, x1) . . . q(t, xk)] , (3.87)

where q solves (3.85). We claim that ṽ(t, ®x) satisfies (3.84) in the following formal sense. The

following arguments are non rigorous, as we will discard many analytic difficulties such as ex-

changing derivatives with expectation without justification and we implicitly assume existence and

uniqueness of solutions of (3.85) when ξ is a space time white noise.

By definition, a solution to (3.85) satisfies

q(t, x) = pt ∗ q0(x) +
1
√
λ

∫ t

0
ds

∫
R

dypt−s(x − y)ξ(s, y)∂yq(s, y),

where ∗ denotes convolution in space, and pt(x) = 1√
2πt

e−x2/2t denotes the heat kernel. Note that

when ξ(s, y) is not smooth in space, the integral against ξ(s, y)∂yq(s, y) is not well defined even

using Ito calculus. Let us assume for the moment that the covariance of the environment ξ is given

by

E [ξ(t, x)ξ(x, y)] = δ(t − s)R(x − y), (3.88)

where R is a smooth and compactly supported function. Considering the case k = 2 for simplicity,

we may write

ṽ(t, x1, x2) =

1
λ
E

[∫
R

dy1

∫
R

dy2

∫ t

0
ds1

∫ t

0
ds2pt−s1(x1 − y1)pt−s2(x2 − y2)ξ(s1, y1)ξ(s2, y2)∂y1 q(s1, y1)∂y2 q(s2, y2)

]
+

1
√
λ

pt ∗q0(x1) E

∫
R

dy2

∫ t

0
ds2pt−s2(x2− y2)ξ(s2, y2)∂y2 q(s2, y2)+1↔ 2+pt ∗q0(x1)pt ∗q0(x2),
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where 1 ↔ 2 denotes the previous term after exchanging indices 1 and 2. In the sequel we will

discard the terms depending on pt ∗ q0 which play no role in the following computation, because

they solve the homogeneous heat equation. Using (3.88), we obtain

ṽ(t, x1, x2) =
1
λ

∫
R

dy1

∫
R

dy2R(y1− y2)

∫ t

0
ds pt−s(x1− y1)pt−s(x2− y2)E

[
∂y1 q(s, y1)∂y2 q(s, y2)

]
+ terms depending on pt ∗ q0.

Thus, using that pt(x) solves the heat equation and pt−s(·) ⇒ δ0(·) as s→ t, we obtain

∂t ṽ(t, x1, x2) =
1
λ

R(x1 − x2)E
[
∂x1 q(t, x1)∂x2 q(t, x2)

]
+

1
2
(∂2

x1 + ∂
2
x2)E [q(t, x1)q(t, x2)] .

Finally, if R converges to a delta function, the noise ξ becomes a space time white noise, and

assuming one can exchange the derivatives ∂x1, ∂x2 with the expectation, we obtain that ṽ(t, x1, x2)

satisfies (3.84).

Remark 3.5.5. The fact that the function ṽ(t, ®x) defined in (3.87) satisfies the evolution (3.84) was

essentially known in the physics literature. Indeed, the operator in the right hand side of (3.84)

appears in [32, Eq. (2.17)] where it was shown to be related to the moments of a stochastic PDE

[32, Eq. (2.2)] which has the same form as (3.85).
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Chapter 4: GUE corners process in boundary-weighted six-vertex models

This chapter is based on the article [72] written by myself and Evgeni Dimitrov.

4.1 introduction

The six-vertex model is a well studied exactly solvable model in statistical mechanics. Linus

Pauling introduced the model in 1935 to describe the residual entropy of ice crystals. In addition to

its original purpose of describing ice, the six-vertex model has been useful in understanding other

physical phenomena such as phase transitions in magnetism [30, 138].

In this chapter we consider a family of six-vertex models on the half-infinite strip Dn = Z≥0 ×

{1, . . . ,n} where n ∈ N. Specifically, the state space of the models is the set Pn consisting of all

collections of n up-right paths, with nearest neighbor steps in Dn with the paths starting from the

points {(0, i) : 1 ≤ i ≤ n} and exiting the top boundary. We add the additional condition, that no

two paths can share a horizontal or vertical edge, see Figure 4.1.

Figure 4.1: An example of a path collection
π in P5. Here λ3

1(π) = 5, λ3
2(π) = 4, λ3

3(π) =
2

i1 = 2

j1 = 1

i2 = 3

j2 = 0

Figure 4.2: An example of a vertex of
type (i1, j1; i2, j2) = (2,1; 3,0)

In the next few paragraphs we explain the types of probability measures we put on Pn (they

are given in equation (4.2) below), but to accomplish this we need a bit of notation. A signature
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of length n is a nonincreasing sequence λ = (λ1 ≥ λ2 ≥ · · · ≥ λn) with λi ∈ Z. We use Signn

to denote the set of all signatures of length n, and use Sign+n for the set of such signatures with

λn ≥ 0. To each collection of n up-right paths π ∈ Pn one can identify a sequence of signatures

λi(π) ∈ Sign+i for i = 1, . . . ,n, where (λi
1(π), λ

i
2(π), . . . , λ

i
i(π)) are the ordered x-coordinates at

which the paths in π intersect the horizontal line y = i + 1/2, see Figure 4.1.

Given an up-right path collection π ∈ Pn, each vertex is given a vertex type based on four

numbers (i1, j1; i2, j2), where i1 and j1 denote the number paths entering the vertex vertically and

horizontally respectively, while i2 and j2 denote the number of paths leaving the vertex vertically

and horizontally respectively, see Figure 4.2. For complex parameters s and u we define the fol-

lowing vertex weights

w1 = w(0,0; 0,0) = 1, w2 = w(1,1; 1,1) =
u − s−1

1 − su

w2 = w(1,0; 1,0) =
1 − s−1u
1 − su

, w4 = w(0,1; 0,1) =
u − s
1 − su

,

w5 = w(1,0; 0,1) =
(1 − s2)u

1 − su
, w6 = w(0,1; 1,0) =

1 − s−2

1 − su
.

(4.1)

This nonintuitive parametrization of weights by s and u comes from [46], where it is important in

defining a higher spin generalization of the six-vertex model. Later in (4.8) we present the higher

spin vertex weights, and one obtains the weights in (4.1) by setting q = s−2 in (4.8).

For π ∈ Pn we let π(i, j) denote the vertex type of the vertex at position (i, j) in the path

collection π. Given complex numbers s and u, and a function f : Sign+n → C we define the weight

of a path collection π ∈ Pn by

W f (π) = f (λn(π))

∞∏
i=1

n∏
j=1

w(π(i, j)).

All but finitely many π(i, j) are equal to (0,0; 0,0) and have weight 1 by (4.1), so the product is well

defined. If one chooses u and s in C and the function f so that the weightsW f (π) are nonnegative,

not all zero and summable then one can use the weights W f (π) to define a probability measure on
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Pn through

P f (π) = (Z f )−1 · W f (π), where Z f :=
∑
π∈Pn

W f (π). (4.2)

Equation (4.2) gives the general form of the measures we study in this chapter. In plain words P f

is the usual six-vertex measure except that the path collections π are reweighed based on their top

boundary, namely λn(π), through the boundary weight function f .

Remark 4.1.1. When we go to our main results we will take u > s > 1 above. In the usual weight

parametrization of the six-vertex model we have that

a1 = 1, a2 =
u − s−1

su − 1
, b1 =

1 − s−1u
1 − su

, b2 =
u − s
su − 1

, c1 =
(1 − s2)u

1 − su
, and c2 =

1 − s−2

su − 1
.

We mention that the latter weights are the absolute values of those in (4.1), where ultimately the

sign difference will be absorbed in the boundary weight function f of the model so thatW f (π) ≥ 0

for all π ∈ Pn. Associated with the six weights is an anisotropy parameter ∆, given by

∆(a1,a2, b1, b2, c1, c2) =
a1a2 + b1b2 − c1c2

2
√

a1a2b1b2
, (4.3)

which is believed to be directly related with the qualitative and quantitative properties of the model,

see [153]. The choice of weights as in (4.1) with u > s > 1 corresponds to ∆ > 1, which is known

as the ferroelectric phase of the six-vertex model.

There are many different choices of parameters and functions f that lead to meaningful mea-

sures in (4.2). For example, if f (λ) = 0 unless λn−i+1 = i − 1 for i = 1, . . . ,n the measure in

P f becomes the six-vertex model with domain wall boundary condition (DWBC), [123]. Another

special case of the measures in (4.2) includes the case when u > s > 1 and

f (λ) = Gc
λ(ρ) := (−1)n · 1m0=0

∞∏
i=1

1mi≤1

n∏
j=1
(−s)λj , (4.4)

where λ = 0m01m12m2 . . . . In the latter notation mi is the number of times i appears in the list

171



(λ1, . . . , λn) and 1E is the indicator function of the set E . With this choice of parameters and

function f , the measure P f becomes what is known as stochastic six-vertex model, see e.g. [98],

[39], with parameters

b1 =
1 − s−1u
1 − su

, b2 =
s2 − su
1 − su

.

For a quick proof of the latter statement we refer the reader to [46, Section 6.5].

Different choices of the boundary weight function f lead to qualitatively different behavior

of the measures P f in (4.2). We illustrate this point by comparing the DWBC and the stochastic

six-vertex model we just introduced. In order to begin understanding the qualitative differences

between these two models we need to discuss the pure states (or the ergodic, translation-invariant

Gibbs measures) of the six-vertex model. For this we follow [3], see also [60, Section 1.2.1].

A prediction in [50], which has been very recently partially verified in [3], states that the pure

states µ of the ferroelectric six-vertex model are parametrized by a slope (s, t) ∈ [0,1]2, where s

and t denote the probabilities that a given vertical and horizontal edge is occupied under µ. For a

certain open lens-shaped set H ⊂ [0,1]2 one has the following characterization of pure states for

the ferroelectric six-vertex model (here H = H ∪ ∂H):

1. Nonexistence: If (s, t) ∈ H, then there are no pure states µs,t of slope (s, t).

2. KPZ States: If (s, t) ∈ ∂H, then µs,t should exhibit Kardar-Parisi-Zhang (KPZ) behavior.

3. Liquid States: If (s, t) ∈ (0,1)2\H, then µs,t should exhibit Gaussian free field (GFF) behavior.

4. Frozen States: If (s, t) is on the boundary of [0,1]2, then µs,t should be frozen.

From the above conjectural classification, [3] established the nonexistence statement (1) and proved

the existence and uniqueness of KPZ states (2) for all (s, t) ∈ ∂H. It is worth mentioning that the

above classification sharply contrasts the one for dimer models. Specifically, the pure states in

dimer models were classified in [171] and [120] and they come in three types. The first is frozen,

where the associated height function is basically deterministic; the second is gaseous, where the
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variance of the height function is bounded but non-zero; the third is liquid, where the hight func-

tion fluctuations diverge logarithmically in the lattice size. In particular, for dimer models there

are no Nonexistence or KPZ pure states.

Going back to our previous discussion, the stochastic six-vertex model considered in [39],

which corresponds to f as in (4.4), was shown to asymptotically have a phase diagram that con-

sists of two frozen regions, i.e. regions where the local behavior of the model is described by

Frozen States, and a non-frozen region, where one observes solely KPZ States, see Figure 4.3.

More specifically, in [39] it was shown that the one-point marginals of the height function h(x, y),

which at a location (x, y) counts the number of horizontal edges crossed by the vertical segment

connecting (x,0) and (x, y) in the non-frozen region I I I of Figure 4.3 are asymptotically governed

by the GUE Tracy-Widom distribution [189]. This type of behavior is characteristic of models

in the KPZ universality class (for more background on this class we refer to the excellent survey

[63]). For the DWBC six-vertex model a very different phase diagram is expected, although we

emphasize that it has not been established rigorously. Specifically, for the DWBC it is expected

that as n becomes large the model again develops macroscopic frozen regions that are separated

by a non-frozen region where one observes solely Liquid States. The only instance where this has

been rigorously established is when ∆ = 0, which is the free fermion point of the model, see [118],

[119]. When ∆ = 0 the six-vertex model falls into the framework of the dimer models, which is

what enables its precise mathematical analysis. We mention; however, that there are non-rigorous

physics works and numerical simulations that indicate that for ∆ < 1 the six vertex model with

DWBC has solely Liquid States in the non-frozen region, and by analogy with the dimer models

the fluctuations of those are no longer KPZ, but rather governed by a suitable pullback of the Gaus-

sian free field, [96]. In the ferroelectric ∆ > 1 case similar heuristics suggest that one observes

only frozen states [59, 180].

The above paragraphs explain that by picking different boundary weight functions f we can

obtain qualitatively different phase diagrams for our six-vertex model. In this chapter we consider
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Figure 4.3: The left picture represent a sample of P f with f as in (4.4) for the parameters
n = 100, u = 2, s−2 = 0.5. The picture on the right side depicts the phase diagrams for
these measures when n is large. The regions I and I I correspond to Frozen States and
region I I I corresponds to KPZ States

a very special class of boundary functions f . This class will be described in the next section, where

the definition of the models, some of their structural properties and main result we prove for them

are presented. In the remainder of this section we explain the very high level motivations that have

guided our choice of f .

First of all, our discussion above indicates that for the stochastic six-vertex model of [39] the

non-frozen region consists entirely of KPZ States, while for the DWBC (at least conjecturally) it

consists solely of Liquid States (or states with Gaussian statistics). A natural question is whether

we can find a boundary weight function f for which both types of pure states co-exist in the non-

frozen region of the model. A second point is that, for general functions f , the asymptotic analysis

for P f is prohibitively complicated – indeed even for the DWBC the phase diagram is largely

conjectural, and so one is inclined to consider special boundary weight functions f for which the

analysis of the model is tractable. Our choice of f is motivated by our desire that the resulting

model satisfies these two properties.
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4.1.1 Model and results

In this chapter we study a special case of (4.2) when the boundary weight function f is given

by

f (λ) =
∑

µ∈Sign+n

Gc
µ(ρ)G

c
λ/µ(v, . . . , v). (4.5)

In (4.5) the function Gc
µ(ρ) is as in (4.4) and the functions Gc

λ/µ
are a remarkable class of symmetric

rational functions, which were introduced in [34]. In this chapter one can find the definition of

Gc
λ/µ

in Definition 4.2.1, and these functions depend on M complex variables v1, . . . , vM that have

all been set to the same complex number v in (4.5). We mention that Gc
λ/µ

are one-parameter

generalizations of the classical (skew) Hall-Littlewood symmetric functions [142] and carry the

name of (skew) spin Hall-Littlewood symmetric functions, see [49].

One can check that if v−1 > u > s > 1 then the measure P f from (4.2) with f as in (4.5) is a

well-defined probability measure, see Section 4.2.2. We will denote this measure by PN,M
u,v .

Even though the choice of f in (4.5) seems complicated we emphasize that the resulting mea-

sure P f enjoys many remarkable properties and its asymptotic structure appears to be rich and

interesting. We elaborate on these points in the next few paragraphs, summarizing some results

from [71] where this model was studied in detail.

First of all, the choice of f as in (4.5) makes the model integrable and the distribution P f

analogous to the ascending Macdonald processes of [36]. What plays the role of the (skew) Mac-

donald symmetric functions Pλ/µ and their duals Qλ/µ is a class of symmetric rational functions

Fλ/µ and their duals Gc
λ/µ

that were mentioned above. The functions Fλ/µ,Gc
λ/µ

enjoy many of the

same properties as the Macdonald symmetric functions, including branching rules, orthogonality

relations, (skew) Cauchy identities and so on. One consequence of the integrability of the model

that can be appreciated by readers unfamiliar with symmetric function theory is that the partition
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function Z f for our choice of f in (4.5) takes the following extremely simple product form

Z f = (s−2; s−2)n

(
1 − s−1u
1 − su

)n (
1 − s−2uv

1 − uv

)nM

, where (a; q)m = (1 − a)(1 − aq) · · · (1 − aqm−1).

The latter formula for the partition function is recalled in Section 4.2.2 in this chapter.

Another consequence of the integrability of the model is the fact that it is self-consistent in the

following sense. Suppose that we sample a path collection π on Pn according to Pn,M
u,v and then

project the path collection to the first k rows where 1 ≤ k ≤ n. The resulting path collection is now

a random element in Pk and its distribution is precisely Pk,M
u,v – we recall this in Lemma 4.2.12.

This self-consistency of the measures Pn,M
u,v for n ∈ N allows us for example to define a measure on

up-right paths on the whole of Z2
≥0 whose projection to the bottom n rows has law Pn,M

u,v .

Figure 4.4: The pictures represent samples of the Markov chain {Xm}
∞
m=0 when n = 50 at times

m = 0, m = 50 and m = 100. The parameters of the process are s−2 = 0.5, u = 2 and all v = 0.25

Yet another consequence of the integrability of the model is given by the fact that for fixed n

and varying m ∈ Z≥0 the measures Pn,M
u,v can be stochastically linked as we next explain. One can

interpret the distribution Pn,m
u,v as the time m distribution of a Markov chain {Xm}

∞
m=0 taking values

in Pn for each m. This Markov chain is started from the stochastic six-vertex model at time zero,

and its dynamics are governed by sequential update rules. For more details and a precise formu-

lation we refer the reader to [46, Section 6] as well as [71, Section 8] where an exact sampling

algorithm of this process was developed by one of the authors. For a pictorial description of how

the configurations Xm evolve as time increases see Figure 4.4. This interpretation is similar to
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known interpretations of the Schur process and Macdonald process as fixed time distributions of

certain Markov processes, see [35, 36].

The above few paragraphs explained some of the structure and relationships between the mea-

sures PN,M
u,v for varying N,M ∈ N. These measures arise as degenerations of the higher-spin vertex

models that were studied in [46], which is the origin of their integrability. For the purposes of this

chapter, the main consequence of the integrability of the model that is utilized is that one has suit-

able for asymptotic analysis formulas for the one-dimensional projections of PN,M
u,v . This is what

makes the analysis of the model tractable, which as we recall from the end of the previous Section

is one of our desired properties.

Our primary probabilistic interest in the measures PN,M
u,v comes from the fact that as N,M →∞

the phase diagram of the model (at least conjecturally) exhibits all three types of pure states –

Frozen, Liquid and KPZ. The presence of all three types of pure states is the second high-level

motivation behind our choice of f as in (4.5) and we illustrate the phase diagram in Figure 4.5.

The phase diagram in Figure 4.5, which corresponds to PN,M
u,v when N and M are large, should

Figure 4.5: The picture on the left represent a sample of PN,M
u,v with N = M = 100, u = 2,

s−2 = 0.5, v = 0.25. The picture on the right represents the (conjectural) phase diagram of the
model as N,M →∞

be compared to the one in Figure 4.3, which corresponds to the stochastic six-vertex model or
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equivalently to the measure PN,0
u,v (recall that the measures PN,m

u,v were stochastically linked through

a Markov chain with time zero distribution given precisely by the stochastic six-vertex model). At

least based on the simulations one observes that as the vertex model evolves in time m = 0, . . . ,M

the frozen regions I and I I from the stochastic six-vertex model in Figure 4.3 begin to deform and

a new frozen region, denoted by I I I in Figure 4.5 and consisting of vertices of type (0,1; 0,1), is

formed near the origin. With this new frozen region two new points IV and V are formed. These

are sometimes referred to as turning points and they arise where two different frozen regions meet

each other. Furthermore, our prediction is that, under the Markovian dynamics evolving the six-

vertex model, the KPZ cone (i.e. region I I I in Figure 4.3) that is present at time m = 0 is translated

away from the origin to region V II and a new GFF region (denoted by V I in Figure 4.5) takes its

place. We mention here that the exact nature of the Markovian dynamics is not important for this

chapter. The reason we mention it is to emphasize that the stochastic six-vertex model and the

measures PN,M
u,v we consider here are related to each other and the presence of the KPZ region V II

in PN,M
u,v can be traced back to the presence of region I I I in PN,0

u,v . If the same dynamics are run from

a different initial configuration one may very well see a completely different phase diagram than

the one in Figure 4.5.

As can be seen from Figure 4.5 the asymptotics of PN,M
u,v as N,M → ∞ appear to be quite

complex. A long term program, initiated in [71], is to rigorously establish the phase diagram in

Figure 4.5. So far only the asymptotics near the point IV have been understood. Specifically, in

[71] one of the authors showed that near IV a certain configuration of empty edges converges to

the GUE-corners process, we define the latter here. Recall that the Gaussian Unitary Ensemble

(GUE) is a measure on Hermitian matrices {Xi j}
k
i,j=1 with density proportional to e−Tr(X2)/2 with

respect to Lebesgue measure. For 1 ≤ r ≤ k, let λr
1 ≤ λr

2 ≤ · · · ≤ λr
r denote the ordered

eigenvalues of the submatrix {Xi j}
r
i,j=1 of X . The joint law of the eigenvalues {λ j

i }1≤i≤ j≤k is called

the GUE-corners process of rank k (or the GUE-minors process). The appearance of the GUE-

corners process has been established in related contexts for random lozenge tilings in [113, 149,

154] and the uniform six-vertex model with domain-wall boundary conditions [95]. It is believed
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to be a universal scaling limit near points separating two different frozen regions such as the point

IV .

This chapter, is a continuation of the program initiated in [71] of establishing the phase diagram

in Figure 4.5. Specifically, in Figure 4.5 the point V is another turning point, and in this chapter,

we show that the statistics of the model PN,M
u,v near this point are also described by the GUE-corners

process. Before we state our main result we give our choice of parameters and some notation.

Definition 4.1.2. We assume that v,u, s ∈ (0,∞) satisfy v−1 > u > s > 1. With this choice of

parameters we define the constants

a =
v
(
u − s−1) (

s−1u − 1
)

(1 − uv)(1 − s−2uv)
, b =

(s2 − 1)
(u − s)(1 − su)

c =
1
2

(
a

(
1

(u − s)2
−

s2

(1 − su)2

)
−

s−4v2

(1 − s−2uv)2
+

v2

(1 − uv)2

)
, d =

−
√

2c
b

.

(4.6)

If v−1 > u > s > 1 one observes that

a > 0, b < 0, c > 0, d > 0.

See Lemma 4.5.1 in the main text for a verification of this fact.

The main result of the chapter is as follows.

Theorem 4.1.3. Suppose that u, v, s,a, d are as in Definition 4.6 and k ∈ N is given. Suppose that

N(M) is a sequence of integers such that N(M) ≥ k for all M and let PN,M
u,v be the measure on

collections of paths π ∈ PN as earlier in the section. Define the random vector Y (N,M; k) through

Y j
i (N,M; k) =

λ
j
j−i+1(π) − aM

d
√

M
for 1 ≤ i ≤ j ≤ k. (4.7)

Then the sequence Y (N,M; k) converges weakly to the GUE-corners process of rank k as M →∞.

Remark 4.1.4. In (4.7) we reverse the order of λ j
i because the usual convention for signatures

λ = (λ1, . . . , λn) demands that λi be sorted in decreasing order, while for the eigenvalues of a
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random matrix the usual convention is that they are sorted in increasing order.

We mention here that while the asymptotic behaviors near IV and V are similar, the arguments

used to establish the two results are quite different. The arguments in [71] rely on a remarkable

class of difference operators, which can be used to extract averages of observables for PN,M
u,v near

the left boundary of the model. These observables become useless for accessing the asymptotic

behavior of the base of the model and consequently our approach in this chapter is completely

different, and arguably more direct as we explain here. In the remainder of this section we give

an outline of our approach to proving Theorem 4.1.3. The discussion below will involve certain

expressions that will be properly introduced in the main text, and which should be treated as black

boxes for the purposes of the outline.

Using the integrability of the model we obtain the formula

PN,M
u,v (λ

k
1 (π) = µ1, · · · , λ

k
1 (π) = µk) ∝ Fµ([u]k) · f (µ; [v]M, ρ),

for any µ = (µ1, . . . , µk) ∈ Sign+k . A generalization of this fact appears as Lemma 4.2.12 in the

main text. We then derive certain combinatorial estimates for Fµ([u]k) and a contour integral for-

mula for f (µ; [v]M, ρ) in Section 4.3, which are both suitable for studying the M → ∞ limit of

these expressions (for the function Fµ([u]k) the dependence on M is reflected in the scaling of the

signature µ). The limit of the contour integral formula for f (µ; [v]M, ρ) is derived in Section 4.5 us-

ing a steepest descent argument, while the combinatorial estimates for Fµ([u]k) prove sufficient for

taking its limit. Combining our two asymptotic results for Fµ([u]k) and f (µ; [v]M, ρ) we can prove

that the sequence of random vectors in Rk , given by Y k(N,M) =
(
Y k

1 (N,M; k), . . . ,Y k
k (N,M; k)

)
with Y (N,M; k) as in Theorem 4.1.3 converges to the measure of the ordered eigenvalues of a

random GUE matrix µk
GUE(dx1, ..., dxk), given by

µk
GUE(dx1, ..., dxk) = 1{xk > xk−1 > · · · > x1}

(
1
√

2π

) k

·
1∏k−1

i=1 i!
·

∏
1≤i< j≤k

(xi − x j)
2

k∏
i=1

e−
xi
2 dxi .
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The last statement appears as Proposition 4.4.3 in the text.

The above paragraph explains how we show that the top row of Y (N,M; k) converges to the top

row of the GUE-corners process of rank k. To obtain the full convergence statement we combine

our top row convergence statement with the general formalism, introduced in [71], involving Gibbs

measures on interlacing arrays. In more detail, the top-row convergence of Y (N,M; k) and the

interlacing conditions

λi+1
1 (π) ≥ λ

i
1(π) ≥ λ

i+1
2 (π) ≥ λ

i
2(π) ≥ · · · ≥ λ

i
i(π) ≥ λ

i+1
i+1(π),

for i = 1, . . . , k − 1 are enough to conclude the tightness of the full vector Y (N,M; k) as M → ∞.

For each N,M the measures PN,M
u,v satisfy what we call the six-vertex Gibbs property and in the

M →∞ limit this property becomes what is known as the continuous Gibbs property, see Section

4.4.2. Combining the latter statements, one can conclude that any subsequential limit of Y (N,M; k)

as M →∞ has top row distribution µk
GUE(dx1, ..., dxk) and satisfies the continuous Gibbs property,

and these two characteristics are enough to identify this limit with the GUE-corners process of

rank k. As the sequence Y (N,M; k) is tight and all subsequential limits are the same and equal to

the GUE-corners of rank k, we conclude the weak convergence of Y (N,M; k). This argument is

given in Section 4.4.2.

4.1.2 Outline of the chapter

In Section 4.2 we define and state some facts about the functions Fλ/µ and Gc
λ/µ

, we also define

inhomogeneous versions of PN,M
u,v called Pu,v and give formulas for their projections. In Section 4.3

we derive certain combinatorial estimates for Fµ([u]k) and a contour integral formula for f (µ; v, ρ),

where the latter appear in our projection formulas for Pu,v from Section 4.2. In Section 4.4 we prove

Theorem 4.1.3 modulo Lemma 4.4.5 , which is proved in Section 4.5.
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4.2 Measures on up-right paths

In this section we provide some results about a certain class of measures Pu,v that are inho-

mogeneous analogues of the measures PN,M
u,v from Section 4.1.1. For the most part, this section

summarizes the results in [71, Section 2].

4.2.1 Symmetric rational functions

In this section we introduce some necessary notation from [46] and summarize some of the

results from the same paper. A signature of length N is a sequence λ = (λ1 ≥ λ2 ≥ · · · ≥ λN )

with λi ∈ Z for i = 1, . . . ,N . A signature λ will sometimes be represented by 0m0(λ)1m1(λ)2m2(λ) . . .

where mi(λ) := |{ j : λ j = i}| is the number of times i appears in the list (λ1, . . . , λN ). We denote

by SignN the set of all signatures of length N and by Sign+N the set of signatures of length N with

λN ≥ 0. We also denote by Sign+ := tN≥0Sign+N the set of all non-negative signatures. We recall

for later use the q-Pochhammer symbol (a; q)n := (1 − a)(1 − qa) · · · (1 − qn−1a).

In what follows, we define the weight of a finite collection of up-right paths in some region D

of Z2, which is equal to the product of the weights of all vertices that belong to the path collection.

Throughout we will always assume that the weight of an empty vertex is 1 and so alternatively the

weight of a path configuration can be defined through the product of the weights of all vertices in

D. Figure 4.6 gives examples of collections of up-right paths.

The path configuration at a vertex is determined by four non-negative integers (i1, j1; i2, j2),

where i1 (resp. i2) is the number of incoming (resp. outgoing) vertical paths, and j1 (resp. j2) is the

number of incoming (resp. outgoing) horizontal paths, see Figure 4.2. If the path configuration of
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a vertex is (i1, j1; i2, j2) we will also say that the vertex is of type (i1, j1; i2, j2). Vertex weights will

be given as a function of these four numbers. We require the number of paths entering and leaving

each vertex to be the same, i.e. i1 + j1 = i2 + j2, and we will constrain the horizontal number of

paths by j1, j2 ∈ {0,1} (the weight of any vertex that does not satisfy these two conditions is 0).

We consider two sets of vertex weights depending on parameters s and q (these are fixed

throughout this section), and a spectral parameter u. The first set of vertex weights is given by

wu(g,0; g,0) =
1 − sqgu
1 − su

, wu(g + 1,0; g,1) =
(1 − s2qg)u

1 − su

wu(g,1; g,1) =
u − sqg

1 − su
, wu(g,1; g + 1,0) =

1 − qg+1

1 − su
,

(4.8)

where g is any nonnegative integer and all other weights are assumed to be 0. The second set of

weights, called conjugated weights, are defined by

wc
u(g,0; g,0) =

1 − sqgu
1 − su

, wc
u(g + 1,0; g,1) =

(1 − qg+1)u
1 − su

wc
u(g,1; g,1) =

u − sqg

1 − su
, wc

u(g,1; g + 1,0) =
1 − s2qg

1 − su
,

(4.9)

where as before g ∈ Z≥0 and all other weights are assumed to be 0. For more background and

motivation for this particular choice of weights we refer the reader to [46, Section 2].

Let us fix n ∈ N, n indeterminates u1, . . . ,un and the region Dn = Z≥0 × {1, . . . ,n}. Let π be

a finite collection of up-right paths in Dn, which end in the top boundary, but are allowed to start

from the left or bottom boundary of Dn. We denote the path configuration at vertex (i, j) ∈ Dn by

π(i, j). Then the weight of π with respect to the two sets of weights above is defined through

W(π) =

∞∏
i=0

n∏
j=1

wu j (π(i, j)), Wc(π) =

∞∏
i=0

n∏
j=1

wc
u j
(π(i, j)). (4.10)

Note that from (4.8) and (4.9) we have that wu(0,0; 0,0) = 1 = wc
u(0,0; 0,0) and so the above

products are in fact finite. With the above notation we define the following partition functions.
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Definition 4.2.1. Let N,n ∈ Z≥0, λ, µ ∈ Sign+N and u1, . . . ,un ∈ C be given. Let Pc
λ/µ

be the

collection of up-right paths π on Dn, which

• begin with N vertical edges (µi,0) → (µi,1) for i = 1, . . . ,N along the horizontal axis;

• end with N vertical edges (λi,n) → (λi,n + 1) for i = 1, . . . ,N .

Then we define

Gc
λ/µ(u1, . . . ,un) =

∑
π∈Pc

λ/µ

Wc(π). (4.11)

We also use the abbreviation Gc
λ for Gc

λ/(0,0,...,0).

For the second set of weights we have an analogous definition.

Definition 4.2.2. Let N,n ∈ Z≥0, µ ∈ Sign+N , λ ∈ Sign+N+n and u1, . . . ,un ∈ C be given. Let Pλ/µ

be the collection of up-right paths π on Dn, which

• begin with edges (µi,0) → (µi,1) for i = 1, . . . ,N along the bottom boundary of Dn and with

edges (−1, y) → (0, y) for y = 1, . . . ,n along the left boundary;

• end with N + n vertical edges (λi, k) → (λi,n + 1) for i = 1, . . . ,N + n.

Then we define

Fλ/µ(u1, . . . ,un) =
∑

π∈Pλ/µ

W(π). (4.12)

We also use the abbreviation Fλ = Fλ/�.

Path configurations that belong to Pλ/µ and Pc
λ/µ

are depicted in Figure 4.6. In the definitions

above we define the weight of a collection of paths to be 1 if it has no interior vertices. Also, the

weight of an empty collection of paths is 0.

Below we summarize some of the properties of the functions Gc
λ/µ

and Fλ/µ in a sequence

of propositions; we refer the reader to [46, Section 4] for the proofs. We mention here that the

statements we write below for Gc
λ/µ

appear in [46, Section 4] for a slightly different but related
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Figure 4.6: Path collections belonging to Pλ/µ (left) and Pc
λ/µ

(right).

function Gλ/µ. The function Gλ/µ has the same definition as Gc
λ/µ

except that one uses the vertex

weights (4.8) rather than the conjugated weights (4.9). One directly checks that the two sets of

weights are related through the equation

wc
u(i1, j1; i2, j2) =

(q; q)i1(s
2; q)i2

(q; q)i2(s2; q)i1
· wu(i1, j1; i2, j2),

which results in the relation

Gc
λ/µ =

c(λ)
c(µ)

·Gλ/µ, where c(λ) =
∞∏

k=0

(s2; q)nk
(q; q)nk

for λ = 0n01n12n2 . . . . (4.13)

Proposition 4.2.3. [46, Proposition 4.5] The functions Fλ/µ(u1, . . . ,un) and Gc
λ/µ
(u1, . . . ,un) de-

fined above are rational symmetric functions in the variables u1, . . . ,un.

Proposition 4.2.4. [46, Proposition 4.6] 1. For any N,n1,n2 ∈ Z≥0, µ ∈ Sign+N and λ ∈

Sign+N+n1+n2
one has

Fλ/µ(u1, . . . ,un1+n2) =
∑

κ∈Sign+N+n1

Fλ/κ(un1+1, . . . ,un1+n2)Fκ/µ(u1, . . . ,un1). (4.14)
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2. For any N,n1,n2 ∈ Z≥0 and λ, µ ∈ Sign+N , one has

Gc
λ/µ(u1, . . . ,un1+n2) =

∑
κ∈Sign+N

Gc
λ/κ(un1+1, . . . ,un1+n2)G

c
κ/µ(u1, . . . ,un1). (4.15)

The properties of the last proposition are known as branching rules.

Definition 4.2.5. We say that two complex numbers u, v ∈ C are admissible with respect to the

parameter s if
�� u−s
1−su ·

v−s
1−sv

�� < 1.

Proposition 4.2.6. [46, Corollary 4.10] Let u1, . . . ,uN and v1, . . . , vK be complex numbers such

that ui, v j are admissible for all i = 1, . . . ,N and j = 1, . . . ,K. Then for any λ, ν ∈ Sign+

∑
κ∈Sign+

Gc
κ/λ(v1, . . . , vK)Fκ/ν(u1, . . . ,uN ) =

N∏
i=1

K∏
j=1

1 − quiv j

1 − uiv j

∑
µ∈Sign+

Fλ/µ(u1, . . . ,uN )Gc
ν/µ(v1, . . . , vK).

(4.16)

Remark 4.2.7. Equation (4.16) is called the skew Cauchy identity for the functions Fλ/µ and Gc
λ/µ

because of its similarity with the skew Cauchy identities for Schur, Hall-Littlewood, or Macdonald

symmetric functions [142]. The sum on the right-hand side (RHS) of (4.16) has finitely many non-

zero terms and is thus well-defined. The left-hand side (LHS) can potentially have infinitely many

non-zero terms, but part of the statement of the proposition is that if the variables are admissible,

then this sum is absolutely convergent and numerically equals the right side.

A special case of (4.16), when λ = � and ν = (0,0, . . . ,0) leads us to the Cauchy identity

∑
ν∈Sign+N

Fν(u1, . . . ,uN )Gc
ν(v1, . . . , vK) = (q; q)N

N∏
i=1

©­« 1
1 − sui

K∏
j=1

1 − quiv j

1 − uiv j

ª®¬ . (4.17)

We end this section with the symmetrization formulas for Gc
ν and Fµ and also formulas for the

functions when the variable set forms a geometric progression with parameter q.
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Proposition 4.2.8. [46, Theorem 4.14] 1. For any N ∈ Z≥0, µ ∈ Sign+N and u1, . . . ,uN ∈ C

Fµ(u1, . . . ,uN ) =
(1 − q)N∏N
i=1(1 − sui)

∑
σ∈SN

σ
©­«

∏
1≤α<β≤N

uα − quβ
uα − uβ

(
ui − s
1 − sui

) µiª®¬ . (4.18)

2. Let n ≥ 0 and Sign+n 3 ν = 0n01n12n2 · · · . Then for any N ≥ n − n0 and u1, . . . ,uN ∈ C we have

Gc
ν(u1, . . . ,uN ) =

(1 − q)N (q; q)n∏N
i=1(1 − sui)(q; q)N−n+n0(q; q)n0

∞∏
k=1

(s2; q)nk
(q; q)nk

×

∑
σ∈SN

σ
©­«

∏
1≤α<β≤N

uα − quβ
uα − uβ

n∏
i=1

(
ui − s
1 − sui

)νi n−n0∏
i=1

ui

ui − s

N∏
j=n−n0+1

(1 − sqn0u j)
ª®¬ .

(4.19)

In both equations above, SN denotes the permutation group on {1, . . . ,N} and an element σ ∈ SN

acts on the expression by permuting the variable set to uσ(1), . . . ,uσ(N). If N < n − n0, then

Gc
ν(u1, . . . ,uN ) is equal to 0.

Remark 4.2.9. We mention here that the formulas in Proposition 4.2.8 a priori make sense when

uα , uβ for α , β because the factors uα − uβ appear in the denominator on the right sides of

(4.18) and (4.19). However, the formulas can be extended continuously to all (u1, . . . ,uN ) such

that ui < {s, s−1} for all i = 1, . . . ,N . One observes this after putting all summands under the same

denominator and realizing that the numerator is a skew-symmetric polynomial in (u1, . . . ,uN ),

which is thus divisible by the Vandermonde determinant
∏

1≤α<β≤N (uα − uβ).

Proposition 4.2.10. 1. For any N ∈ Z≥0, µ ∈ Sign+N and u ∈ C, one has

Fµ(u,qu, . . . ,qN−1u) = (q; q)N
N∏

i=1

(
1

1 − sqi−1u

(
uqi−1 − s
1 − sqi−1u

) µi )
. (4.20)

2. Let n ≥ 0 and Sign+n 3 ν = 0n01n12n2 · · · . Then for any N ≥ n − n0 and u ∈ C we have

Gc
ν(u,qu, . . . ,qN−1u)=

∞∏
k=1

(s2; q)nk
(q; q)nk

(q; q)N (su; q)N+n0(q; q)n
∏N

i=1

(
1

1−sqi−1u

(
qi−1u−s

1−sqi−1u

)νj )
(q; q)N−n+n0(su; q)n(q; q)n0(su−1; q−1)n−n0

, (4.21)
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where we agree that ν j = 0 if j > n.

4.2.2 The measure Pu,v

In this section we briefly explain how to construct the measure Pu,v and summarize some of its

basic properties. For a more detailed derivation of this measure we refer the reader to [71, Sections

2.2 and 2.3].

Let us briefly explain the main steps of the construction of Pu,v. We begin by considering the

bigger space of all up-right paths in the half-infinite strip that share no horizontal piece but are

allowed to share vertical pieces. For each such collection of paths we define its weight using the

functions from Section 4.2.1. Afterwards we specialize s = q−1/2 in those functions and perform

a limit transition for some of the other parameters. This procedure has the effect of killing the

weight of those path configurations that share a vertical piece. Consequently, we are left with

weights that are non-zero only for six-vertex configurations, are absolutely summable and their

sum has a product form. We check that each weight is non-negative, and define Pu,v as the quotient

of these weights with the partition function. We explain this in more detail below.

We fix positive integers N,M , J, and K = M + J, as well as real numbers q ∈ (0,1) and s > 1.

In addition, we suppose u = (u1, . . . ,uN ) and w = (w1, . . . ,wK) are positive real numbers, such

that maxi,j uiw j < 1 and u := mini ui > s. One readily verifies that the latter conditions ensure that

ui,w j are admissible with respect to s for i = 1, . . . ,N and j = 1, . . . ,K .

Let us go back to the setup of Section 4.1.1. We let P′N be the collection of N up-right paths

drawn in the sector DN = Z≥0 × {1, . . . ,N} of the square lattice, with all paths starting from a left-

to-right edge entering each of the points {(0,m) : 1 ≤ m ≤ N} on the left boundary and all paths

exiting from the top boundary of DN . We still assume that no two paths share a horizontal piece,

but sharing vertical pieces is allowed. As in Section 4.1.1 we let PN ⊂ P
′
N be those collections of

paths that do not share vertical pieces. For π ∈ P′N and k = 1, . . . ,N we let λk(π) ∈ Sign+k denote

the ordered x-coordinates of the intersection of π with the horizontal line y = k + 1/2. We denote
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by π(i, j) the type of the vertex at (i, j) ∈ DN . We also let f : Sign+N → R be given by

f (λ; w) := Gc
µ(w1, . . . ,wJ,wJ+1, . . . ,wK) =

∑
µ∈Sign+N

Gc
µ(w1, . . . ,wJ)Gc

λ/µ(wJ+1, . . . ,wK),

where the equality above follows from Proposition 4.2.4. With the above data, we define the weight

of a collection of paths π by

W
f

u,w(π) =
N∏

i=1

∞∏
j=1

wui (π(i, j)) × f (λN (π); w).

Using the branching relations, Proposition 4.2.4, and the Cauchy identity (4.17) we get

∑
π∈P ′N

W
f

u,w(π) = (q; q)N
N∏

i=1

©­« 1
1 − sui

K∏
j=1

1 − quiw j

1 − uiw j

ª®¬ =: Z f (u; w). (4.22)

In view of the admissability conditions satisfied by u and w, the above sum is in fact absolutely

convergent.

We next fix s = q−1/2, set wi = qi−1ε for i = 1, . . . , J and put v j = w j+J for j = 1, . . . ,M . Here

ε > 0 is chosen sufficiently small so that the admissability condition is maintained. One shows that

with the above specialization of parameters f becomes a function of λ,v, ε and qJ and we denote

it by fε(λ; v,qJ). Specifically, if qJ = X one has

fε(λ; v,X) =
∑

ν∈Sign+N

(q; q)N (−q)n0−N (sε; q)N−n0

(q; q)n0(sε; q)N (sε−1; q−1)N−n0

(Xq−N+n0+1; q)N−n0(sεX; q)n0×

∞∏
i=1

1{ni≤1}

N−n0∏
j=1

(
1

1 − sεq j−1

(
εq j−1 − s

1 − sεq j−1

)νj )
Gc
λ/ν(v1, . . . , vM),

(4.23)

where ν = 0n01n12n2 · · · and 1E is the indicator function of a set E . In addition, specializing our w
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variables in Z f (u; w) and replacing qJ with X , we get that Z f (u; w) becomes

(q; q)N
N∏

i=1

©­« 1
1 − sui

1 − Xεui

1 − εui

M∏
j=1

1 − quiv j

1 − uiv j

ª®¬ =: Z fε (u; v,X).

We subsitute X = (sε)−1 and take the limit as ε → 0. Under this limit transition we have

f (λ; v, ρ) := lim
ε→0

fε(λ; v, (sε)−1) =

(−1)N (q; q)N
∑

ν∈Sign+N

1{n0=0}

∞∏
i=1

1{ni≤1}

N∏
j=1
(−s)νj Gc

λ/ν(v1, . . . , vM),
(4.24)

and

Z f (u) := lim
ε→0

Z fε (u; v, (sε)−1) = (q; q)N
N∏

i=1

©­«1 − s−1ui

1 − sui

M∏
j=1

1 − quiv j

1 − uiv j

ª®¬ .
The above formulas imply that f (λ; v, ρ) = 0 if λN = 0 or λi = λ j for i , j.

Equation (4.22) can now be analytically extended in X (both sides become polynomials in X),

and after specializing X = (sε)−1 and taking the limit as ε → 0+ we get

∑
π∈P ′N

N∏
i=1

∞∏
j=1

wui (π(i, j)) × f (λN (π); v, ρ) = Z f (u), (4.25)

where again the right side can be shown to be absolutely convergent. With f (λ; v, ρ) as above we

define the following weight of a collection of paths in P′N

W
f

u,v(π) =
N∏

i=1

∞∏
j=1

wui (π(i, j)) × f (λN (π); v, ρ). (4.26)

One can check thatW f
u,v(π) ≥ 0,W f

u,v(π) = 0 for all π ∈ P′N \ PN . As weights are non-negative

and the partition function Z f (u) is positive and finite, we see from (4.25) that

Pu,v(π) :=
W

f
u,v(π)

Z f (u)
,
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defines an honest probability measure on PN . For future reference we summarize the parameter

choices we have made in the following definition.

Definition 4.2.11. Let N,M ∈ N. We fix q ∈ (0,1) and s = q−1/2, u = (u1, . . . ,uN ) with ui > s and

v = (v1, . . . , vM) with v j > 0, and maxi,j uiv j < 1. With these parameters, we denote Pu,v to be the

probability measure on PN , defined above.

We end this section with the following result that provides a formula for the finite-dimensional

projections of Pu,v.

Lemma 4.2.12. Let N,M ∈ N. Fix q ∈ (0,1) and s = q−1/2, u = (u1, . . . ,uN ) with ui > s and

v = (v1, . . . , vM) with v j > 0, and maxi,j uiv j < 1. With these parameters let Pu,v be as in Definition

4.2.11. Let us fix k ∈ N, 1 ≤ m1 < m2 < · · · < mk ≤ N and µmi ∈ Sign+mi
. Then

Pu,v (λ
m1(π) = µm1, ..., λmk (π) = µmk ) =

∏k−1
r=0 Fµmr+1/µmr (umr+1, ...,umr+1) f (µ

mk ; v, ρ)
Z f (u,v; mk)

,

where Z f (u,v; mk) = (q; q)mk

mk∏
i=1

©­«1 − s−1ui

1 − sui

M∏
j=1

1 − quiv j

1 − uiv j

ª®¬ .
(4.27)

Remark 4.2.13. If k ≤ N and mi = i for i = 1, . . . , k then (4.27) implies that the projection of Pu,v

to Dk has law Puk,v, where uk = (u1, . . . ,uk). In particular, the measures Pu,v are consistent with

each other and can be used to define a measure on up-right paths on the entire region Z2
≥0.

Proof. Equation (4.27) can be found as [71, Equation (29)] and we refer the interested reader to

Section 2.3 in that paper for the proof. �

4.3 Estimates for f (λ; v, ρ) and Fλ

In this section we give a contour integral formula for the functions f (λ; v, ρ), and a combina-

torial estimate for the function Fλ from Definition 4.2.2. The results we derive in this section will

be used in Sections 4.4 and 4.5 to prove Theorem 4.1.3.
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4.3.1 Integral formulas for f (λ; v, ρ)

The purpose of this section is to derive a contour integral formula for the function f (λ; v, ρ)

from Section 4.2.2. We accomplish this in Lemma 4.3.3 after we derive a contour integral formula

for the functions Gc
λ from Definition 4.2.1 in Lemma 4.3.1. In the remainder of the chapter we

denote by ι the root
√
−1 that lies in the complex upper half-plane.

Lemma 4.3.1. Suppose that k,N ∈ N satisfy N ≥ k, q ∈ (0,1), s > 1 and v1, . . . , vN are complex

numbers such that |vi | < s−1 for all i = 1, . . . ,N. Then for any λ ∈ Sign+k with λk ≥ 1 we have

Gc
λ(v1, . . . , vN ) = c(λ)(q; q)k ·

∮
γ
· · ·

∮
γ

∏
1≤α<β≤k

uα − uβ
uα − quβ

×

k∏
i=1

1
(1 − sui)(ui − s)

(
1 − sui

ui − s

)λi k∏
i=1

N∏
j=1

1 − quiv j

1 − uiv j

k∏
i=1

dui

2πι
.

(4.28)

In (4.28) the constant c(λ) is as in (4.13) and the contour γ is a zero-centered positively oriented

circle of radius R ∈
(
s,min1,...,N |vi |

−1) , where the latter set is non-empty by our assumption on

vi’s.

Remark 4.3.2. We mention here that a similar result to the above lemma was proved in [46, Corol-

lary 7.16] with several important differences. First of all, the formula in [46, Corollary 7.16] is for

the functions Gλ rather than Gc
λ, but in view of (4.13) this difference is inessential. A more signif-

icant difference is that the authors in that paper assumed that s ∈ (−1,0) unlike our case of s > 1 –

this difference is also minor and can be overcome by an analytic continuation argument in the pa-

rameter s. A crucial difference is that the contour integral formula in [46, Corollary 7.16] is based

on small contours that encircle s while the contours in Lemma 4.3.1 above are large contours. In

particular, the formulas in Lemma 4.3.1 are different and cannot be obtained by a direct application

of Cauchy’s theorem from the ones in [46, Corollary 7.16]. That being said, we mention that the

existence of both small and large contour formulas is known in the related context of Macdonald

processes, see [36, Section 3.2.3] and the derivation of both types of formulas is similar in spirit.

Proof. The proof is a standard computation of residues for the integrals on the right side of (4.28),
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but for clarity we split the proof into two steps.

Step 1. We claim that (4.28) holds when v1, . . . , vN ∈ (0, s−1) are such that vi , v j for i , j. We

prove this statement in the second step. In the present step we assume its validity and conclude the

proof of the lemma.

LetΩ denote the open disc of radius s−1, centered at the origin in C. Observe that by Definition

4.2.1 and (4.9) we know that Gc
λ(v1, . . . , vN ) is a finite sum of rational functions in v1, . . . , vN

that are analytic in ΩN (here we used that the possible poles of Gc
λ come from the zeros of the

denominators of wv(i1, j1; i2, j2) which are all located at v = s−1). This means that for each i =

1, . . . ,N and v j ∈ Ω for j , i the left side of (4.28) as a function of vi is analytic in Ω. Since γ

has radius bigger than s by assumption, we see that for each i = 1, . . . ,N and v j ∈ Ω for j , i the

integrand on the right side of (4.28) is also analytic on Ω as a function of vi. It follows by [176,

Theorem 5.4] that for each i = 1, . . . ,N and v j ∈ Ω for j , i the right side of (4.28) is analytic on

Ω as a function of vi.

We claim for each k = 0, . . . ,N that (4.28) holds if v1, . . . , vN−k ∈ (0, s−1) are such that vi , v j

for 1 ≤ i , j ≤ N − k and vN−k+1, . . . vN ∈ Ω. We prove this statement by induction on k with

base case k = 0 being true by our claim in the beginning of the step. Let us assume this result

for k and prove it for k + 1. We fix vN−k+1, . . . , vN ∈ Ω and v1, . . . , vN−k−1 in (0, s−1) with vi , v j

for 1 ≤ i ≤ j ≤ N − k − 1. Put m = max(v1, . . . , vN−k−1) and observe that by our discussion in

the previous paragraph both sides of (4.28) are analytic functions of vN−k in Ω and by induction

hypothesis these two functions are equal when vN−k ∈ (m, s−1). Since the latter set is contained

in Ω and has a limit point in that set we conclude by [176, Corollary 4.9] that both sides of (4.28)

agree for all vN−k ∈ Ω. This proves the desired result for k + 1 and we conclude by induction that

the result holds when k = N , which is precisely the statement of the lemma.

Step 2. In this step we prove that (4.28) holds when v1, . . . , vN ∈ (0, s−1) are such that vi , v j
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for i , j. We proceed to sequentially compute the integral with respect to ui for i = 1,2, . . . , k in

this order as a sum of residues. Observe that after we have evaluated the (minus) residues outside

of γ for u j with j = 1, . . . , i − 1 the integrand only has simple poles when ui = v−1
mi

(there are no

poles at infinity since the integrand is ∼ u2
i as |ui | → ∞, and also no new poles are introduced

after evaluating the residues at u j = v−1
mj

for j = 1, . . . , i − 1). Furthermore, the Vandermonde

determinant
∏

1≤α<β≤k(uα −uβ) in the integrand implies that we only get a non-trivial contribution

from the residues when m1, . . . ,mk are all distinct. Putting this all together, we conclude by the

Residue theorem that the right side of (4.28) is equal to

c(λ)(q; q)k
∑

I

∏
1≤α<β≤k

v−1
mα
− v−1

mβ

v−1
mα
− qv−1

mβ

k∏
i=1

1
(1 − sv−1

mi
)(v−1

mi
− s)

(
1 − sv−1

mi

v−1
mi
− s

)λi
×∏k

i=1
∏N

j=1(v
−1
j − qv−1

mi
)∏k

i=1
∏N

j=1,j,mi
(v−1

j − v
−1
mi
)
,

where the sum is over injective functions I : {1, . . . , k} → {1, . . . ,N} and we have denoted I(r) =

mr . Performing some simplifications and rearrangements we conclude that

c(λ)(q; q)k(1 − q)k
∑

I

∏
1≤α<β≤k

vmα − qvmβ

vmα − vmβ

k∏
i=1

vmi

(vmi − s)(1 − svmi )

(
vmi − s

1 − svmi

)λi
×

k∏
i=1

∏
j∈J

(vmi − qv j)

(vmi − v j)
= RHS of (4.28),

(4.29)

where J = {1, . . . ,N} \ {m1, . . . ,mk}.

On the other hand, by (4.19), we have that the left side of (4.28) is equal to

c(λ)(1 − q)N (q; q)k
(q; q)N−k

∑
σ∈SN

σ
©­«

∏
1≤α<β≤N

vα − qvβ
vα − vβ

k∏
i=1

vi

(vi − s)(1 − svi)

(
vi − s

1 − svi

)λiª®¬ ,
where λ = 0n01n12n2 · · · . We next split the latter sum over the possible values of σ(1), . . . ,σ(k)
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and rewrite the above as

c(λ)(1 − q)N (q; q)k
(q; q)N−k

∑
I

∏
1≤α<β≤k

vmα − qvmβ

vmα − vmβ

·

k∏
i=1

∏
j∈J

(vmi − qv j)

(vmi − v j)

k∏
i=1

vmi

(vmi − s)(1 − svmi )

(
vmi − s

1 − svmi

)λi
·

∑
τ∈SN−k

τ
©­«

∏
1≤α<β≤N−k

v jτ(α) − qv jτ(β)

v jτ(α) − v jτ(β)

ª®¬ ,
(4.30)

where as before the sum is over injective maps I : {1, . . . , k} → {1, . . . ,N}, mr = I(r) for r =

1, . . . , k and J = {1, . . . ,N} \ {m1, . . . ,mk}. The inner sum is over pemutations τ of {1, . . . ,N − k}

and j1, . . . , jN−k denote the elements of J in increasing order (the particular order does not matter).

We know from [142, Chapter III, (1.4)] that

∑
τ∈SN−k

τ
©­«

∏
1≤α<β≤N−k

v jτ(α) − qv jτ(β)

v jτ(α) − v jτ(β)

ª®¬ = (q; q)N−k

(1 − q)N−k .

Substituting this in (4.30) we conclude that

c(λ)(q; q)k(1 − q)k
∑

I

∏
1≤α<β≤k

vmα − qvmβ

vmα − vmβ

·

k∏
i=1

∏
j∈J

(vmi − qv j)

(vmi − v j)

k∏
i=1

vmi

(vmi − s)(1 − svmi )

(
vmi − s

1 − svmi

)λi
= LHS of (4.28).

Comparing the last equation with (4.29) we conclude that the left and right sides of (4.28) agree

when v1, . . . , vN ∈ (0, s−1) are such that vi , v j for i , j. This suffices for the proof. �

The next lemma provides a contour integral formula for f (λ; v, ρ) from (4.24).

Lemma 4.3.3. Suppose that k,M ∈ N, q ∈ (0,1), s = q−1/2 and v1, . . . , vM ∈ (0, s−1). Then for

any λ ∈ Sign+k with λk ≥ 1 we have

f (λ; v, ρ) = c(λ)(q; q)k ·
∮
γ
· · ·

∮
γ

∏
1≤α<β≤k

uα − uβ
uα − quβ

×

k∏
i=1

1
−s(1 − sui)

(
1 − sui

ui − s

)λi k∏
i=1

M∏
j=1

1 − quiv j

1 − uiv j

k∏
i=1

dui

2πι
.

(4.31)
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In (4.31) the constant c(λ) is as in (4.13) and the contour γ is a zero-centered positively oriented

circle of radius R ∈
(
s,min1,...,M |vi |

−1) , where the latter set is non-empty by our assumption on

vi’s.

Proof. We start from (4.28) with N = M + J, where J ∈ N and variables w1, . . . ,wN in place

of v1, . . . , vN . We then set wi = qi−1ε for i = 1, . . . , J and wJ+i = vi for i = 1, . . . ,M . Here

ε ∈ (0, s−1). This gives

Gc
λ(ε,qε, · · · ,q

J−1ε, v1, . . . , vM) = c(λ)(q; q)k ·
∮
γ
· · ·

∮
γ

∏
1≤α<β≤k

uα − uβ
uα − quβ

×

k∏
i=1

1
(1 − sui)(ui − s)

(
1 − sui

ui − s

)λi k∏
i=1

M∏
j=1

1 − quiv j

1 − uiv j
·

k∏
i=1

1 − qJεui

1 − uiε

k∏
i=1

dui

2πι
.

In particular, we see that if fε(λ; v,X) is as in (4.23) we have

fε(λ; v,X) = c(λ)(q; q)k ·
∮
γ
· · ·

∮
γ

∏
1≤α<β≤k

uα − uβ
uα − quβ

×

k∏
i=1

1
(1 − sui)(ui − s)

(
1 − sui

ui − s

)λi k∏
i=1

M∏
j=1

1 − quiv j

1 − uiv j
·

k∏
i=1

1 − Xεui

1 − uiε

k∏
i=1

dui

2πι
,

(4.32)

whenever X = qJ for any J ≥ 1. In view of (4.23) we see that both sides of (4.32) are degree k

polynomials in X and since they agree for infinitely many points X = qJ, J ≥ 1 they must agree

for all X . Then if we set X = (sε)−1 and let ε → 0 we conclude in view of (4.24) that

f (λ; v, ρ) = lim
ε→0

c(λ)(q; q)k ·
∮
γ
· · ·

∮
γ

∏
1≤α<β≤k

uα − uβ
uα − quβ

×

k∏
i=1

1
(1 − sui)(ui − s)

(
1 − sui

ui − s

)λi k∏
i=1

M∏
j=1

1 − quiv j

1 − uiv j
·

k∏
i=1

1 − s−1ui

1 − uiε

k∏
i=1

dui

2πι
,

which clearly implies (4.31) by the bounded convergence theorem. �

196



4.3.2 Combinatorial estimates for Fλ

We continue to use the notation from Section 4.2. In this section we estimate the function Fλ

when q ∈ (0,1), s = q−1/2, λ ∈ Sign+k and u1, . . . ,uk are all equal to the same parameter u > s. We

denote this function by Fλ([u]k). For λ ∈ Sign+k we denote |λ | = λ1 + · · ·+ λk . The purpose of this

section is to establish the following result.

Lemma 4.3.4. Fix k ∈ N, q ∈ (0,1), s = q−1/2 and u > s. Then there exists a constant C > 0

depending on k,q,u such that for all λ ∈ Sign+k with λ1 > λ2 > · · · > λk we have

∏
1≤i< j≤k

λi − λ j + j − i
j − i

− C · (λ1 − λk + k)(
k
2)−1 ≤ Fλ([u]k)

(
1 − q
1 − su

)−(k+1
2 )

×

(
(1 − q−1)u

1 − su

)−(k2) ( u − s
1 − su

)−|λ |+(k2)
≤

∏
1≤i< j≤k

λi − λ j + j − i
j − i

+ C · (λ1 − λk + k)(
k
2)−1.

(4.33)

We give the proof of Lemma 4.3.4 in the end of the section. The general idea of the proof is as

follows. From Definition 4.2.2 the function Fλ([u]k) is equal to a sum of weightsW(π). For the

majority of path collections π, which we call typical – see Definition 4.3.6 below, we have that the

weightW(π) is equal to

Wtyp =

(
1 − q
1 − su

)(k+1
2 )

(
(1 − q−1)u

1 − su

)(k2)
·

( u − s
1 − su

) |λ |−(k2)
.

We prove this in Lemma 4.3.7 below. We show that the weightsW(π) for all path collections π

are within a constant multiple of the above weight – we do this in Lemma 4.3.5 below. Combining

these two statements one deduces that Fλ([u]k) ≈ Wtyp × K where K is the number of typical

path collections. By a counting argument one can show that K ≈
∏

1≤i< j≤k
λi−λj+ j−i

j−i . Combining

these three statements one obtains Lemma 4.3.4. We now turn to filling in the details of the above

outline.

Lemma 4.3.5. Fix k ∈ N, q ∈ (0,1), s = q−1/2 and u > s. Let λ ∈ Sign+k and π ∈ Pλ/�. Then
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there is a constant C̃ that depends on k,q,u such that

|W(π)| ≤ C̃
( u − s

su − 1

) |λ |
, (4.34)

where |λ | = λ1 + · · · + λk andW(π) is as in (4.10) for u1 = · · · = uk = u.

Proof. From the definition of Pλ/� we know that a path collection π has |λ | horizontal edges and(k+1
2

)
vertical edges in Z2

≥0. Each edge borders two vertices except the top k vertical edges whose

upper vertex is not counted. Due to this there are at most 2
(k+1

2
)
− k = k2 vertices adjacent to a

vertical edge. If we associate to each horizontal edge its left vertex and to each vertical edge its

bottom vertex we obtain a surjective map from the set of edges to the set of vertices in π, whose

path configuration is not (0,0; 0,0). Consequently, there are at most |λ | +
(k+1

2
)

nontrivial (i.e. not

type (0,0; 0,0)) vertices in π. Also the above mapping from horizontal edges to their left vertices

contains all vertices of type (0,1; 0,1) in its range and the pre-image of each such vertex contains

exactly one element. This implies that the number of vertices of type (0,1; 0,1) is at least |λ | − k2.

We now recall from (4.8) that

wu(0,0; 0,0) = 1 and wu(0,1; 0,1) =
u − s
1 − su

.

Let C ≥ 1 be a constant such that

|wu(i1, j1; i2; j2)| ≤ C

for all i1, i2 ∈ {0, . . . , k} and j1, j2 ∈ {0,1}. The existence of C is ensured by (4.8) and it depends

on k,u,q (here s = q−1/2). Then our work from the previous paragraph and (4.10) suggest that

|W(π)| ≤ C(
k+1

2 )+k2
·

( u − s
su − 1

) |λ |−k2

,

which clearly implies (4.34). �

Definition 4.3.6. Let k ∈ N and λ ∈ Sign+k be such that λ1 > λ2 > · · · > λk . We say that a
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path collection π ∈ Pλ/� is a typical path collection of Pλ/� if it only contains vertices of type

(0,0; 0,0), (0,1; 0,1), (0,1; 1,0) and (1,0; 0,1). We denote the set of all typical path collections by

P
typ
λ/�

. See Figure 4.7.

Figure 4.7: Example of a path collection belonging to Ptyp
λ/�

where λ = (6,3,1).

Lemma 4.3.7. Fix k ∈ N, q ∈ (0,1), s = q−1/2 and u > s. Let λ ∈ Sign+k be such that λ1 > λ2 >

· · · > λk . If π is a typical path collection of Pλ/�, then

W(π) =

(
1 − q
1 − su

)(k+1
2 )

(
(1 − q−1)u

1 − su

)(k2)
·

( u − s
1 − su

) |λ |−(k2)
, (4.35)

where |λ | = λ1 + · · · + λk andW(π) is as in (4.10) for u1 = · · · = uk = u.

Proof. Since π is typical we know that it only contains vertices of type (0,0; 0,0), (0,1; 0,1),

(0,1; 1,0) and (1,0; 0,1). Furthermore, we have from (4.8) that

wu(0,0; 0,0) = 1, wu(0,1; 0,1) =
u − s
1 − su

, wu(0,1; 1,0) =
1 − q
1 − su

, wu(1,0; 0,1) =
(1 − q−1)u

1 − su
,

where we used that s2 = q−1. If A, B, C denote the number of vertices in π with path configuration

(0,1; 0,1), (0,1; 1,0) and (1,0; 0,1) respectively then by (4.10) we know that

W(π) =

(
1 − q
1 − su

)B (
(1 − q−1)u

1 − su

)C

·

( u − s
1 − su

) A
.
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Consequently, it suffices to show that if π is typical then A = |λ | −
(k
2
)
, B =

(k+1
2

)
, C =

(k
2
)
.

We now proceed to simply count the the number of vertices of each type in a typical path

collection. Notice that between row i and row i + 1 there are precisey i vertical edges. The

bottom vertex of each such edge has type (0,1; 1,0) and the top vertex of each such edge has type

(1,0; 0,1). All other vertices in π have type (0,0; 0,0) or (0,1; 0,1). We conclude from this that

C = 1 + 2 + · · · + (k − 1) =
(k
2
)

and B = 1 + 2 + · · · + k =
(k+1

2
)

(notice that the top vertex of the

edges connecting row k and k +1 are not included in the product definingW(π), while the bottom

ones are). What we are left with is computing A.

From the definition of Pλ/� we know that a path collection π has |λ | horizontal edges in Z2
≥0.

The map that sends a horizontal edge to its left vertex endpoint maps the set of horizontal edges

bijectively to the vertices of type (0,1; 0,1) and (0,1; 1,0) in π and so A + C = |λ |. We conclude

that A = |λ | −
(k
2
)

as desired. �

Proof. (Lemma 4.3.4) Combining Lemmas 4.3.5 and 4.3.7 we know that there is a constant C1

that depends on k,q,u such that

|P
typ
λ/�
| − C1

(��Pλ/��� − ���Ptyp
λ/�

���) ≤ Fλ([u]k)
(

1 − q
1 − su

)−(k+1
2 )

×(
(1 − q−1)u

1 − su

)−(k2) ( u − s
1 − su

)−|λ |+(k2)
≤ |P

typ
λ/�
| + C1

(��Pλ/��� − ���Ptyp
λ/�

���) . (4.36)

From [71, Equation (85)] we know that

��Pλ/��� = ∏
1≤i< j≤k

λi − λ j + j − i
j − i

(4.37)

and from [71, Equation (86)] we know that

���Ptyp
λ/�

��� ≥ ∏
1≤i< j≤k

λi − λ j − j + i
j − i

. (4.38)
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In particular, the equations (4.36), (4.37) and (4.38) imply that

∏
1≤i< j≤k

λi − λ j + j − i
j − i

− [C1 + 1]
(��Pλ/��� − ���Ptyp

λ/�

���) ≤ Fλ([u]k)
(

1 − q
1 − su

)−(k+1
2 )

×

(
(1 − q−1)u

1 − su

)−(k2) ( u − s
1 − su

)−|λ |+(k2)
≤

∏
1≤i< j≤k

λi − λ j + j − i
j − i

+ C1

(��Pλ/��� − ���Ptyp
λ/�

���) .
The latter equation now clearly implies (4.33) since

0 ≤
��Pλ/��� − ���Ptyp

λ/�

��� ≤ ∏
1≤i< j≤k

λi − λ j + j − i
j − i

−
∏

1≤i< j≤k

λi − λ j − j + i
j − i

≤ C2(λ1 − λk + k)(
k
2)−1,

for some sufficiently large constant C2 > 0 depending on k alone. �

4.4 Proof of Theorem 4.1.3

In this section we prove Theorem 4.1.3. We accomplish this in two steps. In the first step we

prove that the random vectors
(
Y k

1 (N,M; k), . . . ,Y k
k (N,M; k)

)
(i.e. the projections of the random

vectors Y (N,M; k) from Theorem 4.1.3 to their top row) weakly converge to the Hermite ensemble.

In the second step we combine the convergence of
(
Y k

1 (N,M; k), . . . ,Y k
k (N,M; k)

)
to the Hermite

ensemble, with the fact that our model satisfies the six-vertex Gibbs property from [71, Section 6]

to conclude the convergence of Y (N,M; k) to the GUE-corners process of rank k.

4.4.1 Convergence to the Hermite ensemble

We begin by recalling the joint distribution of the eigenvalues λ1 ≤ · · · ≤ λk of a k × k matrix

from the GUE (recall that these were random Hermitian k × k matrices with density proportional

to e−Tr(X2)/2). Specifically, from [10, Equation (2.5.3)] we have the following formula.

Definition 4.4.1. If µk
GUE denotes the joint distribution of the ordered eigenvalues of a random
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k × k GUE matrix, then µk
GUE has the following density with respect to Lebesgue measure

1{xk > xk−1 > · · · > x1}

(
1
√

2π

) k

·
1∏k−1

i=1 i!
·

∏
1≤i< j≤k

(xi − x j)
2

k∏
i=1

e−
xi
2 . (4.39)

Remark 4.4.2. In the literature, the measure (4.39) is sometimes referred to as the Hermite ensem-

ble due to its connection to Hermite orthogonal polynomials.

The main result of this section is as follows.

Proposition 4.4.3. Under the same assumptions as in Theorem 4.1.3 we have that the random

vectors Y k(N,M) =
(
Y k

1 (N,M; k), . . . ,Y k
k (N,M; k)

)
converge weakly to µk

GUE as M →∞.

The starting point of our proof of Proposition 4.4.3 is Lemma 4.2.12, from which we know that

PN,M
u,v (λ

k(π) = µ) = AM(µ) · BM(µ), where

AM(µ) = Fµ([u]k) · M−(
k
2)·(1/2) ·

(
1 − q
1 − su

)−(k+1
2 )

(
(1 − q−1)u

1 − su

)−(k2)
·

( u − s
1 − su

)−|µ|+(k2)
BM(µ) = f (µ; [v]M, ρ) · M(

k
2)·(1/2) ·

(
1 − q
1 − su

)(k+1
2 )

(
(1 − q−1)u

1 − su

)(k2)
·

( u − s
1 − su

) |µ|−(k2)
Z−1

M ,

with ZM = (q; q)k ·
(
1 − s−1u
1 − su

) k

·

(
1 − quv
1 − uv

) kM

.

(4.40)

We recall that Fµ([u]k) stands for Fµ with u1 = · · · = uk = u and also f (µ; [v]M, ρ) stands for

f (µ; v, ρ) with v1 = · · · = vM = v. We also recall that |µ| = µ1 + · · · + µk .

The following lemma details the asymptotics of AM(λ) using the combinatorial estimates for

Fλ([u]k) from Lemma 4.3.4.

Lemma 4.4.4. Suppose that u,q, s satisfy q ∈ (0,1), s = q−1/2, u > s. Fix a, A > 0 and suppose

that x1, . . . , xk ∈ R satisfy A ≥ xk > xk−1 > · · · > x1 ≥ −A. Let M0(a, A) ≥ 1 be sufficiently

large so that aM0 − A
√

M0 ≥ 1. For all M ≥ M0 we define λ(M) ∈ Sign+k through λi(M) =
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baM +
√

M xk−i+1c for i = 1, . . . , k. Then we have

lim
M→∞

AM(λ(M)) =
∏

1≤i< j≤k

x j − xi

j − i
=

1∏k−1
i=1 i!

·
∏

1≤i< j≤k

(x j − xi). (4.41)

Moreoever, there is a constant C > 0 (it depends on k,a, A,u,q) such that for all M ≥ M0 we have

|AM(λ(M))| ≤ C. (4.42)

Proof. We first prove (4.42). From Lemma 4.3.5 and Definition 4.2.2 we know that

|AM(λ(M))| ≤ C̃M−(
k
2)·(1/2) · |Pλ(M)/� | = C̃ ·

∏
1≤i< j≤k

λi(M) − λ j(M) + j − i

M1/2( j − i)
,

where in the last equality we used (4.37) and C̃ is as in Lemma 4.3.5 . Plugging in the definition

of λi(M) we see that for M ≥ M0 we have

|AM(λ(M))| ≤ C̃
∏

1≤i< j≤k

x j − xi + 2kM−1/2

j − i
≤ C̃[2A + 2k](

k
2),

which clearly implies (4.42).

In the remainder of the proof we establish (4.41). By Lemma 4.3.4 we know that there is a

constant C that depends on k,u,q such that for all large enough M we have������AM(λ(M)) −
∏

1≤i< j≤k

λi(M) − λ j(M) + j − i

M1/2( j − i)

������ ≤ C · M−(
k
2)·(1/2) · [2AM1/2 + 1 + k](

k
2)−1.

Using that

lim
M→∞

∏
1≤i< j≤k

(
λi(M) − λ j(M) + j − i

)
M−1/2 =

∏
1≤i< j≤k

(x j − xi),

we see that the above equation implies (4.41). �

The following lemma details the asymptotics of BM(λ).
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Lemma 4.4.5. Suppose that v,u,q, s,a, d are as in Definition 4.1.2 and k ∈ N. Fix A > 0 and

suppose that x1, . . . , xk ∈ R satisfy A ≥ xk > xk−1 > · · · > x1 ≥ −A. Let M0(a, A) ≥ 1 be

sufficiently sufficiently large so that aM0 − A
√

M0 ≥ 1. For all M ≥ M0 we define λ(M) ∈ Sign+k

through λi(M) = baM + d
√

M xk−i+1c for i = 1, . . . , k. Then we have

lim
M→∞

dk M k/2BM(λ(M)) = d−(
k
2) · (
√

2π)−k
∏

1≤i< j≤k

(x j − xi) ·

k∏
i=1

e−x2
i /2. (4.43)

Moreoever, there is a constant C > 0 (it depends on k,a, A,u, v,q) such that for all M ≥ M0

|dk M k/2BM(λ(M))| ≤ C. (4.44)

Lemma 4.4.5 is the main technical result we need in the proof of Theorem 4.1.3. The proof of

this lemma is postponed until Section 4.5, and relies on a careful steepest descend analysis using

the contour integral formula for f (µ; [v]M, ρ) afforded by Lemma 4.3.3.

In the remainder of this section we prove Proposition 4.4.3

Proof. (Proposition 4.4.3) For clarity we split the proof into two steps.

Step 1. LetWo
k denote the open Weyl chamber in Rk , i.e.

Wo
k := {(x1, . . . , xk) ∈ R

k : xk > xk−1 > · · · > x1}.

Suppose that R = [a1, b1] × · · · × [ak, bk] is a closed rectangle such that R ⊂ Wo
k . The purpose of

this step is to establish the following statement

lim
M→∞

P
(
Y k(N,M) ∈ R

)
=

∫
R
µk

GUE (dx1, . . . , dxk). (4.45)

Let A be sufficiently large so that A ≥ 1 +max1≤i≤k |ai | +max1≤i≤k |bi |. In addition if M ∈ N
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is given and µ ∈ Sign+k we denote by Qµ the cube

Qµ = [µk, µk + 1) × · · · × [µ1, µ1 + 1) .

We also write Li(M) = daid
√

M + aMe and Ui(M) = bb1d
√

M + aMc for i = 1, . . . , k.

We first observe that for all sufficiently large M we have

P
(
Y k(N,M) ∈ R

)
=

Uk (M)∑
λ1=Lk (M)

· · ·

U1(M)∑
λk=L1(M)

PN,M
u,v

(
λk

i (π) = λi for i = 1, . . . , k
)
=∫

[−A,A]k
fM(x1, . . . , xk)dx1 · · · dxk,

(4.46)

where fM(x) is a step function that is given by dk M k/2 AM(µ)BM(µ) if xd
√

M+1kaM ∈ Qµ for some µ =

(µ1, . . . , µk) ∈ Sign+k such that Li(M) ≤ µk−i+1 ≤ Ui(M) for i = 1, . . . , k; and fM(x) = 0 other-

wise. In the latter formula 1k is the vector in Rk with all coordinates equal to 1.

By Lemmas 4.4.4 and 4.4.5 we know that for almost every x ∈ [−A, A]k we have

lim
M→∞

fM(x1, . . . , xk) → 1R ·

(
1
√

2π

) k

·
1∏k−1

i=1 i!
·

∏
1≤i< j≤k

(xi − x j)
2

k∏
i=1

e−
xi
2

and | fM(x)| ≤ C for some C that depends on A,u,q, v, k alone. Consequently, by the bounded

convergence theorem we see that the M →∞ limit of (4.46) implies (4.45).

Step 2. The main goal of this step is to prove the following statement. For any open set U with

U ⊂ Wo
k we have that

lim inf
M→∞

P
(
Y k(N,M) ∈ U

)
≥

∫
U
µk

GUE (dx1, . . . , dxk). (4.47)

If we assume the validity of (4.47) then we have that for any open set O ⊂ Rk ,

lim inf
M→∞

P
(
Y k(N,M) ∈ O

)
≥ lim inf

M→∞
P

(
Y k(N,M) ∈ O ∩Wo

k

)
≥
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∫
O∩Wo

k

µk
GUE (dx1, . . . , dxk) =

∫
O
µk

GUE (dx1, . . . , dxk),

where in the last equality we used that the density of µk
GUE is zero outside of Wo

k . The latter

inequality and [73, Theorem 3.2.11] imply the weak convergence of Yk(N,M) to µk
GUE. Thus it

suffices to prove (4.47).

Let U be an open subset of Wo
k . Then by [177, Chapter 1, Theorem 1.4] we know that U =

∪∞i=1Ri where Ri are closed rectangles with disjoint interiors. Let n ∈ N and ε > 0 be given. For

i = 1, . . . ,n we let

Rεi = [a
i
1 + ε, b

i
1 − ε] × · · · × [a

i
k + ε, b

i
k − ε] where Ri = [ai

1, b
i
1] × · · · × [a

i
k, b

i
k].

Using our result from Step 1 we know that

lim inf
M→∞

P
(
Y k(N,M) ∈ U

)
≥ lim inf

M→∞
P

(
Y k(N,M) ∈ ∪n

i=1Rεi
)
=

lim inf
M→∞

n∑
i=1
P

(
Y k(N,M) ∈ Rεi

)
=

n∑
i=1

∫
Rεi

µk
GUE (dx1, . . . , dxk).

Letting ε → 0 and applying the dominated convergence theorem with dominating function

1{xk > xk−1 > · · · > x1}

(
1
√

2π

) k 1∏k−1
i=1 i!

·
∏

1≤i< j≤k

(xi − x j)
2

k∏
i=1

e−
xi
2

we conclude that

lim inf
M→∞

P
(
Y k(N,M) ∈ U

)
≥

n∑
i=1

∫
Ri

µk
GUE (dx1, . . . , dxk).

Letting n→∞ and using the monotone convergence theorem we conclude that (4.47) holds. �
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4.4.2 Gibbs properties

In this section we give the proof of Theorem 4.1.3. The proof will be an easy consequence of

Proposition 4.4.3 and the fact that PN,M
u,v satisfies what is known as the six-vertex Gibbs property,

while the GUE-corners process satisfies what is known as the continuous Gibbs property. We

start by explaining the latter two Gibbs properties. Our discussion will be brief, and we refer the

interested reader to [71, Sections 5 and 6] for a more detailed exposition.

We define several important concepts, adopting some of the notation from [95]. Let GTk denote

the set of k-tuples of distinct integers

GTn = {λ ∈ Z
n : λ1 < λ2 < · · · < λk}.

We let GT+k be the subset of GTk with λ1 ≥ 0. We say that λ ∈ GTk and µ ∈ GTk−1 interlace and

write µ � λ if

λ1 ≤ µ1 ≤ λ2 ≤ · · · ≤ µk−1 ≤ λk .

Let GTk denote the set of sequences

µ1 � µ2 � · · · � µk, µi ∈ GTi, 1 ≤ i ≤ k .

We call elements of GTk half-strict Gelfand-Tsetlin patterns (they are also known as monotonous

triangles, cf. [144]). We also let GTk+ be the subset of GTk with µk ∈ GT+k . For λ ∈ GTk we let

GTλ ⊂ GTk denote the set of half-strict Gelfand-Tsetlin patterns µ1 � · · · � µk such that µk = λ.

We turn back to the notation from Section 4.1.1 and consider π ∈ PN . For k = 1, . . . ,N we

have that if we define µk
i (π) = λ

k
k−i+1(π) for i = 1, . . . , k then µk ∈ GT+k . In addition, µk+1 � µk

for k = 1, . . . ,N − 1. Consequently, the sequence µ1, . . . , µk defines an element of GTk+. It is easy

to see that the map h : Pk → GTk+, given by h(π) = µ1(π) � · · · � µk(π), is a bijection. For
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λ ∈ GT+k we let

Pλk = {π ∈ Pk : λk
i (π) = λk−i+1 for i = 1, . . . , k}.

One observes that by restriction, the map h is a bijection between GTλ and Pλk . Given π ∈ Pλk and a

vertex path configuration (i1, j1; i2, j2)we let Nπ,λ(i1, j1; i2, j2) denote the number of vertices (x, y) ∈

[1, λk] × [1, k] ∩ Z2 with arrow configuration (i1, j1; i2, j2). We abbreviate N1 = Nπ,λ(0,0; 0,0),

N2 = Nπ,λ(1,1; 1,1), N3 = Nπ,λ(1,0; 1,0), N4 = Nπ,λ(0,1; 0,1), N5 = Nπ,λ(1,0; 0,1), and N6 =

Nπ,λ(0,1; 1,0).

With the above notation we make the following definition.

Definition 4.4.6. Fix w1,w2,w3,w4,w5,w6 > 0. A probability distribution ρ on GTk+ is said to

satisfy the six-vertex Gibbs property (with weights (w1,w2,w3,w4,w5,w6)) if the following holds.

For any λ ∈ GT+k such that

∑
(µ1,...,µk )∈GTk+:µk=λ

ρ
(
µ1, . . . , µk

)
> 0

we have that the measure ν on Pλk defined through

ν(h−1(ω)) = ρ(ω|µk = λ)

satisfies the condition

ν(h−1(ω)) ∝ wN1
1 wN2

2 wN3
3 wN4

4 w
N5
5 w

N6
6 .

In the above ρ(·|µk = λ) stands for the measure ρ conditioned on µk = λ and the numbers

N1, . . . ,N6 are defined with respect to λ and the path collection π = h−1(ω).

Remark 4.4.7. In simple terms, Definition 4.4.6, states that a probability measure on GTk+ satisfies

the six-vertex Gibbs property if it can be realized from a measure of the type (4.2) with vertex

weights w1, . . . ,w6 for the six types of vertices under the bijection h.

One readily observes by the definition of PN,M
u,v that if ω is PN,M

u,v -distributed and we define
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µ
j
i (π) = λ

j
j−i+1(π) for 1 ≤ i ≤ j ≤ k then the law of

(
µ

j
i

)
1≤i≤ j≤k

satisfies the six-vertex Gibbs

property with weights

(w1,w2,w3,w4,w5,w6) =

(
1,

u − s−1

us − 1
,
us−1 − 1
us − 1

,
u − s

us − 1
,
u(s2 − 1)

us − 1
,
1 − s−2

us − 1

)
. (4.48)

The change of sign above compared to (4.1) is made so that the above weights are positive (recall

u > s > 1 in our case).

We next explain the continuous Gibbs property. We start by introducing some terminology

from [70] and [95]. Let Cn be the Weyl chamber in Rn i.e.

Cn := {(x1, ..., xn) ∈ R
n : x1 ≤ x2 ≤ · · · ≤ xn}.

For x ∈ Rn and y ∈ Rn−1 we write x � y to mean that

x1 ≤ y1 ≤ x2 ≤ y2 ≤ · · · ≤ xn−1 ≤ yn−1 ≤ xn.

For x = (x1, ..., xn) ∈ Cn we define the Gelfand-Tsetlin polytope to be

GTn(x) := {(x1, ..., xn) : xn = x, xk ∈ Rk, xk � xk−1,2 ≤ k ≤ n}.

We define the Gelfand-Tsetlin cone GTn to be

GTn = {y ∈ Rn(n+1)/2 : y j+1
i ≤ y

j
i ≤ y

j+1
i+1 , 1 ≤ i ≤ j ≤ n − 1}.

We make the following definition after [95].

Definition 4.4.8. A probability measure µ on GTn is said to satisfy the continuous Gibbs property

if conditioned on yn the distribution of (y1, ..., yn−1) under µ is uniform on GTn(y
n).
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Remark 4.4.9. We refer the reader to [71, Section 5] for a detailed discussion of the definition of the

uniform measure on GTn(y), but in words the latter is a compact affine surface of finite dimension,

which carries a natural uniform measure that is proportional to the Lebesgue measure on the affine

space spanned by this surface.

With the above notation we are finally ready to give the proof of Theorem 4.1.3.

Proof. (Theorem 4.1.3) By Proposition 4.4.3 we know that Y k(N,M) =
(
Y k

1 (N,M; k), . . . ,Y k
k (N,M; k)

)
converge weakly to µk

GUE as M → ∞. Observe that by the interlacing conditions λi(π) � λi+1(π),

for all 1 ≤ i ≤ k − 1 we have that

Y k
1 (N,M; k) ≤ Y j

i (N,M; k) ≤ Y k
k (N,M; k) for all 1 ≤ i ≤ j ≤ k .

Since Y k
1 (N,M; k) and Y k

k (N,M; k) weakly converge we conclude from the last inequality that the

random vectors Y (N,M; k) are tight.

Let Y (∞) = (Y j
i (∞) : 1 ≤ i ≤ j ≤ k) denote any subsequential limit of Y (N(M),M; k), and let

Y (N(Mn),Mn; k) be a subsequence converging weakly to Y (∞). In view of Proposition 4.4.3 we

know that the joint distribution of (Y k
1 (∞), . . . ,Y

k
k (∞)) is µk

GUE . Furthermore, from our discussion

earlier in the section, we know that the distribution of µ j
i (π) = λ

j
j−i+1(π) for 1 ≤ i ≤ j ≤ k, where

π has distribution PN(Mn),Mn
u,v satisfies the six-vertex Gibbs property with weights w1, . . . ,w6 as in

(4.48). We may now apply [71, Proposition 6.7] and conclude that Y (∞) satisfies the continuous

Gibbs property. We remark that in [71, Proposition 6.7] the roles of n and k are swapped compared

to our present notation and one should take b(n) = d
√

Mn and a(n) = aMn in that proposition.

Since Y (∞) satisfies the continuous Gibbs property and its top row (Y k
1 (∞), . . . ,Y

k
k (∞)) has law

µk
GUE , we conclude that Y (∞) is the GUE-corners process of rank k. Since the sequence Y (N,M; k)

is tight and all weak subsequential limits are given by the GUE-corners process we conclude that

Y (N,M; k) converges weakly to the GUE-corners process of rank k as desired. �
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4.5 Asymptotic analysis

In this section we prove Lemma 4.4.5. We accomplish this in Section 4.5.2 after we introduce

some useful notation for the proof in Section 4.5.1.

4.5.1 Setup

Recall from Definition 4.1.2 that our parameters q,u, v, s satisfy

q ∈ (0,1), q = s−2, 1 < s < u < v−1, (4.49)

which we assume in what follows. If we assume the same notation as in Lemma 4.4.5 then in view

of (4.40) and Lemma 4.3.3 we have for M ≥ M0 that

dk M k/2BM(λ(M)) = dk M(
k+1

2 )·(1/2) ·

(
1 − q
1 − su

)(k+1
2 )

(
(1 − q−1)u

1 − su

)(k2)
·

( u − s
1 − su

)−(k2)
·∮

γ
· · ·

∮
γ

∏
1≤α<β≤k

uα − uβ
uα − quβ

·

k∏
i=1

s(1 − su)
(1 − sui)(1 − s−1u)

(
1 − sui

ui − s
·

u − s
1 − su

)λi(M)
×

k∏
i=1

M∏
j=1

(1 − quiv j

1 − uiv j
·

1 − uv j

1 − quv j

) k∏
i=1

dui

2πι
.

(4.50)

Above, we can take γ to be a zero-centered positively oriented circle of radius u and we recall that

ι =
√
−1.

Recall from Definition 4.1.2 the constants

a =
v
(
u − s−1) (

s−1u − 1
)

(1 − uv)(1 − s−2uv)
, b =

(s2 − 1)
(u − s)(1 − su)

c =
1
2

(
a

(
1

(u − s)2
−

s2

(1 − su)2

)
−

s−4v2

(1 − s−2uv)2
+

v2

(1 − uv)2

)
, d =

−
√

2c
b

.

(4.51)

We establish the following statement about the constants in (4.51).
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Lemma 4.5.1. For u, v, s,q satisfying the conditions from (4.49), we have the following inequalities

a > 0, b < 0, c > 0, d > 0.

Proof. Since every factor in a =
v(u−s−1)(s−1u−1)
(1−uv)(1−quv) is positive we conclude that a > 0. Examining

the factors of b = (s2−1)
(u−s)(1−su) shows that (1 − su) is negative and the other factors are positive so

b < 0. Once we show that c is positive we will conclude that d = −
√

2c
b is also positive. Showing

c is positive requires a short argument that we present below.

Simplifying c gives

c =
v(1 − q)(1 − s−1v)T

2(s−1 − u)(s−1u − 1)(1 − uv)2(1 − quv)2
,

where

T = 1 + s−2 − 2s−2uv + s−3u2v + s−1u2v − 2s−1u.

From the above factorization formula for c, we see that to show that c > 0 it suffices to prove that

T < 0. Let us put v = yu−1 and u = rs so that (4.49) becomes the condition r > 1 and 0 < y < 1.

In these variables we have

T(r, y) = 1 + q − 2qy + qyr + ry − 2r = r(qy + y − 2) + (1 + q − 2qy).

The latter is a linear function in r with a leading negative coefficient. Thus its maximum on [1,∞)

is attained when r = 1 and then T(1, y) = −(1 − y)(1 − q) < 0. We conclude that T(r, y) < 0 for all

r > 1 and y ∈ (0,1), which proves that c > 0 as desired. �

Definition 4.5.2. If z ∈ C \ {0} we define log(z) = log |z | + ιφ where z = |z |eιφ with φ ∈ (−π, π]

(i.e. we take the principal branch of the logarithm). For u1, . . . ,uk ∈ C such that ui , qu j and
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ui , s we define

p(u1, . . . ,uk) = p(®u) =
∏

1≤α<β≤k

uα − uβ
uα − quβ

·

k∏
i=1

s(1 − su)
(1 − sui)(1 − s−1u)

. (4.52)

We also define the functions

G(z) = a · log
(
1 − sz
z − s

)
+ log

(
1 − qzv
1 − zv

)
− a · log

(
1 − su
u − s

)
+ log

(
1 − quv
1 − uv

)
, (4.53)

g(z) = log
(
1 − sz
z − s

)
− log

(
1 − su
u − s

)
, (4.54)

and for x ∈ R we let hM(x) be the unique element of (−1,0] so that aM + dx
√

M + hM(x) is an

integer. In the latter equations q,u, v, s are as in (4.49) and a, d are as in (4.51). Finally, we define

Ak = dk ·

(
1 − q
1 − su

)(k+1
2 )

(
(1 − q−1)u

1 − su

)(k2)
·

( u − s
1 − su

)−(k2)
. (4.55)

Definition 4.5.3. We let C denote the positively oriented contour that goes from u−2ιu straight up

to u + 2ιu and then follows the half-cirlce of radius 2u centered at u, see Figure 4.8. For ε ∈ (0,1)

we also denote by Cε the contour that goes from u − ιε straight up to u + ιε.

We may deform the γ contours in (4.50) to the contour C from Definition 4.5.3 without crossing

any poles of the integrals, which by Cauchy’s theorem does not change the value of the integral.

After doing this contour deformation and utilizing the notation from Definition 4.5.2 we see that if

M ≥ M0 we have

d−k M k/2BM(λ(M)) = Ak · M(
k+1

2 )·(1/2) ·

∮
C

· · ·

∮
C

p(®u)·

exp

(
k∑

i=1
MG(ui) +

√
Mdxig(ui) + hM(xi)g(ui)

)
k∏

i=1

dui

2πι
.

(4.56)

Our asymptotic analysis in the next section depends on a careful study of the functions G and

g along the contour C. We establish several useful properties in the following lemma.
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Figure 4.8: The figure represents the contour C from Definition 4.5.3, in addition to Ss,Sw as in
the proof of Lemma 4.5.4 and the contours C0,C1 as in the proof of Lemma 4.4.5 in Section 4.5.2

Lemma 4.5.4. Suppose that G,g are as in Definition 4.5.2 and C,Cε is as in Definition 4.5.3. We

have

G(u) = g(u) = G′(u) = 0, G′′(u) = 2c, g′(u) = b. (4.57)

For any z ∈ C we have that

Re[G(z)] ≤ 0. (4.58)

Moreover, for any ε ∈ (0,1) there exists δ > 0 such that if z ∈ C \ Cε

Re[G(z)] ≤ −δ. (4.59)

There exists ε1 ∈ (0,1) and C1 > 0 such that if z ∈ Cε1 we have that

��G(z) − c(z − u)2
�� ≤ C1 |z − u|3, 2C1ε1 < c, |g(z) − b(z − u)| ≤ C1 |z − u|2. (4.60)

Proof. The fact that G(u) = g(u) = 0 is immediate from the definition. Next we have by a direct
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computation that

G′(z) = a ·
q−1 − 1

(1 − sz)(z − s)
−

v(1 − q−1)

(q−1 − vz)(1 − vz)
,

from which one checks directly (using the definition of a) that G′(u) = 0. Similar direct computa-

tions show that G′′(u) = 2c and g′(u) = b.

By definition, we have that

Re[G(z)] = a log
���� z − s−1

z − s

���� + log
���� z − q−1v−1

z − v−1

���� − a log
����u − s−1

u − s

���� − log
����u − q−1v−1

u − v−1

���� .
Let ` denote the unique point in the segment [s−1, s] such that `−s−1

s−` =
u−s−1

u−s , and r be the unique

point in the segment [v−1,q−vv−1] such that q−1v−1−r
r−v−1 =

q−1v−1−u
v−1−u . We also denote by Ss the circle,

whose diameter is given by the segment [`,u] and by Sw the circle whose diameter is given by the

segment [u,r], see Figure 4.8.

The circles Ss and Sw are sometimes called Apollonius circles and they satisfy the properties���� z − s−1

z − s

���� ≤ u − s−1

u − s
if z lies outside of Ss and

���� z − s−1

z − s

���� ≥ u − s−1

u − s
if z lies inside Ss;

���� z − q−1v−1

z − v−1

���� ≤ q−1v−1 − u
v−1 − u

if z lies outside of Sw and
���� z − q−1v−1

z − v−1

���� ≥ q−1v−1 − u
v−1 − u

,

if z lies inside Sw. Since C lies outside of Sw ∪ Ss except for the point u and a > 0 we conclude

that for all z ∈ C we have Re[G(z)] ≤ Re[G(u)] = 0, while for any z ∈ C \ {u} we have

Re[G(u)] < Re[G(u)] = 0. This proves (4.58) and by continuity of G on C we also see that for any

ε > 0 there is a δ > 0 such that (4.59) holds.

Finally, from our work above we know that in a neighborhood of u we have

G(z) = c(z − u)2 +O(|z − u|3) and g(z) = b(z − u) +O(|z − u|2).
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We can thus find ε0 ∈ (0,1) and C1 > 0 such that if |z − u| ≤ ε0 we have

��G(z) − c(z − u)2
�� ≤ C1 |z − u|3, |g(z) − b(z − u)| ≤ C1 |z − u|2.

Finally, since c > 0 we can pick ε1 < ε0 sufficiently small so that 2C1ε1 < c and then all the

inequalities in (4.60) hold. This suffices for the proof. �

4.5.2 The steepest descent argument

In this section we prove Lemma 4.4.5.

Proof. (Lemma 4.4.5) We follow the same notation as in Lemma 4.4.5 and Section 4.5.1 above.

For clarity we split the proof into four steps.

Step 1. Let ε1 ∈ (0,1) be as in the statement of Lemma 4.5.4. We also let δ1 > 0 be as in Lemma

4.5.4 for ε = ε1. We denote by C0 the contour Cε1 and by C1 the contour C \ Cε1 , see Figure 4.8.

We have that C = C0 ∪C1 and C0 is a small piece near u while C1 is the part of C away from u. In

view of (4.56) we have that if M ≥ M0 we have

d−k M k/2BM(λ(M)) = Ak · M(
k+1

2 )·(1/2) ·
∑

σ1,...,σk∈{0,1}
B(σ1, . . . ,σk), where

B(σ1, . . . ,σk) =

∮
Cσ1

· · ·

∮
Cσk

p(®u) exp

(
k∑

i=1
MG(ui) +

√
Mdxig(ui) + hM(xi)g(ui)

)
k∏

i=1

dui

2πι
.

(4.61)

In this step we prove that if σ1, . . . ,σk ∈ {0,1} are such that |σ | = σ1 + · · · + σk ≥ 1 we have that

B(σ1, . . . ,σk) = O
(
e−(δ1/2)M

)
, (4.62)

where the constant in the big O notation depends on k,a, A,u, v,q.
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Let K1,K2 > 0 be such that if u1, . . . ,uk, z ∈ C we have

|g(z)| ≤ K1 and |p(u1, . . . ,uk)| ≤ K2.

Then in view of the definition of δ1, and equations (4.58), (4.59) we have that if ui ∈ Cσi for

i = 1, . . . , k we have�����p(®u) exp

(
k∑

i=1
MG(ui) +

√
Mdxig(ui) + hM(xi)g(ui)

)����� ≤ K2 exp
(
−M |σ |δ1 +

√
MkK1[Ad + 1]

)
.

In deriving the above equation we used that |ez | ≤ e|z | for any complex z. The above equation now

clearly implies (4.62).

Step 2. In view of (4.61) and (4.62) we see that to prove the lemma it suffices to show that

lim
M→∞

Ak · M(
k+1

2 )·(1/2)B(0, . . . ,0) = d−(
k
2) · (
√

2π)−k
∏

1≤i< j≤k

(x j − xi) ·

k∏
i=1

e−x2
i /2, (4.63)

and that there is a constant C > 0 depending on k,a, A,u, v,q such that

|Ak · M(
k+1

2 )·(1/2)B(0, . . . ,0)| ≤ C. (4.64)

In this step we prove (4.64). The proof of (4.63) is given in the next steps.

We perform a change of variables ui = u + ι ·M−1/2 · yi for i = 1, . . . , k. This gives the formula

Ak · M(
k+1

2 )·(1/2)B(0, . . . ,0) = Ak

∫
Rk

p̂M(®y) exp

(
k∑

i=1
HM(yi)

)
k∏

i=1
1{|yi | ≤ ε1M1/2}

dyi

2π
, (4.65)
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where

HM(y) = G(u + ι · M−1/2y) +
√

Mdxig(u + ι · M−1/2y) + hM(xi)g(u + ι · M−1/2y), and

p̂M(®y) =
∏

1≤α<β≤k

ιyα − ιyβ

(1 − q)u + ιyαM−1/2 − qιyβM−1/2

k∏
i=1

s(1 − su)
(1 − su − sιM−1/2yi)(1 − s−1u)

.
(4.66)

We see from (4.66) and (4.60) that there are constants c1, c2 > 0 that depend on k,a, A,u, v,q such

that for all M ∈ N and y1, . . . , yk ∈ R we have�����p̂M(®y) exp

(
k∑

i=1
HM(yi)

)
k∏

i=1
1{|yi | ≤ ε1M1/2}

����� ≤ h(®y),

where

h(®y) = c1 ·
∏

1≤α<β≤k

|yα − yβ | · exp

(
−(c/2)

k∑
i=1

y2
i + c2 ·

k∑
i=1
|yi |

)
.

Combining the last inequality and (4.65) we conclude that for all M ≥ M0 we have

���Ak · M(
k+1

2 )·(1/2)B(0, . . . ,0)
��� ≤ Ak

∫
Rk

h(®y)
k∏

i=1

dyi

2π
,

which implies (4.64).

Step 3. In this step we prove (4.63). From our work in the previous step we know that h(®y) is a

dominating function for the functions

p̂M(®y) exp

(
k∑

i=1
HM(yi)

)
k∏

i=1
1{|yi | ≤ ε1M1/2},

which in view of (4.60) and (4.66) converge pointwise to

∏
1≤α<β≤k

ιyα − ιyβ

(1 − q)u

k∏
i=1

se−cy2
i +ιdxi yi

1 − s−1u
.
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Consequently, by the dominated convergence theorem, we conclude that

lim
M→∞

Ak · M(
k+1

2 )·(1/2)B(0, . . . ,0) = Ak · ((1 − q)u)−(
k
2) ·

( s
1 − s−1u

) k
×∫

Rk

∏
1≤α<β≤k

(ιyα − ιyβ)

k∏
i=1

e−cy2
i +ιdbxi yi dyi

2π
.

(4.67)

Substituting Ak from (4.55) and performing the change of variables zi =
√

2cyi (recall that

d = −
√

2c
b ) we obtain

lim
M→∞

Ak · M(
k+1

2 )·(1/2)B(0, . . . ,0) = d−(
k
2)

∫
Rk

∏
1≤α<β≤k

(ιzα − ιzβ)
k∏

i=1
e−z2

i /2−ιxi zi
dzi

2π
.

We next use the formula for the Vandermonde determinant

∏
1≤α<β≤k

(ιzα − ιzβ) = (ι)(
k
2) det

[
zk− j

i

] k

i,j=1
,

and the linearity of the determinant to conclude that

lim
M→∞

Ak · M(
k+1

2 )·(1/2)B(0, . . . ,0) = d−(
k
2)(ι)(

k
2) det

[
ψk− j(xi)

] k
i,j=1 , where (4.68)

ψk− j(x) =
∫
R

zk− je−z2/2−ιxz dz
2π
.

We claim that

(ι)(
k
2) det

[
ψk− j(xi)

] k
i,j=1 = (

√
2π)−k

∏
1≤i< j≤k

(x j − xi) ·

k∏
i=1

e−x2
i /2. (4.69)

Notice that (4.68) and (4.69) together imply (4.63). We have thus reduced the proof of the lemma

to establishing (4.69), which we do in the next and final step.
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Step 4. In this step we prove (4.69). Let hn(x) stands for the n-th Hermite polynomial, i.e.

hn(x) = (−1)ne
x2
2 ∂n

x e−
x2
2 , (4.70)

see e.g. [10, Section 3.2.1] for the definition and basic properties of these polynomials. Our first

observation is that for n ∈ Z≥0 we have

ψn(x) = (−ι)n(
√

2π)−1e−
x2
2 hn(x). (4.71)

We argue this by induction on n with base case n = 0 being true in view of

ψ0(x) =
∫
R

e−z2/2−ιxz dz
2π
= (
√

2π)−1 · e−x2/2,

where we used the formula for the characteristic function of a standard normal random variable.

Suppose we know that (4.71) holds for n and differentiate both sides with respect to x. For the

right side we have using (4.70) that

∂x

(
(−ι)n(

√
2π)−1e−

x2
2 hn(x)

)
= −(−ι)−n(

√
2π)−1e−

x2
2 hn+1(x) = (−ι)n+2(

√
2π)−1e−

x2
2 hn+1(x),

while for the left side we have

∂xψn(x) =
∫
R

zn∂xe−z2/2−ιxz dz
2π
= (−ι)

∫
R

zn+1e−z2/2−ιxz dz
2π
= (−ι)ψn+1(x),

where we can differentiate under the integral by the rapid decay of the integrand near infinity. The

last two equations imply (4.71) for n + 1 and so we conclude that (4.71) holds for all n ∈ Z≥0 by

induction.

In view of (4.71) and the linearity of the determinant we see that to prove (4.69) it suffices to
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show that

det
[
hk− j(xi)

] k
i,j=1 =

∏
1≤i< j≤k

(xi − x j).

The latter is now clear since hn(x) is a monic polynomial of degree n, cf. [10, (3.2.3)], and so

det
[
hk− j(xi)

] k
i,j=1 = det

[
xk− j

i

] k

i,j=1
=

∏
1≤i< j≤k

(xi − x j),

by the Vandermonde determinant formula. This suffices for the proof. �
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Chapter 5: Epidemic dynamics in inhomogeneous populations

This chapter is based on the physics article [117]. Along with myself the article has authors

Kyle Kawagoe, Serina Chang, Greg Huber, Lucy Li, Jonathan Miller, Reuven Pnini, Boris Veyts-

man, and Yllanes David. Kyle Kawagoe and I are joint first authors.

5.1 Introduction

A strong temptation in modeling a system consisting of many similar parts is to make the as-

sumption that these parts have identical properties. Accordingly, the classical models in epidemiol-

ogy assume (often implicitly) that everyone has the same propensity to be infected and, if infected,

the same propensity to infect others [101]. This assumption may be justified when differences in

the salient parameters are small. However, one of the interesting features of the current COVID-19

pandemic is the huge variation in infectivity: small numbers of infectious events or individuals

seem to be responsible for a large number of cases [82, 127, 2, 143, 75, 53]. This feature seems to

be present in other coronavirus epidemics including SARS [102, 194, 137] and MERS [145, 122,

58]. One can point to different explanations for this phenomenon: individual variations in viral

shedding [165], in droplet production (see the review in [79]), in contact networks [8], and differ-

ences in the features of ventilation systems at certain events and venues [141, 56]. Inhomogeneity

seems to have played an important role for other epidemics as well [83, 139, 111], leading to the

rule of thumb that “20% of patients produce 80% of infections” [178]. However, it seems that for

coronavirus-related infections the variability is even higher than that heuristic.

There are two related, but distinct, notions of superspreading in this literature, namely, super-

spreading events and superspreading individuals. Superspreading events are events that produce

many infections. Superspreading individuals (superspreaders) are specific people that produce
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many infections (such as Typhoid Mary in the early 1900s). As one might imagine, in reality,

some combination of these two processes is present. In this paper, however, we set our sights on

the latter phenomenon: a superspreader is always an individual, rather than an event.

It is reasonable to assume that a variability in infectivity is accompanied by a variability in

susceptibility. Common explanations of variability in individual infectivity — increased shedding,

increased exposure period, and increased personal contacts — all suggest that increased infectivity

may correlate with increased susceptibility. Thus superspreaders might be more prominent at the

early stages of an epidemic. During the course of an epidemic, the fraction of superspreaders will

typically decrease with time. This would lead to a change in the apparent value of the average

transmission rate, which could make it difficult to evaluate the effectiveness of mitigation mea-

sures. This effect might be quite large and is not captured by many standard models. John Cardy

has observed that some models seem to be unaware that the mean of an exponential growth is not

the exponential of the mean [51]. Understanding the effect of inhomogeneity would increase the

fidelity of models based on real-world data, and lead to more effective public policy.

Several recent works (see, e.g., [94, 130, 147]) have addressed the issue of heterogeneity in the

population, but they either concentrate on specific distributions or treat the variability in infectivity

and susceptibility separately, without considering the effect of a possible correlation between the

two.

In this work we discuss the epidemic dynamics for a population with variable infectivity po-

tential accompanied by variable individual susceptibility. We obtain the results for the general case

of an arbitrary distribution of susceptibility and infectivity. We also give a nonintuitive calculation

of R0 that quantifies the effect of superspreaders on the early growth rate of the epidemic and find

that it depends strongly on the correlation between susceptibility and infectivity.

Moreover, one of the distributions holds a special interest. If we assume that the main driver

of inhomogeneity is diversity in the number of social contacts for an individual, then data [140] on

the distribution of these contacts suggests a very wide distribution of infectivity and susceptibility.

An important question for modeling the inhomogeneity is whether the result depends only on
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the moments of the distribution (mean, variance, skewness, . . . ) or on the behavior of the tails of

the distribution. The answer to this question could inform the construction of realistic predictive

models in the future. We discuss both the cases of fat tails and skinny tails, and the transition

between these regimes.

The rest of the paper is organized as follows: In Section 5.2, we give a mathematical description

of the dynamics of our model. In Section 5.3, we reduce our model to a one dimensional integro-

differential equation, analyze the long time dynamics, and describe an early time criterion for

epidemic outbreak. In Section 5.4, we compare the results of our model for different distributions

of population attributes, including an empirical one from anonymized cell phone data. We end with

our discussion and conclusions in Section 5.5. In the Appendices, we provide derivations which

are relevant to the main text and we discuss some of the methodological aspects of our empirical

data.

5.2 The Model

Classic SIR models [101] divide the population into three compartments: susceptible S, in-

fected I, and recovered (or dead) R. The rate of new infections in this model is proportional to the

number of encounters of susceptible persons with the infected persons, while the rate of recovery

is proportional to the number of infected persons. This gives us the well-known SIR equations

ÛI = βSI − γI,

ÛR = γI,
(5.1)

where S, I, and R are the fractions of susceptible, infected, and recovered persons to the constant

population size, dot means the time derivative, β and γ are non-negative constants, and we use the

fact that, with our normalization, the fraction of susceptible persons S satisfies the equation

S + I + R = 1. (5.2)
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We use the simplest version of the model, which accounts neither for additional births and deaths,

nor for population migration. Additionally, we do not allow for the possibility of recovered indi-

viduals being reinfected.

We now allow the parameters to be different for different individuals. Namely, let the infection

rate β in equation (5.1) be the product of individual susceptibility s and infectivity σ. To obtain the

rate of infection, we integrate over the values of s for susceptible individuals and over the values

of σ for infected individuals. Note that in our model the values of s, σ, and γ are fixed for each

person and do not change with time.

Let p(σ, s, γ) dσ ds dγ be the probability that a person selected uniformly at random from the

population has susceptibility s, and, when infected, has infectivity σ and recovery rate γ. Note

that p does not change with time in our model. We will have reason to make repeated use of the

averaging operator E: for any function f (σ, s, γ), we define

E[ f ] ≡
∫

f (σ, s, γ)p(σ, s, γ) dσ ds dγ. (5.3)

Equations (5.1) and (5.2) should now be rewritten, because I, R and S are not just functions

of time t, but also depend on s, σ, and γ. Namely, let I(σ, s, γ, t) dσ ds dγ be the probability that

a person selected uniformly from the entire population at time t is infected and has (initial) sus-

ceptibility s, infectivity σ and recovery rate γ. Similarly we introduce S(σ, s, γ, t) and R(σ, s, γ, t).

Then equation (5.2) becomes

S(σ, s, γ, t) + I(σ, s, γ, t) + R(σ, s, γ, t) = p(σ, s, γ), (5.4)

and equations (5.1) become

ÛI(σ, s, γ, t) = S(σ, s, γ, t)s
∫

ηI(η,q, κ, t) dq dκ dη − γI(σ, s, γ, t), (5.5)

ÛR(σ, s, γ, t) = γI(σ, s, γ, t). (5.6)
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When the proportion of infected individuals is small, S(σ, s, γ, t) in equation (5.5) is close to

p(σ, s, γ), giving a linear approximation of equation (5.5). For distributions where is γ a constant, it

can be shown (Section 5.7) that the early behavior of an epidemic is determined by R0 = E[σs]/γ.

The total fraction Ω(t) of persons who have ever been infected at time t is the sum of currently

infected and recovered individuals. If we stratify Ω by s, σ, and γ, we can write down

Ω(t) =
∫

T(σ, s, γ, t) dσ ds dγ (5.7)

with

T(σ, s, γ, t) = I(σ, s, γ, t) + R(σ, s, γ, t). (5.8)

The final epidemic size is

Ω∞ = lim
t→∞

∫
T(σ, s, γ, t) dσ ds dγ. (5.9)

We will use index 0 for the initial conditions in equations (5.5) and (5.6), so I0(σ, s, γ) =

I(σ, s, γ,0) etc.

5.3 Analytic results

In this section we discuss the general properties of our model. We assume that the distribution

of infectivity and susceptibility is such that the moments E[σ], E[s], and E[σs] as defined in

equation (5.3) exist. If the distribution is so heavy tailed that these moments do not exist then

important integrals in our analysis will not converge. This is not a merely technical restriction. For

instance the short time behavior of the model should be quite different if E[σs] is infinite.

Let us introduce the notation:

φ(t) =
1
E[σ]

∫
σI(σ, s, γ, t) dσ ds dγ, (5.10)

ψ(t) =
1
t

∫ t

0
φ(t′)dt′. (5.11)
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An individual has infectivity σ if infected and 0 if not. Therefore E[σ] is the maximal average

infectivity (when everyone is infected simultaneously), and φ(t) is the ratio of the current average

infectivity and the maximal one. Further, ψ(t) is the historical average of φ(t). Both these quantities

are thus between zero and one. In our model (without births or immigration and no persons with

zero recovery rate) there are no infected persons at t →∞, so in this limit

lim
t→∞

φ(t) = 0, lim
t→∞

ψ(t) = 0. (5.12)

It is shown in Section 5.6 that the stratified fraction of people who ever have been infected at

time t [see equations (5.7) and (5.8)] is

T(σ, s, γ, t) = p(σ, s, γ) − S0(σ, s, γ) e−sE[σ]ψ(t)t . (5.13)

For outbreaks started with a small number of infected persons, almost all remaining individuals

are susceptible, so S0 ≈ p. The number of currently infected individuals is

I(σ, s, γ, t) = − S0(σ, s, γ) e−sE[σ]ψ(t)t

+ e−γt (p(σ, s, γ) − R0(σ, s, γ)
)

+ γS0(σ, s, γ)
∫ t

0
dt′e−γ(t−t ′)−sE[σ]ψ(t ′)t ′ .

(5.14)

Therefore, if we know ψ(t), then we know the full solution. It is shown in Section 5.6 that ψ(t) is

a solution of the equation

E[σ]
d(tψ(t))

dt
=

∫
σ

[
I0(σ, s, γ)e−γt − S0(σ, s, γ)

∫ t

0
dt′e−γ(t−t ′) d

dt′

(
e−sE[σ]ψ(t ′)t ′

)]
dσ ds dγ.

(5.15)

To study the behavior of equation (5.15) we will make several simplifying assumptions. First,
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we assume a constant recovery rate across the population:

p(σ, s, γ′) = p(σ, s)δ(γ − γ′). (5.16)

This means that the other variables (S, I, R) are also proportional to δ(γ−γ′); we will use the same

notation for them as functions of σ and s.

Second, we assume the initial number of recovered individuals is zero,

R0(σ, s) = 0. (5.17)

Third, we assume that the initial distribution of infected persons is proportional to p(σ, s), and

is small:
I0(σ, s) = εp(σ, s),

S0(σ, s) = (1 − ε)p(σ, s),

0 < ε � 1.

(5.18)

To see why any other initial distribution I0 that is small should behave similarly see Section 5.7.

With these assumptions equation (5.15) can be further transformed from an integro-differential

equation to a first-order differential equation

E[σ]( Ûν + γν) = − (1 − ε)
∞∫

0

ds

∞∫
0

dσσp(σ, s)e−sE[σ]ν(t)

+ E[σ], (5.19)

for the function ν(t) = ψ(t)t (See equation (5.47)).

To numerically solve equation (5.15) it is convenient to rewrite it as two first-order differential

equations (See Section 5.10). In the rest of this section we discuss the properties of the solution of

this equation.

Let us start with the final epidemic size [equation (5.9)]. It can be shown (Section 5.6) that at
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t →∞ the function ψ(t) in equation (5.11) behaves as 1/t. Choose L so that at large t,

ψ(t) ≈
L
t
, L ≥ 0. (5.20)

Then equation (5.9) with T from equation (5.13) becomes (see Section 5.6)

Ω∞(ε) = 1 − (1 − ε)E
[
e−sE[σ]L

]
, (5.21)

where L is the unique nonnegative root of the equation

F(L) = L −
1
γ
+

1 − ε
γE[σ]

E
[
σ e−sE[σ]L

]
= 0. (5.22)

We are interested in an infection started with a small number of initial cases, which corresponds to

ε → 0. If in this limit equation (5.22) has a strictly positive root, the final epidemic size

Ω∞ = Ω∞(0) (5.23)

is non-zero, and does not depend on ε: in other words, the epidemic takes off. If the limit does not

have a strictly positive root then the infection immediately dies out and the final epidemic size is

0. In this ε → 0 limit F(0) = 0 and F(1/γ) > 0, so equation (5.22) has a positive (non-zero) root

if dF(0)/dL < 0. Taking the derivative, we see that a non-zero root corresponds to the condition

R0 =
E[σs]
γ
≥ 1. (5.24)

Given this result, we take a brief detour from our discussion of t → ∞. Another way to look

at epidemic spread is to study the short term behavior of the solution. Our analysis (Section 5.7)

shows that the initial small infection spreads with exponential rate R0 = E[σs]/γ determined by

equation (5.24). The upshot is that the growth rate of the epidemic is highly dependent on how

correlated the infectivity and susceptibility are.
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One naive generalization of R0 from the SIR model, i.e., the average number of secondary

infections produced by a typical infection would be R
′

0 = E[σ]E[s]/γ. To explain why R0, rather

than R
′

0, determines the exponential growth rate of the infected population we will illustrate what

the two quantities measure. If we choose a person from the entire population uniformly at random

and infect them, then the average number of secondary infections would be R
′

0. For instance if

a cruise ship travels somewhere and almost everyone is infected, then when they return home the

expected number of secondary infections each person produces will be R′0. On the other hand a

person who was infected via community spread (early in the epidemic) will cause on average R0

secondary infections. The difference between these cases is that in the first case almost all travelers

are infected so the fact that someone is infected tells us little about their susceptibility, whereas

in the second case people are infected via community spread which occurs with a probability

proportional to their susceptibility early in the epidemic. See Section 5.7 for details.

We will now continue our discussion of the final epidemic size with some limiting cases. As

mentioned above, for an epidemic to spread, it is necessary that R′0 = E[σs]/γ ≥ 1. Near this

transition, where R′0 ≈ 1, we may write down an approximation for L. Again, we will be interested

in the limit of small initial epidemic size ε → 0, although it is not difficult to generalize the

following result for non-zero ε. Let R0 > 1. Assuming that L is small, and that p(σ, s) falls off

quickly enough for large s, we may approximate equation (5.22) as

F0(L) ≈ γE[σ]L − E[σ] + +
∫

σp(σ, s)
(
1 − sE[σ]L +

(sE[σ]L)2

2

)
ds dσ. (5.25)

Therefore, if we get close enough to the transition where E[σs] − γ is small

L ≈
2

E[σ]E[σs2]
(E[σs] − γ). (5.26)

In this regime equation (5.21) gives the total epidemic size as

Ω∞ ≈

∫
p(σ, s)(1 − e−2s(E[σs]−γ)/E[σs2]) ds dσ. (5.27)
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Let us now briefly discuss the opposite limit. Instead of γ being so large that the epidemic

almost doesn’t start, we study γ so small that the epidemic infects almost everyone. It is expected

that if γ = 0, then the entire population will eventually become infected; that is, Ω∞ = 1. Equa-

tion (5.21) shows that in this case L → ∞. It is easy to show that for small γ, L ≈ 1/γ, and

equation (5.21) predicts an exponentially small number of individuals not infected.

This framework allows one to make predictions for a number of specific distributions discussed

in the next section. We conclude the general discussion with one very interesting case: when the

distribution has a very small number of “superspreaders”, individuals with anomalously high in-

fectivity. (Here very small means small enough to not appreciably change E[σs].) A relevant ques-

tion is whether these individuals have an oversized contribution in the epidemic. Equations (5.21)

and (5.22) show that this is not the case, and the contribution of superspreaders is limited by the

linear term in the average value of E[σs] (see Section 5.9). Therefore, while superspreaders still

contribute to the dynamics, they are only a primary driver of infection in our model when they

significantly change R0. That being said, increasing the number of superspreaders in a population

will increase R0, which will cause the epidemic to spread faster, and will also cause a larger final

epidemic size.

5.4 Results for different distributions of infectivity and susceptibility

Let us further illustrate the general results using specific distributions for s and σ. First, con-

sider an N-component SIR model. That is, there are N different types of individuals who have

parameters σi, si, γi and represent a portion of the population pi, and

p(σ, s, γ) =
N∑

i=1
piδ(σ − σi)δ(s − si)δ(γ − γi), (5.28)

δ(x) being Dirac’s delta-function. In the case where N = 1, this reduces to the standard SIR model.

We see in Section 5.7 that this model is a limiting case of the model presented in this paper 1.

1In Section 5.7, we set γi = γ, but our claim that the N-component SIR model is a special case of our model does
not rely on this assumption
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Another useful distribution to study is the Gamma distribution with σ = s. In particular, we

are interested in the distribution

p(σ, s, γ′) = p(s)δ(σ − s)δ(γ′ − γ) (5.29)

where

p(s) =
βαsα−1e−βs

Γ(α)
(5.30)

and α, β are positive constants. This system is interesting to study because the integrals involved

in solving for L are analytically tractable. In the case where α = 1 we recover the exponential

distribution and we can find Ω∞ exactly (equation (5.104)). We analyze the case of the Gamma

distribution in Section 5.11.

We further illustrate the dynamics of epidemics using several special cases of distributions of

infectivity σ and susceptibility s with the assumption of constant recovery rate γ. (See Section 5.8

for an analysis of which distributions lead to the worst outcomes for the final epidemic size.)

Even with constant γ the answer depends on the probability distribution p(σ, s). We discuss

three limiting cases: (i) completely independent σ and s, with p(σ, s) = pσ(σ)ps(s); (ii) com-

pletely positively correlated σ and s with σ ∝ s; and (iii) positively correlated σ and s with a

correlation coefficient ρ.

Note that since only the product σs enters the equations, we always can multiply σ by a

constant factor f , and s by the factor 1/ f . We choose this factor to ensure that E[σ] = E[s]. In

the numerical calculations in this section we used the following parameters roughly following [20,

107, 106]

E[σ] = E[s] = 0.6 day−1/2,

γ = 0.125 day−1,

ε = 10−4.

(5.31)

At present, our understanding of variability in individual suceptibility and infectivity is far

from complete. While the consensus is that they have a wide distribution (see the discussion in the
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Introduction), the shape of this distribution is not known, and most studies assume a convenient one

for their calculations. Since we want to explore the dependence of the dynamics on the distribution

itself, rather than on its parameters, we compare two reasonable a priori assumptions: a log-normal

distribution with the parameters µ and σ̃, and a Gamma distribution with the parameters α and β.

Another approach is to suggest some mechanism for the variability and choose a distribution that

follows this mechanism. One such mechanism is the variability of individual contacts: the more

contacts has a person, the higher is their s and σ. It is important to note that in this model s is

completely correlated with σ because they are caused by the same mechanism.

We are fortunate to be able to use empirical data about the number of contacts from the “path-

crossing” network described in Looi et al. [140]. Their network is constructed from the mobility

data provided by SafeGraph, a company that aggregates and anonymizes geolocation data from

cell phone applications. SafeGraph collects GPS location pings for millions of adult smartphone

users in the United States, where each ping represents the latitude and longitude of one user at one

timestamp. Looi et al. [140] transform the set of location pings into a dynamic network, where

users are represented as nodes, and edges indicate the number of times two users crossed their

paths (see Section 5.12 for the details). We use the number of path crossings as a proxy for the

number of users’ social contacts, which is in its turn a proxy for susceptibility and infectivity. Due

to the number of assumptions here one should be careful with the interpretation of the results. We

do not claim that the SafeGraph data provide the distribution of σ and s. Rather we think they

suggest features of the real distribution.

An interesting feature of the SafeGraph distribution is that it is very wide. The average number

of contacts per user is 0.342 × 103, while the standard deviation is 1.04 × 103. We can try to

approximate the empirical distribution of contacts using a theoretical distribution. On Figure 5.1

we show log-normal and gamma approximations together with the empirical distribution with the

same mean and variance.

In the remainder of this section we discuss the numerical solutions of the model equations

for the log-normal, Gamma, and empirical distributions obtained with the approach discussed in
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Figure 5.1: Comparison of empirical, log-normal and gamma distributions with the same average
infectivity E[s] = 0.6 day−1/2 and variance ζ2 with ζ = 4.16 day−1/2.

Section 5.10. See Section 5.11 for analytical solutions in special cases.

In Figure 5.2 we compare the epidemic’s progression for log-normal and Gamma distributions

with the same mean s and varying distribution widths. We see that a wider distribution leads to a

lower epidemic size. When the width of the distribution decreases, the curve goes to the one for

the classical SIR model. An interesting feature is that a wide correlated distribution of s and σ

leads to an earlier start of the epidemics instead of the S-like curve of the standard SIR model.

In Figure 5.3 we study the influence of the positive correlation between infectivity and suscep-

tibility. For simplicity we show just the final size Ω∞. As demonstrated by this figure, the more

correlated these parameters are, the higher the size is, as predicted by the analysis in the previous

section.

For another comparison we take the empirical number of contacts between the individuals

(Section 5.12) as a proxy for both s and σ. We renormalize the number of contacts to obtain

the average infectivity E[s] in equation (5.31). This leads to variance ζ2 = 17.27 day−1 (ζ =

4.16 day−1/2). Then we fit the parameters of log-normal and Gamma distributions to get the same

E[s] and ζ . All three distributions are shown on Figure 5.1.
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Figure 5.2: Comparison of epidemic spread for log-normal and Gamma distributions of infectiv-
ity and susceptibility with standard deviation ζ and parameters in equation (5.31). The cases of
independent or completely correlated σ and s are shown.
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Figure 5.3: Dependence of final epidemic size Ω∞ on ρ where (log(s), log(σ)) is a Gaussian vector
with mean E[s] = E[σ] = 0.6 day−1/2 and covariances Var(s) = Var(σ) = ζ2, Cov(s, σ) = ρζ2.
Note that ρ is the correlation coefficient for log(s) and log(σ) rather than for s and σ.
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Figure 5.4: Epidemics progression for the distributions shown on Figure 5.1 with parameters in
equation (5.31). A classical SIR solution for the same susceptibility and infectivity is also shown.

The results are shown in Figure 5.4 together with the solution for the classical SIR model with

the infectivity and susceptibility equal to the averages E[s] and E[σ].

The figures suggest that, generally speaking, variability in susceptibility and infectivity lowers

the final epidemic size, and the correlation between them increases it. Important special cases

of this statement are proven in Section 5.8, and based on the figures, we expect it to hold more

generally.

Of special interest is the question of whether individuals with high infectivity (“superspread-

ers”) influence the epidemic dynamics and final epidemic size. To model the effect of superspread-

ers we can discuss a special bimodal distribution of infectivity,

p(σ) = (1 − λ)pn(σ) + λps(σ), (5.32)

where pn describes “normal” persons with low σ, and ps describes superspreaders with high σ. In
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Figure 5.5: Final epidemic size for a mix of normal individuals (same distribution as on Figure 5.2)
and superspreaders described by equation (5.33). The effect of superspreaders is at most linear in
their proportion.

our numerical experiments we modeled superspreaders using a power-law distribution

ps(σ) =


0, σ < b,

(a − 1)ba−1σ−a, σ ≥ b
(5.33)

with the parameters a = 4, b = 1.2 day−1/2. With these parameters the average infectivity of

superspreaders is 1.8 day−1/2, i.e., three times the average infectivity in our simulations. The results

are shown on Figure 5.5. We see that the influence of superspreaders is at most linear in their

proportion λ. This is not coincidental: as shown in Section 5.9, the effect of superspreaders is at

most linear.

5.5 Discussion and conclusions

The aim of any idealized model is to provide insights about the “real world”. We believe our

model provides several important insights beyond the assumptions involved in its derivation and
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treatment.

First, the variation in individual susceptibility and infectivity does matter. All examples stud-

ied in Section 5.4 have the same average susceptibility and infectivity—but the outcomes greatly

differ. Generally wider distribution lead to lower final epidemic size, and, in the case of correlated

infectivity and susceptibility, faster initial outbreak.

Second, the correlation between infectivity and susceptibility is important: the higher the cor-

relation, the larger the epidemic size.

Third, the average and the width of infectivity and susceptibility are not enough to predict the

outcome: the actual shape of the distribution matters too. The comparisons of log-normal and

Gamma distributions in Figure 5.2, and of three different distributions having the same first and

second moments in Figure 5.4, demonstrate this clearly.

This conclusion shows that a prediction of the epidemic’s spread is a hard task from the prac-

tical point of view. Indeed, we never know the exact shape of the distribution, since it involves

the measurement of individual infectivity and susceptibility of many people. The sensitivity to the

shape of the distribution beyond a couple of moments is bad news for precise predictions.

Having said this, we still need to answer the question of which features of the distribution

are the most salient for predictions. There were a number of works stressing the importance of

superspreaders: individuals or events with anomalously high potential for spreading (see the In-

troduction). Our model suggests a more nuanced view. On one hand, because the susceptibility

and infectiousness of individuals are correlated through how many people someone interacts with,

increasing the number of superspreaders in a way that does not change the average infectivity or

susceptibility will increase R0 = E[σs]/σ, which greatly increases how fast the infection takes off

and somewhat increases the final epidemic size. In the unrealistic case where we add pairs of one

superspreader and one unusually careful person so that the variance increases and R0 is unchanged,

adding both these people will actually tend to decrease the final epidemic size. This can be seen in

equations (5.21) and (5.22) where we have exponentials suppressing the contribution of individuals

with anomalously high susceptibility (or high infectivity if these parameters are correlated). This
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can also be seen in Section 5.8 and in Figure 5.4. The final result is determined by the average

E[σs] and the distribution shape at low to moderate susceptibilities. It should be noted, that for

wide distributions median s and mean s are quite different, and our conclusion concerns mean,

rather than median, susceptibility.

These conclusions rely on the fact that in our model a recovered person can never be infected

again. If we allow for the reinfection of recovered individuals, such as in an SIRS model, we

would expect superspreaders to have a much greater impact on the course of the epidemic. This is

because their removal from the system at early times is now only temporary. This is an important

limitation of our model that would be useful to examine in future investigations.

Perhaps the following analogy may help to understand the meaning of this result. In comic

books the outcome of a war is determined by a handful of superheroes and supervillains. In reality

it is determined by the combined effort of many people at the lowest rungs of the military hierarchy:

privates, petty and junior officers, and so forth. Our conclusion is that epidemic spread is like the

“real war” rather than the “comic-book one”. This has an essential implication for public health

policy. While the prevention of superspreading is important (it changes the exponential growth

rate R0 = E[σs]/γ and drives down the averages in equations (5.21) and (5.22)), it is the mundane

everyday efforts that matter most.

Lastly, we provide a simple, but efficient mathematical apparatus to calculate the epidemic

dynamics for a population with variable infectivity and susceptibility, and cast it in a form suitable

for numerical estimates. We hope this apparatus might turn out to be useful beyond the insights

formulated in this paper.

5.6 Derivation of main equations

This Section is dedicated to the derivation of the main equation and the results of the general

analysis in Section 5.3.

First, we derive equation (5.13). Let us add equations (5.5) and (5.6) and use the definitions of
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T(σ, s, γ, t) to obtain

ÛT(σ, s, γ, t) = [p(σ, s, γ) − T(σ, s, γ, t)]sE[σ]φ(t) (5.34)

By inspection, we may verify that Eq.5.13 is a solution to this differential equation. We see that

this solution satisfies the initial conditions

T(σ, s, γ,0) = p(σ, s, γ) − S0(σ, s, γ) (5.35)

We now turn to the derivation of equation (5.14). First, we use equation (5.5) and the definitions

of T(σ, s, γ, t) and φ(t) to write down

ÛI(σ, s, γ, t) =
(
p(σ, s, γ) − T(σ, s, γ, t)

)
sE[σ]φ(t) − γI(σ, s, γ, t). (5.36)

Substituting this expression into equation (5.34), we arrive at

ÛI(σ, s, γ, t) = ÛT(σ, s, γ, t) − γI(σ, s, γ, t), (5.37)

or, equivalently
d
dt

(
eγt I(σ, s, γ, t)

)
= eγt ÛT(σ, s, γ, t). (5.38)

This differential equation admits a solution

I(σ, s, γ, t) = e−γt ©­«
t∫

0

dt ′eγt ′ ÛT(σ, s, γ, t′) + I0(σ, s, γ)
ª®¬ . (5.39)

We now integrate the integral in the above equation by parts. In the second step and the second-to-
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last step, we will use our solution for T(σ, s, γ, t) from equation (5.13).

eγt I(σ, s, γ, t) = eγtT(σ, s, γ, t) − T0(σ, s, γ) −

t∫
0

dt′γ eγt ′T(σ, s, γ, t) + I0(σ, s, γ) =

eγtT(σ, s, γ, t) − (T0(σ, s, γ) − I0(σ, s, γ)) −

t∫
0

dt′ γeγt ′(p(σ, s, γ) − S0(σ, s, γ))e−sE[σ]ψ(t ′)t ′ =

eγtT(σ, s, γ, t) − R0(σ, s, γ) −
(
eγt − 1

)
p(σ, s, γ) + S0(σ, s, γ)γ

t∫
0

dt′ eγt ′e−sE[σ]ψ(t ′)t ′ =

eγt(T(σ, s, γ, t) − p(σ, s, γ)) + (p(σ, s, γ) − R0(σ, s, γ)) + S0(σ, s, γ)γ

t∫
0

dt′eγt ′e−sE[σ]ψ(t ′)t ′ =

− eγtS0(σ, s, γ)e−sE[σ]ψ(t)t + (p(σ, s, γ) − R0(σ, s, γ)) + S0(σ, s, γ)γ

t∫
0

dt′ eγt ′e−sE[σ]ψ(t ′)t ′, (5.40)

and therefore

I(σ, s, γ, t) =

− S0(σ, s, γ)e−sE[σ]ψ(t)t + e−γt(p(σ, s, γ) − R0(σ, s, γ)) + S0(σ, s, γ)γ

t∫
0

dt′ e−γ(t−t ′)e−sE[σ]ψ(t ′)t ′ .

(5.41)

This final line matches Eq. (5.14).

Finally, we derive the equations of motion for tψ(t) as written in (5.15). We begin by substitut-

ing in our solution for I(σ, s, γ, t) into the definition of φ(t) in equation (5.10):

E[σ]φ(t) =
∫

σI(σ, s, γ, t)dσ ds dγ =
∫ (

σγS0(σ, s, γ)
∫ t

0
dt′ e−γ(t−t ′)−sE[σ]ψ(t ′)t ′

)
dσ ds dγ+∫

σ
{
e−γt [p(σ, s, γ) − R0(σ, s, γ)

]
− S0(σ, s, γ)e−sE[σ]ψ(t)t

}
dσ ds dγ. (5.42)
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Noticing that φ(t) = d(ψ(t)t)/dt, we get

E[σ]
d(tψ(t))

dt
=

∫ (
σγS0(σ, s, γ)

∫ t

0
dt′ e−γ(t−t ′)−sE[σ]ψ(t ′)t ′

)
dσ ds dγ+∫

σ
{
e−γt [p(σ, s, γ) − R0(σ, s, γ)

]
− S0(σ, s, γ)e−sE[σ]ψ(t)t

}
dσ ds dγ. (5.43)

Integrating this equation by parts, we get

E[σ]
d(tψ(t))

dt
=

∫ ((
σS0(σ, s, γ)

(
e−sE[σ]ψ(t)t − e−γt −

∫ t

0
dt′ e−γ(t−t ′) d

dt′

(
e−sE[σ]ψ(t ′)t ′

)))
+∫

σ
{
e−γt [I0(σ, s, γ) + S0(σ, s, γ)

]
− S0(σ, s, γ)e−sE[σ]ψ(t)t

})
dσ ds dγ =∫

σ

[
I0(σ, s, γ)e−γt − S0(σ, s, γ)

∫ t

0
dt′e−γ(t−t ′) d

dt′

(
e−sE[σ]ψ(t ′)t ′

)]
dσ ds dγ, (5.44)

which matches equation (5.15).

Let us now derive equation (5.22) and propose an iterative algorithm for its numerical solution.

Assuming constant γ (equation (5.16)), we multiply both sides of equation (5.15) by eγt and

take a time derivative of both sides:

d
dt

(
E[σ]

d(ψ(t)t)
dt

eγt
)
= −

∫ [
σS0(σ, s)eγt d

dt

(
e−sE[σ]ψ(t)t

)]
dσ ds. (5.45)

Taking the derivative of the left hand side, multiplying by e−γt and integrating over time, we get

E[σ]( Ûψt + ψ + γψt) = −
∫ (

σS0(σ, s)e−sE[σ]ψ(t)t
)

dσ ds + C, (5.46)

where C is a constant based on initial conditions. With the initial conditions (5.18), we get C =

E[σ]. As an aside, we may alternatively write equation (5.46) as a first-order, time-independent

equation using ν(t) = ψ(t)t.

E[σ]( Ûν + γν) = −

∫ (
σS0(σ, s)e−sE[σ]ν

)
dσ ds + E[σ], (5.47)
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We rewrite as

Ûν = (1 − γν) −
1
E[σ]

∫ (
σS0(σ, s)e−sE[σ]ν

)
dσ ds. (5.48)

It is not hard to see that the right hand side is Lipshitz in ν, so the solution exists and is unique on

R≥0 by a standard application of the Picard-Lindelof theorem. In fact we have a bijection between

solutions to the system (5.4), (5.5), (5.6) and solutions to (5.48) given by

ν(t) =
∫ t

0

(∫
σI(σ, s, γ, t′)dsdσ

)
dt′ (5.49)

in one direction and by equations (5.13) and (5.14) in the other. Thus existence and uniqueness

of solutions to (5.48) implies the existence and uniqueness of solutions to the system (5.4), (5.5),

(5.6).

We already know that limt→∞ ψ(t) = 0 (equation (5.12)). Suppose that
∫ ∞

0 φ(t) dt converges,

and thus the following limit exists:

lim
t→∞

ψ(t)t = L. (5.50)

In this case we obtain

Ω∞ = 1 −
∫

S0(σ, s)e−sE[σ]Ldσds, (5.51)

where L is the unique nonnegative root of the equation

F(L) = 1 − γL −
1
E[σ]

∫
S0(σ, s)σ e−sE[σ]Ldσds = 0. (5.52)

As an aside, observe that in the case S0(σ, s) = (1 − ε)p(σ, s) we obtain equation (5.22).

If we take any sequence of initial conditions {Sn
0 (σ, s)}

∞
n=0 so that Sn

0 (σ, s) converges weakly

to p(σ, s) and σSn
0 (σ, s) converges weakly to σp(σ, s), then Ω∞ converges to 1 − E[e−sE[σ]L]

uniformly in L, and F(L) converges to 1 − γL − E[σe−sE[σ]L] uniformly in L. This implies that in
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this limit the final epidemic toll converges to

1 − E[e−sE[σ]L], (5.53)

where L is the unique nonnegative root of

1 − γL − E[σe−sE[σ]L] = 0, (5.54)

if such a root exists. It is not hard to see that a nonnegative root exists if and only if E[σs]/γ > 1.

This parameter E[σs]/γ turns out to be the correct generalization for the basic reproduction rate

R0 in this inhomogeneous SIR model, see the next section for details.

To justify the assumption (5.50) we construct an algorithm to calculate L and prove it converges

to a non-negative root of equation (5.22). We use the following iterations We will find the solution

using the following iterations:

L0 =
1
γ
, (5.55)

Li =
1
γ
−

1 − ε
γE[σ]

E
[
σe−sE[σ]Li−1

]
, i = 1,2, . . . . (5.56)

Below we will prove that the sequence Li converges to the relevant root.

Lemma 5.6.1. Suppose equation (5.22) has non-negative roots, and L̃ is the largest root. Then the

sequence L0, L1, . . . converges to L̃.

Proof. We will prove that for all i

L̃ ≤ Li ≤ Li−1. (5.57)

Then the sequence L0, L1, . . . is bounded and non-increasing, and therefore converges. The limit

of this sequence is a root of equation (5.22), and due to inequality (5.57) and the fact that L̃ is the

largest root, it converges to L̃.

First, note that from equations (5.22) and (5.55) follows that L̃ ≤ 1/γ = L0.
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For i = 1 we have from the iteration equation (5.56) L1 ≤ L0 and, since L̃ ≤ L0,

L1 ≥
1
γ
−

1 − ε
γE[σ]

E
[
σe−sE[σ]L̃

]
= L̃, (5.58)

so inequality (5.57) is true.

Suppose this inequality is true for i − 1, i.e.

L̃ ≤ Li−1 ≤ Li−2. (5.59)

Then we will prove it for i. Indeed,

Li =
1
γ
−

1 − ε
γE[σ]

E
[
σe−sE[σ]Li−1

]
≤

1
γ
−

1 − ε
γE[σ]

E
[
σe−sE[σ]Li−2

]
= Li−1 (5.60)

and

Li ≥
1
γ
−

1 − ε
γE[σ]

E
[
σe−sE[σ]L̃

]
= L̃ (5.61)

In other words if the inequality is true for i − 1, it is true for i, so it is true for all i. �

Lemma 5.6.2. Equation (5.22) always has a non-negative root no smaller than ε/γ.

Proof. Similarly to the proof of Lemma 5.6.1 we can prove the inequality

ε

γ
≤ Li ≤ Li−1. (5.62)

Indeed, for any i we can iteratively prove that

Li ≥
1
γ
−

1 − ε
γE[σ]

E
[
σe−sE[σ]·0

]
=
ε

γ
. (5.63)

Therefore the sequence L0, L1, . . . converges to a number no smaller than ε/γ. This number is a

root of equation (5.22), which, according to Lemma 5.6.1 is the largest root. �

The last lemma shows that the assumed behavior of ψ(t) at large t is indeed ψ ≈ L/t.
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5.7 Short-time behavior and initial conditions

In this section we show that in a mixed population the parameter that determines whether an

infection grows exponentially or dies out is

R0 =
E[σs]
γ

.

We also show that the long term behavior of the epidemic does not depend on the initial conditions.

At early time, when the proportion of the population infected, and the proportion of the popu-

lation recovered are very small, equations (5.5) and (5.6) can be linearized as

ÛI(σ, s, γ, t) = p(σ, s, γ)s
∫

ηI(η,q, κ, t)dηdqdκ − γI(σ, s, γ, t) (5.64)

and

ÛR(σ, s, γ, t) = γI(σ, s, γ, t). (5.65)

We consider the case where γ is fixed for the entire population, and the distribution p(σ, s) =∑n
i=1 piδσi,si (σ, s) is a finite combination of delta functions. With the notation Ii(t) = I(σi, si, t),

equations (5.64) and (5.65) become a finite-dimensional system of equations

dIi(t)
dt
= pisi

©­«
n∑

j=1
σj I j(t)

ª®¬ − γIi . (5.66)

We rewrite this as
dI
dt
= AI, (5.67)
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with I =
(
I1(t), . . . In(t)

)T and Ai j = pisiσj − γ1i= j . Let

σ =


σ1
...

σn


, (sp) =


s1p1
...

snpn


, (5.68)

Let

Ai j = |(sp)〉〈σ | − γI . (5.69)

From this we see that the largest eigenvalue of A is E[σs] − γ = 〈σ |(sp)〉 − γ =
∑n

i=1 siσi pi − γ

with the associated eigenvector |(sp)〉, and that all other eigenvectors are perpendicular to σ and

have eigenvalue −γ.

Now a general distribution p(σ, s) can be approximated by a sum of delta masses, to conclude

that the linear equations (5.64) and (5.65) have the largest eigenvalue

λ = E[sσ] − γ (5.70)

with corresponding eigenvector I(σ, s) = sp(σ, s) and all other eigenvectors negative.

If p(σ, s) is a compactly supported distribution we conclude that if a small enough proportion

of the total population is infected at time zero, then until the proportion of the population that is

susceptible drops appreciably below 1, we have

It(σ, s) ∼ Cet(E[sσ]−γ)sp(σ, s), (5.71)

where

C =

∫
sp(σ, s)I0(σ, s)dσds∫

s2p(σ, s)2dσds
.

The quantity R0 is also what epidemiologists measure when they measure the number of sec-

ondary infections produced by a typical infection in the very early stages of the epidemic. The

key to understanding why this number is E[sσ]/γ instead of E[s]E[σ]/γ comes from the word

247



“typical.” Based on equation (5.71), early in the epidemic the probability q(σ, s) that a person with

infectivity σ and susceptibility s is infected is proportional to sp(σ, s), so

q(σ, s) =
sp(σ, s)∫

sp(σ, s)dsdσ
=

sp(σ, s)
E[s]

(5.72)

To find the number secondary infections per unit time this "typical infection" produces, we take this

person’s infectivity and multiply by the average susceptibility in the population to get σtypicalE[s].

Averaging σtypical over the measure q(σ, s) gives

E[σtypical]E[s] =
∫

sσp(σ, s)dsdσ
E[s]
E[s]

= E[sσ]. (5.73)

Multiplying by the typical recovery time 1
γ gives the expected number of secondary infections.

As with the usual SIR model, if R0 > 1 the infection will spread and if R0 < 1 the infection

will die out. This allows us to see that the growth rate of an epidemic is highly dependent on how

correlated s and σ are, with higher correlation leading to a higher growth rate. In a true population

we expect a persons infectivity σ and susceptibility s to be highly correlated through factors like

how many people someone interacts with. In particular superspreaders have an outsize effect on

the early growth of the epidemic in the most realistic case where s and σ are highly correlated,

because in this case R0 grows like the second moment E[σ2] of the infectivity rather than the first

moment.

The second takeaway is that if the proportion of the population that is infected at time 0 is

small enough, there is essentially only one possible initial condition for the system (5.5), (5.6).

This can be seen by writing the initial profile of infected I0(σ, s) as a sum of eigenvectors for

equations (5.64) and (5.65),

I0(σ, s) = Csp(σ, s) + I′0(σ, s), (5.74)

and comparing with (5.71) to see that I′0(σ, s) has minimal effect, and the long term solution is
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almost identical to the solution starting from initial condition

I0(σ, s) = Csp(σ, s). (5.75)

5.8 Worst-case distributions

In this section we discuss which distributions provide the highest possible epidemic size Ω∞

(the “worst-case scenarios”).

We prove two statements

1. Variability is good. If s and σ are independent, then the final epidemic size is less than or

equal to the final epidemic size of the classical SIR model with s0 = E[s], σ0 = E[σ].

2. Strong positive correlation is bad. If the marginal distributions of s and σ are known, then

the joint distribution p(σ, s) that maximizes the final epidemic size is given by the “percentile

coupling”, where the nth most infectious person is also the nth most susceptible person.

Both these statements follow from the following lemma:

Lemma 5.8.1. Let µ and ν be two possible joint distributions for (s, σ). Let Eµ and Eν denote the

expectation with respect to µ and ν respectively, and similarly for final epidemic sizes Ωµ
∞ and Ων

∞.

If

Eµ[σ] ≥ Eν[σ], (5.76)

and for all c > 0,

Eµ[e−cs] ≤ Eν[e−cs], (5.77)

and also

Eµ[σe−sc] ≤ Eν[σe−sc], (5.78)

then

Ω
µ
∞ ≥ Ω

ν
∞. (5.79)
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Proof. Using equations (5.77) and (5.76) together with equation (5.22) we see that for any L > 0,

Fµ(L) = L −
1
γ
+

1
γEµ[σ]

Eµ[σe−sEµ[σ]L] ≤ L −
1
γ
+

1
γEν[σ]

Eν[σe−sEν[σ]L] = Fν(L). (5.80)

Let Lµ be the unique positive zero of Fµ(L) if such a zero exists, and otherwise let Lµ = 0. Now

Fµ(0) = Fν(0) = 0 and both are convex functions of L, which together with equation (5.80) gives

Lµ ≥ Lν.

Then from equations (5.78) and (5.76) we obtain

Ω
µ
∞ = 1 − Eµ[e−sEµ[σ]Lµ] ≥ 1 − Eν[e−sEν[σ]Lν ] = Ων

∞. (5.81)

�

To prove (1) let us take a distribution ν with independent σ and s, and let µ = δ(σ−Eν[σ])δ(s−

Eν[s]). We have Eµ[σ] = Eν[σ] by definition. From Jensen’s ineqality [155, §1.7(iv)]

E µ[e−cs] = e−cEν[s] ≤ Eν[e−cs], (5.82)

and from Jensen’s inequality and independence of s and σ under distribution ν we have

E µ[σe−cs] = Eν[σ]e−cEν[s] ≤ Eν[σe−cs]. (5.83)

Thus the final epidemic size for our arbitrary distribution with independent s and σ is not greater

than the final epidemic size of a delta mass with the same mean.

To prove (2) let ν be an arbitrary measure with the correct marginal distributions, and let µ

be the percentile coupling: the most susceptible person is the most infectious, the second most

susceptible person is the second most infectious and so on. In particular if we sample twice from

µ and obtain (s1, σ1) and (s2, σ2), then with probability 1, the statement s1 ≥ s2 implies σ1 ≥ σ2.

This property implies that if f is an arbitrary decreasing function, and g is an arbitrary increasing
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function, then the percentile coupling is the coupling that minimizes the expectation E[ f (s)g(σ)]

for the given marginal distributions of s and σ. In particular this distribution minimizes E[σe−sc]

for all c > 0, so it satisfies equation (5.78). It also has the same marginals as the other measure

ν, thus inequalities (5.76) and (5.77) are satisfied. Thus for the given marginal distributions of s

and σ the percentile coupling is the worst possible joint law in that it maximizes the final epidemic

size of the infection.

5.9 The effect of superspreaders

In this Section we discuss the effect of a superspreaders: a small subpopulation of people with

anomalously high infectivity.

Consider the distribution of infectivity σ and susceptibility s as a sum of the “normal” distri-

bution pn and the susperspreaders ps with the latter having support at σ > σs with large σs, as

shown in equation (5.32).

The short term behavior is determined by the value of E[sσ], which can be represented as

E[σs] = (1 − λ)En[σs] + λEs[σs], (5.84)

where subscripts n and s denote averaging with the distributions pn and ps correspondingly. This

equation shows that (i) the only way superspreaders come into short term behavior is the renormal-

ization of average σs, and (ii) their influence is linear in the proporion of superspreaders λ.

Let us discuss the case where the number of superspreaders is low enough, so the contribution

of superspreaders to the averages is small, i.e.

λEs[σs] � En[σs]. (5.85)

In this case the contribution of superspreaders into the short term dynamics is small according to

equation (5.3). We are going to show that there is no anomalous contribution to the long term

dynamics either.
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We are looking into the final epidemic size, which is determined by equations (5.22) and (5.21).

First, consider the case where superspreaders have the same susceptibility distribution as the

other individuals. In this case s and σ are independent, and our equations become

L −
1
γ
+

1
γ
En

[
e−sE[σ]L

]
= 0, (5.86)

Ω∞ = 1 − En

[
e−sE[σ]L

]
. (5.87)

We see that in this case the only way superspreaders contribute is the changing of E[σ].

Now consider the case where superspreaders have anomalous suceptibility s, and higher σ

corresponds to higher s. Then the contribution of superspreaders is asymptotically small in both

equations (5.22) and (5.21), i.e., again no worse than linear in the number of superspreaders.

5.10 Numerically solvable equations

In this Section we will recast equation (5.15) into a set of differential equations suitable for

numerical analysis.

With the constant γ assumption (5.16) and initial conditions (5.17) and (5.18), we can write

down equation (5.15) as

E[σ]
d(tψ(t))

dt
=

∫ (∫ t

0
e−γ(t−t ′)−sE[σ]ψ(t ′)t ′ dt′γ(1 − ε) + e−γt − (1 − ε)e−sE[σ]ψ(t)t

)
p(σ, s)σ dσ ds,

(5.88)

with

I(σ, s, t) =
(∫ t

0
e−γ(t−t ′)−sE[σ]ψ(t ′)t ′ dt′γ(1 − ε) + e−γt − (1 − ε)e−sE[σ]ψ(t)t

)
p(σ, s), (5.89)

and

T(σ, s, t) = p(σ, s)
(
1 − (1 − ε)e−sE[σ]ψ(t)t

)
. (5.90)
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The initial condition is

ψ(0) = ε. (5.91)

We introduce the function ν(t):

ν(t) = tψ(t). (5.92)

We multiply both parts of equation (5.88) by eγt and divide by E[σ]:

eγt dν(t)
dt
= 1 +

γ(1 − ε)
E[σ]

∫ t

0

(∫
eγt ′−sE[σ]ν(t ′)σp(σ, s) dσ ds

)
dt (5.93)

−
1 − ε
E[σ]

∫
eγt−sE[σ]ν(t)σp(s, σ) dσ ds. (5.94)

We differentiate this equation with respect to t and multiply by e−γt :

Üν + γ Ûν = (1 − ε) Ûν
∫

e−sE[σ]νsσp(σ, s) dσ ds. (5.95)

Let us introduce a new variable

ξ = Ûν, (5.96)

then we can write down equation (5.95) as

Ûξ = ξ

[
(1 − ε)

∫
e−sE[σ]νsσp(σ, s) dσ ds − γ

]
,

Ûν = ξ.

(5.97)

We need initial conditions for equations (5.97). By definition (5.92), ν(0) = 0. From equa-

tions (5.96), (5.92) and (5.91) we get ξ(0) = ψ(0) = ε, so we can write initial conditions as

ν(0) = 0, ξ(0) = ε. (5.98)

Equations (5.97) with the initial conditions (5.98) depend at any moment t on ξ(t) and ν(t) only,

and therefore can be solved by any suitable method for differential equations.
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5.11 Special distributions

For several important distributions we can provide analytical results. These results can be used

for more sophisticated models, so we provide them below. We are particularly interested in the

low-γ limit, where outbreaks are large and not easily controlled.

We discuss the completely correlated case when σ(s) is a monotonic function. Since we always

can rescale them keeping σs constant, let us assume σ = s, so

p(σ, s, γ′) = p(s)δ(σ − s)δ(γ′ − γ). (5.99)

5.11.1 The Gamma distribution

Consider a Gamma distribution with fixed γ and s = σ, so p(s) in equation (5.99) becomes

p(s) =
βαsα−1e−βs

Γ(α)
(5.100)

α and β being positive constants. First, let us calculate L, the root of equation (5.22). In our case

we have

0 = E[σ](γL − 1) +
∫ ∞

0

βαsαe−βs

Γ(α)
e−sE[σ]L ds, (5.101)

where E[σ] = α/β. This gives for L the equation

0 = γL − 1 +
(
1 +

αL
β2

)−α−1
(5.102)

which can be easily solved numerically. The final epidemic size is given by equation 5.21, and

may be written as

Ω∞ =

∫ ∞

0
p(s)

(
1 − e−sE[σ]L

)
ds = 1 −

(
1 +

αL
β2

)−α
=

1 − (γL − 1)(1 + αL/β2) =

(
α

β2 − γ

)
L +

αγ

β2 L2 (5.103)
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In the case of the exponential distribution (i.e., α = 1) equation (5.103) becomes

Ω∞ =
(3 − 4β2γ +

√
1 + 4β2γ)(1 − 2β2γ +

√
1 + 4β2γ)

4β2γ
, (5.104)

when R0 > 1. We emphasize that (5.103) and (5.104) are exact formulas.

In the low γ limit we may approximate L by L = 1/γ − f (γ) (See equation (5.56) and

Lemma 5.6.1), where the second term can be written as

f (γ) ≈
β

αγ

∫ ∞

0

βαsαe−βs

Γ(α)
e−sα/(βγ) ds ≈

1
γ

(
1 +

α

γβ2

)−α−1
≈

(
β2

α

)α+1

γα (5.105)

Since α > 0, f (γ) is well defined near γ = 0 and the approximation is well-controlled.

5.11.2 Low-recovery-rate limit for the log-normal distribution

Let us discuss a log-normal distribution with fixed γ and s = σ, where p(s) in equation (5.99)

becomes:

p(s) =
1

τs
√

2π
exp

(
−
(log s − µ)2

2τ2

)
(5.106)

with the constants τ > 0 and µ. Note that due to equation (5.99),

E[s] = E[σ] = exp(µ + τ2/2). (5.107)

Using equations (5.56) and (5.107), we obtain the iterative equation for ε → 0:

Li =
1
γ
−

1
γE[σ]

∫ ∞

0
se−sE[σ]Li−1

1
τs
√

2π
e−
(log s−µ)2

2τ2 ds

=
1
γ
−

eµ

γτE[σ]
√

2π

∞∫
0

dse−seµE[σ]Li−1−
(log s)2

2τ2

=
1
γ
−

eµ

γτE[σ]
√

2π
Jτ(eµE[σ]Li−1) (5.108)
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where we have defined

Jτ(a) ≡
∫ ∞

−∞

e−aey+y− y2

2τ2 dy (5.109)

In principle, these equations are enough to construct an iterative solution for L. However,

we may take this a step further for the low γ (large L) limit. In particular, if L is large, then

so is each Li. For a ≡ eµE[s]L � 1, Eqn. (5.109) can be evaluated by a standard saddle point

approximation[146, 12]. Setting y′ = y
√

a + τ2 and expanding around ys.p.
√

a = τ2 +W(aτ2eτ2
)

gives

Jτ(a) '
eτ2/2τ

√
2π√

W(aτ2eτ2
) + 1

e−
1

2τ2 [2W(aτ2eτ2
)+W(aτ2eτ2

)2] (5.110)

where W(aτ2eτ2
) is the principal branch of the Lambert W-function, satisfying W(ρ) exp W(ρ) = ρ.

This expression is valid up to a small correction of order O(τ2/W) ∼ O(τ2/log(a)) � 1.

Returning to our iterative solution for L in Eqn. (5.109), we will now plug in the previous

expression. Note that E[σ] = eµ+τ2/2

Li =
1
γ
−

1
γ

e−
1
τ2 [W(τ

2e2µ−τ2/2Li−1)+W(τ2e2µ−τ2/2Li−1)
2] (5.111)

In particular,

L1 =
1
γ
−

1
γ

e−
1
τ2 [W(τ

2e2µ−τ2/2/γ)+W(τ2e2µ−τ2/2/γ)2] (5.112)

One may continue this iteration procedure to arbitrary precision.

5.12 SafeGraph Data

In this Section we describe the approach by Looi et al. [140] to transform the set of location

pings into a dynamic network. In this network users are represented as nodes, and an edge (u, v, t)

indicates that user u crossed paths with user v at time t. A path crossing is defined to occur when
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two users have pings which are separated by less than 50 meters and less than 5 minutes. It should

be stressed that a path here is the same as a world line in relativity theory: it encompasses spatial

and temporal dimensions, so the users cross paths if they are at the same place at the same time.

To ensure that users are represented accurately, various filters are applied; for example, exclud-

ing users with fewer than 500 pings or removing duplicate users, which could potentially occur

if a single person carries multiple mobile devices. To compute the path crossings efficiently, the

authors apply a sliding time window, and, within each time slice, use a k-d tree to identify all

pairs of points within 50 meters of each other. We refer the reader to the original paper for de-

tails of the network-construction methodology. The constructed network captures 1 613 884 111

path crossings between 9 451 697 users across three evenly spaced months in 2017 (March, July,

and November). The network provides an estimate of the true contact network, where each user’s

number of contacts represents how many people they could possibly transmit the virus to or from.

Thus, we can use each user’s degree in the path crossing network to estimate their susceptibility

and infectivity.

Previous analyses of SafeGraph data have shown that it is representative of the US population,

in that it does not systematically over-represent users from certain income levels, racial demo-

graphics, degrees of educational attainment, or geographic regions [175]. Recently, their mobility

patterns have been instrumental in helping researchers study responses to the COVID-19 pan-

demic and to model the role of mobility in the spread of disease [53, 84, 31, 198]. Even so,

there are caveats to the data that we use. Most notably, the path-crossing network covers three

months in 2017, but individuals’ mobility patterns may have changed substantially following the

onset of the pandemic. Furthermore, different types of noise may affect an individual’s number of

observed crossings; for example, the frequency with which their phone pings. Filtering for only

well-represented users can help to mitigate this issue.
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Appendix A: Approximating Gamma and PolyGamma functions

For n ≥ 1 the polygamma functions have a series representation

ψn(t) = (−1)n+1n!
∞∑

k=0

1
(t + k)n+1 , (A.1)

Lemma A.0.1. For all m ≥ 1, z ∈ C \ [0,−∞),

ψm(z) = (−1)m+1m!
[

1
mzm +

1
2zm+1 +

m + 1
6zm+2 +

∫ ∞

0

(m + 1)(m + 2)(m + 3)
(x + z)m+4

P3(x)
6

dx
]
,

where P3(x) is the third order Bernoulli polynomial with period 1, and����∫ ∞

0

(m + 1)(m + 2)(m + 3)
(x + z)m+4

P3(x)
6

dx
���� ≤ ���� (m + 1)(m + 2)

120
1

zm+3

���� .
Proof. The first statement is proved by applying the Euler-Maclaurin formula to the series expan-

sion (A.1) of ψm(z). The inequality follows from the fact that supx |P3(x)| ≤ 1/20. �

Lemma A.0.2. For |z | < 1, m ≥ 0,

ψm(z) = (−1)m+1m!z−(m+1) +

∞∑
k=0
(−1)k+m+1ζ(k + m + 1)(k + 1)mzk .

We also have

ψm(z) = (−1)m+1m!z−(m+1) +

n∑
k=0
(−1)k+m+1ζ(k + m + 1)(k + 1)mzk + Rn

m(z),

where

|Re[Rn
m(z)]|, |Im[R

n
m(z)]| ≤

(n + m + 1)!
(n + 1)!

ζ(n + m + 2)|z |n+1.
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Proof. The first equation is the Laurent expansion of ψm(z) around 0. The bound on the remainder

comes from Taylor’s theorem. �

Lemma A.0.3. for arg(z) strictly inside (−π, π), as |z | → ∞,

log Γ(z) =
(
z −

1
2

)
log(z) − z +

1
2

log (2π) +O
(
1
z

)
.

and

ψ(z) = log(z) −
1
2z
+O

(
1
z2

)
.

These are special cases of [1, equations 6.1.42 and 6.4.11]

Lemma A.0.4. for each θ > 0, there exist constants C and D, such that for all y,

e−
π
2 |y |+C+(θ− 1

2 ) log(|y |) ≤ |Γ(θ + iy)|,

and for each ε, θ > 0, there exists M such that for all y > M,

e(−
π
2 −ε)|y | ≤ |Γ(θ + iy)| ≤ e(−

π
2 +ε)|y | .

Proof. The first statement follows from applying the Euler-Maclaurin formula to the series ex-

pansion of log(Γ(z)) and simplifying. The second statement follows from the first order Stirling

approximation of Γ(z). �

Lemma A.0.5. For any ε > 0, there exists an M > 0 such that if y > M, t ≥ 1
2 + ε, then

Re[ψ1(t + iy)] > 0

Proof. By Lemma A.0.1, we have

Re[ψ1(t + iy)] ≥ Re
[

1
t + iy

+
1

2(t + iy)2
+

1
3(t + iy)3

]
−

���� 1
20(t + iy)4

���� . (A.2)
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We expand the first two summands of (A.2)

Re

[
1

t + iy
+

1
2(t + iy)2

]
=

t
t2 + y2 +

t2 − y2

2(t2 + y2)2
≥

t − 1
2

t2 + y2 >
ε

t2 + y2 .

The third and fourth summands of (A.2) are bounded above by 1
3(t2+y2)3/2

and 1
20((t2+y2)2

respectively,

so we can choose an M large enough that Re[ψ1(t + iy)] > 0. �

Lemma A.0.6. There exists M ∈ R such that for any t ∈ [0,1], |y | > M, Re[ψ(t + iy)] > 0

Proof. Lemma A.0.3 implies that as y →∞ are

ψ(t + iy) ∼ 1/2 log((t − 1)2 + y2) + i arctan
( y

t − 1

)
+

1
2(t + iy)

.

Thus as |y | → ∞, Re[ψ(t + iy)] → +∞. �

Lemma A.0.7. For all θ ∈ R and |y | ≥ 1, we have

2π
eπ |y | + 1

≤
π

| sin(π(θ + iy))|
≤

2π
eπ |y | − 1

.

For all θ, y ∈ R, we have
π

| sin(π(θ + iy))
≤

π

| sin(πθ)|
.

Proof. The inequalities are straightforward to prove using sin(z) = eiz−e−iz

2i . �
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Appendix B: Bounds for dominated convergence of sticky Brownian motion

In this appendix we will complete the proofs of Lemma 3.2.10 and Lemma 3.2.11, 3.2.12, and

3.2.13.

Proof of Lemma 3.2.10. We first prove (3.27). For z ∈ Dε(φε), and v′, v ∈ C \ Cε, the expression�� 1
z−v′

�� is bounded, and ���� π

sin(π(z − v))
1
Γ(z)

���� ≤ 2πe
π
2 |Im[z]|−C−Re[z−1/2] log[Im[z]]

eπ |Im[z−v]|−1 . (B.1)

by Lemma A.0.4 and Lemma A.0.7. Because θ < 1, for small enough ε, 1/2ε ≤ Re[z−v] ≤ 1−δ,

so that | sin(π(z − v))| is bounded below by a constant c by Lemma A.0.7, and 1
|Γ(z)| is bounded

above on Dε,t(φε) by Lemma A.0.4. Thus���� π

sin(π(z − v))
1
Γ(z)

���� ≤ C. (B.2)

for some constant C.

The function Γ(v) has a pole at 0, and h(v) has a pole of order 2 at 0. For small enough δ and

t > 1, when v ∈ C ∩ Bδ(0). We know Γ(z) is well approximated by 1
z near 0 and h(θ) − h(v) is

well approximated by 1
z2 near 0. For any constant η > 0, we can choose an ε, such that for all

y ∈ (−ε, ε), ���� 1
iy

e
1
(iy)2

���� ≤ ����1ε e−
1
ε2

���� < η.

The contour C crosses 0 along the imaginary axis, so we can use the above bound with η as small

as desired to control et (h(θ)−h(v))2 , and for any v ∈ C \ Bδ(0), Γ(v) is holomorphic and thus bounded,

so
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���Γ(v)et (h(θ)−h(v))2

��� ≤ C′, (B.3)

for some constant C′.

For all z, we have

|et(h(z)−h(θ)) | ≤ e
h′′′(θ)

4 ε3
≤ C′′′. (B.4)

For all v ∈ C \ Cε,

|et (h(θ)−h(v))4 | ≤ e−tη/4,

by Proposition 3.2.9. Thus there exists T > 0 such that for all t > T ,

|et (h(θ)−h(v))4 |et−1/3σ(θ)y(z−v) | ≤ |e−tη/4e−t1/3σ(θ)y | < 1. (B.5)

The last inequality comes from choosing t sufficiently large.

Altogether (B.1), (B.2), (B.3), (B.4), (B.5) imply that for all z ∈ Dε(φε), v ∈ Cε,

����� π

sin(π(z − v))
Γ(v)

Γ(z)
et(h(z)−h(v))−t1/3σ(θ)yRe[z−v]

z − v′

�����
≤

2C′′′

ε
e−tη/4 max[C′,C′′]min

[
C,

2πe
π
2 |Im[z]|−C−Re[z−1/2] log(Im[z])

eπ |Im[z−v]|−1

]
. (B.6)

The left hand side of (B.6) is the integrand of Kut (v, v
′), so we can set G(z, v, v′) equal to the

right hand side of (B.6). Observe that min
[
C, 2πe

π
2 |Im[z] |−C−Re[z−1/2] log[Im[z]]

eπ |Im[z−v] |−1

]
is bounded above by a

constant and has exponential decay in Im[z] for Im[z] → +∞, thus we can set

R1 =

∫
Dε,t (φε)

min
[
C,

2πe
π
2 |Im[z]|−C−Re[z−1/2] log[Im[z]]

eπ |Im[z−v]|−1

]
dz < ∞.

Then

|Kut (v, v
′)| ≤

∫
Dε,t (φε)

G(z, v, v′)dz ≤ R1
2C′′′

ε
e−tη/4 max[C′,C′′] ≤ R2e−tη/4,
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where R2 = R1
2C ′′′
ε max[C′,C′′].

Note that (3.28) follows from (3.27), because Kut (v, v
′) depends on v′ only through the factor

1
z−v′ in the integrand. Thus we can apply the same argument where 1

z−v′ is multiplied by t−1/3 to

get

|Kut (v, v
′)| ≤ R2t−1/3e−tη/4. (B.7)

Now (3.28) follows from (B.7) and the definition of ωK . �

Proof of Lemma 3.2.11. For z ∈ Dε
ε (φε) and v ∈ Cε the function

�� 1
ωz−ωv′

�� is bounded and

���� t−1/3π

sin(πt−1/3(ωz − ωv))
Γ(θ + t−1/3ωv)

Γ(θ + t−1/3ωz)

���� ≤ c
t−1/3

t−1/3ε
≤

c
ε
, (B.8)

The second inequality is true because Γ is holomorphic in a neighborhood of θ, and sin(θ+iy) ≥

sin(θ) for all y , 0. Set r = maxωz∈B3ε(0) Re[ωz]3. we then have

|et[h(z)−h(v)] | ≤ e(
h′′′(θ)

6 +η)r+t( h
′′′(θ)

6 +η)(Re[ωz3]−r)+t(− h′′′(θ)
6 +η)ωv3

≤ e(
h′′′(θ)

4 )r+t( h
′′′(θ)
12 )(Re[ωz3]−r)−t( h

′′′(θ)
12 )ωv

3
,

(B.9)

|e−σ(θ)y(ωz−ωv) | ≤ e−σ(θ)y(ε−ωv) (B.10)

The first inequality follows from Taylor expanding h(z) around θ, setting η = h′′′(θ)
12 . The second

inequality is true because Re[z] = ε.

Inequalities (B.9) and (B.10) together yield

|exp (t[h(z) − h(v)] − σ(θ)y(ωz − ωv))|

≤ exp
(

h′′′(θ)
4

r + t
h′′′(θ)

12
(Re[ωz3] − r) − t

h′′′(θ)
12

ωv3 − σ(θ)y(ε − ωv)

)
(B.11)
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and

(B.11) ≤ exp

(
h′′′(θ)

4
r + t

h′′′(θ)
12
(Re[ωz3] − r) − t

h′′′(θ)
24

ωv3 − σ(θ)y

(
ε −

√
24σ(θ)y
h′′′(θ)

))
≤ c′ exp

(
t
h′′′(θ)

12
(Re[ωz3] − r) − t

h′′′(θ)
24

ωv3
)
.

The last inequality is true because Re[t(h′′′(θ)/24) + ωv4σ(θ)y] achieves its maximum at

Re[ωv] =
√

24σ(θ)yh′′′(θ).

Let

ω f (ωv,ωv′,ωz) =
C
ε2 et h

′′′(θ)
12 (Re[ωz3]−r)e−t h

′′′(θ)
24 ,

where C = cc′. Altogether (B.8), and (B.11) yield���� 1
ωz − ωv′

t−1/3π

sin(πt−1/3(ωz − ωv))
Γ(θ + t−1/3ωv)

Γ(θ + t−1/3ωz)
et[h(z)−h(v)]−σ(θ)y(ωz−ωv)

���� ≤ ω f (ωv,ωv′,ωz).

where the left hand side is the integrand of ωKε
ut (ωv,ωv

′), so the integrand is bounded above by

ω f (ωv,ωv′,ωz). Note that ω f is decreasing in t, so setting t = 1 gives that the integrand of

ωKut (ωv,ωv
′) is less than or equal to C

2ε exp
(

h′′′(θ)
12 (Re[ωz3] − r) − h′′′(θ)

24 ωv3
)
. This function is

independent of t and has exponential decay in cos(3φε)|z |3 so integrating it over Dε
ε,t(φε) gives a

finite result, so we have proven the first claim.

Set ` =
∫ ei(π−φ)∞

ε
e

h′′′(θ)
12 (Re[ωz3]−r)dωz < ∞, then

ωKε
ut (ωv,ωv

′) ≤

∫
Dε
ε,t (φε)

ω f (ωv,ωv′,ωz)dωz ≤
`C
ε2 e−

h′′′(θ)
24 ωv3

= C1e−
h′′′(θ)

24 ωv3
,

where C1 =
`C
2ε2 . This completes the proof. �

Proof of Lemma 3.2.12. For v, v′ ∈ Cε, z ∈ Dε,t(φε) \ D
ε
ε,t(φε), the function

�� 1
z−v

�� is bounded and

���� π

sin(π(z − v))
Γ(v)

Γ(z)

���� ≤ ce
π
2 |Im[z]|−C−(θ− 1

2 ) log(|Im[z]|)

eπ |Im[(z−v)]|−1 (B.12)
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This inequality follows from Lemma A.0.4. As long as φε < π
6 , |Im[z − v]| > δ for some δ, so the

right hand side of (B.12) is bounded for Im[z] ∈ R, and when Im[z] is large it has exponential

decay of order e−π/2Im[z]. Also

|e−t1/3σ(θ)y(z−v) | = |e−t1/3σ(θ)y(Re[z−v]) | ≤ |e−t1/3σ(θ)y(ε sin(φε)−ωv) |, (B.13)

and by Lemma 3.2.8 there exists η > 0, such that

|et[h(z)−h(v)] | = |eh(z)−h(θ) | |eh(θ)−h(v) | ≤ |e−tηe−
h′′′(θ)

12 ωv3
|. (B.14)

The last inequality follows from Taylor expanding the v variable term, and applying Lemma

3.2.8 to the z variable term. There exists a constant T > 0 such that for all t > T , tη/2 ≥

t1/3σ(θ)yε sin(φε). This inequality together with (B.13) and (B.14) implies that for all t > T ,

|et[h(z)−h(v)−t1/3σ(θ)y(z−v) | ≤ |e−tη− h′′′(θ)
12 ωv3−t1/3σ(θ)y(ε sin(φε)−ωv) | ≤ |e−tη/2− h′′′(θ)

24 ωv3+(− h′′′(θ)
24 ωv3−t1/3σ(θ)yωv)

(B.15)

≤ e−tη/2−t h
′′′(θ)
24 ωv3−σ(θ)y(ε−

√
24σ(θ)y
h′′′(θ)

)
≤ c′e−tη/2−t h

′′′(θ)
24 ωv3

.

The first inequality follows from our choice of T , and the second inequality follows from the fact

that Re[t(h′′′(θ)/24) − ωv3σ(θ)y(−ωv)] achieves its maximum at Re[v] =
√

24σ(θ)yh′′′(θ).

Set

g(z,ωv,ωv′) =
10
ε

c′e−tη/2−t h
′′′(θ)
24 ωv3

(
ce

π
2 |Im[z]|−C−(θ− 1

2 ) log(|Im[z]|)

eπ |Im[z−v]|

)
.

Together (B.12) and (B.11) imply���� 1
z − v

et[h(z)−h(v)−t1/3σ(θ)y(z−v) π

sin(π(z − v))
Γ(v)

Γ(z)

���� ≤ g(z,ωv,ωv′). (B.16)

The left hand side of (B.16) is the integrand of Kut (v, v
′). The expression

(
ce

π
2 |Im[z] |−C−(θ−

1
2 ) log( |Im[z] |)

eπ |Im[(z−v)] |

)
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is bounded as Im[z] varies in (−∞,+∞), and has exponential decay in Im[z] for large Im[z], so

we can set

S =
∫
Dε,t (φε)\D

ε
ε,t (φε)

(
ce

π
2 |Im[z]|−C−(θ− 1

2 ) log(|Im[z]|)

eπ |Im[z−v]|

)
dz < ∞.

Then

��Kt(θ + ωv, θ + ωv
′) − Kε

t (θ + ωv, θ + ωv
′)
��

≤

∫
Dε,t (φε)\D

ε
ε,t (φε)

g(z,ωv,ωv′)dz ≤
10Sc′

ε
e−tη/2et(−h′′′(θ)/24)ωv3 t→∞

−−−−→ 0. (B.17)

�

Proof of Lemma 3.2.13. We have the following inequalities,

ωKε
ut (ωvi,ωv j) ≤ C1e−t h

′′′(θ)
24 ωv3

i , (B.18)

ωKut (ωvi,ωv j) = ωKε
ut (ωvi,ωv j) (B.19)

+
(
t−1/3Kut (θ + t−1/3ωvi, θ + t−1/3ωv j) − t−1/3Kε

ut (θ + t−1/3ωvi, θ + t−1/3ωv j)

)
≤ C2e−tη/2et(−h′′′(θ)/24)ωv3

+ C1e−t h
′′′(θ)
24 ωv3

i ≤ C3et(−h′′′(θ)/24)ωv3
, (B.20)

where C3 = C1 + C2e−η/2. Inequality (B.18) follows from Lemma 3.2.11. The first inequality

of (B.20) comes from Lemma 3.2.11, Lemma 3.2.12 and the fact that t > 1. Hadamard’s bound

implies

| det(ωKε
ut (ωvi,ωv j))

m
i,j=1 | ≤ mm/2Cm/2

3

m∏
i=1

e−t h
′′′(θ)
24 ωv3

i .

Set ωHm(ωv,ωv
′) = mm/2Cm/2

3
∏m

i=1 e−t h
′′′(θ)
24 Re[ωvi]

3
, and set L =

∫ ∞
0 e−

h′′′(θ)
24 x3

dx < ∞. Then

∫
(ωCε)m

ωHm(ωv,ωv
′) ≤

∫
(C0)m

ωHm(ωv,ωv
′) ≤ mm/2Cm/2

3 Lm.
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Thus

1 +
∞∑

m=1

1
m!

∫
(C0)m

ωHm(ωv,ωv
′) ≤ 1 +

∞∑
m=1

mm/2Cm/2
3 Lm

m!
.

So because m! ≥
√

2π
m

(m
e

)m, we have

1 +
∞∑

m=1

1
m!

∫
(ωCε)m

ωHm(ωv,ωv
′) ≤ 1 +

∞∑
m=1

1
m!

∫
(C0)m

ωHm(ωv,ωv
′) < ∞.

�
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