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Abstract 

Nitrogen fixing trees in the United States: N flux, effect on forest demographics, and nutrient 

transfer model 

Anika Petach Staccone 

 

 Patterns and controls of net primary production (NPP) remain a critical question in 

ecology especially as climate modeling efforts expand. Nutrients, particularly nitrogen (N), can 

regulate NPP, which couples the N and C cycles. Biological nitrogen fixation (BNF) is the 

primary natural pathway by which new N enters ecosystems. The magnitude of the natural BNF 

flux is still not well constrained and the effect of this new N on forest demography and C storage 

is not well understood. In chapter 1 we use tree census data and two approaches of estimating 

BNF to make an estimate of the total N fixed by trees across the U.S.: 0.30-0.88 Tg N yr-1 (1.4-

3.4 kg N ha-1 yr-1), smaller than previously expected and on par with N inputs from understory or 

asymbiotic BNF and less than inputs from N deposition. The tree BNF input is dominated by two 

tree genera: Robinia and Alnus. In chapter 2 we use mixed effect models of forest census data to 

show that N-fixing trees have no net effect on forest biomass accumulate rate, indicating that 

though they can fertilize forests on long timescales, during the course of their lives the 

competitive influences they exert on neighbors balance any fertilization effect they may have. 

However, the net effect of N-fixing trees on forest development and carbon storage depends on 



 

 

local factors and can be significantly facilitative in contexts where N-fixers are less competitive 

or when neighbors occupy different forest niches. In chapter 3 we develop a theoretical model 

which shows lateral leaf litter is a plausible mechanism for observed N-fixer effects, wherein the 

percent of litter nutrients shared with neighbors can range from almost 0% for small trees to 

>90% for large isolated trees in low wind, fast decomposition environments. Litter nutrients 

spread more in windy environments or from trees whose leaf litter falls farther from trees and 

diffuses more quickly. In sum, N-fixing trees play an important role in temperate forests 

representing an important N input, however, the flux is smaller than previously expected and the 

fertilization effect of N-fixing trees is not observed during the census interval. 
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Introduction 

 Patterns and controls of net primary production (NPP) remain a critical question in 

ecology, especially as climate modeling efforts expand. New NPP can store C in forest biomass 

that would otherwise reside in the atmosphere. An estimated 25% of anthropogenic C emissions 

have been stored in forests globally (Pan et al. 2011). Nutrients, particularly nitrogen (N), can 

regulate NPP, which couples the N and C cycles. With the growing need to accurately 

characterize NPP (which stores C (Chapin III et al. 2011)), resolving uncertainties in the N cycle 

as they affect C storage is essential (Peng et al. 2018). In the temperate zone, climate models that 

include terrestrial processes show that Northern-latitude forests are carbon sinks (Tans 1990, 

Ciais et al. 1995, Houghton et al. 1999, Pacala et al. 2001) largely due to net reforestation 

(Houghton et al. 1999). However, the continued growth of these forests and their ability to store 

carbon is closely tied to N availability (Norby et al. 2010, Coskun et al. 2016). 

 In climate models NPP is limited by N, especially in temperate forests (Thomas et al. 

2015, Wieder et al. 2015). Background N inputs to temperate forests come from N deposition of 

atmospheric N, rock weathering, or biological N fixation (BNF), where atmospheric N2 is 

converted into plant available NH4
+. However, after decades of research on N limitation there are 

still knowledge gaps, with the magnitude of the BNF flux remaining a persistent uncertainty. 

Within the US the estimated BNF flux varies by 25-fold depending on the estimate used (Sobota 

et al. 2013). This uncertainty is so great that it prevents accurate characterization of N input to 

estimate NPP, N available for constructing nutrient budgets, and understanding local effects of 

N-fixing trees on N limitation. Symbiotic BNF in trees (hereafter N-fixing trees), a large natural 

N input, is uncertain both because the abundance of N-fixing trees is uncertain and the rate of 
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BNF in those trees is uncertain. Furthermore, the local impact of these N-fixing trees on the N 

available to neighboring trees to fuel NPP is also unclear. 

N inputs from BNF couple the C and N cycles at ecosystem scales by increasing 

available soil N (Binkley et al. 1992, 1994, Chapin et al. 1994, Perakis et al. 2011) and in young 

tropical forests almost half of the NPP is fueled by N from N-fixing trees (Batterman et al. 

2013). But it is not clear whether contemporary N-fixing trees have the same, fertilizing effect at 

local scales. In N-limited ecosystems such as Northern-latitude forests, N losses are relatively 

low, so the key nutrient cycling parameters for local soil effects are plant-mediated inputs and 

uptake (Brookshire et al. 2012). Since N-fixing trees input their own N (thereby relieving N 

limitation for themselves), it is often assumed that these N-fixing trees should have a competitive 

advantage in N-limited ecosystems (Menge et al. 2008), and theoretical models have confirmed 

that N-fixing plants are strong competitors when N limitation is sufficiently strong (Menge et al. 

2017a). On the other hand, N-fixing trees drop N-rich leaf litter which could fertilize neighboring 

trees, relieving N limitation and allowing neighbors to compete more strongly. Recent empirical 

work in tropical forests contradicts this hypothesis, suggesting that N-fixing trees either 

outcompete neighboring trees (Taylor et al. 2017) or are at least neutral in effect (Lai et al. 

2018). The hypothesis has not yet been tested in temperate forests where N limitation is more 

widespread, nor is the mechanism behind the observations confirmed. 

There are several mechanisms by which N-fixers might facilitate or reduce nutrient 

competition on their neighbors: transfer of nutrients via leaf and other sources of litter, transfer 

of nutrients via direct belowground linkages, or reduced pressure on the soil available nutrient 

pool (Forrester et al. 2006). One important mechanism by which N-fixing trees might facilitate 

their neighbors is litter transfer. Litter that decomposes and mineralizes  within the rooting radius 
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of a neighbor can potentially supply available N to that neighbor (Van Kessel et al. 1994, 

Parrotta et al. 1996). In forests where N-fixing tree leaf litter decomposes within a neighbor’s 

rooting radius, then leaf litter transfer could be an important driver of N-fixers facilitating their 

neighbors. However, if the N-fixer litter decomposes and mineralizes within its own rooting 

radius then the N-fixer likely has little facilitative effects on its neighbors and becomes an even 

stronger competitor itself. The extent to which N-fixing trees retain their leaf litter nutrients from 

year to year fits into the bigger context of how trees avoid losing nutrients once they have them. 

This thesis will be divided into three chapters: Chapter 1, which is published in Global 

Biogeochemical Cycles, discusses the magnitude of the BNF flux across US forests; Chapter 2, 

which is published in Journal of Ecology, outlines the impacts of N-fixing trees on neighboring 

trees and stand level demographics; and Chapter 3 will examine one mechanism of N-fixing tree 

interaction with neighbors through leaf litter transfer. Chapter 3 investigates the effects of litter 

sharing from a theoretical perspective to complement the empirical work in chapter 2 about when 

N-fixing trees facilitate or outcompete their neighbors. Overall, this work will elucidate the 

impacts of N-fixing trees on their neighbors, an issue which is still poorly understood though has 

significant implications for N and C cycling.  

 

 

  



4 

 

Chapter 1: A spatially explicit, empirical estimate of tree-based 

biological nitrogen fixation in forests of the United States 

Authors: Anika Staccone, Wenying Liao, Steven Perakis, Jana Compton, Christopher Clark, 

Duncan Menge  

Staccone, Anika, et al. "A spatially explicit, empirical estimate of tree‐based biological nitrogen 

fixation in forests of the United States." Global Biogeochemical Cycles 34.2 (2020): 

e2019GB006241. 

 

Abstract  

Quantifying human impacts on the nitrogen (N) cycle and investigating natural 

ecosystem N cycling depend on the magnitude of inputs from natural biological nitrogen fixation 

(BNF). Here, we present two bottom-up approaches to quantify tree-based symbiotic BNF based 

on forest inventory data across the coterminous USA and SE Alaska. For all major N-fixing tree 

genera, we quantify BNF inputs using (1) ecosystem N accretion rates (kg N ha-1 yr-1) scaled 

with spatial data on tree abundance and (2) percent of N derived from fixation (%Ndfa) scaled 

with tree N demand (from tree growth rates and stoichiometry). We estimate that trees fix 0.30-

0.88 Tg N yr-1 across the study area (1.4-3.4 kg N ha-1 yr-1). Tree-based N fixation displays 

distinct spatial variation that is dominated by two genera, Robinia (64% of tree-associated BNF) 

and Alnus (24%). The third most important genus, Prosopis, accounted for 5%. Compared to 

published estimates of other N fluxes, tree-associated BNF accounted for 0.59 Tg N yr-1, similar 

to asymbiotic (0.37 Tg N yr-1) and understory symbiotic BNF (0.48 Tg N yr-1), while N 

deposition contributed 1.68 Tg N yr-1 and rock weathering 0.37 Tg N yr-1. Overall, our results 

reveal previously uncharacterized spatial patterns in tree BNF that can inform large-scale N 
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assessments and serve as a model for improving tree-based BNF estimates worldwide. This 

updated, lower BNF estimate indicates a greater ratio of anthropogenic to natural N inputs, 

suggesting an even greater human impact on the N cycle. 

1 Introduction 

Biological nitrogen fixation (BNF), the process by which atmospheric nitrogen (N)2 gas 

is converted to NH4
+, is the main natural source of N in most terrestrial ecosystems worldwide 

(Fowler et al. 2013b) and especially in the USA (Sobota et al. 2013, Sabo et al. 2019). BNF is 

performed by a variety of prokaryotes, some of which live free in the soil or canopy (Reed et al. 

2011), some of which are associative or symbiotic with organisms other than higher plants (e.g., 

lichens and bryophytes) (Turetsky 2003, Antoine 2004, DeLuca et al. 2007), and some of which 

live symbiotically in root nodules of certain higher plants (Gyaneshwar et al. 2011, Azani et al. 

2017). In forests, symbiotic N-fixing trees often have access to more energy than free-living N 

fixers, so they can provide much of the N needed to support forest growth and regeneration 

(Batterman et al., 2013; Binkley, 2003; Binkley et al., 1992; Bormann et al., 1994; Perakis et al., 

2012). At local scales tree BNF can be substantial, bringing in over 100 kg N ha-1 yr-1 (e.g., 

Binkley et al., 1994; Mitchell & Ruess, 2009), but there is considerable variation across sites. 

Scaling from local sites to landscape and regional scales is important for understanding the 

ecological role of N-fixing organisms, quantifying the relative impact of human derived N fluxes 

compared to natural rates, and parameterizing Earth System models (Hungate et al. 2003, Gruber 

and Galloway 2008, Wieder et al. 2015, Stocker et al. 2016).  

BNF is difficult to estimate accurately at landscape and regional scales because it is 

spatially heterogeneous and challenging to measure in the field. A variety of approaches have 

been used to estimate BNF, yielding global estimates ranging from 58 (Vitousek et al., 2013) to 
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340 Tg N yr-1 (Xu-Ri & Prentice, 2017). This six-fold difference demonstrates that after decades 

of N cycling research there remains a large uncertainty on this flux. The first efforts to quantify 

regional-scale BNF were bottom-up extrapolations. An early estimate of BNF in USA forests 

multiplied a single BNF rate (1 kg N ha-1 yr-1) by the nonagricultural land area (Jordan and 

Weller 1996). In 1999 Cleveland et al. improved on Jordan and Weller’s method by synthesizing 

literature BNF rates for each biome and for symbiotic and asymbiotic N-fixers separately 

(Cleveland et al. 1999). To scale up to biome level BNF, Cleveland et al. made educated guesses 

about plant cover for N-fixing trees and understory plants, then multiplied these biome-specific 

BNF rates by the area of each biome, yielding a global estimate of 195 Tg N yr-1. To get a 

spatially explicit estimate of BNF, Cleveland et al. correlated BNF with evapotranspiration and 

produced a global BNF map based on this correlation. In 2004 Galloway postulated that N-fixing 

trees were rarer than assumed in the Cleveland estimate, and the BNF rates were elevated due to 

bias in literature to study areas where N-fixing trees are important (Galloway et al. 2004). 

Galloway estimated a global flux of 107 Tg N yr-1 based on scaling down the results of 

Cleveland et al. (1999) by assuming that N-fixers were 5% of tree basal area cover.  

 Following the early efforts to quantify BNF on regional or global scales using bottom up 

approaches, researchers tried to circumvent the uncertainty in abundance and flux measurements 

of N-fixing organisms by using top-down modeling approaches. In 2013 Cleveland et al. used 

CASA-CNP, which estimates BNF as the difference between N demand for NPP and N 

deposition plus N resorption (Cleveland et al. 2013). They also broke the estimate down into 

contributions from symbiotic N-fixers (105 Tg N yr-1) and asymbiotic N-fixers (22 Tg N yr-1). Ri 

and Prentice (2017) used DyN-LPJ to estimate demand for total new N inputs, of which BNF is a 

major part. This produced a single aggregated estimate (340 Tg N yr-1) as well as spatially 
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explicit maps developed from location-based parameter inputs. Vitousek and collaborators used a 

15N isotope modeling approach that assumed a steady state pre-industrial N cycle and calculated 

BNF as the difference between losses (hydrologic and gaseous, inferred using N isotopes) and 

inputs aside from BNF (N fixed by lightning and deposition from ocean to land) (Vitousek et al. 

2013). This produced a single aggregated BNF estimate (58 Tg N yr-1) for terrestrial ecosystems 

globally that cannot be mapped or divided into tree, understory, and asymbiotic N-fixers. Sulman 

and collaborators used LM3-SNAP to estimate plant N acquisition by direct uptake vs. 

mycorrhizal uptake vs. symbiotic BNF via a return-on-investment framework. They estimated 46 

Tg N yr-1 of symbiotic BNF globally and provided spatially explicit maps (Sulman et al., 2019). 

Meyerholt and collaborators used several BNF formulations in the O-CN model to estimate 

global BNF with a median flux of 128 Tg N yr-1 (Meyerholt et al. 2016). Lawrence and 

collaborators presented CLM5 with a biogeochemical cycle that distributes BNF throughout the 

year and assigned a C cost for BNF. They estimated 57.9 Tg N yr-1 of symbiotic BNF globally 

(Lawrence et al. 2019). 

 Despite the long history of work quantifying BNF and the diversity of approaches used, 

the amount of BNF is still highly uncertain. For example, a review of N inputs in the United 

States noted that estimates of natural BNF in forests are sufficiently uncertain (0.5 to 12.2 Tg N 

yr-1) that they hamper development of accurate national N budgets (Sobota et al., 2013). 

Quantifying natural BNF is essential to contextualize the human perturbation of the N cycle from 

fertilizer production, cultivated BNF, and fossil fuel combustion (Galloway and Cowling 2002) 

as well as for understanding N cycling within ecosystems. A well constrained USA national 

scale BNF estimate would improve predictions of forest response to elevated CO2 (Hungate et al. 
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2003), national N budgets (Sabo et al. 2019), water quality (Wise and Johnson 2011), and 

ecological understanding of N cycling. 

Here we present a bottom-up BNF estimate for USA forests based on census estimates of 

N-fixing tree abundance, which was a key uncertainty in tree BNF estimates such as the 

Cleveland et al. (1999) estimate. The US Forest Service conducts a systematic survey of forests 

across the country (FIA), which can be used to document the abundance of N-fixing tree species 

at scales ranging from local plots to the entire country (e.g., Menge et al. 2010, 2014, 2017; Liao 

et al. 2016). We combine these abundance and distribution data with updated, ecosystem-scale 

genus-specific BNF rate data from the literature to estimate tree-based BNF nationally. 

Additionally, we use a second, independent method that estimates BNF from N demands of N-

fixing trees. This second method uses FIA-based growth rates of N-fixing trees to quantify their 

N demand, along with published data on the percent of N that N-fixing trees derive from 

fixation. We further explore potential effects of light limitation on BNF rates, which is known to 

be an important control on rates of BNF (Gutschick, 1981; Heilman & Stettler, 1983, 1985; 

Myster, 2006; Taylor & Menge, 2018), and evaluate the relative importance of tree-based BNF 

compared to other forms of BNF and atmospheric N deposition.  

 

2 Materials and Methods 

The goals of this research are to produce a national map of N inputs from tree-based 

BNF, quantify the magnitude of this tree BNF flux at the continental scale, and put this BNF 

estimate in context by comparing it to other published N input fluxes. We use two 

complementary methods that take advantage of spatially explicit data on N-fixer abundance to 

estimate BNF in trees across the US. First we use forest inventory data on the abundance 
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distribution of N-fixing trees to upscale published genus-specific BNF rates to spatially-explicit 

values (which we call our “accretion” method). Second, we quantify N demand by N-fixing 

trees, using forest inventory data for the growth rates of N-fixing trees, published tissue 

stoichiometry data, and the percent of N derived from fixation (%Ndfa) (which we call our “N 

demand” method). Both methods allow us to estimate genus- and abundance-specific tree-based 

symbiotic BNF rates at scales ranging from individual plots to the entire US.  

Some tree taxa such as pine support endophytic N-fixing bacteria (Moyes et al. 2016, 

Padda et al. 2019). The extent and rates of BNF in these trees are not widely known, though 

Wurzburger (2016) extrapolated the rates reported by Moyes et al. (2016) and found that the flux 

for pines was negligible. Reports also suggest BNF in Populus trichocarpa, via endophytes 

(Doty et al. 2016), and Pinus contorta, via bacteria that live within their tuberculate mycorrhizae 

(Paul et al. 2007, Chapman and Paul 2012). We use the abundance of Pinus contorta and 

Populus trichocarpa along with published BNF rates (Paul et al. 2007) to examine their 

ecosystem level relevance (see Appendix A – section S4).  

 

2.1 Literature Search 

In both methods we rely on BNF rate data from a single, systematic literature search. The 

search terms for genus-specific symbiotic BNF rates include “genus”+”N2 fixation”, 

“genus”+”BNF rate”, “genus”+”nitrogen fix*“, and “BNF”+”common name” where the actual 

genus names (e.g. Alnus, Robinia) replace “genus” in the search term. In the accretion method, 

results were screened for fixation rates (units: kg N ha-1 yr-1) and stand basal area (m2 ha-1). Data 

from Acetylene Reduction Assays (ARA) were excluded because of uncertainties associated 

with converting the amount of acetylene fixed to N fixed (Giller 2001, Russo 2005), scaling 
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instantaneous measurements to an annual rates (Shearer et al. 1986, Russo 2005), and sampling 

nodule biomass (Winbourne et al. 2018). These accretion studies measure BNF rate using a mass 

balance approach where the change in N of the system is equal to BNF plus N deposition minus 

denitrification and solution losses (Silvester 1983). Though some accretion studies don’t measure 

N losses, which leads to an underestimate of BNF rates, and others use a space-for-time 

substitution assuming identical site conditions for all stands, accretion-based BNF rates are 

relatively robust compared to acetylene reduction extrapolations. Results from accretion studies 

with other units (e.g., g N m-2 yr-1) were converted to kg N ha-1 yr-1. In the N demand method 

literature results of natural abundance and 15N enrichment studies were used to find %Ndfa (the % 

of N derived from fixation) for each genus. The geographic area screened in the literature review 

was not constrained to the USA due to the scarcity of studies focusing on measuring BNF in 

trees.  

 

2.2 Flux Estimate by Scaling BNF Rates from N Accretion Studies (method 1) 

We obtained tree census data from version 5.1 of the USFS Forest Inventory and 

Analysis (FIA) database (Burrill et al. 2017). The FIA is a systematic survey of forest plots with 

one plot per ~2400 ha of forest, totaling >500,000 unique plots. Most FIA plots are 0.067 ha, 

comprised of four 7.3 m radius subplots. The FIA defines forest as ≥10% crown cover where the 

patch is at least 1 acre in area and not part of agricultural or urban system (Burrill et al. 2017). 

Plot censuses occur every 5-10 years on a subset of plots; we used the most recent census 

measurement for each plot, which ranged from 1993-2013. In each census, trees ≥ 12.7 cm DBH 

are recorded, along with their DBH, species identity, and a variety of other data. N-fixing 

rhizobial species were identified from Sprent (2009) and actinorhizal species from Huss-Danell 
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(1997). The analysis covered the coterminous United States and SE Alaska. The N-fixing trees 

we studied belong to five rhizobial genera (Acacia, Albizia, Olneya, Prosopis, and Robinia), as 

well as three actinorhizal genera (Alnus, Cercocarpus, and Elaeagnus). The spatial distribution 

of these genera has a strong geographic pattern (Figure 1a): Robinia is most abundant in the 

eastern US; Alnus in Oregon, Washington, southeast AK and the western US; Cercocarpus in the 

Rocky Mountains and Utah; and Prosopis in Texas and the southwestern US. These genera vary 

widely in their BNF rates so have different effects on the natural BNF flux. Other N-fixing 

genera included in the FIA database (Casuarina, Sophora, Piscidia, and Ebenopsis) were not 

included in our analysis because they had fewer than 15 stems across the US (coterminous USA 

and southeast AK). Overall, >110,000 N-fixing trees from >500,000 unique plots were 

incorporated in the analysis.  

We estimated plot-scale BNF as a function of the basal area of N-fixing trees within the 

plot. Basal area, the cross-sectional area of all trees in the stand at breast height (1.3 m) divided 

by the area sampled, is an easily measured predictor for biomass because it accounts for both the 

size and number of trees. When there were no N-fixing trees in the plot there was also no tree-

based BNF. When N-fixing tree basal area in the plot was greater than zero we used genus-

specific relationships to estimate plot-scale BNF. Theory suggests that the relationship between 

N-fixing tree abundance (m2 ha-1) and BNF (kg N ha-1 yr-1) might be linear for the species that 

have obligate BNF strategies (Menge et al. 2009), but saturating or constant for species that are 

facultative (Menge & Levin 2017). Therefore, we used the data from our literature review to 

establish these relationships empirically. When a linear relationship existed in the literature-

derived data for BNF rate and N-fixing tree basal area (as was the case for all species other than 

Robinia and Alnus), we used it. However, when no positive relationship existed (for Robinia and 



12 

 

Alnus) we used a constant value for BNF for any plot with non-zero basal area of that N-fixing 

genus. At the plot scale fixed N was calculated for each genus (except Robinia and Alnus) by 

multiplying stand basal area by the per basal area BNF rate for that genus (equation 1a).  

𝐹𝑝𝑙𝑜𝑡 = ∑ ((∑ 𝐵𝐴𝑎𝑔 ∗ 𝑇𝑃𝐻𝐴𝑎𝑔) ∗ 𝐹𝑔 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑔)
# 𝑡𝑟𝑒𝑒𝑠 𝑜𝑓 𝑔𝑒𝑛𝑢𝑠 𝑔
𝑎=1

# 𝑔𝑒𝑛𝑒𝑟𝑎
𝑔=1  (1a) 

Equation 1a calculates the N fixed per plot, Fplot, (kg N). BAtg (m
2) is the basal area of a 

tree a of g. TPHAtg (trees ha-1) is the inverse of the ground area on which tree a was sampled. 

BAag times TPHAag gives the stand level basal area represented by tree a (m2 ha-1). The sum of 

BAag times TPHAag for all trees of genus g in a plot (m2 ha-1) is the stand basal area of genus g in 

that plot. Fg (kg N m-2 yr-1) is the BNF rate per basal area for genus g. Multiplying stand basal 

area by Fg and adding interceptg for a given genus gives stand BNF for that genus. Fg and 

interceptg were estimated from the literature search using a linear regression between BNF rate 

(kg N ha-1 yr-1) and stand basal area (m2 ha-1) (see S1 text for details). The regression was 

bootstrapped at the plot scale to account for the relatively small and variable sample for BNF in 

each genus from the literature. The plot scale linear regression was bootstrapped 1000 times as a 

multivariate normal distribution to get the confidence interval on Fg and interceptg where μg is 

the regression slope mean, σg is the standard error of the regression slope, μg-int is the regression 

intercept mean and σg-int is the regression intercept standard error (see Table 1 for regression 

parameters). We aggregated to the genus level because many species had insufficient published 

BNF data (1 or fewer studies that reported both BNF rate and stand basal area). 

To account for the fact that BNF did not appear to scale with stand level BA in Robinia 

and Alnus (R2 = 0.08 and 0.009, Table 1) in the literature search, we assumed a constant BNF 

rate independent of stand basal area. If a Robinia stem was present in a given plot then the BNF 

rate was bootstrapped based on the mean BNF rate from literature review data for this genus 
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using a normal distribution with mean 52 kg N ha-1 yr-1 and standard error 12.3 (Table S2). Alnus 

stems were treated the same way with mean 104 kg N ha-1 yr-1 and standard error 23.9.  

𝑅𝑜𝑏𝑖𝑛𝑖𝑎 𝐹𝑖𝑥𝑒𝑑 𝑁 𝑝𝑒𝑟 𝑝𝑙𝑜𝑡 (𝐹𝑝𝑙𝑜𝑡) = {
𝑛𝑜𝑟𝑚(𝜇𝑅𝑜𝑏𝑖𝑛𝑖𝑎, 𝜎𝑅𝑜𝑏𝑖𝑛𝑖𝑎), 𝑝𝑟𝑒𝑠𝑒𝑛𝑡

0, 𝑎𝑏𝑠𝑒𝑛𝑡
 (1b) 

To aggregate the plot level fixed N to the grid cell scale (kg N ha forest-1 yr-1) we took 

the average N fixed across all plots in the grid cell (equation 1c). 

𝐹𝑖𝑥𝑒𝑑 𝑁 𝑝𝑒𝑟 𝑓𝑜𝑟𝑒𝑠𝑡 𝑎𝑟𝑒𝑎 𝑎𝑐𝑟𝑜𝑠𝑠 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙 (𝐹𝑐𝑒𝑙𝑙) = 𝑚𝑒𝑎𝑛(𝐹𝑝𝑙𝑜𝑡)  (1c) 

We report BNF rates in two ways: N fixed per forest area and N fixed per ground area. 

To get the average BNF rate on a per ground area basis (kg N ha ground-1 yr-1) we took the 

average N fixed across all plots in the grid cell and multiplied by the fraction of ground covered 

by forest (equation 1d). The area of forest within the grid cell was obtained from US FIA land 

cover maps (USGS 2000) processed in R using the raster (Hijmans 2017) and sp (Pebesma and 

Bivand 2005) packages.  

𝐹𝑖𝑥𝑒𝑑 𝑁 𝑝𝑒𝑟 𝑔𝑟𝑜𝑢𝑛𝑑 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙 (𝐹𝑐𝑒𝑙𝑙−𝑔𝑟) = 𝑚𝑒𝑎𝑛(𝐹𝑝𝑙𝑜𝑡) ∗ 𝑓𝑟𝑎𝑐 𝑓𝑜𝑟𝑒𝑠𝑡  (1d) 

To estimate the total flux of tree-based BNF per year (kg N yr-1) in the coterminous USA 

we summed the N fixed across each grid cell (equation 1e).  

𝐹𝑖𝑥𝑒𝑑 𝑁 𝑎𝑐𝑟𝑜𝑠𝑠 𝑐𝑜𝑡𝑒𝑟𝑚𝑖𝑛𝑜𝑢𝑠 𝑈𝑆 = ∑ (𝐹𝑐𝑒𝑙𝑙𝑐
∗ 𝑓𝑜𝑟𝑒𝑠𝑡 𝑎𝑟𝑒𝑎𝑐)

#𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙𝑠
𝑐=1    (1e) 

 

2.3 Flux Estimates by Scaling N Demands of N-fixing Trees (method 2) 

 Our second, largely independent approach estimated the N demand by N-fixing trees 

based on N-fixer growth data, allometric equations, and percent N derived from the atmosphere 

(%Ndfa). The %Ndfa is the fraction of N that was supplied by BNF, as determined by comparing 

N isotope values of fixing and non-fixing species (Shearer & Kohl, 1986), which we aggregated 

at the genus level. We used FIA data to estimate incremental growth and calculated the N that 
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each N-fixing tree required for wood growth, litter turnover, and fine root turnover. We assumed 

that new N is needed for the increment in wood (not the total wood N) but for the total litter N 

and total fine root N because those tissues turn over annually. The required N was calculated 

using allometry and C:N ratios for each tree in each plot and then aggregated to get the total tree 

N demand across the US. At the plot level, 

𝑁 𝑓𝑖𝑥𝑒𝑑𝑝𝑙𝑜𝑡 = ∑ ∑ %𝑁𝑑𝑓𝑎,𝑖 ∗ (#𝑡𝑟𝑒𝑒𝑠
𝑎=1 ∆𝑤𝑔𝑎 + 𝑓𝑔𝑎 + 𝑟𝑔𝑎)

#𝑔𝑒𝑛𝑒𝑟𝑎
𝑔=1    (2a) 

Equation 2a calculates plot level N fixed by finding the N demand for each tree (Δwga + fga + 

rga), multiplying that demand by the fraction of demand met by BNF (%Ndfa), and summing 

across all trees in the plot. The terms ∆wga, fga, and rga represent kg N used for wood growth 

increment (equation 2b), foliage replacement (equation 2c), and fine root turnover (equation 2e), 

respectively. 

∆𝑤𝑔𝑎 = (
∆𝑎𝑔𝑏𝑔𝑎

𝑡
)(𝑓𝑟𝑎𝑐𝑤𝑜𝑜𝑑)(1/𝐶: 𝑁𝑤𝑜𝑜𝑑)(𝑇𝑃𝐻𝐴𝑔𝑎)    (b) 

𝑓𝑔𝑎 = (𝑎𝑔𝑏𝑔𝑎)(𝑓𝑟𝑎𝑐𝑓𝑜𝑙𝑖𝑎𝑔𝑒)(1/𝐶: 𝑁𝑓𝑜𝑙𝑖𝑎𝑔𝑒)(𝑇𝑃𝐻𝐴 𝑔𝑎)(1 − 𝑟𝑒𝑠)  (c) 

𝑓𝑖𝑛𝑒 𝑟𝑜𝑜𝑡𝑔𝑎 = 0.072 + 0.354𝑒−0.060∗1.576𝑎𝑔𝑏𝑔𝑎
0.615

    (d) 

𝑟𝑔𝑎 = (
1

𝐶:𝑁𝑓𝑖𝑛𝑒 𝑟𝑜𝑜𝑡
) ∗ 𝑓𝑖𝑛𝑒 𝑟𝑜𝑜𝑡𝑔𝑎 ∗ (1 − 𝑟𝑒𝑠𝑓𝑖𝑛𝑒 𝑟𝑜𝑜𝑡)   (e) 

The N used for wood growth (∆wga) is the change in aboveground biomass (kg C) 

between the two census points divided by the census interval (t in years) multiplied by the 

fraction of aboveground biomass in the wood (Jenkins et al. 2003) multiplied by the N:C ratio of 

wood (1/350, (Du and de Vries 2018)) multiplied by the TPHA or trees per hectare that tree 

represents (ha-1). Aboveground biomass (kg C) data are obtained from the FIA database (Jenkins 

et al. 2003). The fraction of this biomass allocated to different tissues: wood and foliage was also 

calculated based on Jenkins et al. (2003). For the foliage N calculation (equation 2c), fga assumed 
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that deciduous trees lose their entire crown of leaves each year and must replace the N lost 

during senescence. All genera except Cercocarpus are deciduous. Although Cercocarpus species 

span deciduous to evergreen (Abrahamson 2019), most leaves are shed annually in evergreen 

species so the leaf turnover rate in Cercocarpus is about once per year (Ackerly 2004). The 

foliage N was calculated by multiplying the aboveground biomass (agbga in kg C) times the 

fraction of biomass in foliage (from Jenkins et al., 2003) times the N:C ratio in foliage (1/35 kg 

C kg N-1) (McGroddy et al. 2004) times the inverse of the area on which the tree was sampled 

TPHAga (ha-1) times the fraction of nutrients not resorbed before senescence (deciduous fixers: 

49.5%; deciduous non-fixers: 59.7%; evergreen fixers: 41.8%; evergreen non-fixers: 54.5% 

(Vergutz et al. 2012)). The fine root biomass frga was calculated based on Li et al., 2003. The 

fine root N was the fine root biomass (kg C) times the N:C ratio for fine roots (1/43 kg C kg N-1) 

(Gordon and Jackson 2000). Fine root N resorption of 27% was used (Freschet et al. 2010) for all 

genera. 

 Since only 0.9% of FIA plots were measured at a second census time and those time 

series plots were not evenly distributed geographically, we used the time series plots to build 

distributions of the relative growth rates of each N-fixing genus based on the DBH of an 

individual of that genus. These distributions were then used to predict the change in aboveground 

biomass to calculate N demand for wood growth for all trees in the FIA dataset.  

 To aggregate to the grid cell scale for method 2, equations 1c and 1d were used (for a per 

forest area and per ground area basis respectively) where Fplot was the N demand in the plot. To 

aggregate to the continental scale the plot N demand at the grid cell scale was multiplied by the 

forest area in that grid cell and all grid cells were added (as in equation 1e). 
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2.4 Upper and Lower Bound of tree BNF (method 2) 

To bound the N demand method (method 2) we considered the most relaxed assumptions 

about the %Ndfa itself. To get the maximum N required to support N-fixing trees we assumed that 

all N required for annual wood growth, foliar turnover, and fine root turnover is derived from 

BNF (%Ndfa = 100%) and that no N was resorbed from leaves before senescence (resorption = 

0%). To get the (trivial) minimum N requirement to support N-fixing trees (lower bound) we 

assumed that %Ndfa = 0%. 

 

2.5 Light Limitation to tree BNF 

BNF is an energetically expensive process (Gutschick 1981) and light availability can 

constrain BNF (McHargue 1999, Myster 2006, Taylor and Menge 2018). We considered light 

limitation in an additional analysis by assuming that trees classified as open grown, dominant, or 

co-dominant in the FIA dataset fixed at the rate in Table 1, but that those in the understory 

(intermediate and overtopped) did not fix (F = 0). 

 

2.6 Sensitivity Analysis for tree BNF (methods 1 and 2) 

 We considered the effect of varying all parameter values that are potential sources of 

error in the estimate. This allowed us to systematically examine uncertainty in the calculation. 

For the accretion method (method 1) these factors included fixation rates per basal area, N-fixing 

tree abundance, and controls on the rates (light availability). To vary fixation rate per basal area 

we allowed the BNF rate to vary between the upper and lower bounds of the 95% confidence 

interval for one genus at a time while holding others constant. We tested N-fixing tree abundance 

at 150% and 50% of its original value in each grid cell. For the fixation rates per basal area and 
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N-fixing tree abundance we varied these parameters at the plot level. For the N demand method 

(method 2) these factors included the C:N ratio of each tissue type, N-fixing tree biomass 

(abundance and growth rate), and resorption rates. We also examined the effect of varying the 

%Ndfa and fraction of aboveground biomass in the foliage. We examined these factors at 150% 

and 50% of their original value.  

 

2.7 Understory (Symbiotic Shrubs and Herbs) 

We included an existing understory BNF value to contextualize our estimates of tree 

BNF. We used the symbiotic percent cover from Cleveland et al. (1999), assuming 3% cover by 

N-fixing understory plants, since no data set exists for understory plants to improve this 

assumption. To aggregate up to the continent scale we used the understory rate in per hectare of 

forest from Cleveland et al. (1999; 2.2 kg N ha-1 yr-1) and multiplied by the area of forest area 

obtained from the USGS forest cover map. Though soils, leaves, litter, and lichens can also host 

symbiotic N-fixers on land, these groups were not included in the understory.  

 

2.8 Asymbiotic Fixation 

 We also included existing BNF estimates from asymbiotic microbes in litter, soil, and 

woody debris (Reed et al. 2011). Though individual studies have documented substantial 

variation across space and time from asymbiotic BNF (Pérez et al. 2010, Reed et al. 2010), we 

did not have a spatially-explicit dataset of asymbiotic BNF, so we assumed that N fixed by 

asymbiotic soil microbes was a constant 1.7 kg N ha-1 yr-1 across forest area based on the 

temperate forest estimate in the review by Reed et al. (2011). Total N fixed by asymbiotic N 
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fixers across the country was calculated by multiplying the per ground area BNF rate (1.7 kg N 

ha-1 yr-1) by the area of forest calculated above.  

𝐹𝑖𝑥𝑒𝑑 𝑁𝑎𝑠𝑦𝑚𝑏𝑖𝑜𝑡𝑖𝑐 = 𝑎𝑠𝑦𝑚𝑏𝑖𝑜𝑡𝑖𝑐 𝑁 𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 ∗ 𝑓𝑜𝑟𝑒𝑠𝑡 𝑎𝑟𝑒𝑎  (4) 

This method uniformly scales the measured asymbiotic rate based on forest area.  

 

2.9 Nitrogen Deposition and Rock Weathering 

N deposition and rock weathering were included to contextualize the magnitudes of BNF. 

Total N deposition (TDEP) was obtained from Schwede & Lear (2014). Rock N data were 

obtained from Houlton & Dahlgren (2018). Since these data had 12 km and 0.5° grid resolution, 

respectively, they were resampled to 1° grid squares using the sp package in R (Pebesma and 

Bivand 2005).  

 

3 Results 

3.1 Literature Review and Genus-level Tree BNF 

 In total, 17 unique reports of BNF rates in trees met the above criteria for the N accretion 

method (method 1; Tables 1, Appendix A – S1, S3). Three of the reports were for Acacia, ten for 

Alnus, one for Robinia, and the other three were for Prosopis. The screening criteria that had the 

greatest impact on narrowing the dataset were only using accretion methods and eliminating 

papers without stand level basal area of N-fixers reported (or necessary information to calculate 

stand level BA). For the N demand method (method 2), 37 papers fit the screening criteria. Of 

those, 14 of the papers were for Acacia, 7 for Alnus, 6 for Prosopis, and 5 for Robinia (Appendix 

A – Tables S1, S2).   



19 

 
 



20 

 

Figure 1. Symbiotic N-fixing tree abundance across the coterminous USA and SE Alaska 

a) Each point represents one mature tree in the FIA dataset. The color corresponds to genus. N-

fixing tree genera are regionally constrained: Robinia in the east, Alnus in the Pacific Northwest, 

Prosopis in the southwest, and Cercocarpus in the southwest and UT. The basal area of 

symbiotic N-fixing trees is shown b) per forest area and c) per ground area for each 1° latitude x 

1° longitude grid cell. White grid cells in b) and c) contain fewer than 2 FIA plots. Colors are on 

a logarithmic scale, but with numbers less than 0.1 m2 ha-1 (including 0) set to the darkest blue 

for plotting purposes. 

 

Table 1. Genus-specific N fixation rates & %Ndfa from literature search 

  

 

 

Type 

Accretion Method N Demand Method 

Genus 
N fixation rate per 

stand basal area 
Intercept  

 

 

 

 

 

%Ndfa  

 
[kg N yr-1 m-2 

basal area] 

[kg N ha-1 yr-

1] 
    

 Mean (SE) Mean (SE) R2 n Mean (SE) n 

Acacia Rhizobial 6.28   (3.19) 2.47   (39.83) 0.49 6 50.5 (0.5) 45 

Albizia Rhizobial 2.25   (3.22) 40.37 (48.14) -- * 78.5 (3.2) 2 

Olneya Rhizobial 2.25   (3.22) 40.37 (48.14) -- * 53.1 (0.2) ** 

Prosopis Rhizobial 2.73   (0.49) 3.21 (2.69) 0.94 4 40.7 (0.9) 25 

Robinia Rhizobial *** (--) 52 (12.29) -- 3 66.0 (1.5) 16 

Alnus Actinorhizal *** (--) 103.8 (23.92) -- 17 75.7 (1.9) 8 

Cercocarpus Actinorhizal 2.25   (3.22) 40.37 (48.14) -- * 53.1 (0.2) ** 

Elaeagnus Actinorhizal 2.25   (3.22) 40.37 (48.14) -- * 73.5 (3.9) 2 

*Fixation rate obtained from mean of Acacia, Prosopis, Robinia, and Alnus. 

**%Ndfa obtained from mean of other genera that had data available. 

***The regression with Robinia has an R2 of 0.08 and Alnus 0.009 indicating no relationship 

between fixation rate and basal area. If one or more Robinia or Alnus were present the average 

rate (kg N ha-1 yr-1) from the literature search was used (see text).  

Note: sources are listed in the supplementary information (Table S1, Text S2). Some papers 

looked at several species under different conditions so n is greater than the number of studies 

 

3.2 Tree BNF Across the USA 

Accretion studies are conducted across a range of stand ages and likely capture some 

variety in the degree of downregulation in forests. The average N-fixer tree basal area (m2 ha-1) 

within a one degree grid cell ranged from 0 to 12.3 m2 ha-1 per forest area (Fig. 1b) and 0 to 3.1 
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m2 ha-1 per ground area (Fig. 1c). Although the FIA contains some plots comprised entirely of N-

fixers (100% of total stand basal area), on average FIA plots are composed of 1.36% basal area 

from N-fixing trees. When aggregated at the one degree scale, basal area of N-fixers was highest 

in the Pacific Northwest with Alnus and Texas where Prosopis dominates. There is a distinct lack 

of N-fixing trees across the northern USA and the Rocky Mountain region. 

Symbiotic N-fixing trees account for 0.304 ± 0.005 Tg N yr-1 (by the N demand method) 

to 0.878 ± 0.002 Tg N yr-1 (by the accretion method) across the coterminous US and southeast 

Alaska. This is equivalent to 18% or 52% of the N deposition flux by the N demand method and 

accretion method respectively. On a per forest area basis at the grid cell scale, tree BNF ranged 

from 0-69 kg N ha-1 yr-1 (median = 0.4 kg N ha-1 yr-1). Tree BNF hotspots occurred in the Pacific 

Northwest, southwest, Texas, and the mid-Atlantic (Figure 2a). The location of tree BNF 

hotspots was similar between the two methods (Figure 2a, 2c), although the hotspot intensity was 

lower in the N demand method for all regions except the Pacific Northwest. Per ground area, 

trees account for a low BNF rate in the southwest and Texas (Figure 2b, 2d) because a low 

fraction of the land area in the southwest and Texas is forest. 
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Figure 2. Tree N fixation rate across the United States at the one degree scale 

Tree N fixation rate across the United States at the one degree scale. Tree N fixation rate 

calculated from a), b) our accretion method and c), d) our N demand method, a), c) per forest 

area and b), d) per ground area. White cells have fewer than 2 FIA plots. Colors are on a 

logarithmic scale, but with numbers less than 0.1 kg N ha-1 yr-1 (including 0) set to the darkest 

blue for plotting purposes. 

 

 The tree BNF hotspots coincide with areas of high N-fixing tree abundance. Tree BNF in 

the Pacific Northwest is dominated by Alnus which fixes 24-32% of total tree BNF across the 

USA (Figure S3). Tree BNF in the intermountain west is dominated by Cercocarpus, which fixes 

3-7% of N fixed by trees across the USA. Texas has a high density of Prosopis in forested areas, 

which account for 5-14% of tree BNF across the USA. Robinia is the primary N-fixing tree in 

the mid-Atlantic region, accounting for 46-65% of tree BNF. 
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Figure 3. Percent of tree BNF by genus across the coterminous USA and southeast AK 

Error bars, which are so small on some bars that they are invisible, represent the standard 

deviation from bootstrapping fixation rates or %Ndfa at the continent scale 1000 times. Fractions 

are shown for a) our standard accretion method, b) a light limitation version of the accretion 

method where we assume that non-canopy trees do not fix N, c) our standard N demand method, 

and d) the upper bound of the N demand method (%Ndfa=100).  

 

3.3 Tree BNF Sensitivity Analysis 

 In the accretion method the parameter that had the largest effect on the national BNF 

estimate is BNF rate per basal area of Alnus and Robinia (30% and 18% respectively; Figure 4a). 

The results of the %Ndfa sensitivity analysis indicate that the most sensitive factor was the C:N 

ratio of wood, which could change the estimate by up to 82% if the value were 150% of the C:N 

ratio for wood originally used (Figure 4b).  
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Figure 4. Sensitivity analysis. 

These plots show the percent change in tree-based N fixation across the coterminous USA and 

southeast AK as the sensitivity to different factors for a) the accretion method and b) the N 

demand method. a) Each genus’ N fixation rate was varied from the upper to lower bounds of the 

95% confidence interval in one genus at a time while all other genera were held constant at the 

mean value. In the N-fixer abundance analysis we increased and decreased plot level basal area 

by 50%. b) The C:N ratio of foliage, wood, and fine roots; N-fixer abundance (by aboveground 

biomass); and the foliar and fine root N resorption were increased and decreased by 50% to 

examine the effect of these factors on the overall BNF estimate.  
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If the N-fixer abundance or foliar N resorption were increased by 50% the estimate would 

increase by about 7%.  

 

3.4 Symbiotic Understory BNF, Asymbiotic BNF, and N Deposition 

 To compare among different N-input pathways, we re-scaled previously published BNF 

rates for symbiotic understory plants and asymbiotic fixation in soil to the spatial extent of the 

FIA data used in our tree analysis. The national scale BNF flux from symbiotic understory fixers 

was 0.48 Tg N yr-1, which is between the tree BNF estimates for our two methods, and is highly 

sensitive to the assumption of 3% cover (Table 2). Asymbiotic BNF was lower (0.37 Tg N yr-1) 

but on the same order of magnitude as understory BNF (Table 2).  

Table 2. Summary of Nitrogen Inputs 

N Input to forested land BNF flux per 

forest area (avg. 

per grid cell) 

US-wide 

BNF flux 

estimate 

 

Data source 

 [kg N ha-1 yr-1] [Tg N yr-1]  

Symbiotic Tree BNF 

(accretion; method 1) 

3.40 0.88 FIA & accretion lit 

search (This paper) 

Symbiotic Tree BNF (%Ndfa; 

method 2) 

1.43 0.30 FIA & %Ndfa lit search 

(This paper) 

Tree BNF with light 

limitation (accretion) 

3.25 0.81 FIA & accretion lit 

search (This paper) 

Tree BNF upper bound 

(%Ndfa)  

2.03 0.53 FIA (%Ndfa=100) (This 

paper) 

Symbiotic Understory BNF 

3% 

10% 

17% 

  

2.20 

7.32 

12.44 

  

0.48 

1.53 

2.60 

Cleveland et al. (1999) 

scaled by forest area 

Asymbiotic BNF 1.70 0.37 Reed et al. (2011) 

scaled by forest area 

Total N Deposition 7.72 1.68 Schwede & Lear 

(2014) TDEP Total N 

deposition 



26 

 

 

Rock Weathering 1.75 0.37 Houlton et al. (2018) 

scaled by forest area 

Total N influx to forested 

land (accretion) 

 3.78 Trees (accretion) + 

understory (3%) + 

asymbiotic + 

deposition + rock 

Total N influx to forested 

land (%Ndfa) 

 3.20 Trees (%Ndfa) + 

understory (3%) + 

asymbiotic + 

deposition + rock 
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Figure 5. Comparison of N inputs to forested land across the coterminous USA and southeast 

AK. 

The average N input rate (kg N ha-1 yr-1) per forest (a, c, e, g, i, k, m) and per ground (b, d, f, h, j, 

l, n) across 1° x 1° grid cells is shown for total N deposition (a, b), N-fixing trees, accretion 

method (c, d), N-fixing understory plants assuming 2.20 kg N ha forest-1 yr-1 (e, f), asymbiotic N 

fixers assuming 1.70 kg N ha forest-1 yr-1 (g, h), and rock weathering (i, j). Also shown are the 

total non-agricultural N input rate per forest area and per ground area (N-fixing trees + N-fixing 

understory + N-fixing asymbiotic + N deposition + rock weathering) (k, l), and the percent of the 

total non-agricultural N input from BNF: (N-fixing trees + N-fixing understory + N-fixing 

asymbiotic)/total non-agricultural N inputs (m, n) across 1° x 1° grid cells per forest and per 

ground. Colors in all panels except f and l are on a square root scale, but with numbers less than 

0.1 kg N ha-1 yr-1 (including 0) set to the darkest blue for plotting purposes. 

 

Understory (Figure 5e, f) and asymbiotic (Figure 5g, h) BNF rates per forest area are 

shown as constant across the USA because we do not have abundance data to make these 

spatially explicit. N deposition (Figure 5a, b) is higher in the eastern USA. Total non-agricultural 

N input (Figure 5k, l) is the sum of BNF from trees, understory, asymbiotic fixers, N deposition, 

and rock derived N. Total non-agricultural N input is high in the Pacific Northwest where tree 

BNF is high and the eastern USA where both tree BNF and N deposition are high. The percent of 

total non-agricultural N input from BNF (Figure 5c, d) and tree-based BNF (Figure 6a, b) show 

two hotspots where BNF is especially important: The southwest and the Pacific Northwest.  
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Figure 6. Percent non-agricultural N Input from tree N fixation in forests. 

This map shows the percent of N inputs in forested areas that comes from N-fixing trees as 

opposed to biological N fixation in the understory, asymbiotic biological N fixation, N 

deposition, and rock weathering. a) accretion method, b) N demand method.  

 

Percent N input from N-fixing trees is highest in the western USA where N-fixing tree basal area 

is high (Alnus stands with plot level BA > 50 m2 ha-1) and N deposition rates are low. 

 

4 Discussion 

Our analyses used tree census data to quantify the abundance of N-fixing trees to better 

estimate the tree-based BNF flux. These analyses suggest that tree-based BNF in the United 

States accounts for 0.30-0.88 Tg N yr-1, which averages to 1.4-3.4 kg N ha forest-1 yr-1. At a 

continental scale, N inputs from trees, shrubs and symbiotic herbs, asymbiotic fixers, rock 

weathering and atmospheric deposition all contribute roughly similar amounts of N. In certain 

locations, such as the Pacific Northwest and the intermountain west, tree-based BNF accounts 

for the majority of N inputs, whereas in many parts of the country tree-based BNF is negligible.  

Past work has noted that human activity has dramatically altered the amount of reactive N 

entering terrestrial ecosystems. At the global scale, initial reports suggested that human activity 
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doubled global N inputs (Vitousek et al. 1997). Recent reports that natural BNF might be lower 

than initially thought at the scale of the globe (Vitousek et al. 2013, Sulman et al. 2019) and in 

tropical rainforests (Sullivan et al. 2014) suggest that human impacts have more than doubled—

perhaps quadrupled—background terrestrial N inputs. Our estimate of relatively low BNF in the 

USA agrees with these recent reports that human perturbation of N inputs is even higher than 

previously thought.  

 

4.1 Interpretation of Our Methods and Numbers 

 Our accretion and N demand methods suggest fluxes of 0.88 and 0.30 Tg N yr-1, 

respectively, which differ by a factor of more than two. Which method do we trust more? For a 

variety of reasons discussed below, we expect that the accretion method provides an 

overestimate and the N demand method provides an underestimate, so our best estimate is in 

between these methods. 

The accretion method likely overestimates BNF for two reasons. First, field estimates of 

BNF are somewhat biased toward younger stands, whereas we are applying rates equally to all 

forests regardless of age. Most Alnus and Robinia in the FIA dataset are in forests aged 0-150 

years (Menge et al. 2010), so the mismatch between the age range of the accretion data (usually 

0-65 years) and the FIA data likely results in a moderate overestimate of BNF. Second, the 

accretion rates from the literature review did not account for N inputs from rock weathering or 

lichens and few included N deposition or asymbiotic BNF. These biases in the accretion method 

are probably not dramatic, as BNF rates from trees far exceed other inputs where N-fixing trees 

are active (Binkley and Giardina 1997), and there are likely fluxes out of the system that are also 

unaccounted for: N losses via leaching and gaseous emissions are often not considered. Our 
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sensitivity analysis indicates that a decrease in the accretion method-derived BNF rate for Alnus 

and Robinia to the lower 95% confidence interval would reduce the overall estimate by 46% 

(0.48 Tg N yr-1). 

Conversely, our N demand method likely underestimates BNF, for two reasons. First, N-

fixing trees tend to have N-rich tissues, so the values we used for the C:N ratios of wood and 

foliage (which were not specific to N fixers) were likely too high. Our sensitivity analysis 

indicated that the %Ndfa estimate depended strongly on the C:N ratios of wood and foliage: 

Increasing the C:N ratio by 50% resulted in a 82% (for the C:N of wood) or 14% (for the C:N of 

foliage) increase in tree BNF. Second, our method omitted a number of sources of N demand. 

Trees need significant amounts of N for bark (Toselli et al. 2000), flowers (Toselli et al. 2000), 

and fruiting bodies (Rufat and DeJong 2001, Carranca et al. 2018), and trees lose additional N to 

herbivory (Mattson 1980, Lovett et al. 2002), none of which were in our estimate. Between these 

additional N demands and C:N ratio, the %Ndfa estimate was likely too low. Overall, we consider 

that the best estimate is between our accretion and N demand-based estimates. Taking the mean 

of the two, we suggest 0.59 Tg N yr-1 as our best estimate. On a per forest area metric this is 2.42 

kg N ha forest-1 yr-1 though spatially explicit estimates are locally higher or lower. 

BNF from the combination of shrubs and herbaceous plants was of similar magnitude in 

forests as BNF from trees, suggesting that we need better abundance data and BNF rate 

measurements for these understory plants to constrain their contributions to overall BNF. 

 

4.2 Comparison of This Estimate to Previous Work 

Our estimate of tree-based BNF in United States forests, 0.59 Tg N yr-1, is about a quarter 

of 2.09 Tg N yr-1, the total when the central estimate for temperate forest tree BNF from 
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Cleveland et al. (1999) is scaled to the USA (Table 3). Both studies upscale plot-scale field 

estimates of BNF to the biome or regional scale. The primary difference between the two 

methods is that Cleveland et al. (1999) arbitrarily chose three possible values for N-fixing tree 

abundance, whereas we constrained N-fixing tree abundance with millions of data points from 

tree censuses. The FIA dataset has an excellent sampling design for quantifying continent-scale 

abundance of tree species, so we believe that our estimate is a marked improvement. Some 

modeling studies have also suggested higher rates (1.2-1.4 Tg N yr-1; Galloway et al. 2004; 

Cleveland et al. 2013). Our result does agree well with a recent modeling study (0.77 Tg N yr-1 

for all symbiotic BNF; Sulman et al. 2019), as well as a downscaled version of a global estimate 

from Vitousek et al. (2013) (0.47 Tg N yr-1 for all BNF; Table 3). Downscaling a non-spatially 

explicit global estimate to the USA requires a number of assumptions that are undoubtedly 

inaccurate, but nonetheless, the congruence of these estimates is encouraging.  

Few BNF studies explicitly state whether their estimates represent pre vs. post-industrial 

rates. We consider that our values reflect contemporary post-industrial BNF estimates, which 

could partly explain the difference between this estimate and the pre-industrial value of Vitousek 

et al (2013). Though there is no clear evidence that human activities disfavor BNF, changes in N 

deposition, atmospheric CO2 concentration, and land use could enhance or limit BNF. Recent 

work (Horn et al. 2018) did not find evidence that the growth or mortality of N-fixers is more 

sensitive to N deposition than non-fixers so it is unlikely that N deposition drove down 

abundance of N-fixing trees. N-fixing trees perform well in elevated CO2 environments (Terrer 

et al. 2017). Land use is likely the most important difference between pre- and post-industrial 

BNF which affects the abundance of N-fixing trees. The pre-industrial tree distribution and 

extent of N-fixing trees is not known; however, most temperate N fixers are early successional 
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(Menge et al. 2010) and extensive land use disturbance, especially from logging, converts forests 

to younger successional states which tend to increase the cover of symbiotic N fixers. 

Conversely, in semi-arid western areas, widespread 20th century fire suppression may have 

reduced disturbance N inputs from BNF (Yelenik et al. 2013, Perakis et al. 2015). Overall, there 

is no evidence for consistent pre- versus post-industrial differences in the abundance or activity 

of tree N-fixers. 

Combining BNF from symbiotic trees, symbiotic understory plants, and asymbiotic 

bacteria, our estimate of 1.44 Tg N yr-1 is at the low end of the range (0.5-12.7 Tg N yr-1) 

reported in a previous national synthesis (Sobota et al., 2013). Shrubs and asymbiotic N fixers 

can also be patchy. Shrubs are a particularly significant N input in many regions, rivaling tree 

BNF (Cleveland et al. 1999), and similar to trees, shrubs can create local-to-regional BNF 

hotspots that depend strongly on patterns of landscape-level abundance (Yelenik et al. 2013). 

Herbaceous plants and lichens can be similarly patchy (Reed et al. 2011) and improving the 

spatially-explicit abundance of these organisms would improve the comparison. Additionally, 

given our focus on trees, we have not evaluated BNF in grasslands and other non-forest 

ecosystems, which a comprehensive assessment of BNF would incorporate. 

Table 3. Comparison of Large-Scale BNF Estimates Scaled to the coterminous USA and 

southeast AK. 

Study Type of BNF included Global 

estimate  

US 

estimate  

Fixation rate per 

forest area (avg) 

 

  [Tg N yr-1] [Tg N yr-1] [kg N ha-1 yr-1] 

 

Cleveland (1999) 

 

Symbiotic tree BNF 195 2.09 9.99 

Vitousek (2013) 

 

All BNF 58 0.47 2.23a 

Cleveland (2013) 

 

Symbiotic tree BNF 105 1.37 6.56 

Galloway (2004) All symbiotic BNF 107 1.15 5.48 
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Sulman (2019) 

 

All symbiotic BNF 46 0.77 3.7 

This estimate 

(accretion) 

Symbiotic tree BNF -- 0.88 3.40 

This estimate (%Ndfa) Symbiotic tree BNF -- 0.30 1.43 

This estimate (mean) Symbiotic tree BNF -- 0.59 2.81 

 

Note: Details of USA Estimate and Average Fixation Rate per Forest Area calculations are 

provided in supplementary materials S3. 
a assumes similar BNF rates across all forests globally  

 

 

One major difference between our estimate and previous bottom-up estimates is the 

spatial distribution of BNF. The evapotranspiration-based map in Cleveland et al. (1999) 

suggested that the southeast was the main hotspot in the USA, whereas our map suggests 

hotspots in the Pacific Northwest, the Appalachians, and the southwest due primarily to the 

abundance pattern of N-fixing trees. The southeast, as well as areas such as the central USA and 

Southern California, have a distinct lack of symbiotic N-fixing trees, and therefore large tree-

based fluxes in these regions seem unlikely. Shrubs, herbaceous plants, and asymbiotic BNF still 

occur in those regions, so the overall N flux into those ecosystems can still be substantial. This 

finding is consistent with the conclusions of Reed et al. (2011) that asymbiotic N fixers make 

substantial contributions to the reactive N flux. Further analysis is needed to incorporate lichens 

and bryophytes, which are thought to be important in many regions (DeLuca et al. 2002, Matzek 

& Vitousek 2003, Antoine 2004, Menge & Hedin 2009, Elbert et al. 2012).  

 

4.3 Methodological Limitations 

One of the persistent limitations to bottom up estimates is the lack of data in the literature 

for tree-based BNF rates of some genera. There is a bias toward genera such as Robinia and 
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Alnus (which are two of the most abundant genera, with 42% and 16% of N fixer stems 

respectively), while others (e.g. Albizia and Cercocarpus, 0.4% and 16% of stems respectively) 

had no studies satisfying our filtering criteria (reporting both BNF rate using the accretion 

method and basal area of the stand where it was measured). Based on our sensitivity analysis, the 

lack of information on these unreported genera is a relatively minor source of uncertainty. It does 

not change the order of magnitude of the result and is negligible compared to the effects of 

changing the fixation rate data for Alnus or Robinia. The greatest change in our estimate comes 

from the BNF rate used for Robinia which could change the estimate by 18%. Even though 

Robinia is one of the best studied temperate N-fixers, the high abundance and unclear 

relationship between BNF rate and stand basal area mean more data on this genus are 

particularly important for improving the estimate certainty. It is important to note, though, that 

the lack of accretion studies does not affect our N demand method. One of the reasons we used 

two methods was to address the relatively sparse number of robust studies of BNF fluxes, and 

the fact that the two methods give answers within the same range is encouraging. The N demand 

method requires data on %Ndfa, which are also relatively sparse, but the fact that our highest N 

demand estimate (assuming N-fixing trees fix 100% of their N), still yields a similar total flux 

suggests that the methods are robust. Our sensitivity analysis for the N demand method shows 

that the most important area of uncertainty is the stoichiometry of wood, which is among the 

least-reported stoichiometric value for all plant tissue types. 

 

4.4 Conclusion 

This study helps resolve a long-standing short-coming of prior BNF flux estimates: A 

lack of information on the spatial distribution of important symbiotic N-fixing plants (Galloway 
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et al. 2008, Sobota et al. 2013). The abundance of symbiotic N-fixing trees is spatially uneven. 

Further work is still needed to measure BNF rates, particularly in common N-fixing tree genera 

such as Robinia and Cercocarpus.  It would be helpful to resolve BNF variation with age 

(Menge and Hedin 2009), N-fixing tree density (Bormann and Gordon 1984, Vitousek and 

Howarth 1991, Mitchell and Ruess 2009), facultative versus obligate habit (Menge et al. 2009a), 

and environmental drivers such as climate and soils (Binkley & Giardina, 1997; Uliassi & Ruess, 

2002) to estimate site-specific BNF. Since most of the total tree BNF flux is attributed to 

relatively few species, it increases the likelihood of effectively constraining total tree BNF, and 

raises the possibility that our spatially-explicit approach could be successful elsewhere.  Further 

work should be conducted in other biomes using forest inventory data to refine BNF estimates 

globally, especially the tropics where N-fixing tree diversity and abundance are higher (ter 

Steege et al. 2006, Menge et al., 2017, Gei et al. 2018). Given the importance of tree-based BNF 

for quantifying human impacts on the N cycle, parameterizing Earth System Models, and 

understanding the ecological role of N-fixing organisms, a spatially-explicit quantification of 

BNF is essential.  
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Abstract 

1. Nitrogen (N)-fixing trees fulfill a unique and important biogeochemical role in forests 

through their ability to convert atmospheric N2 gas to plant-available N. Due to their high N 

fixation rates, it is often assumed that N-fixing trees facilitate neighboring trees and enhance 

forest growth. This assumption is supported by some local studies but contradicted by others, 

leaving the overall effect of N-fixing trees on forest growth unresolved. 

2. Here we use the U.S. Forest Service’s Forest Inventory and Analysis database to 

evaluate the effects of N-fixing trees on plot-scale basal area change and individual-scale 

neighboring tree demography across the coterminous U.S. 

3. First we discuss the average trends. At the plot and individual scales, N-fixing trees do 

not affect the relative growth rates of neighboring trees, but they facilitate recruitment and inhibit 

survival rates, suggesting that they are drivers of tree turnover in the coterminous U.S. At the 

plot scale, N-fixing trees facilitate the basal area change of non-fixing neighbors. 
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4. In addition to the average trends, there is wide variation in the effect of N-fixing trees 

on forest growth, ranging from strong facilitation to strong inhibition. This variation does not 

show a clear geographic pattern, though it does vary with certain local factors. N-fixing trees 

facilitate forest growth when they are likely to be less competitive: under high N deposition and 

high soil moisture or when neighboring trees occupy different niches (e.g. high foliar C:N trees 

and non-fixing trees). 

Synthesis. N-fixing trees have highly variable effects on forest growth and neighbor 

demographics across the coterminous U.S. This suggests that the effect of N-fixing trees on 

forest development and carbon storage depends on local factors, which may help reconcile the 

conflicting results found in previous localized studies on the effect of N-fixing trees on forest 

growth. 

 

1 Introduction 

Decades of work have demonstrated the importance of forests as a substantial carbon (C) 

sink (Pacala et al. 2001, Goodale et al. 2002, Pan et al. 2011). However, the size and persistence 

of the forest C sink are thought to be constrained by the availability of soil nitrogen (N) (Hungate 

et al., 2003; Wieder, Cleveland, Smith, & Todd-Brown, 2015), which limits primary production 

in many terrestrial ecosystems (Elser et al. 2007, LeBauer and Treseder 2008). Biological N 

fixation, which is the conversion of plant-unavailable atmospheric N2 gas to plant-available N by 

bacteria, is the dominant natural N flux into terrestrial ecosystems, exceeding natural 

atmospheric N deposition and rock N weathering (Fowler et al. 2013a, Vitousek et al. 2013, 

Houlton et al. 2018). N-fixing trees, which are symbioses between trees and N-fixing bacteria 

that live in root nodules, can exhibit high N fixation rates (> 100 kg N ha-1 yr-1) in boreal, 
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temperate and tropical forests (Binkley et al. 1994, Binkley and Giardina 1997, Ruess et al. 

2009), emphasizing the key role of N-fixing trees in forest N cycling.  

Forest N budgets have suggested that the N input from N-fixing trees, which fertilizes the 

soil N pool through turnover and decomposition of N-fixers’ N-rich tissues (Binkley and 

Giardina 1997, Ehrenfeld et al. 2005), is critical to satisfying the N demand of forest growth. For 

example, N-fixing trees satisfy the majority of the N demand of forest growth in early 

successional forests in Panama (Batterman et al., 2013) and mature forests in Trinidad 

(Brookshire et al. 2019). These studies, along with the clear fertilization mechanism, have led to 

the prevalent view that N-fixing trees relieve N limitation and facilitate neighboring trees, 

enhancing overall forest growth.  

However, the direct evidence for N-fixing trees facilitating their neighbors is mixed. 

Many studies support the prevailing view (e.g., Binkley et al. 1992; Piotto, 2008; Hulvey et al., 

2013; Minucci et al., 2019). Counter to the prevailing view, though, N-fixing trees have similar 

effects on neighboring trees as non-fixing trees in some circumstances: Lai et al., 2018 (in 

Panama) and Xu et al., 2020 (pan-tropical) both found that N-fixing trees did not influence basal 

area change. N-fixing trees can even inhibit neighboring trees: Chapin et al. 2016 found that N-

fixing trees decreased the growth of non-fixing trees in mature forests in Alaska and Taylor et 

al., 2017 found that N-fixing trees decreased forest growth in Costa Rica. Because the net effect 

of N-fixers on their neighbors differs markedly between different studies, the overall effect of N-

fixing trees on forest growth remains unresolved. 

From a mechanistic perspective, the net effect of N-fixers on their neighbors depends on 

the balance of facilitative and inhibitory effects. Facilitative effects include increased soil N, as 

described above, and potentially other factors such as increased soil phosphorus through 
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increased rock weathering (Perakis & Pett-Ridge, 2019). On the other hand, N-fixers could 

inhibit neighbors by competing for resources such as light (Taylor & Menge, 2018), water 

(Adams et al., 2016; Cramer, Van Cauter, & Bond, 2010), or nutrients (Nasto et al., 2014; 

Perakis & Pett-Ridge, 2019; Rastetter, Vitousek, Field, Shaver, & Herbert, 2001; Vitousek & 

Field, 1999). The net effect of these potential facilitative and inhibitory effects could be net 

facilitation (N-fixers promote growth of neighbors), weak inhibition (competition from N-fixers 

inhibits neighbor growth but less than competition from non-fixers), or strong inhibition (N-

fixers inhibit neighbor growth more than non-fixers; Taylor et al., 2017). (Here we do not 

distinguish between facilitation and weak inhibition, referring to both as facilitation.)  

Different net N-fixer effects on forest growth—facilitation vs. inhibition vs. neither—

might stem from differences in the competitive dynamics between N-fixing and non-fixing trees 

in these sites. Many factors have been linked to N-fixer versus non-fixer competition, from 

climatic factors such as temperature and precipitation to local factors such as the relative supply 

of nitrogen, water, or light, or the traits of individual trees (e.g., Houlton et al., 2008; Adams et 

al., 2016; Cramer, Van Cauter, & Bond, 2010; Vitousek & Field 1999; Rastetter et al., 2001; 

Fisher et al., 2010).  

To determine the effect of N-fixing trees on forest growth across the coterminous U.S., 

we used the U.S. Forest Service’s Forest Inventory and Analysis (FIA) database to evaluate how 

N-fixing trees impact plot-scale basal area change and individual-scale neighboring tree 

demography. Specifically, we ask five questions. The first two questions address the overall 

magnitude and direction of N-fixing tree effects: (1) How do N-fixing trees affect basal area 

change at the plot scale? (2) How do N-fixing trees affect demographic rates of neighboring trees 

at the individual scale? The third, fourth, and fifth questions address drivers of the N-fixing tree 
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effects: How do N-fixing tree effects vary with (3) geography and climate, (4) plot-scale abiotic 

factors (stand age, N deposition, and soil moisture), and (5) individual-scale tree traits 

(mycorrhizal association, foliar C:N, N fixation status, and canopy position)? We focused on 

these particular drivers because they are associated with plausible mechanisms and we could 

reliably quantify them at the proper scale. 

 

2 Methods 

2.1 FIA Database Description 

We used Version 5.1 of the U.S. Forest Service’s Forest Inventory and Analysis (FIA) 

database (Burrill et al., 2018), which contains 57,264 plots that have been censused at least 

twice. Census intervals were usually 5-10 years. Plot size varies, but the most common plot size 

is 670 m2. We classified tree species as rhizobial N-fixers (from Sprent 2009), actinorhizal N-

fixers (Huss-Danell 1997), or non-fixers. Hereafter, we refer to rhizobial and actinorhizal species 

as N-fixing trees, although N fixation activity for any individual N-fixing tree was not possible to 

assess at this scale. The N-fixing tree genera in the dataset that were sufficiently abundant for 

analysis (> 10 stems) were Acacia, Albizia, Alnus, Cercocarpus, Elaeagnus, Olneya, Prosopis, 

and Robinia (Appendix B - SI Table 1). There were 7,050 Robinia out of 8,292 total N-fixers.  

We give an overview of our analyses here. The details of the analyses are in SI Text 1 

and 2. All analyses were implemented in R (R Core Team, 2017) using lme4 (Bates, Mächler, 

Bolker, & Walker, 2015). 

 

2.2a How do N-fixing trees affect basal area change at the plot scale? (Q1) 
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We assessed the effects of N-fixing trees on plot-scale basal area change (Q1) using 

linear mixed-effect models. At the plot scale, we studied four response variables, each of which 

measured basal area change from one census to the next. The variables were total basal area 

increment (BAI), basal area increment of non-fixing trees (BAIn), and two of the components of 

BAI: recruitment rate and survival rate (henceforth referred to as recruitment and survival). 

Because our questions concerned the effects of N-fixing trees, the primary predictor variable of 

interest was the relative prevalence of N-fixing trees. At the plot scale, we quantified the relative 

prevalence of N-fixing trees as the percent of basal area comprised of N-fixing trees, following 

Taylor et al. (2017). This is a continuous variable that ranges from 0% (all individuals in the plot 

are non-fixing trees) to 100% (all individuals in the plot are N-fixing trees) and is defined 

mathematically in Appendix B - SI Text 1. 

The plot-scale models also included a control covariate and a random effect (Appendix B 

- SI Text 2, SI Table 2). In general, control covariates control for measured factors that are 

important but are not of specific interest for the study. The control covariate we used was total 

basal area in the plot. We also included a state-level random effect to account for unmeasured 

factors that cluster geographically, such as climate.  

The result of interest for each statistical model is the effect of N-fixing trees on each 

response variable, i.e. the model coefficient for the percent of basal area comprised of N-fixing 

trees. The interpretation of this model coefficient is not particularly intuitive (Appendix B - SI 

Table 3), so to facilitate understanding, we translated the coefficient into a more intuitive 

number: The expected percent change in a response variable (e.g., basal area increment) from 

when a plot is comprised entirely of non-fixing trees to when a plot is comprised entirely of N-

fixing trees. We call this number the “N-fixer effect,” and abbreviate it for each response 
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variable with the subscript “NFE”. A positive NFE indicates net facilitation (or weak inhibition) 

by N-fixing trees on the response variable, and a negative NFE indicates net inhibition by N-

fixing trees on the response variable. For example, the N-fixer effect on BAI is: 

       (1) 

where  and  are the BAI values predicted by the linear mixed-effect 

model when the percent of basal area comprised of N-fixing trees are 100% and 0%, respectively 

(see Appendix B - SI Text 2 for more details). A BAINFE of 10% would mean that the expected 

BAI of a plot with an average basal area is 10% higher when a plot is comprised entirely of N-

fixing trees than when a plot is comprised entirely of non-fixing trees.  

We calculated confidence intervals on the NFE with a parametric bootstrap analysis to 

simulate data at 0% basal area comprised of N-fixing trees and 100% basal area comprised of N-

fixing trees separately. Coefficient values were bootstrapped 1000 times using the coefficient 

estimates and standard errors, and using mean values for the control covariates. 

 

2.2b How do N-fixing trees affect neighboring tree demography at the individual scale? 

(Q2) 

Similar to our plot-scale analysis, we used linear mixed-effect models to assess the 

individual-scale effects of N-fixing trees. Instead of plot-scale rates, though, our response 

variables were individual-scale demographic rates (Q2). Specifically, our individual scale 

response variables were the relative growth rate, the recruitment rate, and the survival rate of 

individual trees (henceforth referred to as growth, recruitment, or survival). Similar to the plot-

scale analysis, the primary predictor variable of interest was the relative prevalence of N-fixing 

trees. At the individual scale, though, we quantified the relative prevalence of N-fixing trees as 
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the percent of the neighbor crowding index (NCI) comprised of N-fixing trees, following Taylor 

et al. (2017). NCI is a metric that factors in the number of neighboring trees within a given 

radius of a focal tree (here, 7.3 m), their size, and their proximity to the focal tree (Canham, 

LePage, & Coates, 2004). As makes intuitive sense, more trees, larger trees, and trees closer to 

the focal tree increase NCI (crowding). Similar to BApct, the percent of the NCI comprised of N-

fixing trees is a continuous variable that ranges from 0% (all crowding is from non-fixing trees) 

to 100% (all crowding is from N-fixing trees) and is defined mathematically in Appendix B - SI 

Text 2. 

The individual-scale models also included control covariates and a random effect, as in 

the plot-scale models (Appendix B - SI Text 2, SI Table 2). The control covariates we used were 

the focal tree’s total crowding (NCI) and diameter at breast height (DBH). We also included a 

plot-level random effect to account for unmeasured factors that cluster geographically, such as 

climate. 

As in the plot-scale analysis, we calculated the N-fixer effect (NFE) at the individual 

scale as the expected percent change in the response variable (e.g., relative growth rate) from 

when all crowding is from non-fixing trees to when all crowding is from N-fixing trees. For 

example, the N-fixer effect on relative growth rate is: 

𝑅𝐺𝑅𝑁𝐹𝐸 = 100 ∗ (
𝑅𝐺𝑅100% 𝑁𝐶𝐼𝑝𝑟𝑜𝑝−𝑅𝐺𝑅0% 𝑁𝐶𝐼𝑝𝑟𝑜𝑝

𝑅𝐺𝑅0% 𝑁𝐶𝐼𝑝𝑟𝑜𝑝

)     (2) 

where 𝑅𝐺𝑅100% 𝑁𝐶𝐼𝑝𝑟𝑜𝑝
 and 𝑅𝐺𝑅0% 𝑁𝐶𝐼𝑝𝑟𝑜𝑝

 are the relative growth rates predicted by the linear 

mixed-effect model when the percent of NCI comprised of N-fixing trees is 100% and 0%, 

respectively. A RGRNFE of 10% would indicate that the expected relative growth rate of an 

average-sized tree with average total crowding in an average plot is 10% higher when all 

crowding is from N-fixing trees vs. when all crowding is from non-fixing trees. 
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2.3a How do N-fixing tree effects vary with geography and climate? (Q3) 

To assess the geographic patterns in the NFE for each response variable, we used a 

Moran’s I test from the ape package (Paradis, 2020), which evaluates spatial autocorrelation. If 

there is a geographic pattern to the NFE then plots physically closer together would have more 

similar NFEs (e.g. one region of the U.S. might have negative NFE while other regions do not). 

We used the inverse Euclidean distance for the weight matrix so that physical proximity of plots 

weighted the Moran’s I test statistic. To further assess the geographic patterns in NFE we 

examined the Pearson’s correlations between the plot-scale NFE and latitude and longitude, 

which were obtained from the FIA database. To assess how the NFE varied with climate we 

examined the Pearson’s correlation between the plot-scale NFE and mean annual temperature 

(MAT) and precipitation (MAP), which were obtained from WorldClim (Fick & Hijmans, 2017). 

 

2.3b How do N-fixing tree effects vary with plot-scale abiotic factors? (Q4) 

We obtained abiotic plot-scale data from several sources: the FIA (stand age), the 

National Atmospheric Deposition Program (total N deposition) (National Atmospheric 

Deposition Program, 2018), and the Soil Moisture Active and Passive dataset (soil moisture) 

(Reichle et al., 2018). To assess the effect of different abiotic factors on the NFE, we designated 

plots as “high” or “low” for each abiotic factor where “high” was above the mean value and 

“low” was below the mean value.  

Each abiotic factor was considered in the model separately by using an interaction 

between the abiotic factor status of the plot (“high” or “low” for the given abiotic factor) and 

prevalence of N-fixing trees (percent of basal area comprised of N-fixing trees). We determined 
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whether the NFE was different between high and low levels of each abiotic factor by assessing 

whether the 95% confidence intervals from the parametric bootstrap analysis overlapped each 

other. 

 

2.3c How do N-fixing tree effects vary with individual-scale traits of trees? (Q5) 

We obtained species traits from several sources: mycorrhizal association from Jo et al. 

(2019), foliar C:N from the USDA Plants database (USDA, 2019) (designated “high”, 

“moderate”, or “low”), deciduousness from a database synthesis (SI Text 3), and canopy position 

from the FIA. We re-categorized foliar C:N as “high” and “low” (where “low” included both the 

USDA levels “medium” and “low”). We re-categorized the FIA crown classes into canopy 

positions where “open grown,” “dominant,” and “co-dominant” trees are canopy trees and 

“intermediate” and “overtopped” trees are non-canopy trees. 

As in section 2.3b, each trait was considered in the model separately by using an 

interaction between the trait status of the focal tree (AM or EM, high C:N or low C:N, deciduous 

or evergreen, canopy or non-canopy, and N-fixer or non-fixer) and prevalence of N-fixing trees 

(percent of NCI from N-fixing trees) in the model. We used a t-test to determine whether the 

NFE was different between the levels of each trait of the focal tree. 

 

3 Results 

3.1a How do N-fixing trees affect basal area change at the plot scale? (Q1) 

 Aggregating across the entire coterminous U.S., N-fixing trees have no systematic effect 

on plot-scale total BAI (the confidence intervals are distributed across 0), but did facilitate the 
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plot-scale BAI of non-fixing trees (Table 4). N-fixing trees facilitated plot-scale recruitment but 

inhibited plot-scale survival (Fig. 7, Table 4).  

Table 4. Average N-fixer effects on plot-scale metrics in the coterminous U.S.  

The metrics are the total basal area increment (BAI), basal area increment of non-fixing trees 

(BAIn), and two of the components of BAI, plot-scale recruitment rate (R) and plot-scale survival 

rate (S). The N-fixer effect (NFE) for each metric is the expected percent change in the metric 

between plots comprised of N-fixing trees and plots comprised of non-fixing trees (see Methods 

for more details). Numbers shown are means (95% CI). 

N-fixer effect on 

plot-scale basal area 

increment (BAINFE) 

N-fixer effect on 

plot-scale basal area 

increment of non-

fixing trees 

(BAIn,NFE) 

N-fixer effect on plot-

scale recruitment rate 

(RNFE) 

N-fixer effect on plot-

scale survival rate 

(SNFE) 

1% (-35%, 35%) 34% (0.6%, 72%) 60% (32%, 87%) -7% (-12%, -1%) 
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Figure 7. N-fixer effects 

N-fixer effects (as defined in Table 1 and the Methods) on plot-scale metrics and individual-scale 

demographic rates across the coterminous U.S. Maps are shown for analyses at the plot-scale (a-

c) and individual-scale (g-i). Grid cells are 1° x 1°; white cells had fewer than 5 plots with N-
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fixing trees (excluded from spatial analyses (Q3)). Red, blue, and gray cells indicate that N-

fixing trees had positive, negative, and neutral effects, respectively, compared to non-fixing 

trees. The ends of the color scale include outliers with values 100% and above or -100% and 

below for clarity. Histograms are also shown for the plot-scale metrics (d-f) and individual-scale 

demographic rates (j-l). Blue lines on histograms represent the average NFE evaluated across the 

coterminous U.S. BAI: basal area increment, R: recruitment (plot-scale), S: survival (plot-scale), 

RGR: relative growth rate, r: recruitment (individual-scale), and s: survival (individual-scale). 

 

3.1b How do N-fixing trees affect neighboring tree demography at the individual scale? (Q2) 

 At the individual scale, N-fixing trees did not affect the growth of their neighbors, but 

they had a positive effect on the recruitment of their neighbors and a negative effect on the 

survival of their neighbors (Fig. 7g-l, Table 2). 

Table 5. Average N-fixer effects (as defined in Table 7 and the Methods) on individual-scale 

demographic rates in the coterminous U.S. 

The demographic rates are the relative growth rate (RGR), individual-scale recruitment rate (r), 

and individual-scale survival rate (s). 

N-fixer effect on relative 

growth rate (RGRNFE) 

N-fixer effect on individual-

scale recruitment rate (rNFE) 

N-fixer effect on individual-

scale survival rate (sNFE) 

-1.5% (-3.6%, 2.1%) 7.5% (5.3%, 11.2%) -0.9% (-1.6%, -0.1%) 

 

3.2a How do N-fixing tree effects vary with geography and climate? (Q3) 

The plot-scale (Fig. 7a-f) and individual-scale (Fig. 7g-l) NFEs were variable across plots 

(Fig. 7d-f,j-l) and grid cells (Fig. 7a-c,g-i), leading us to ask whether NFEs varied geographically 

or with large-scale climatic variables. However, Moran’s I test found no spatial autocorrelation 

for either the plot-scale or individual-scale NFEs (Appendix B - SI Table 4). Furthermore, there 

was no significant Pearson’s correlation between plot-scale or individual-scale NFE and latitude, 

longitude, MAT, or MAP (Appendix B - SI Figure 2) using the same models described above to 

calculate NFE. 

 

3.2b How do N-fixing tree effects vary with plot-scale abiotic factors? (Q4) 
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 Given the lack of geographic and climatic explanations for the large variation in N-fixer 

effects, we asked whether N-fixer effects could be explained by local abiotic factors. For the 

abiotic factors, we looked at stand age, N deposition rate, and soil moisture.  

 

Figure 8. N-fixer effects on plot-scale metrics for high and low values of plot-scale abiotic 

factors 

Panels show the N-fixer effects on a) total basal area increment (BAINFE), b) basal area 

increment of non-fixing trees (BAIn,NFE), c) recruitment (RNFE), and d) survival (SNFE). Cutoffs 

between red and blue bars are: 60 years (stand age), 3.64 kg N ha-1 yr-1 (N deposition), and 0.27 

g g-1 (soil moisture). For example, the bottom-most red bar in c) shows the NFE in low soil 

moisture plots (<0.27 g g-1), whereas the bottom-most blue bar in c) shows the NFE in high soil 

moisture plots (>0.27 g g-1). Error bars show the 95% confidence interval of a parametric 

bootstrap analysis with 1000 bootstraps. Stars indicate significant differences between levels at p 

< 0.05 (*), p < 0.01 (**), and p < 0.001 (***). Values reported in SI Table 5. 

 

Some of the plot-level NFEs (on BAI, BAIn, recruitment, and survival) differed significantly at 

different levels of abiotic factors (t-test with p < 0.05, Fig. 8, Appendix B - SI Table 5). N-fixer 

effects on BAIn were nearly 15 times more positive in high (> 3.64 kg N ha-1 yr-1) compared to 

low N deposition plots, and N-fixer effects on BAI, BAIn, and R were three to 35 times more 
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positive in wetter (> 0.27 g g-1) than in drier plots. Stand age was not a significant mediator of 

the N-fixer effect on any of the plot-scale metrics (Appendix B - SI Table 5).  

 

3.2c How do N-fixing tree effects vary with individual-scale traits of trees? (Q5) 

 We also asked whether N-fixer effects could be explained by traits of trees. To assess 

how tree traits mediated the N-fixer effect on individual-scale demographic rates (Q5), we 

looked at five individual-scale tree traits: mycorrhizal association (AM/EM), foliar C:N 

(high/low), deciduousness (deciduous/evergreen), canopy position (canopy/non-canopy), and N 

fixation status (N-fixer/non-fixer).  

 

Figure 9. N-fixer effects on individual-scale demographic rates as mediated by individual-scale 

tree traits. 

Panels show the N-fixer effects on a) growth (RGRNFE), b) recruitment (rNFE), and c) survival 

(sNFE). Error bars show the 95% confidence interval of a parametric bootstrap analysis with 1000 

bootstraps. Stars indicate significant difference between levels at p < 0.05 (*), p < 0.01 (**), and 

p < 0.001 (***). Values reported in SI Table 5. 
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Mycorrhizal association was a significant mediator of the effect of N-fixers on survival. 

The N-fixer effect on the survival of AM trees was negative (-2.5%), but there was no effect of 

N-fixers on the survival of EM trees.  

  Foliar C:N was a significant mediator of the N-fixer effect on all three demographic rates. 

N-fixers had a negative effect on the growth of low foliar C:N trees (-26.2%) but had a positive 

effect on the growth of high foliar C:N trees (25.3%). N-fixers had no effect on the recruitment 

of low foliar C:N trees but had a positive effect on the recruitment of high foliar C:N trees 

(19.6%). The survival of low foliar C:N trees was negatively affected by N-fixers (-1.6%) while 

the survival of high foliar C:N trees was not affected by N-fixers.  

 Deciduous and evergreen trees were affected differently by N-fixers. N-fixers did not 

significantly affect the growth or survival of deciduous trees but significantly negatively affected 

the growth (-12.1%) and survival (-9.9%) of evergreen trees. 

 Canopy and non-canopy trees were affected differently by N-fixers. The growth of non-

canopy trees was positively affected by N-fixers (11.8%) while the growth of canopy trees was 

negatively affected by N-fixers (-10.8%). N-fixers had a positive effect on the recruitment of 

non-canopy trees (27.0%), while N-fixers had no effect on the recruitment of canopy trees. 

However, recruitment of canopy trees was rare since the tree, which was less than 12 cm DBH or 

nonexistent to not be included in the first census, would have to recruit and grow into the canopy 

by the second census.  

Finally, N fixation status was a significant driver of the N-fixer effect on growth. N-fixers 

positively affected the growth of non-fixers (19.3%) but did not significantly affect the growth of 

N-fixers. 
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4 Discussion 

On average, N-fixing trees had no effect on basal area change (net 0 NFE on basal area 

increment) in the forests of the coterminous U.S (Table 4). However, N-fixing trees did increase 

plot-scale non-fixer BAI by an average of 34% (0.66-72% 95% CI; Table 1). N-fixing trees 

facilitated recruitment more than they inhibited survival, suggesting that N-fixing trees are 

drivers of tree turnover in these forests. The effect of N-fixing trees on forest growth did not 

show a clear geographic pattern (associated with latitude or longitude) or climatic pattern 

(associated with MAT or MAP) within the coterminous U.S., but it did vary with abiotic factors 

and tree traits. Below, we put our results in the context of related work, provide a competition 

framework for understanding the wide variation we observed across plots and individuals, and 

point to key areas for future studies to address. 

 

4.1 Comparison of this Study with Previous Studies of N-Fixer Effects 

 Past work on the N-fixer effect was conducted at a smaller scale than our analysis. In 

total, our study included over 2.5 million trees, 57,264 plots, and 3,837 ha of forest, which is 

over >10 times more trees and area than other studies: Taylor et al. (2017) sampled 20,586 trees 

on 8 plots totaling 8 ha, Lai et al. (2016) sampled 36,518 trees on 87 plots totaling 8.7 ha, Chapin 

et al. (2016) sampled 7,812 trees on 12 plots, and Xu et al. (2020) sampled 11 plots totaling 381 

ha. The geographic extent of our study was also large: it covered 276 1° latitude x 1° longitude 

grid cells, which included wide variation in community composition and environmental 

characteristics. The studies of Taylor et al. (2017), Lai et al. (2018) and Chapin et al. (2016) all 

spanned a spatial extent equivalent to less than one of our grid cells, and Xu et al. (2020) 
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included 11 plots, each in a different grid cell. It is also worth noting that the small size of the 

individual FIA plots in our analysis (0.07 ha, much smaller than the 16-60 ha plots in Xu et al. 

2020 and the 1 ha plots in Taylor et al. 2017, and slightly smaller than the 0.1 ha plots in Lai et 

al. 2018) contributes to the wide variation in the N-fixer effects in our study, since each plot 

sampled relatively few trees. Given the large scale and the breadth of environmental 

characteristics in our analysis, the distribution of N-fixer effects we observed (e.g., Fig. 7d-f, j-l) 

is at least as informative as the average trend. 

Although past studies have come to differing conclusions about the N-fixer effect, all of 

their findings fit within the distribution of N-fixer effects we observed. Positive N-fixer effects in 

boreal (Chapin et al., 2016) and temperate (Minucci et al., 2019) forests, null N-fixer effects in 

temperate (Binkley et al., 1992) and tropical (Lai et al., 2018; Xu et al., 2020) forests, and 

negative N-fixer effects in boreal (Chapin et al. 2016) and tropical (Taylor et al., 2017) forests 

all fit well within the distribution of the N-fixer effects we observed across temperate forests in 

the coterminous U.S. It is therefore of great interest to understand its variation. For both the 

variation within our study and across previous studies, why is the N-fixer effect positive in some 

circumstances but null or negative in others?  

 

4.2 What Mediates the N-Fixer Effect? 

Abiotic factors that were major drivers of the N-fixer effect were N deposition and soil 

moisture, while tree traits that drove the N-fixer effect were foliar C:N, canopy position, 

evergreen/deciduous and N fixation status. The unifying theme of these results was that N-fixing 

trees facilitated forest growth when they were expected to be less competitive, such as in plots 

with high N deposition and soil moisture or when neighboring trees occupied different niches 
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(i.e. high foliar C:N, understory, and non-fixing trees). In the following sections we explain our 

results within the context of this competitive framework. 

We had initially expected that N-fixing trees would facilitate forest growth under N-

limited conditions, following the prevailing view of the role of N-fixing trees in forest N cycling 

and forest growth. This has also been suggested by previous studies of N-fixer effects: a study in 

Washington, U.S. demonstrated that N-fixing trees increased total biomass in a low N site but 

not in a high N site (Binkley et al., 1992), and N-fixing trees inhibited forest growth in generally 

N-rich forests in Costa Rica (Taylor et al., 2017). Because the data to quantify N limitation at the 

scale of our analysis do not exist, we examined N deposition, which is well quantified at the 

proper scale. N deposition does not necessarily indicate N limitation, which depends on all 

sources of N supply and their relationship to N demand. All else equal, though, we expected 

plots with higher N deposition to be less N limited, as suggested by a positive relationship 

between N deposition and forest growth (Thomas et al. 2010). Against our expectations, we 

found that N-fixing trees facilitated BAIn more in high N deposition plots than in low N 

deposition plots. This is likely because N-fixers were stronger competitors in low N deposition 

plots than in high N deposition plots. In N-limited conditions, even though non-fixers could 

benefit from the N input of N-fixers, N-fixers themselves benefit first and most from their ability 

to fix N, and N-fixers’ success allows them to outcompete non-fixers. Non-fixers can access 

fixed N only after the turnover and decomposition of N-fixer tissues, which causes a time lag in 

non-fixer access to fixed N. Therefore, N-fixers are most competitive in N-limited conditions, as 

predicted by theory (Vitousek & Field 1999; Rastetter et al., 2001; Menge et al. 2017; 

Bytnerowicz & Menge, in review). Under less N-limited conditions, N-fixers are less 

competitive because their ability to fix N gives them less of a competitive advantage over non-
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fixers. Therefore, somewhat counterintuitively, the competition framework predicts that net 

facilitation by N-fixers should increase as N limitation decreases. Although N limitation can be 

correlated with stand age, latitude, and temperature, none of those mediated the effect of N-

fixing trees on forest growth in our analyses, potentially due to confounding factors. 

N-fixers are more water efficient than non-fixers (Adams et al., 2016), so they compete 

strongly with non-fixers in dry environments (Gei et al., 2018; Liao, Menge, Lichstein, & 

Ángeles-Pérez, 2017; Minucci, Miniat, Teskey, & Wurzburger, 2017; Pellegrini, Staver, Hedin, 

Charles-Dominique, & Tourgee, 2016; Wurzburger & Miniat, 2014). Consistent with the 

competitive framework, N-fixing trees facilitated basal area change (BAI, BAIn, and recruitment) 

more in wetter plots than in drier plots. Curiously, mean annual precipitation had no relationship 

to N-fixer effects in our analyses, suggesting that the more localized soil moisture index is a 

stronger mediator of the interactions between N-fixers and non-fixers. Furthermore, there was no 

geographic (latitude or longitude) driver of the NFE, which further supports that local, site-

specific conditions were more important in determining competitive and facilitative dynamics 

than were broad gradients of temperature and precipitation. 

N-fixing trees facilitated neighboring trees that occupied different niches, consistent with 

coexistence theory (Morin, 2011). N-fixing trees competed less with these individuals and thus 

they were less inhibited by N-fixing trees (i.e. higher net facilitation by N-fixing trees). The 

clearest example of this distinction is the N-fixer vs. non-fixer dichotomy itself: N-fixing trees 

promoted basal area change of non-fixing trees (BAIn) more than total basal area change (BAI). 

This was also consistent with Liao & Menge (2016), who showed that N-fixing trees tend to 

grow slower, recruit slower, and die faster than non-fixing tree counterparts in the coterminous 

U.S. The lower growth, recruitment, and survival rates of N-fixers (Liao and Menge 2016) 
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decreased total basal area growth relative to basal area growth of non-fixing trees. Additionally, 

at the individual scale, N-fixing trees facilitated the growth of neighboring non-fixing trees more 

than the growth of neighboring N-fixing trees.  

Notably, N-fixing trees facilitated neighboring trees with high foliar C:N more than 

neighboring trees with low foliar C:N. N-fixers generally have low C:N because they have 

higher foliar percent N relative to non-fixers (Reed et al. 2007, Fyllas et al. 2009, Nasto et al. 

2014, Adams et al. 2016). N-fixing trees may compete less with neighboring trees with high C:N 

than with neighboring trees with low C:N because they have different nutrient requirements. 

Another possible explanation for this foliar stoichiometry finding is that a given N increment 

transferred from an N-fixing tree to a neighboring tree makes a greater impact on overall 

photosynthetic capacity for a species with high C:N than a species with low C:N because it 

enables a greater relative change in foliar percent N and new leaf production (Lambers, Chapin, 

& Pons, 1998). N-fixing trees can associate with both AM (e.g. Robinia pseudoacacia) and EM 

(e.g. Alnus rubra) which could explain why symbiotic association did not mediate the effect of 

N-fixing trees on neighboring tree demographic rates. 

Generally we found N-fixers facilitate neighboring trees that occupy different niches, but 

inhibit neighbors that share the same niche. Evergreen trees were inhibited by N-fixers. 

Evergreen trees, which conserve nutrients by turning over tissue slower (Franklin et al. 2009) so 

are more tolerant of low soil N conditions and colonize early successional habitats, occupy a 

similar ecological niche to N-fixers. However, N-fixers and evergreens occupy different 

physiological niches (e.g. evergreens are shade tolerant and have high foliar C:N; Hallik, 

Niinemets, & Wright, 2009). Further research is needed to reconcile the evergreen results with 

other traits that mediated the NFE. Canopy position followed the competition framework. Most 
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N-fixing trees were canopy trees (81%). N-fixing trees may have facilitated neighboring trees in 

the understory more than neighboring trees in the canopy because there was less light 

competition between N-fixing trees and neighboring understory trees than between N-fixing 

trees and neighboring canopy trees.  

 

4.3 Caveats and Extensions 

The presence of N-fixing trees does not mean that they are actively fixing N (Barron, 

Purves, & Hedin, 2011), and in this study we could not distinguish between N-fixers that were 

actively fixing N from those that were not. When N fixation is down-regulated, N-fixers 

consistently still maintain high foliar N (Wolf, Funk, & Menge, 2017), and could take up large 

quantities of N from the soil N pool. These N-fixers would have been strong competitors for 

light and other resources while also competing with neighboring non-fixers for N. More field 

studies on N fixation rates of our common genera (Robinia, Alnus, Prosopis, and Cercocarpus), 

would help clarify our results.  

Although the spatial scale of this study was large, the time span was limited to a single 

census interval (range 1-16 years, mean 5.2 years). A time-lagged nurse effect of N-fixers was 

reported by Schuster & Hutnik (1987) who found that Robinia pseudoacacia inhibited 

interplanted neighbors but facilitated growth of trees planted after the Robinia pseudoacacia 

died. Our study may have missed impacts of N-fixing trees that only manifested as changes in 

forest demography years or decades later by only considering trees that were present at the 

census points. Further work should be conducted on time lags and legacy effects of N-fixers 

(Perakis and Sinkhorn 2011) in census data. 
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 The vast majority of N-fixers in our dataset were Robinia pseudoacacia, so our results 

are skewed toward Robinia pseudoacacia interactions, which tended to occur with evergreens 

such as pines, junipers, or fir trees. Different N-fixing tree species may have affected their 

neighbors differently but the sample size of other taxa was not large enough to make clear 

conclusions.  

 

5 Conclusion 

Some reforestation strategies target planting N-fixing plants to relieve N limitation and 

promote forest growth (Chazdon, 2008, Rosenstock, Tully, Neufeldt, et al., 2014, Jensen et al. 

2012, Cunningham et al. 2015). Whether N-fixing trees should be recommended for 

reforestation depends on a complex set of factors that determine facilitation of and competition 

with neighboring trees, and, if the goal of reforestation includes climate mitigation, the net effect 

of N-fixers on soil N2O emissions (Bühlmann, Caprez, Hiltbrunner, Körner, & Niklaus, 2017; 

Kou-Giesbrecht & Menge, 2019; Rosenstock, Tully, Arias-Navarro, et al., 2014). 

Here, we demonstrated that, on average, N-fixing trees in the coterminous U.S. do not affect 

forest growth, though they do facilitate growth of non-fixing trees. N-fixers can also be 

important drivers of demographic processes, though their interactions with neighbors vary based 

on abiotic factors such as soil moisture and N deposition and the traits of neighboring trees such 

as foliar C:N, canopy position, and N fixation status. The large spatial extent of the FIA data 

provides a uniquely robust assessment of the N-fixer effect on forest growth and its ecological 

drivers. Overall, our results suggest that planting N-fixing trees may be a viable reforestation 

strategy in temperate forests in specific contexts such as wet, high N deposition sites dominated 

by non-fixing trees that are ecologically dissimilar to the N-fixing trees planted.   
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Chapter 3: Individual trees could access a large or small fraction of 

their leaf litter depending on tree traits and environmental 

conditions 

Authors: Anika Petach Staccone, Duncan N. L. Menge 

 

Abstract 

The degree to which individual trees can recapture nutrients from their leaf litter could have 

major implications for plant-soil feedbacks. To explore this question we used a theoretical 

advection-diffusion-reaction model that considered litter movement and decomposition as 

functions of species traits (e.g., root distributions and leaf properties) and environmental 

conditions (e.g., wind, hillslope, and precipitation). Rooting extent, the rate of decomposition, 

and the advection velocity of litter were the strongest drivers of litter nutrient recapture by a 

focal tree, which suggests both species-traits and environmental conditions drive litter nutrient 

return. We observed a feedback loop where trees that drop nutrient rich leaf litter had a greater 

opportunity to recapture nutrients because the litter decomposed before moving outside the 

rooting zone. 

 

1 Introduction 

How much of the nitrogen (N) in an individual tree’s litterfall can it recover? This 

fundamental question has implications for a wide range of topics, but it has received little 

attention. At the ecosystem scale, litterfall is an important nutrient supply process (Sayer and 
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Tanner 2010, Neumann et al. 2018) as most N is recycled internally in ecosystems (Cleveland et 

al. 2013). Although much is known about recycling at the ecosystem scale (Cleveland et al. 

2013), much less is known about recycling at the individual scale, which is more relevant for 

questions about plant-soil feedbacks, stand dynamics, and fertilization of the forest by specific 

species. Nutrient recycling at the individual scale is altered by species composition driven litter 

quality and mobility, slope, and weather conditions, which could, in turn affect dynamics among 

trees.  

The nutrient return from a tree’s leaf litter could have major implications for plant-soil 

feedbacks (PSF) and resource competition with neighbors. Trees influence the soil around them 

through leaf and root litter inputs (Hobbie 2015, Bennett and Klironomos 2018) which influence 

soil temperature, chemistry, and pathogens which in turn influence tree growth, recruitment, and 

survival either positively or negatively (van der Putten et al. 2013) creating a plant-soil feedback. 

Through the plant-soil feedback, plants can engineer conditions around themselves to promote 

conspecific individuals and suppress competitors. Leaf litter can enhance soil physical and 

chemical fertility to enact a positive PSF (Veen et al. 2019) by altering soil chemistry to promote 

offspring with similar nutrient use strategies (i.e. species with fast strategies make conditions 

better for offspring with fast strategies and those with slow nutrient strategies make conditions 

better for other slow strategy offspring). Direction and strength of plant-soil feedbacks can be 

unpredictable suggesting that different plant traits may affect whether they are detected (van der 

Putten et al. 2013, Kardol et al. 2015, De Long et al. 2019). Leaf litter input is a crucial 

mechanism for trees to affect local soil conditions causing Zinke effects and plant-soil feedbacks. 

The percent of leaf litter that decomposes in the rooting zone of a tree based on the tree’s traits 
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and environmental conditions is an unresolved question but potentially critical to explaining 

observed tree effects.  

If most focal tree litter stays within their own rooting zone, their litter nutrients could 

enhance their own growth making them strong competitors. The percent of nutrients recovered 

by a tree affects both its own and its neighbors’ soil environment (Veen et al. 2019). PSF theory 

suggests that positive PSF occur when an individual’s leaf litter remains close to influence soil 

chemistry and increase the individual’s fitness (Wedin and Tilman 1990, Binkley and Giardina 

1998, Miki and Kondoh 2002, Chapman et al. 2006, Cross and Perakis 2011, Uriarte and Menge 

2018). Other literature, such as on N fixer facilitation (Boyden et al. 2005, Siddique et al. 2008), 

implicitly assumes that litter moves to neighbors, but the rate at which it does so is unclear. 

Batterman et al. (2013) found that almost half of ecosystem N was supplied by N-fixation in 

early succession even though N-fixers accounted for only 5% of basal area, implying rapid 

nutrient transfer from N-fixers to neighbors.  

Species influence each other by drawing down resources and the species that can draw 

down a resource most is the most competitive (Tilman 1977, 2003). Tree species influence soil N 

both by competing for access to the standing soil N pool and by replenishing soil N through 

turnover. Stronger competitors capture the largest fraction of nutrient supply which prevents 

others from accessing those nutrients (Craine et al. 2005). Trees prevent their neighbors from 

accessing soil nutrients by extending their roots and pre-emptively capturing soil nutrients 

(Craine and Dybzinski 2013). Since trees vary both in the nutrient content of their leaf litter due 

to different green leaf nutrient content (Wright et al., 2004) and different resorption efficiencies 

(Aerts 1996), in traits that affect how far leaf litter moves before decomposition (Ferrari and 
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Sugita 1996), and in root length (Kalliokoski et al. 2008, Roumet et al. 2016) different traits 

could have important implications for competitive nutrient dynamics and plant soil feedbacks.  

 Individual and population scale resource strategies can affect ecosystem scale patterns 

(Menge et al. 2009b, 2015, Boudsocq et al. 2011, 2012). Ecosystem models incorporate 

individual-scale litter nutrient recycling in different ways. Classic resource competition models 

assume a fixed nutrient supply where a plant does not have access to nutrients from mineralized 

leaf litter and they assume that nutrient access is independent of plant litter (Tilman 1980, 1982, 

Klausmeier et al. 2004). Models that do incorporate ecosystem recycling use two paradigms: (1) 

an individual and all of its neighbors access nutrients mineralized from all leaf litter since the 

model assumes global nutrient access (Miki and Kondoh 2002, Ballantyne et al. 2008, Menge et 

al. 2009b, 2012, Miki et al. 2010, Kou-Giesbrecht and Menge 2019), or (2) trees do not share 

litter with neighbors. Though there are exceptions to these assumptions (Marleau et al. 2015, 

Barot et al. 2016, Menge and Levin 2017), the majority of ecosystem and plant-soil feedback 

theory is based on either all or none access. Reality is likely between these extremes (100% and 

0% litter access). Updating model assumptions with a realistic litter nutrient return and sharing 

could have major implications on our understanding of ecosystem dynamics. A recent litter 

dispersal model found that the distance litter moves from a focal tree depends on the size and 

species though for average sized trees most litter remains within 20-50 m of the focal tree 

(Nickmans et al. 2019).  

The nutrients that a focal tree can recapture is based on the interplay among the leaf 

litterfall distribution, subsequent movement of leaves across the ground (random diffusion and 

non-random advection), leaf physical immobilization rate (getting physically stopped, then 

decomposition and mineralization), and tree rooting distribution. Together these properties 
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describe how far leaf litter moves from the focal tree before it decomposes and mineralizes, as 

well as how far from its base a focal tree can potentially access the decomposed and mineralized 

nutrients. Though microbial dynamics can also be important, they were not explicitly considered 

here. 

 To explore how litterfall may supply nutrients to focal source trees versus neighborhood 

competitors, we used a theoretical advection-diffusion-reaction model that considers spatial 

patterns of litterfall deposition, movement, nutrient release, and subsequent nutrient uptake by 

plants. We ask three questions: (1) What proportion of nutrients return to a focal tree from its 

own litterfall? (2) How do tree properties such as height, rooting distribution, specific leaf area 

(SLA), and leaf decomposability affect the percent of nutrients recovered by a focal tree? (3) 

How do environmental characteristics such as slope and precipitation affect the percent of 

nutrients recovered by a focal tree? (4) In a forest stand, how do different spatial arrangements, 

tree properties, and environmental properties affect litter sharing between neighboring trees? We 

hypothesize that taller trees will recover a smaller percent of nutrients because they have a wider 

litterfall distribution (Staelens et al. 2003, Uriarte et al. 2015) and so, on average, leaves fall 

farther from the tree. We also expect that environmental conditions that lead to higher advection 

or diffusion rates such as steep slopes, windiness, or low understory cover will lead to a lower 

percent of nutrients recovered by the focal tree and more litter sharing with neighbors. Overall, 

the theory developed here will allow us to make predictions about plant interactions, nutrient 

limitation under different environmental conditions and with different combinations of plant 

traits, and inform plant-soil feedback theory. 
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2 Methods 

2.1 Model description 

The percent of nutrients that a focal tree can recapture was based on the interplay among 

the leaf litterfall distribution, subsequent movement of leaves across the ground (random 

diffusion and non-random advection), leaf immobilization rate (getting physically stopped by 

trapping or leaf mat formation, then decomposition and mineralization), and tree rooting 

distribution. Together these properties described how far leaf litter moves from the focal tree 

before it decomposed and mineralized, as well as how far from its base a focal tree can 

potentially access the decomposed and mineralized nutrients. Since total litter production is not 

considered in the model we modeled the percent of nutrients that a focal tree can recapture, 

however, for brevity we refer to this as litter recapture or φ.  

Leaf litterfall, its subsequent movement and decomposition synthesized several 

processes. There was some literature on leaf litterfall (Ferrari and Sugita 1996, Staelens et al. 

2003, Jonard et al. 2006, Uriarte et al. 2015) and extensive literature on leaf litter decomposition 

(Gholz et al. 2000, Adair et al. 2008, Zhang et al. 2008, Berg 2014, David 2014). The movement 

of leaf litter across the ground has received little attention though several studies indicated that 

this could be an important process (Orndorff and Lang 1981, Boerner and Kooser 1989, Porder 

et al. 2005, Hart et al. 2013). A recent leaf dispersal model demonstrated that wind direction and 

crown height were key drivers of leaf dispersal patterns and that up to 86% of soil nutrients 

could originate from the local neighborhood (Nickmans et al. 2019).  

This model aimed to understand the mechanisms underlying N recovery in trees by 

examining leaf litterfall, advection, and diffusion relative to rooting distributions. We assumed 

that nutrients in leaves that remained within the rooting zone of a tree were potentially available 
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to the tree after the leaf decomposed and mineralized. But, leaves that moved outside the rooting 

radius, via any combination of the initial fall, diffusion, and advection, were not available to the 

focal tree. To investigate litter recovery by a focal tree, we used a reaction-diffusion-advection 

model to model the dynamics of litterfall distribution, diffusion (random spreading of litter), 

advection (directed movement of litter), and decomposition (immobilization of litter). Reaction-

diffusion modeling has successfully described other problems in spatial ecology such as spore 

dispersal, fish schooling, and animal home range analysis (Okubo and Levin 2001). We modeled 

leaf litter movement in the horizontal direction to study the dynamics of leaf litter movement 

along a landscape after the initial litterfall. Equation 1 is the standard reaction-diffusion-

advection equation in a single spatial dimension.  

𝜕𝐿

𝜕𝑡
= 𝐷

𝜕2𝐿

𝜕𝑥2 − 𝑢
𝜕𝐿

𝜕𝑥
− 𝑘𝐿  (1) 

The model framework (Figure 1) included the litter density L(x,t) (kg m−2) at a given distance 

from tree base x (m) through time, t (y), as determined by the diffusion coefficient, D (m2 y−1), 

advection velocity, u (m y−1), and decomposition rate, k (y−1).  
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Figure 10. Model framework for an individual tree.  

Litter falls in a single pulse at t = 0 and moves through advection and diffusion. Litter is 

immobilized proportional to k. Litter that is immobilized within the tree's roots (-βmax to βmax) 

is potentially accessed by the focal tree. 

 

A cohort of litter fell at time 0, simulating autumn litterfall, which subsequently moved 

across the landscape and eventually decomposed. We only tracked one cohort of litter for 

simplicity, but this could be expanded into a broader framework of multiple cohorts or 

continuous litter input. In this equation the net rate of change of litter at a given distance from the 

focal tree (dL/dt) was given by the flux density of the litter gradient (Laplacian) plus the 

advection velocity minus the decomposition rate. As litter moves across the landscape it is 

immobilized when trapped under fallen logs or integrated into leaf mats and eventually 

decomposes. Though we referred to k as the litter decomposition rate, is also accounted for these 

processes that cause litter to stop moving.  
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The model assumed, for simplicity, that the diffusion coefficient, advection coefficient, 

and decomposition rate were constant across the year and space around the tree. Leaves fell from 

trees in predictable patterns that can be modeled using an exponential decay equation with 

asymmetric effects for wind direction (Ferrari and Sugita 1996, Jonard et al. 2006, Uriarte et al. 

2015). The initial litterfall distribution (ε(x)) was modeled as the initial condition for solving. 

Initial litterfall was affected by tree height, total litter production, leaf area (Nickmans et al. 

2019) and wind (Staelens et al. 2003). For instance, taller trees tend to increase the width of the 

litterfall distribution (Ferrari and Sugita 1996, Jonard et al. 2006). Roots did not extend 

uniformly from the base of a tree outward and the focal tree could only take up nutrients from 

decomposed leaf litter where it had active roots or mycorrhizae. We added a model term, ψ(x), to 

account for the distribution of root density which included the possible shift from roots to 

mycorrhizae as uptake surfaces.  

Tree morphology and environmental characteristics influenced the model parameters. 

Tree morphology dictated the litterfall distribution (ε(x)), root distribution (ψ(x)), and litter 

decomposition rate. Environmental characteristics drove diffusion and advection, and played a 

role in the decomposition rate. Certainly there is no guarantee that a focal tree will recover its 

litter nutrients even if they decompose within the rooting radius. Both empirical (Jones et al. 

2011) and theoretical work (Dybzinski et al. 2011, Farrior 2019) show that forest trees have 

extensive root overlap and we incorporated a rooting distribution to account for the decreased 

probability of nutrient return from nutrients that decompose farther from the base of a focal tree. 

 

2.2 Model analysis 
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 The advection-diffusion-reaction equation was solved numerically using a Crank-

Nicolson framework (Dassargues 2018) with initial conditions (describing the litterfall from the 

tree) and Dirichlet boundary conditions (litter density at end points was 0 kg m−2), constraints 

necessary to solve the PDE. We tracked both the litter density and litter decomposition 

(indicating nutrient supply) at each point in space and time. We then calculated the percent of 

litter that decomposed within the rooting radius by summing the decomposed litter across the 

rooting radius (−𝛽𝑚𝑎𝑥 to 𝛽𝑚𝑎𝑥) and dividing by the total litter. Three initial conditions were 

considered which allows the distribution of initial litterfall to vary.  

To calculate the percent of litter that decomposed within the rooting zone (φ), we divided 

the decomposed litter within the roots in the first 25 years by the total litter decomposed 

anywhere. We evaluated the dynamics over 25 years because this is a possible time horizon for a 

tree to access nutrients before they are taken up by other sinks. Mathematically, φ of the focal 

plant was the ratio of the density function, L(x, t), spatially integrated across the root extent (-

βmax to βmax) and temporally integrated from time zero to 25 years divided by the density function 

L(x, t) spatially integrated across all space and time (total litter). This ratio was multiplied by 

ψ(x), the distribution of roots around the tree 

𝜑𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒 = 100 ∗
∑ ∑ 𝐿(𝑥, 𝑡)𝜓(𝑥)𝑑𝑥𝑑𝑡

𝛽𝑚𝑎𝑥
𝑥=−𝛽𝑚𝑎𝑥

25
𝑡=0

∑ ∑ 𝐿(𝑥, 𝑡)𝑑𝑥𝑑𝑡∞
𝑥=−∞

∞
𝑡=0

   (𝟐) 

Appendix C - SI Figure 1 illustrates the pulse of litter density through time according to 

our advection-diffusion-reaction model described by equation 1. In addition to the percent of 

total litter nutrients a tree could recover, we also studied the percent of litter nutrients 

decomposed at that time that a tree could recover using a modified version of equation 2 where 

the denominator only included nutrients decomposed up to that time: 
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𝜑𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 100 ∗
∑ ∑ 𝐿(𝑥, 𝑡)𝜓(𝑥)𝑑𝑥𝑑𝑡

𝛽𝑚𝑎𝑥
𝑥=−𝛽𝑚𝑎𝑥

25
𝑡=0

∑ ∑ 𝐿(𝑥, 𝑡)𝑑𝑥𝑑𝑡∞
𝑥=−∞

25
𝑡=0

   (𝟑) 

Since roots are not uniform in length or density around a tree, and mycorrhizal networks 

can further extend the uptake radius, different rooting distributions were considered in the model 

which were more realistic than a single rooting radius. The rooting distribution (ψ(x)) described 

the probability of finding roots at a given distance from the focal tree.  

To evaluate the proportion of nutrients from a focal tree that a second, neighboring tree 

could potentially capture we defined a variable γ as the proportion of total litter nutrients that 

decomposed within the second tree’s rooting radius after 25 years. A variety of size and space 

configurations were tested. The details of neighbor tree size and spacing are defined in Appendix 

C – Text 1.  

Solutions were calculated numerically in R (R Core Team 2020) using a runtime of 25 

years and spatial extent of 400 m (comparison with 1, 5, and 10 years is shown in Appendix C - 

Figure SI 10). 

 

2.3 Parameters 

 We used species-specific parameters to solve the advection-diffusion-reaction model. 

Tree traits influenced all parameters including initial leaf fall (ε(x)), rooting radius (β, described 

above) and distribution (ψ(x)), diffusion coefficient (D), advection coefficient (u), and 

immobilization rate (k). Parameters were drawn from a combination of literature and 

experimentally derived values to simulate four common species from hardwood forests in eastern 

North America: red oak (Quercus rubra), red maple (Acer rubrum), American beech (Fagus 

grandifolia), and black locust (Robinia pseudoacacia) shown in Table 6. These species were 

selected to represent typical species with a range of resorption efficiencies and mycorrhizal 
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associations (see Table 6) found in an eastern hardwood forest. R. pseudoacacia was included 

because it is a nitrogen-fixing tree known to have high N content in litter (White et al. 1988, 

Hurd et al. 2000) and might, therefore, have different and interesting litter nutrient dynamics. 

Single species leaf clusters (from Q. rubra, Q. alba, A. rubrum, R. pseudoacacia, or F. 

grandifolia) were constructed with 20 spray painted leaves of a single species and tracked across 

4 months to observe the diffusion and advection of leaves. The initial litter distribution and 

decomposition rate for each species was estimated from literature values. Details of parameter 

estimates and sources are detailed in Appendix C - SI Text 1 and details of the forest stand model 

are in Appendix C - SI Text 4. 

 

Table 6. Model parameters  

for 4 focal temperate tree species where D is diffusion coefficient, u is advection velocity, k is 

decomposition rate, and mycorrhizal association from Jo et al. (2019) source. 

Species D (m2 y−1) u (m y−1) u from rank k (y−1) Mycorrhizal 

association 

Q. rubra 196 105 65 0.67 ECM 

A. rubrum 180.5 110 115 0.48 AM 

F. grandifolia 139.5 111 90 0.55 ECM 

R. pseudoacacia 21.6 43.2 40 1.32 AM 

 

3 Results 

 Overall, of the litter that had decomposed by 25 years, focal trees recovered from 47% to 

72% (φcurrent) for our base parameters (“Staelens” initial litterfall, “b^x” rooting distribution, 

k=0.6, D=150 or 50 m2 y−1, u=75 or 25 m y−1). On the other hand, litter recovered based on the 

total litter the tree dropped (φultimate) ranged from 37% to 71% for the same parameter 

combinations. Within the range of possible parameters, which is wider than the range of base 



73 

 

parameters, the percent of litter nutrients recovered by an individual tree ranged from < 1% to 

97%. The litter recovered changed a lot with some parameters (e.g. rooting radius βmax, rooting 

distribution ψ(x), advection velocity u, and diffusion rate D) but not with others (initial litterfall, 

ε(x)). Here we described some tree properties and environmental characteristics that were 

important determinants of the litter nutrients recovered by an individual tree. 

 

3.1 Effects of tree properties 

 Tree properties drove many model parameters, which allowed us to explore how much 

leaf litter a tree can access depending on its traits. Tree properties included DBH which drove 

rooting radius (βmax) and the initial litterfall (ε(x)), leaf litter decomposition (k), and leaf traits 

such as SLA and shape that impacted diffusion (D) and advection (u). Without sufficient 

experimental data it was difficult to incorporate the effect of tree properties on D and u, so we 

focus on the other parameters here. 

 Of tree properties, the rooting radius and decomposition rate had the greatest impact on 

litter recovered. Holding all other parameters constant, varying root length from 1 m to 50 m 

increased φcurrent from 1% to 48% (Q. rubra), 0.8 % to 42% (A. rubrum), 0.9 % to 44% (F. 

grandifolia), and 2% to 66% (R. pseudoacacia). In ‘realistic’ simulations, root length was 

determined based on tree DBH so that larger trees had a wider initial litter distribution and a 

longer rooting radius. The net effect of larger DBH was that larger trees recovered a greater 

fraction of litter nutrients. Trees with faster immobilization and decomposition rates (k) 

recovered more litter nutrients (φcurrent). An increase in k from 0.5 y−1 to 1.5 y−1 for a tree with 

DBH of 20.6 cm (D = 100 m2 y−1, u = 50 m y−1) increased φcurrent from 43% to 65%.  
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The rooting distribution also impacted litter nutrient recovery. When root density dropped 

off close to the tree, less litter was recovered as shown in Figure 11. For instance, the “uniform” 

distribution indicated a tree with constant probability of nutrient uptake up to the maximum root 

length and under this distribution 50% litter nutrient recovery occurred when the root length was 

75 m. However, if the roots followed any other rooting distribution explored, the focal tree could 

never recover 50% of its nutrients. Roots do not grow uniformly, and even when present, tree 

roots often overlap preventing a focal tree from recovering all of the nutrients that exist within its 

rooting radius. We did not have sufficient data to quantify the rooting distribution of species 

studied here so we examined the effect of several theoretical rooting distributions. Reality of the 

rooting distribution was likely between the extremes presented here and all rooting distributions 

explored had an important impact on the percent of nutrients recovered. 
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Figure 11. Percent litter recovered 

(a) Percent of litter recovered by a focal tree versus root length (βmax) under different initial 

conditions, ψ(x). (b) Percent of litter recovered by a focal tree versus root length (βmax) under 

different rooting distributions. Parameters: k (0.36 y−1), D (100 m2 y−1), u (100 m y−1), ε(x) = 

Uriarte ‘typical’. 

  

There was essentially no impact of the initial litterfall distribution on the percent of litter 

recovered by a focal tree for a given root length as shown in Figure 11a. For example, a 30 cm 

Q. rubra would recover 42.0% with a Gaussian, Uriarte ‘wide’, Uriarte ‘narrow’ or ‘typical’, and 
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41.9% with ‘Staelens’ (u = 100 m y−1). With a larger tree (DBH = 40 cm) under low wind 

conditions (u = 40 m y−1) litter recovery was 77.6% (‘Staelens’) and 77.7% with any other initial 

distribution used.  

 Parameters interacted in the model so that the relative impact of changing a parameter 

depended on the values of other parameters. For example, root length and the initial litterfall 

distribution interacted. When u was 100 m y−1 there was little effect of the width of the initial 

distribution (Appendix C - Figure SI 5a, standard deviation of initial litterfall along the x-axis), 

however, when u was 1 m y−1 there was an effect of initial distribution width where wider 

distributions led to lower litter recovery (Appendix C - Figure SI 5b).  

 

3.2 Effects of environmental properties 

 Environmental conditions affected diffusion (D), advection (u), and to an extent 

decomposition (k) through wind, hill slope, and water. Advection was an important mediator for 

the percent of litter recovered by a focal tree (Figure 12 and Appendix – SI Figure 4c). A large 

tree with a fast decomposition rate could recover nearly all of its litter nutrients when u was low, 

however, as u increased φ dropped below 75%. Very small trees had such small rooting zones 

that they could not overcome the effect of advection and even at low advection velocities, trees 

with 1 m rooting radius recovered less than 10% of litter. As a tree’s roots lengthened, the effect 

of advection interacted more strongly with decomposition (Figure 12).   
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Figure 12. Effect of environmental parameters on the percent of litter potentially recovered by a 

focal tree.  

 Across the grid columns u (advection velocity) is 30 m y−1, 90 m y−1, and 120 m y−1. Across the 

grid columns, D (diffusion coefficient) is 30 m2 y−1, 90 m2 y−1, and 120 m2 y−1. The 

decomposition rate (k) is shown with different colors. Parameter k is a strong driver of φcurrent 

(the percent of litter recovered).  

 

With a given advection velocity, litter recovered (φcurrent) decreased as diffusion (D) 

increased (Figure 12). Again, k mediated the relationship between φcurrent and D. Since k 

described the immobilization of litter which included both decomposition rate and other possible 

physical effects such as leaf mats formation and entrapment of leaves under fallen wood, 

decomposition rate only placed a lower bound on k. Effective values of k were likely higher. If 
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the effective k was 10 times greater than the decomposition rate this could lead to a doubling in 

φ, especially for large trees (Figure 12). 

 The relative strength of u (directed movement) and D (random movement) of litter was a 

key driver of φ. For a given rooting zone, as the ratio u/D increased, φ decreased (Appendix C - 

SI Figure 7a). When the ratio was low diffusion dominated and φ was greater. As the ratio 

increased, advection dominated and φ decreased. Since there are likely similar controls on u and 

D (wind, precipitation, leaf size, leaf shape, etc.) in nature they likely co-vary.  

Parameters interacted to determine φ. The interaction of u, a predominantly 

environmentally-controlled parameter, and k, a climatic and biotically-mediated parameter, 

showed that φ can be high either when k was sufficiently fast or when u was sufficiently low. For 

fast immobilizing litter, trees could experience moderate advection and still recover the majority 

of their leaf litter (Figure 12, Appendix C – SI Figure 7b). 

To synthesize the interaction of all model parameters in a biologically meaningful way, 

we simulated φ for several common eastern forest trees (Figure 13).  
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Figure 13. Percent of litter recovered for each of the 4 focal species based on tree dbh.  

The left facet shows an advection velocity (u) of 30 m y−1 and the right facet shows an advection 

velocity of 60 m y−1. This spans a range of likely wind-induced advection values. 

 

Species all recovered more nutrients in the low wind environment (Figure 13: 30 m y−1) than 

high wind (Figure 13: 60 m y−1). When tree DBH was 60 cm the roots were sufficiently long to 

recover most of the nutrients regardless of wind. However, when DBH was 10 cm the 

decomposition rate (k) was the driver of litter nutrients recovered. For 10 cm DBH trees the 

order of litter nutrient recovery follows the order of decomposition rates with Robinia having the 

highest decomposition rate and most nutrient recovered. 

 

4 Discussion 

4.1 How far do leaves move after they fall and how does this affect nutrient recapture? 
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 Recent work highlighted the overlooked importance of litter redistribution on the forest 

floor after litterfall and found that 77 to 86% of forest floor litter around focal trees can originate 

from neighbors (Nickmans et al. 2019). Based on the four species we investigated, individual 

trees can potentially recover between 3 and 99% of their litter nutrients. Our model predicted a 

wider range than the Nickmans et al. (2019) model because it considered the full spectrum of 

plausible species traits and environmental conditions.   

 

4.2 Implications of nutrient recovery for plant-soil feedbacks 

Theory suggests that positive plant soil feedbacks occur when an individual’s leaf litter 

remains close (Fang et al. 2019, Png et al. 2019, Veen et al. 2019), adjusting soil conditions 

(Sayer and Tanner 2010) to increase the individual’s fitness. In our model a large φ indicated a 

positive PSF since leaf litter remained close enough to the focal tree that it could recapture the 

nutrients and so the litter would decompose close to the focal tree making soil chemistry more 

favorable for conspecific individuals. This large φ was observed with long rooting radius 

(Appendix C – Figure SI 6) or large k (Figure 12) such as wet, tropical forests (Aerts 1997, 

Gholz et al. 2000, Powers et al. 2009) or species with low lignin:N (Aerts 1997). Since positive 

PSFs can decrease stand diversity (Kulmatiski et al. 2008, van der Putten et al. 2013) trees with 

fast decomposition and long lateral roots could be associated with lower diversity stands. On the 

other hand, high u and D minimized φ so PSFs would be less positive in windy or sloped 

environments. Thus conditions that affect φ simultaneously affect the PSF around a focal tree. 

A feedback existed where trees that dropped N rich litter had a greater opportunity to 

recover that N through root uptake because N rich litter initially decomposed faster for labile C 

litters (Hobbie 2005, Perakis et al. 2012b, initial decomposition is when much N was liberated) 
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and thus remained closer to the focal tree. In our model higher k (decomposition and litter 

immobilization) increased nutrient recovery reinforcing this feedback at high litter N. If trees 

with higher litter N are also observed to have longer roots this could indicate certain species are 

using a “recycling” strategy for nutrient retention. 

To maintain sufficient nutrient levels within the plant to satisfy physiological processes, 

plants can reduce their nutrient loss in three ways: (1) minimize tissue turnover (reduce), (2) 

resorb nutrients (Eckstein et al. 1999, Achat et al. 2018) from tissues before they senesce and re-

translocate those nutrients for use elsewhere in the plant (reuse), or (3) drop nutrients in leaf litter 

that decomposes within the rooting radius which the plant can take up from the soil after 

decomposition and mineralization (recycle). Though nutrient optimization including overcoming 

nutrient loss is a physiological challenge for plants, little work has investigated the proportion of 

nutrients that a tree can recapture from the communal soil N pool (recycle). This “recycle” 

pathway is likely important because the carbon costs of nutrient retention (Kikuzawa and 

Lechowicz 2011) likely leads some plants toward a nutrient recycling strategy. Based on our 

model, trees with a high φ can effectively recycle nutrients so that when they drop nutrient rich 

litter they do not lose access to those nutrients. The range observed in φ suggests that some trees 

may use the “recycle” strategy while other trees put effort toward “reduce” or “reuse” strategies.  

 The plant economic spectrum integrates aboveground and belowground traits to predict 

ecosystem features. The plant economic spectrum predicts that “fast” species would be able to 

recover a large percent of their nutrients and prevent nutrient access for neighbors so would 

cause more positive PSFs. “Fast” species tend to combine higher foliar N, faster decomposition 

rates (Wright et al. 2004), and lower root density (Kramer-Walter et al. 2016). If low root density 

were correlated with longer roots (since less dense roots could mean more effort to allocate to 
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length) then the plant economic spectrum would link high foliar N and long rooting radii (β) 

creating species with distinctly high nutrient return. In our model rooting radius of the focal tree 

was a critical parameter that drove much of the variation in φ. However, growing long roots 

requires carbon and energy which could have been used to increase root density. In our model 

this is effectively like increasing stand density so more root overlap would increase.  

 

4.3 Implications of nutrient recovery for plant competition 

Theory suggests that strong competitors draw down key resources (Tilman 1977) which 

integrates both low litter nutrient input and fast nutrient uptake. According to this theory, high φ 

individuals should be strong competitors and low φ individuals weak. A tree can recover the 

majority of its nutrients (high φ) if it has sufficiently high k, sufficiently low u and D, or long 

root extent. Long roots (β) lead to high nutrient return and preempt neighbors from accessing 

those nutrients (Craine et al. 2005) which make them strong competitors. Although building long 

roots requires the tree to allocate more effort to root construction and when there is root overlap 

with neighbors trees might preferentially allocate effort to increasing root density over length 

(Cabal et al. 2020). Since strong competitors have both large k (N rich litter) and long β this 

leads to a direct trade-off between allocating effort to (1) resorption where the plant does not 

drop N and risk losing it to neighbors (low k and shorter β) and (2) traits that allow nutrient 

return after N rich litter decomposes such as long roots (high k and longer β).  

Diffusion and advection rates were important determinants of litter nutrient recovery, for 

instance, a 1.5 times advection velocity decreased nutrient recovery from 57% to 49% for a Q. 

rubra and from 76% to 64% for R. pseudoacacia. R. pseudoacacia had the smallest D and u 

from our field measurements since the leaflets separated from rachis soon after falling from the 
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tree and were less distributed over the forest floor so recovered more litter nutrient given other 

parameters. Interestingly, N-fixing plants are inefficient at resorbing N (Killingbeck 1993) so 

tend to drop more N in their litter and depending on where the litter decomposed could be taken 

back up by focal N-fixing trees or transported to neighbors where it would fertilize neighbors. 

Environmental characteristics such as wind speed, hill slope, and precipitation further impacted 

D, u, and k. Since these parameters were impacted by the same environmental characteristics 

they were intrinsically linked. For instance, wind increased both the diffusion and advection 

which caused more leaf litter movement so decreased nutrient recapture by the focal tree. Or, in 

wet environments diffusion and advection would be lower so k would be higher which would 

increase nutrient recovery a focal tree through several mechanisms (reduced litter movement and 

faster decomposition).  

   

4.5 Initial litterfall 

 The initial litter distribution did not drive φ relative to other parameters and subsequent 

movement of leaf litter after litterfall was much more important. Much of the previous work 

around litter nutrients focused on the initial litter distribution as leaves fall from trees (Ferrari 

and Sugita 1996, Staelens et al. 2003, Jonard et al. 2006, Uriarte et al. 2015), however, our 

model suggested that the movement of leaf litter after it has fallen to the ground is understudied 

and deserves more attention and field work. This is consistent with work by Hart et al (Hart et al. 

2013) which found that sites dominated by deciduous, N-rich litter (here high k) had more lateral 

redistribution than coniferous, N-poor litter (here low k). 

 

4.6 Conclusion 
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In conclusion, the advection-diffusion-reaction model was useful for understanding the 

effect of both plant traits and environmental conditions on potential leaf litter nutrient recovery 

by trees. Larger trees, species with faster decomposition rates, and low advection environments 

allowed trees to recover more of their litter nutrients. There was a possible feedback, where litter 

N increased decomposition rate which in turn increased nutrient recovery, which could make low 

foliar N resorption adaptive to trees with long roots or in environments where leaf litter was 

relatively immobile. Litter sharing among neighboring trees can be substantial but was 

influenced by decomposition and advection rates. When assessing the potential fertilization 

effects of trees from their leaf litter, stand structure and environmental conditions should be 

considered. Additional field work should focus on the movement of litter on the ground after it 

falls as advection rate was identified as a key parameter in this model and limited data exists to 

parameterize it. 
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Conclusion 

I set out to understand the effect of nitrogen-fixing trees in forests across spatial scales: 

from the litter nutrient input from N-fixing trees to their neighbors, to the observed stand scale 

effect of N-fixing trees on neighbor growth and demographic rates, and up to the continental 

scale to evaluate the magnitude of the tree BNF input compared to other N inputs. Leaf litter 

transfer is a theoretically possible mechanism of N-fixing trees to fertilize their neighbors. 

However, N-fixing trees may hoard their litter nutrients and only fertilize neighboring trees after 

they die and their tissues turn over, highlighting the importance of understanding the effect of 

nitrogen-fixing trees on different timescales. Nitrogen-fixing trees fix a biologically important 

fraction of new input to forest where they are present, but they do not have a net effect on forest 

growth and therefore do not directly impact carbon storage rates. In light of the evidence 

presented in this thesis, nitrogen-fixing trees are a widespread, important input of nitrogen into 

forests but the interaction of nitrogen-fixing trees with their neighbors is complicated by the fact 

that they can either promote or inhibit their neighbors depending on local conditions.  

Nitrogen-fixing trees impact forests in varied ways: they are strong competitors that can 

take advantage of early successional niches often shading out neighbors but also add new 

biologically available N to ecosystems that can fuel both forest growth (Batterman et al. 2013) 

and nitrous oxide emissions (Kou-Giesbrecht and Menge 2019). Whether nitrogen-fixing trees 

should be intentionally planted in managed forests rests on the balance of the effects that they 

will have on neighboring trees, carbon storage, and nitrous oxide potential. More work is needed 
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to investigate the temporal dynamics of the nitrogen-fixing tree effects on forest demography. 

The data that I used (FIA) had only one repeat measurement of biomass and was not a long 

standing time series which prevented a deeper understanding of time lags and temporal aspects 

of N-fixer effects. Furthermore, the FIA integrated across the past 5 decades so I was unable to 

distinguish between effects of nitrogen-fixing trees during earlier periods (1980s) when nitrogen 

deposition was less than in recent years. Recent work by Helms et al (in prep) demonstrated that 

there are important time lags between the period when a nitrogen-fixing tree is actively fixing 

nitrogen and the period when changes in forest demography are observed.  

BNF is an important N source in temperate forests. Trees, particularly, often have access 

to more energy than other types of N-fixers so they have the potential to fix large quantities of N. 

Since N is often limiting (or co-limiting) to growth in temperate forests this N input could 

change the local forest properties, which, in sum, could help define large scale forest function. 

BNF is difficult to quantify at landscape scales since BNF is heterogeneous and it is difficult to 

measure field rates. Previous work quantified landscape BNF using modeled N demand 

(Cleveland et al. 2013), isotope modeling (Vitousek et al. 2013), and bottom up scaling biome 

BNF rates by assumed forest cover (Cleveland et al. 1999, Galloway 2004). We used two 

complementary, data-based approaches to improve the BNF estimate for the United States by (1) 

scaling up N-fixing tree abundance (from data) by field measured BNF rates and by (2) 

calculating the N demand for observed forest growth and scaling by the percent of nitrogen 

demand met by N-fixation in each N-fixing tree species. Surprisingly, these two methods 

concluded that tree BNF in the U.S. is lower than previously thought. If tree BNF is lower than 

expected it could mean that N-fixing trees have less facilitative impact on temperate forests and 
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could suggest that they may not be such good agroforestry trees from the perspective of N 

fertilization. 

Given that there is less BNF in forests than previously expected, what is the impact of N-

fixing trees across the U.S. on forest demographics and basal area? The average trends at the plot 

and individual scales shows that N-fixing trees do not affect the relative growth rate of neighbors 

but they do facilitate survival and inhibit recruitment. In sum these average trends suggest that 

N-fixing trees drive tree turnover. However, the finding that N-fixing trees have no net effect on 

forest growth in the coterminous U.S. contradicts the prevailing paradigm in biogeochemistry 

that N-fixing trees improve forest growth. Though facilitation from N-fixing trees is observed 

locally, the effect does not hold at a regional scale. When strategically managing N-fixing trees 

the broader context is critical. N-fixing trees facilitate forest growth when they are less likely to 

be competitive (i.e. locations with high N deposition and high soil moisture) or when they 

occupy a different niche to neighbors (e.g. high foliar C:N trees and non-fixing trees). Using the 

Forest Inventory and Analysis data provided a regional look at the effect of N-fixing trees which 

was gives a new understanding that was not possible to see from previous local studies which 

spanned the range from N-fixer inhibition to facilitation (Taylor et al. 2017, Lai et al. 2018).  

The effect of N-fixing trees represents the balance of the facilitative and inhibitory effects 

that they have on their neighbors. Like all trees, N-fixers compete with their neighbors for 

limited resources: light, water, and nutrients. Though they have access to a unique N pool, they 

are still constrained by soil available P and other micronutrients. Since N-fixing trees access a 

unique N pool they have the potential to either inhibit their neighbors by outcompeting the 

neighbors for other resources or to facilitate their neighbors by spreading N rich litter that 

relieves N limitation for neighbors and facilitates growth. One (often cited) mechanism by which 
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N-fixing trees could spread this N is through their litter after litterfall. I used theoretical 

modeling to assess whether this is a plausible mechanism for N-fixing trees to fertilize their 

neighbors and under what conditions they would be most likely to do so. The model considered 

(1) the initial litter fall from trees after leaf senescence which changes based on a tree’s size and 

the physical properties of the leaves, (2) the subsequent movement of litter across the forest floor 

as a result of wind, water movement, and (3) other advective forces, and the immobilization and 

decomposition rate of litter. The model shows that whether litter N could reach neighbors 

depends greatly on tree architecture, advection rate, and decomposition rate. A tree could share 

almost none of its litter N or most of its litter N depending on the combination of those three 

factors (tree architecture, advection rate, and decomposition rate). Under conditions of high wind 

or water movement and slow decomposition rate then litter from N-fixing trees may be an 

important source of N for neighbors. However, it is likely that N-fixing trees do not share a large 

fraction of their litter N with neighbors and instead fertilize forests only after death when their 

tissues decompose.  

The biogeochemistry community needs better quantification of BNF across scales. This 

thesis provides a framework for how tree BNF can be estimated in large geographic regions. For 

the United States it provides a spatially explicit representation of tree BNF that can be an input to 

biogeochemical models or used to understand the local N cycle. Given that past investigation of 

the effect of N-fixing trees on forests resulted in conflicting findings (facilitation, no effect, and 

inhibition), this work which teases apart some contexts in which N-fixing trees facilitate or 

inhibit forest growth is an important contribution. When explaining the mechanism by which N-

fixers facilitate neighbors, leaf litter transfer is often cited as a plausible example. Evidence 

suggests nutrient transfer through leaf litter happens in controlled experiments (Notaro et al. 
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2014). This thesis adds a theoretical exploration of this mechanism and describes the conditions 

under which leaf litter transfer may be an important source of nutrients for trees and when 

individuals are likely to retain much of their nutrient. This theoretical exploration is a stepping 

stone to uncovering the conditions under which N-fixing trees should be planted to facilitate 

forest growth or augment agroforestry schemes. It also helps describe the conditions under which 

N-fixing trees would not facilitate forest growth which is important for forest managers to know 

since N-fixing trees can have other adverse effects (e.g. nitrous oxide emissions; Kou-Giesbrecht 

and Menge 2019). Furthermore, the theoretical exploration of litter movement uncovered a 

possible feedback mechanism where the distance that leaf litter moves is inversely related to the 

litter nitrogen content so trees that drop more N-rich leaf litter have a greater opportunity to 

recycle that N in a future growing year. This testable question merits further investigation and 

could have important implications for tree competition and community structure. 
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Appendix A – Supplementary Information for Chapter 1 

Introduction  

The supplementary information provides details on the methods used to find the basal area-BNF 

rate regression, the specific literature that was used to derive both these regressions and the 

%Ndfa for different genera. The text describes further methods used to compare previous global 

estimates of BNF to the conterminous US scale and to examine the relevance of P. contorta as an 

additional source of N.  

 

Text S1. Basal area-BNF regression method 

This section explains additional details of the basal area-BNF regression method. The N fixation 

rate per basal area was determined using a linear regression between BNF rate (kg N ha-1 yr-1) 

and basal area (m2 ha-1) for each N-fixing genus independently. A literature search was 

conducted, where, for each genus, both the basal area of that genus and the BNF rate were 

recorded. All of the data collected from the literature search were combined into a linear 

regression. The regression was bootstrapped to account for the relatively small and variable 

sample for BNF in each genus from the literature search. Acacia and Prosopis had sufficient 

literature values to obtain the estimate of slope and intercept. Robinia and Alnus did not exhibit a 

relationship between basal area and BNF so a slope of zero was used. This meant that if any 

Robinia were present in the plot it would result in the same BNF rate and if any Alnus were 
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present in the plot it would result in a set BNF rate. The average of Acacia, Alnus, Prosopis, and 

Robinia data were used as an estimate for all other genera (all other genera comprised only 10% 

of stems so the estimate had low sensitivity to this assumption). To get the confidence interval 

around this estimate, ten thousand random samples were drawn from a normal distribution where 

𝜇 = 𝑚𝑒𝑎𝑛 and 𝜎 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 of the range of fixation rates and the 95% confidence 

interval of the estimate was obtained.  

 

Text S2. BNF rate literature review sources 

This section gives the extended list of citations from the literature review of BNF rates used in 

the analysis.  
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Text S3. Scaling past BNF estimates to US 

This section gives full details on how we used past biome-specific or global estimates of BNF to 

calculate BNF at the scale of the US. For all estimates, the biome-specific or global estimate of 



115 

 

fixed N (Tg N yr-1) was scaled to the extent of the conterminous US. Then we calculated the 

BNF rate per forest area by dividing the fixed N in the US by forest area in the US. 

𝐵𝑁𝐹 𝑝𝑒𝑟 𝑓𝑜𝑟𝑒𝑠𝑡 𝑎𝑟𝑒𝑎 =
𝐹𝑈𝑆

𝑓𝑜𝑟𝑒𝑠𝑡 𝑎𝑟𝑒𝑎𝑈𝑆
 

The forest area in the US is 2.09 x 106 hectares (USGS 2000). Some estimates reported BNF by 

biome. For these estimates we scaled to the US using two methods: (1) by land area where the 

fraction of land area in the US relative to the globe was used to scale down the global BNF 

estimate, and (2) the fraction of each reported biome that occurs in the US was used to scale the 

biome-specific BNF estimates. 

 

Global land area was 148,429,000 km2 and was obtained from Wali et al. (2009). The forest area 

and land area in the US were obtained from the USGS land cover data (USGS 2000). The 

proportion of symbiotic to asymbiotic fixation was 0.76 (Cleveland et al. 2013). The proportion 

of tree fixation to understory fixation was assumed to be 0.75. The abbreviations used below are 

Fglobal: total global BNF; land areaUS: land area of the US; land areaglobal: land area of the entire 

globe; forest areaUS: forest area within the US; land areaUS: total land area in the US; BNFsymb: 

symbiotic nitrogen fixation; BNFsymb+asymb: total biological nitrogen fixation including symbiotic 

and asymbiotic; BNFtree: nitrogen fixation from N-fixing trees; BNFtree+understory: nitrogen fixation 

from N-fixing trees and understory plants. 

 

Vitousek et al. (2013): 

𝐹𝑈𝑆 = 𝐹𝑔𝑙𝑜𝑏𝑎𝑙 ∗
𝑙𝑎𝑛𝑑 𝑎𝑟𝑒𝑎𝑈𝑆

𝑙𝑎𝑛𝑑 𝑎𝑟𝑒𝑎𝑔𝑙𝑜𝑏𝑎𝑙
∗

𝑓𝑜𝑟𝑒𝑠𝑡 𝑎𝑟𝑒𝑎𝑈𝑆

𝑙𝑎𝑛𝑑 𝑎𝑟𝑒𝑎𝑈𝑆
∗

𝐵𝑁𝐹𝑠𝑦𝑚𝑏

𝐵𝑁𝐹𝑠𝑦𝑚𝑏+𝑎𝑠𝑦𝑚𝑏
∗

𝐵𝑁𝐹𝑡𝑟𝑒𝑒

𝐵𝑁𝐹𝑡𝑟𝑒𝑒+𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑜𝑟𝑦
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The overall global estimate comes straight from Vitousek et al. (2013): Fglobal = 58 Tg N yr-1. 

This calculation assumes that the overall BNF rate is similar across the globe.  

 

Cleveland, et al (2013): 

Biome area scaling: 

𝐹𝑈𝑆 = ∑ 𝐵𝑁𝐹𝑖 ∗
𝑏𝑖𝑜𝑚𝑒 𝑎𝑟𝑒𝑎𝑈𝑆,𝑖

𝑏𝑖𝑜𝑚𝑒 𝑎𝑟𝑒𝑎𝑔𝑙𝑜𝑏𝑎𝑙,𝑖

# 𝑏𝑖𝑜𝑚𝑒𝑠

𝑖=1
 

The biome area globally (indexed with i) and biome-specific BNF rates (BNFi) were calculated 

by Cleveland, et al (2013). The biome area in the US was determined analyzing land cover data 

from the University of Maryland (Hansen et al. 2000) using ArcGIS (ESRI 2011).  

Land area scaling: 

𝐹𝑈𝑆 = 𝐹𝑔𝑙𝑜𝑏𝑎𝑙 ∗
𝑙𝑎𝑛𝑑 𝑎𝑟𝑒𝑎𝑈𝑆

𝑙𝑎𝑛𝑑 𝑎𝑟𝑒𝑎𝑔𝑙𝑜𝑏𝑎𝑙
∗

𝑓𝑜𝑟𝑒𝑠𝑡 𝑎𝑟𝑒𝑎𝑈𝑆

𝑙𝑎𝑛𝑑 𝑎𝑟𝑒𝑎𝑈𝑆
∗

𝐵𝑁𝐹𝑠𝑦𝑚𝑏

𝐵𝑁𝐹𝑠𝑦𝑚𝑏+𝑎𝑠𝑦𝑚𝑏
∗

𝐵𝑁𝐹𝑡𝑟𝑒𝑒

𝐵𝑁𝐹𝑡𝑟𝑒𝑒+𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑜𝑟𝑦
 

𝐹𝑔𝑙𝑜𝑏𝑎𝑙 = 105 𝑇𝑔 𝑁 𝑦𝑟−1 

 

Cleveland, et al (1999): 

Biome area scaling: 

𝐹𝑈𝑆 = 𝐵𝑁𝐹 𝑟𝑎𝑡𝑒 ∗ 𝑓𝑜𝑟𝑒𝑠𝑡 𝑎𝑟𝑒𝑎𝑈𝑆 ∗ 1𝑥10−9 

Cleveland et al (1999) used 16.04 kg N ha-1 yr-1 as the BNF rate across all temperate forests.  

Land area scaling: 

𝐹𝑈𝑆 = 𝐹𝑔𝑙𝑜𝑏𝑎𝑙 ∗
𝑙𝑎𝑛𝑑 𝑎𝑟𝑒𝑎𝑈𝑆

𝑙𝑎𝑛𝑑 𝑎𝑟𝑒𝑎𝑔𝑙𝑜𝑏𝑎𝑙
∗

𝑓𝑜𝑟𝑒𝑠𝑡 𝑎𝑟𝑒𝑎𝑈𝑆

𝑙𝑎𝑛𝑑 𝑎𝑟𝑒𝑎𝑈𝑆
∗

𝐵𝑁𝐹𝑠𝑦𝑚𝑏

𝐵𝑁𝐹𝑠𝑦𝑚𝑏+𝑎𝑠𝑦𝑚𝑏
∗

𝐵𝑁𝐹𝑡𝑟𝑒𝑒

𝐵𝑁𝐹𝑡𝑟𝑒𝑒+𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑜𝑟𝑦
 

𝐹𝑔𝑙𝑜𝑏𝑎𝑙 = 195 𝑇𝑔 𝑁 𝑦𝑟−1 

Galloway, et al (2004): 
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Land area scaling: 

𝐹𝑈𝑆 = 𝐹𝑔𝑙𝑜𝑏𝑎𝑙 ∗
𝑙𝑎𝑛𝑑 𝑎𝑟𝑒𝑎𝑈𝑆

𝑙𝑎𝑛𝑑 𝑎𝑟𝑒𝑎𝑔𝑙𝑜𝑏𝑎𝑙
∗

𝑓𝑜𝑟𝑒𝑠𝑡 𝑎𝑟𝑒𝑎𝑈𝑆

𝑙𝑎𝑛𝑑 𝑎𝑟𝑒𝑎𝑈𝑆
∗

𝐵𝑁𝐹𝑠𝑦𝑚𝑏

𝐵𝑁𝐹𝑠𝑦𝑚𝑏+𝑎𝑠𝑦𝑚𝑏
∗

𝐵𝑁𝐹𝑡𝑟𝑒𝑒

𝐵𝑁𝐹𝑡𝑟𝑒𝑒+𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑜𝑟𝑦
 

𝐹𝑔𝑙𝑜𝑏𝑎𝑙 = 107 𝑇𝑔 𝑁 𝑦𝑟−1 

Constants: 

𝐵𝑁𝐹𝑠𝑦𝑚𝑏

𝐵𝑁𝐹𝑠𝑦𝑚𝑏+𝑎𝑠𝑦𝑚𝑏
= 0.76 (𝑓𝑟𝑜𝑚 𝐶𝑙𝑒𝑣𝑒𝑙𝑎𝑛𝑑, 𝑒𝑡 𝑎𝑙 (2013) 𝐷𝐵𝐹, 𝐷𝑁𝐹, 𝐸𝐵𝐹, 𝐸𝑁𝐹, 𝑀𝐼𝑋 𝑏𝑖𝑜𝑚𝑒𝑠) 

𝑙𝑎𝑛𝑑 𝑎𝑟𝑒𝑎𝑈𝑆

𝑙𝑎𝑛𝑑 𝑎𝑟𝑒𝑎𝑔𝑙𝑜𝑏𝑎𝑙
=

747726000 ℎ𝑎

14842900000 ℎ𝑎
= 0.05 

𝐵𝑁𝐹𝑡𝑟𝑒𝑒

𝐵𝑁𝐹𝑡𝑟𝑒𝑒+𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑜𝑟𝑦
= 0.75 

  

Text S4. Method for Pinus contorta calculation 

This section gives the full details on the calculation of BNF from Pinus contorta. Recent work 

indicates that P. contorta fixes N at rates up to 10% of those observed in Alnus rubra (Paul et al. 

2007). This could be a relevant source of symbiotically fixed N. We tested the impact of 

including P. contorta by assuming that it fixed at a certain rate. We evaluated three different 

percentages to capture the range of likely importance: 10% of the per-basal area rate of Alnus 

rubra (the highest rates observed by Paul et al., 2007), 1%, and 0.5%. Overall, the impact on the 

BNF estimate from trees was increased by 5.05 (± 0.08)%, 1.04 (± 0.05)%, and 0.52 (± 0.03)% 

respectively. This suggests that P. contorta is only a minor contributor on the scale of the 

continental US, although it could be an important source of fixed N in some biomes (Fig. S3).  

 

Text S5. Scaling up to the coterminous US 
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To scale tree BNF estimates from the plot scale to the US we took the average plot BNF rate 

across a 1-degree grid cell and multiplied by the forest area in that grid cell. An alternate method 

of scaling up would be to use the FIA designated scaling factors. These scaling factors are 

defined for a given plot in a given year and depend on the number of other plots that were 

sampled in the region that year. Since we used plots from many years to maximize the number of 

plots used and the FIA scaling factors critically depend on which plots are being included, the 

FIA scaling factors over accounted for forest area in our project. For example, in a census 

window, if 50 plots were measured in 5,000,000 ha of forest, the plot expansion factor for these 

trees would, on average, be one plot represents 100,000 ha (though individual plot expansion 

factors would vary around this average). Then, in a census window ten years later if 500 plots 

were measured in the same area each plot would on average have an expansion factor of 10,000 

ha per plot. For plots that have been measured more than once we used the most recent plot so 

plots were selected from different census intervals with different expansion factors over counting 

forest. We concluded that scaling using known forest cover over a one-degree grid cell was a 

more reliable method for scaling up. 
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Figure S1. Nitrogen fixation by genus in kg N per hectare ground area per year. This integrates 

both the BNF rate and the abundance of forest. Panels a-e are for rhizobial N-fixers: a) Acacia, 

b) Albizia, c) Olneya, d) Prosopis, and e) Robinia. Panels f-i are for actinorhizal N-fixers: f) 

Alnus, g) Cercocarpus, and h) Elaeagnus.  
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Figure S2. Tree BNF by region. The regions are defined by the FIA administrative regions and 

colors on the inset represent topography. Error bars were show the standard deviation of the 

analysis bootstrapped 1000 times at the continent scale. 

 

 

  
 
Figure S3. Nitrogen fixation by genus in kg N per hectare ground area per year for Pinus 

contorta (a) and Populus (b). This integrates both the BNF rate and the abundance of forest.  

 

Table S1. Data sources for genus-specific fixation rate data sources (accretion & %Ndfa). 

Numbers refer to the citations in Text S2. The number range indicates the papers from the 

reference list above. The number in brackets represents the number of data points extracted from 

those papers (including several species, locations, ages, or aspects examined within the papers). 

Genus Accretion %Ndfa 

Acacia 1 – 3 [6] 18-30 [45] 

Albizia -- 31 [2] 

Prosopis 4-6 [4] 32-37 [24] 
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Robinia 7 [3] 38-43 [11] 

Alnus 8-17 [17] 44-49 [9] 

Elaeagnus -- 50 [2] 

 

Table S2. Data for %Ndfa method from the literature search. 

Location Genus Species 

Reference 

Plant 

BNF 

Rate 

(%Ndfa) Treatment Source 

Pot/glasshou

se Acacia senegal 

Uninoculated 

A. senegal 39 High P 

Isaac et al 

2011 

Pot/glasshou

se Acacia senegal 

Uninoculated 

A. senegal 33 High P 

Isaac et al 

2011 

Zimbabwe Acacia angustisima Hyparrhenia 48 

Upper 

limit 

Chikowo 

et al 2004 

Zimbabwe Acacia angustisima Hyparrhenia 79 

Lower 

limit 

Chikowo 

et al 2004 

Dry, 

plantation Acacia caven 

Schinus 

polygamous, 

Fraxinus 

excelsior 50  

Aronson 

et al 2002 

Subhumid, 

mixed 

plantation Acacia mangium 

Eucalyptus 

grandis 59  

Bouillet et 

al 2008 

Humid, 

plantation Acacia mangium 

Eucalyptus 

urophylla 42 

Upper 

limit 

Galiana et 

al 1998 

Humid, 

plantation Acacia mangium 

Eucalyptus 

urophylla 62 

Lower 

limit, 

strain Aust 

13c 

Galiana et 

al 1998 

Humid, 

improved 

fallow Acacia mangium 

Understory 

Chromolaena 

odorata 57 Year 12 

Mercado 

et al 2011 

Dry, arabic 

gum 

production Acacia senegal 

Balanites 

aegyptiaca 24 

Upper 

limit 

Raddad et 

al 2005 

Dry, arabic 

gum 

production Acacia senegal 

Balanites 

aegyptiaca 61 lower limit 

Raddad et 

al 2005 

France Acacia senegal 

Uninoculated 

A. senegal 50 

Lower 

limit 

Isaac et al 

2011 

France Acacia senegal 

Uninoculated 

A. senegal 72 

Upper 

limit 

Isaac et al 

2011 

glasshouse Acacia senegal 

Uninoculated 

A. senegal 74 Low P 

Isaac et al 

2011 

glasshouse Acacia senegal 

Uninoculated 

A. senegal 67 Med P 

Isaac et al 

2011 
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glasshouse Acacia senegal 

Uninoculated 

A. senegal 52 High P 

Isaac et al 

2011 

Kenya Acacia 

drepanolobiu

m Aerva 55 

Lower 

limit 

Fox-

Dobbs et 

al 2010 

Kenya Acacia 

drepanolobiu

m Aerva 80 

Upper 

limit 

Fox-

Dobbs et 

al 2010 

Kenya Acacia 

drepanolobiu

m Aerva 40 

Lower 

limit 

Fox-

Dobbs et 

al 2010 

Kenya Acacia 

drepanolobiu

m Aerva 50 

Upper 

limit 

Fox-

Dobbs et 

al 2010 

Greenhouse Acacia raddiana P. biglobosa 58.1 

Ref species 

1 

Ndoye et 

al 1995 

Greenhouse Acacia raddiana T. indica 66.8 

Ref species 

2 

Ndoye et 

al 1995 

Greenhouse Acacia senegal P. biglobosa 27.2 

Ref species 

1 

Ndoye et 

al 1995 

Greenhouse Acacia senegal T. indica 41.6 

Ref species 

2 

Ndoye et 

al 1995 

Greenhouse Acacia seyal P. biglobosa 59.7 

Ref species 

1 

Ndoye et 

al 1995 

Greenhouse Acacia seyal T. indica 66.7 

Ref species 

2 

Ndoye et 

al 1995 

Greenhouse Acacia albida P. biglobosa 30.4 

Ref species 

1 

Ndoye et 

al 1995 

Greenhouse Acacia albida T. indica 44.2 

Ref species 

2 

Ndoye et 

al 1995 

S Africa, 

Hluhluwe Acacia nilotica 

Non-

nodulating A. 

ataxacantha, 

A. 

schweinfurthi

i, A. 

brevispica 17  

Cramer et 

al 2010 

S Africa, 

False Bay Acacia nilotica 

Non-

nodulating A. 

ataxacantha, 

A. 

schweinfurthi

i, A. 

brevispica 46  

Cramer et 

al 2010 

S Africa, 

Hluhluwe Acacia tortilis 

Non-

nodulating A. 8  

Cramer et 

al 2010 
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ataxacantha, 

A. 

schweinfurthi

i, A. 

brevispica 

S Africa, 

False Bay Acacia tortilis 

Non-

nodulating A. 

ataxacantha, 

A. 

schweinfurthi

i, A. 

brevispica 62  

Cramer et 

al 2010 

S Africa, 

Hluhluwe Acacia nigrescens 

Non-

nodulating A. 

ataxacantha, 

A. 

schweinfurthi

i, A. 

brevispica -1  

Cramer et 

al 2010 

S Africa, 

False Bay Acacia nigrescens 

Non-

nodulating A. 

ataxacantha, 

A. 

schweinfurthi

i, A. 

brevispica 39  

Cramer et 

al 2010 

S Africa, 

Hluhluwe Acacia karroo 

Non-

nodulating A. 

ataxacantha, 

A. 

schweinfurthi

i, A. 

brevispica 23  

Cramer et 

al 2010 

S Africa, 

False Bay Acacia karroo 

Non-

nodulating A. 

ataxacantha, 

A. 

schweinfurthi

i, A. 

brevispica 52  

Cramer et 

al 2010 

Sudan Acacia senegal 

Balanites 

aegyptiaca 24 

Mazmoon 

provenanc

e 

Amin et al 

2005 

Sudan Acacia senegal 

Balanites 

aegyptiaca 61 

Rahad 

provenanc

e 

Amin et al 

2005 
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Victoria, 

Australia Acacia mearnsii 

Eucalyptus 

globulus 10 

mixed 

stand 

(Eucalyptu

s globulus) 

Forrester 

et al 2007 

Victoria, 

Australia Acacia mearnsii 

Eucalyptus 

globulus 63 pure stand 

Forrester 

et al 2007 

Brazil Acacia mangium 

Eucalypthus 

urophylla, 

Jacaranda 

coaia, 

Schyzolobium 

amazonicum 91 

15N 

enriched 

Paprcikov

a et al 

2002 

Brazil Acacia mangium 

Eucalypthus 

urophylla, 

Jacaranda 

coaia, 

Schyzolobium 

amazonicum 47 

Natural 

abundance 

method 

Paprcikov

a et al 

2002 

Brazil Acacia angustissima 

Eucalypthus 

urophylla, 

Jacaranda 

coaia, 

Schyzolobium 

amazonicum 72 

15N 

enriched 

Paprcikov

a et al 

2002 

Brazil Acacia angustissima 

Eucalypthus 

urophylla, 

Jacaranda 

coaia, 

Schyzolobium 

amazonicum 86 

Natural 

abundance 

method 

Paprcikov

a et al 

2002 

Chile Acacia caven 

Fraxinus 

excelsior, 

Schinus 

polygamus 84.375  

Ovalle et 

al 1996 

Nigeria Albizia lebbeck Senna siamea 74 

Lower 

limit 

Kadiata et 

all 1997 

Nigeria Albizia lebbeck Senna siamea 83 

Upper 

limit 

Kadiata et 

all 1997 

Wales, UK Alnus glutinosa Betula 60.5  

Hoosbeek 

et al 2011 

Quebec Alnus glutinosa Black Alder 68  

Cote & 

Camire 

1984 

France Alnus glutinosa 

Acer 

pseudoplatan

us 97  

Domenac

h et al 

1989 
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France Alnus incana 

Acer 

pseudoplatan

us 75  

Domenac

h et al 

1989 

New York Alnus incana 

Betula 

alleghaniensi

s 86  

Hurd 

2001 

pot Alnus incana air 8 High N 

Ekblad & 

Huss-

Danell 

1995 

pot Alnus incana air 46 Low P 

Ekblad & 

Huss-

Danell 

1995 

pot Alnus incana air 90 

High P, 

low N 

Ekblad & 

Huss-

Danell 

1995 

Bangor, UK Alnus glutinosa 

Betula 

pendula, 

Fraxinus 

sylvatica 62 mixture 

Millett et 

al 2012 

Bangor, UK Alnus glutinosa 

Betula 

pendula, 

Fraxinus 

sylvatica 61 

monocultu

re 

Millett et 

al 2012 

Spillimachee

n, BC, 

Canada Alnus sinuata 

Understory 

Salix, Spirea 

betulifolia, 

Epilobium 

angustifolium

, Cornus 

canadensis 96  

Mead & 

Preston 

1992 

pot Alnus glutinosa  70 

grown with 

Populus 

nigra 

Kuradli et 

al 1990 

pot Alnus glutinosa  43 

monocultu

re 

Kuradli et 

al 1990 

Uzbekistan 

Elaeagn

us angustifolia 

Gleditsia 

triacanthos 68 

Ref species 

1 

Khamzina 

et al 2010 

Uzbekistan 

Elaeagn

us angustifolia Ulmus pumila 79 

Ref species 

2 

Khamzina 

et al 2010 

Salton Sea, 

CA Prosopis glandulosa  50  

Rundel et 

al 1982 
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Texas Prosopis glandulosa 

Dyospiros 

texana 69.4 

Ref species 

1 

Villagra 

& Felker 

1996 

Texas Prosopis glandulosa 

Celtis 

pallidae 64.7 

Ref species 

2 

Villagra 

& Felker 

1996 

Texas Prosopis glandulosa 

Zanthoxylum 

fagara 48.2 

Ref species 

3 

Villagra 

& Felker 

1996 

Texas Prosopis glandulosa 

Setaria 

beneath 59.4 

Ref species 

4 

Villagra 

& Felker 

1996 

Texas Prosopis glandulosa Setaria open 72.7 

Ref species 

5 

Villagra 

& Felker 

1996 

Harper's well Prosopis  

Larrea 

tridentate, 

Tamarix 

pentandra, 

Atriplex 

polycarpa, 

Haplopappus 

acradenius 43 Site 1 

Shearer 

1983 

Harper's 

Well Prosopis  

Larrea 

tridentate, 

Tamarix 

pentandra, 

Atriplex 

polycarpa, 

Haplopappus 

acradenius 61 Ste 2 

Shearer 

1983 

Borrego Sink Prosopis  

Suaeda 

torryana, 

Atriplex 

polycarpa, 

Allenrolfia 

occidentalis, 

Happlopappu

s acradenius 60 Site 3 

Shearer 

1983 

Carrizo 

Badlands Prosopis  

Larrea 

tridentate, 

Atriplex 

polycarpa 57 Site 4 

Shearer 

1983 

Clark Dry 

Lake Prosopis  

Tamarix 

pentandra, 

Encelia 58 Site 5 

Shearer 

1983 



127 

 

farinose, 

Suaeda 

torreyana, 

Atriplex 

polycarpa 

 Prosopis alba 

Schinus 

polyganus 10 

plantation, 

6 yrs 

Aronson 

et al 2002 

 Prosopis chilensis 

Schinus 

polyganus 30 

plantation, 

6 yrs 

Aronson 

et al 2002 

Chile Prosopis alba 

Schinus 

polygamous, 

Fraxinus 

excelsior 42.86  

Ovalle et 

al 1996 

Chile Prosopis chilensis 

Schinus 

polygamous, 

Fraxinus 

excelsior 23.53  

Ovalle et 

al 1996 

Chile Prosopis chilensis 

Schinus 

polygamous, 

Fraxinus 

excelsior 31.8 1992 

Ovalle et 

al 1998 

Chile Prosopis chilensis 

Schinus 

polygamous, 

Fraxinus 

excelsior 69.7 1993 

Ovalle et 

al 1998 

Chile Prosopis chilensis 

Schinus 

polygamous, 

Fraxinus 

excelsior 28 1994 

Ovalle et 

al 1998 

Chile Prosopis chilensis 

Schinus 

polygamous, 

Fraxinus 

excelsior 16 1995 

Ovalle et 

al 1998 

Chile Prosopis chilensis 

Schinus 

polygamous, 

Fraxinus 

excelsior 16.8 1996 

Ovalle et 

al 1998 

Chile Prosopis alba 

Schinus 

polygamous, 

Fraxinus 

excelsior 25.8 1992 

Ovalle et 

al 1998 

Chile Prosopis alba 

Schinus 

polygamous, 

Fraxinus 

excelsior 52.4 1993 

Ovalle et 

al 1998 
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Chile Prosopis alba 

Schinus 

polygamous, 

Fraxinus 

excelsior 19 1994 

Ovalle et 

al 1998 

Chile Prosopis alba 

Schinus 

polygamous, 

Fraxinus 

excelsior 7.8 1995 

Ovalle et 

al 1998 

Chile Prosopis alba 

Schinus 

polygamous, 

Fraxinus 

excelsior 1.25 1996 

Ovalle et 

al 1998 

Austria Robinia pseudoacacia 

Ligustrum 

vulgaris, 

Syringa 

vulgare 65 Year 1 

Danso et 

al 1995 

Austria Robinia pseudoacacia 

Ligustrum 

vulgaris, 

Syringa 

vulgare 90 Year 2 

Danso et 

al 1995 

France Robinia pseudoacacia 

Populus 

euramericana 76 23 months  

Marron et 

al 2018 

France Robinia pseudoacacia 

Populus 

euramericana 67 28 months  

Marron et 

al 2018 

France Robinia pseudoacacia 

Populus 

euramericana 59 40 months  

Marron et 

al 2018 

France Robinia pseudoacacia 

Populus 

euramericana 71 52 months  

Marron et 

al 2018 

Welzow-

Sud, 

Germany Robinia pseudoacacia Soil 91 High water 

Montovan

i et al 

2015 

Welzow-

Sud, 

Germany Robinia pseudoacacia Soil 83 Low water 

Montovan

i et al 

2015 

Welzow-

Sud, 

Germany Robinia pseudoacacia Soil 76 

High water 

- drought 

cycle 

Montovan

i et al 

2015 

Welzow-

Sud, 

Germany Robinia pseudoacacia Soil 87 

Low water 

- drought 

cycle 

Montovan

i et al 

2015 

pots Robinia pseudoacacia  0 

seeds from 

Semnan 

Moshki & 

Lamersdo

rf 2011 

pots Robinia pseudoacacia  39.89 

seeds from 

Sanandaj 

Moshki & 

Lamersdo

rf 2011 
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pots Robinia pseudoacacia  50.81 

seeds from 

Karaj 

Moshki & 

Lamersdo

rf 2011 

pots Robinia pseudoacacia  44.59 

seeds from 

Hosszupal

yi 

Moshki & 

Lamersdo

rf 2011 

Germany Robinia pseudoacacia  73 midrange 

Veste et al 

2012 

Uzbekistan Robinia pseudoacacia 

Gleditsia 

triacanthos 82  

Djumaeva 

2011 

 

Table S3. Data for the accretion method from the literature search. 

Location Genus Species 

 

BA (m2 

ha-1) 

BNF 

Rate (kg 

N ha-1 

yr-1) 

Treatment Source 

W. Oregon Alnus rubra 

35.8 320 

Pure alder Newton 

1968 

Hoh River, 

WA 

Alnus rubra 

19.8 164 

0-14 years Luken & 

Fonda 

1983 

Hoh River, 

WA 

Alnus rubra 

34.2 58 

15-24 years Luken & 

Fonda 

1983 

Hoh River, 

WA 

Alnus rubra 

44.2 25 

25-65 years Luken & 

Fonda 

1983 

Lady Island, 

WA 

Alnus rubra 

2.3 80 

Pure alder DeBell & 

Rodwan 

1979 

Mt. Benson, 

BC 

Alnus rubra 

16.5 65 

 Binkley 

1983 

Skykomis, 

WA 

Alnus rubra 

9.9 42 

 Binkley 

1983 

Scotland, 

UK 

Alnus rubra 

10.29 36 

 Malcolm 

1985 

Toutle 

River, WA 

Alnus rubra 

8.39 56 

 Heilman 

1990 

Lady Island, 

WA 

Alnus rubra 

2.3 32 

Mixed 

stand 

DeBell & 

Radwan 

1979 

AK boreal Alnus incana 

15.4 361.6 

5 years Van Cleve 

1971 

AK boreal Alnus incana 

14.78 74.6 

15 years Van Cleve 

1971 
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AK boreal Alnus incana 

28.9 114.8 

20 years Van Cleve 

1971 

Montreal 

Island 

Alnus rugosa 

10 168 

 Daly 1966 

Cascade 

Head, OR 

Alnus rubra 

35 73 

 Binkley 

1992 

Wind River, 

WA 

Alnus rubra 

19.5 54 

 Binkley 

1992 

Wind River, 

WA 

Alnus rubra 

35 40.3 

 Tarrant & 

Miller 

1963 

Senegal Acacia senegal 

8.72 5.25 

 Deans 

1999 

Pointe 

Noire, 

Congo  

Acacia auriculiform

is 

16.8 140 

 Bernhard-

Reversat 

1996 

Pointe 

Noire, 

Congo  

Acacia mangium 

16.8 115 

 Bernhard-

Reversat 

1996 

Victoria, 

Australia  

Acacia mearnsii 

9.7 38 

Mixed 

stand 

Forrester 

2007 

Victoria, 

Australia  

Acacia mearnsii 

14 86 

Pure stand Forrester 

2007 

Zimbabwe Acacia angustissim

a 

 2.50 61 

 Chikowo 

2004 

N. Carolina, 

USA 

Robinia pseudoacaci

a 

8.2 48 

Year 4 Boring and 

Swank 

1984 

N. Carolina 

USA 

Robinia pseudoacaci

a 

32.1 75 

Year 17 Boring and 

Swank 

1984 

N. Carolina, 

USA 

Robinia pseudoacaci

a 

52.1 33 

Year 38 Boring and 

Swank 

1984 

California Prosopi

s 

glandulosa 

9.64 30 

 Rundel 

1982 

Texas Prosopi

s 

glandulosa 

3.37 9.2 

 Soper 2016 

    

Table S4. Data for N-fixing tree genera in the FIA database including the number of stems in the 

database, the total N fixed by each genus as determined by the accretion method and N demand 

method. 

Genus Fixer type # stems in FIA 

(saplings & 

mature trees) 

Total N fixed 

Accretion 

method 

Total N fixed 
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 (Tg N yr-1) 

[SE] 

N demand 

method (Gg 

N yr-1) [SE] 

Acacia Rhizobial 1,439 0.005  [0.001] 0.684     

[0.010] 

Albizia Rhizobial 1,582 0.024   [0.004] 1.290     

[0.056] 

Alnus Actinorhizal 18,396 0.184   [0.002] 97.036   

[3.342] 

Cercocarpus Actinorhizal 18,326 0.020  [0.008] 18.257   

[0.212] 

Elaeagnus Actinorhizal 2,298 0.011  [0.001] 0.610     

[0.030] 

Olneya Rhizobial 254 0.004  [0.0001] 0.267     

[0.003] 

Prosopis Rhizobial 34,772 0.031  [0.001] 18.201   

[0.430] 

Robinia Rhizobial 50,982 0.548  [0.002] 167.834 

[2.896] 

 

Table S5. Data for species that are represented in the FIA database for each genus. 

Genus Species present in FIA 

Acacia farnesiana, spp 

Albizia julibrissin 

Alnus rubra, rhombifolia, 

oblongifolia, glutinosa 

Cercocarpus ledifolius 

Elaeagnus angustifolia 

Olneya tesota 

Prosopis velutina, glandulosa, 

pubescens, spp 

Robinia pseudoacacia, 

neomexicana 
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Appendix B – Supplementary Information for Chapter 2 

SI Text 1. NCI & NCI weighting 

To account for the fact that trees in denser stands experience greater competition 

regardless of their neighbors’ identities, we isolated the impact of N-fixers by comparing 

individual-scale demographic rates as functions of the proportion of neighborhood crowding 

index (NCI) from N-fixing trees. NCI is the sum of the competitive effects of all trees within a 

specified radius (here, 7.3 m), which incorporates the spatial distribution of trees within a plot 

(Canham et al. 2004). To investigate the impact of crowding from N-fixing trees compared to 

non-fixing trees, we calculated the fraction of total NCI from N-fixers following Taylor et al. 

(2017) and Canham et al. (2006) as shown in equation SI-1.  

𝑁𝐶𝐼𝑝𝑟𝑜𝑝−𝑖 =
𝑁𝐶𝐼𝑓𝑖𝑥𝑒𝑟𝑠

𝑁𝐶𝐼𝑡𝑜𝑡𝑎𝑙
=

∑
𝐷𝐵𝐻𝑗−𝑓𝑖𝑥𝑒𝑟𝑠

2

𝑑𝑖,𝑗−𝑓𝑖𝑥𝑒𝑟𝑠
2

𝑛
𝑗=1

∑
𝐷𝐵𝐻𝑗−𝑡𝑜𝑡𝑎𝑙

2

𝑑𝑖,𝑗−𝑡𝑜𝑡𝑎𝑙
2

𝑛
𝑗=1

      (SI-1) 

where i is the focal individual and the js are the other individuals in the plot. 

Since the calculation of NCI is based on a fixed radius neighborhood (7.3 m) but the FIA 

subplots are 7.3 m radius in total, NCI values were weighted based on the fraction of the 

neighborhood that was sampled. The weighting parameter was calculated as the area of 

neighborhood sampled divided by the area of a complete neighborhood. The area of 

neighborhood sampled was calculated as the intersection of the subplot with the complete radius 
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around a given tree: 𝑎𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 = 2𝑟2𝑐𝑜𝑠−1 (
𝑑

2𝑟
) − 0.5𝑑√−𝑑2 + 4𝑟2 where d is the distance 

between the focal tree and plot center and r is the neighborhood radius (7.3 m).  

 

SI Text 2. Model details 

The percent of basal area comprised of N-fixing trees (BApct) is used as the measure of the 

relative prevalence of N-fixing trees in the plot-scale analysis: 

𝐵𝐴𝑝𝑐𝑡 =
∑ 𝐵𝐴𝑁−𝑓𝑖𝑥𝑒𝑟𝑠

∑ 𝐵𝐴𝑁−𝑓𝑖𝑥𝑒𝑟𝑠+∑ 𝐵𝐴𝑛𝑜𝑛−𝑓𝑖𝑥𝑒𝑟𝑠
        (SI-2) 

where ∑BAN-fixers is the total basal area (𝐵𝐴 = 𝜋 (
𝐷𝐵𝐻

2
)

2

) of N-fixing trees in the plot and 

∑BAnon-fixers is the total basal area of non-fixing trees in the plot.  

At the plot scale, basal area increment (BAI), which is the annual change in total basal area of 

trees in the plot was examined as a response variable: 

𝐵𝐴𝐼 =
∑ 𝐵𝐴𝑖

𝑛2
𝑖=1 −∑ 𝐵𝐴𝑗

𝑛1
𝑗=1

∆𝑡
         (SI-3) 

where i is each tree in the plot at the second census, j is each tree in the plot at the first census, n1 

is the total number of trees in the plot at the first census, n2 is the total number of trees in the plot 

at the second census, and Δt is the interval between census dates. 

Plot-scale recruitment rate (R) was examined as a response variable: 

𝑅 =  
 𝑟𝑒𝑐𝑟𝑢𝑖𝑡𝑠𝑡2

𝑛1∗∆𝑡
           (SI-4) 

where recruitst2 is the number of trees recorded in the second census that were not recorded in 

the first census. 

Plot-scale survival rate (S) was examined as a response variable:  

𝑆 =  
𝑠𝑢𝑟𝑣𝑖𝑣𝑜𝑟𝑠𝑡2

𝑛1∗𝛥𝑡
            (SI-5) 

where survivorst2 is the number of trees recorded in both the first and second censuses. 
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To assess the effects of N-fixing trees on plot-level basal area increment, we calculated 

the basal area of the plot for two FIA census points and divided by the census interval. Individual 

tree basal area was calculated from measured diameters, assuming circular stems, then summed 

to get plot-level basal area. Similar to the individual-scale method, apparent negative changes in 

tree DBH were positivized. We used a linear mixed-effect model to investigate the effect of N-

fixing trees on plot-level basal area increment, including fixed effects for the percent of basal 

area from N-fixing trees (BApct) and the total basal area in the first census interval (BAtotal), as 

well as a random effect for state to account for climatic or vegetation differences among regions. 

In the linear mixed-effect models, BAI, R and S were modeled as a normally distributed response 

variable: 

𝐵𝐴𝐼 = 𝜇𝑠 +  𝛽1𝐵𝐴𝑝𝑐𝑡 + 𝛽2𝐵𝐴𝑡𝑜𝑡𝑎𝑙 + 𝜀       (SI-6) 

𝑅 = 𝜇𝑠 +  𝛽1𝐵𝐴𝑝𝑐𝑡 + 𝛽2𝐵𝐴𝑡𝑜𝑡𝑎𝑙 + 𝜀        (SI-7) 

𝑆 = 𝜇𝑠 +  𝛽1𝐵𝐴𝑝𝑐𝑡 + 𝛽2𝐵𝐴𝑡𝑜𝑡𝑎𝑙 + 𝜀        (SI-8) 

where μs is the state-specific intercept, β1 through β4 are the regression coefficients, BAtotal is the 

total basal area at the first census point, and ε is the normally distributed residual error. 

The plot-scale N-fixer effect on each response variable was calculated as 100 ∗

(
𝑚𝑒𝑡𝑟𝑖𝑐100% 𝐵𝐴𝑝𝑐𝑡

−𝑚𝑒𝑡𝑟𝑖𝑐0% 𝐵𝐴𝑝𝑐𝑡

𝑚𝑒𝑡𝑟𝑖𝑐0% 𝐵𝐴𝑝𝑐𝑡

) where 𝑚𝑒𝑡𝑟𝑖𝑐100% 𝐵𝐴𝑝𝑐𝑡
 is the value of the response variable 

predicted by the linear mixed-effect model at 𝐵𝐴𝑝𝑐𝑡 = 100 and 𝑚𝑒𝑡𝑟𝑖𝑐0% 𝐵𝐴𝑝𝑐𝑡
 is the value of 

the response variable predicted by the linear mixed-effect model at 𝐵𝐴𝑝𝑐𝑡 = 0. 

 

At the individual scale, the relative growth rate (RGR) was examined as a response variable: 

𝑅𝐺𝑅𝑖 =
ln(𝐷𝐵𝐻𝑖,𝑡2)−ln (𝐷𝐵𝐻𝑖,𝑡1)

∆𝑡
          (SI-9) 
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where i is the focal tree, DBHi,t2 is the DBH of the focal tree at the second census, and DBHi,t1 is 

the DBH of the focal tree at the first census. Apparent negative relative growth rates were 

positivized because we assumed that measurement error was a greater source of negative growth 

rate measurements than actual tree shrinkage. Positivized growth for an individual tree was 

𝐷𝐵𝐻𝑗+1 =
𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝐿𝑖𝑚𝑖𝑡

2
+ 𝐷𝐵𝐻𝑗 where the minimum detection limit was 0.05 cm 

following Condit et al. (2006). Individual-scale recruitment rate (r) and survival rate (s) were 

also examined as response variables. Recruitment, r, is 1 if a tree that was not recorded in the 

first census is recorded in the second census. Survival, s, is 1 if a tree that was recorded in the 

first census is also recorded in the second census. 

In the linear mixed-effect model, RGRi was modeled as a normally distributed response 

variable, and r and s were modelled as binomially distributed response variables. Model 

selection was done on the set of possibly relevant terms including NCI, NCI2, NCIprop, DBH, and 

the interaction between NCI and NCIprop (SI Table 2). According to model selection, the best 

model (and therefore the one we used) for relative growth rate had fixed effects for the 

proportion of NCI from N-fixing trees, the DBH of the focal tree, and the NCI2, as well as a 

random effect for the plot ID: 

𝑅𝐺𝑅𝑖 =  𝜇𝑝 +  𝛽1𝑁𝐶𝐼𝑝𝑟𝑜𝑝−𝑖 + 𝛽2𝑁𝐶𝐼𝑡𝑜𝑡𝑎𝑙−𝑖 + 𝛽3𝑁𝐶𝐼𝑡𝑜𝑡𝑎𝑙−𝑖
2 + 𝛽4𝐷𝐵𝐻𝑖 + 𝛽5𝑁𝐶𝐼𝑡𝑜𝑡𝑎𝑙−𝑖 ∗

𝐷𝐵𝐻𝑖 + 𝛽6𝐷𝐵𝐻𝑖 ∗ 𝑁𝐶𝐼𝑝𝑟𝑜𝑝−𝑖 + 𝜀 (SI-10) 

𝑟𝑖 ~𝜇𝑝 +  𝛽1𝑁𝐶𝐼𝑝𝑟𝑜𝑝−𝑖 + 𝛽2𝑁𝐶𝐼𝑡𝑜𝑡𝑎𝑙−𝑖 + 𝛽3𝑁𝐶𝐼𝑡𝑜𝑡𝑎𝑙−𝑖
2 + 𝛽4𝐷𝐵𝐻𝑖 + 𝛽5𝑁𝐶𝐼𝑡𝑜𝑡𝑎𝑙−𝑖 ∗

𝑁𝐶𝐼𝑝𝑟𝑜𝑝−𝑖 + 𝜀    (SI-11) 

𝑠𝑖 ~𝜇𝑝 +  𝛽1𝑁𝐶𝐼𝑝𝑟𝑜𝑝−𝑖 + 𝛽2𝑁𝐶𝐼𝑡𝑜𝑡𝑎𝑙−𝑖 + 𝛽3𝑁𝐶𝐼𝑡𝑜𝑡𝑎𝑙−𝑖
2 + 𝛽4𝐷𝐵𝐻𝑖 + 𝛽5𝑁𝐶𝐼𝑡𝑜𝑡𝑎𝑙−𝑖 ∗ 𝐷𝐵𝐻𝑖 +

𝛽5𝑁𝐶𝐼𝑡𝑜𝑡𝑎𝑙−𝑖 ∗ 𝑁𝐶𝐼𝑝𝑟𝑜𝑝−𝑖 + 𝜀        (SI-12) 
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where μp is the plot-specific intercept. The random effect for plot ID accounts for variation in 

climate and vegetation dynamics across the continental US. The coefficient for NCIprop (the 

proportion of crowding that comes from N-fixers) addresses our primary question. A positive 

coefficient would indicate that N-fixers enhance or weakly inhibit neighboring tree growth, 

whereas a negative coefficient would indicate that N-fixers inhibit neighboring tree growth. 

 

The individual-scale N-fixer effect on each response variable was calculated as 100 ∗

(
𝑑𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐 𝑟𝑎𝑡𝑒100% 𝑁𝐶𝐼𝑝𝑟𝑜𝑝−𝑖

−𝑑𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐 𝑟𝑎𝑡𝑒0% 𝑁𝐶𝐼𝑝𝑟𝑜𝑝−𝑖

𝑑𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐 𝑟𝑎𝑡𝑒0% 𝑁𝐶𝐼𝑝𝑟𝑜𝑝−𝑖

) where 

𝑑𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐 𝑟𝑎𝑡𝑒100% 𝑁𝐶𝐼𝑝𝑟𝑜𝑝−𝑖
 is the value of the response variable predicted by the linear 

mixed-effect model at 𝑁𝐶𝐼𝑝𝑟𝑜𝑝−𝑖 = 100 and 𝑑𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐 𝑟𝑎𝑡𝑒0% 𝑁𝐶𝐼𝑝𝑟𝑜𝑝−𝑖
 is the value of the 

response variable predicted by the linear mixed-effect model at 𝑁𝐶𝐼𝑝𝑟𝑜𝑝−𝑖 = 0. 

After running the statistical models for each of the individual-level and plot-level metrics, 

we calculated the N-fixer effect for each metric. The N-fixer effect was calculated as the 

expected percent change in a demographic rate or basal area increment between a plot that 

contained only N-fixing trees and a plot that contained only non-fixing trees. Equation SI-9 

shows the general model fit for any of the plot-level metrics, with parameters for the intercept 

(β0), the percent basal area comprised of N-fixers (β1), and the total basal area of trees in the plot 

(β2). To get the estimated demographic rate (y) for either 100% or 0% of basal area comprised of 

N-fixers (yall N-fixers or yall non-fixers, respectively), we plugged in 1 (Equation SI-10) or 0 (Equation 

SI-15) for the fraction of basal area comprised of N-fixers. We also plugged in the average BAtotal 

of all plots to express the effect for an average plot. (Analogously, for individual-level metrics 
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we used the averages of NCI and DBH to express NFEs for average-sized trees with average 

crowding.) 

𝑦 =  𝛽0 + 𝛽1 ∗ 𝐵𝐴𝑝𝑐𝑡 + 𝛽2 ∗ 𝐵𝐴𝑡𝑜𝑡𝑎𝑙        (SI-13) 

𝑦𝑎𝑙𝑙 𝑁−𝑓𝑖𝑥𝑒𝑟𝑠 = 𝐵𝐴𝐼100% 𝐵𝐴𝑝𝑐𝑡−𝑖
=  𝛽0 + 𝛽1 ∗ 1 + 𝛽2 ∗ 𝐵𝐴𝑡𝑜𝑡𝑎𝑙

̅̅ ̅̅ ̅̅ ̅̅ ̅̅     (SI-14) 

𝑦𝑎𝑙𝑙 𝑛𝑜𝑛−𝑓𝑖𝑥𝑒𝑟𝑠 = 𝐵𝐴𝐼0% 𝐵𝐴𝑝𝑐𝑡−𝑖
=  𝛽0 + 𝛽1 ∗ 0 + 𝛽2 ∗ 𝐵𝐴𝑡𝑜𝑡𝑎𝑙

̅̅ ̅̅ ̅̅ ̅̅ ̅̅      (SI-15) 

𝐵𝐴𝐼𝑁𝐹𝐸 = 100 ∗ (
𝐵𝐴𝐼100% 𝐵𝐴𝑝𝑐𝑡−𝑖

−𝐵𝐴𝐼0% 𝐵𝐴𝑝𝑐𝑡−𝑖

𝐵𝐴𝐼0% 𝐵𝐴𝑝𝑐𝑡−𝑖

) = 100 ∗ (
𝛽1

𝛽0+𝛽2∗𝐵𝐴𝑡𝑜𝑡𝑎𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
)  (SI-16) 

The expected effect for BAIn (the basal area increment of non-fixers) for a plot with all 

N-fixers is unintuitive. Even though it is not biologically possible to have 100% basal area 

comprised on N-fixers when looking at the basal area increment on non-fixers (because there 

would not be any non-fixers in the plot), we still used this comparison from the statistical fit to 

enable comparison of the NFE on other demographic rates. 

When we used the statistical model to evaluate whether abiotic conditions or biotic traits 

could drive the NFE we modified the model to include an interaction between NCIprop and the 

trait of interest. For example, when evaluating whether mycorrhizal association (MRtype) was a 

possible driver of RGRNFE we modified the model: 

𝑅𝐺𝑅 ~ 𝑁𝐶𝐼𝑝𝑟𝑜𝑝 + 𝑁𝐶𝐼 + 𝐷𝐵𝐻 + 𝑁𝐶𝐼2 + 𝑁𝐶𝐼 ∗ 𝐷𝐵𝐻 + 𝑁𝐶𝐼𝑝𝑟𝑜𝑝 ∗ 𝐷𝐵𝐻 + 𝑁𝐶𝐼𝑝𝑟𝑜𝑝 ∗

𝑀𝑅𝑡𝑦𝑝𝑒 + (1|𝑝𝑙𝑜𝑡 𝐼𝐷) + 𝜀  (SI-17) 

When mycorrhizal type was AM then MRtype = 1 and when mycorrhizal type was EM then MRtype 

= 0. To get the estimated demographic rate (RGR) for either AM or EM, we plugged in 1 or 0 

(Equation SI-13) for the MRtype. We also plugged in the average covariate value for other 

parameters to express the effect for an average tree. To obtain the NFE for each mycorrhizal type 
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we followed the same method described above (and SI-12) with NCIprop = 0% and NCIprop = 

100%. 

  

SI Text 3. Deciduous vs evergreen data sources 

Categorization of species as deciduous or evergreen was assigned based on a compilation of 12 

databases. For species that did not occur in any of the 13 databases, the species habit was 

assigned based on the majority or other species in the genus. When sources disagreed on a 

species it was categorized as deciduous. The 12 databases were: 

FEIS Fire database Abrahamson, I. (2019). Fire Effects Information System (FEIS). Retrieved from 

https://www.feis-crs.org/feis/ 

UFL plants database Florida, U. of. (2018). Tree fact sheets. Retrieved from 

http://hort.ufl.edu/database/trees/trees_scientific.shtml 

USDA plants fact sheet USDA, N. (2019). The PLANTS Database. Greensboro, NC USA: National Plant 

Data Team. Retrieved from http://plants.usda.gov 

Oregon State plants 

database 

Breen, P. (2019). Landscape plants. Retrieved from 

https://landscapeplants.oregonstate.edu/species 

International Oak 

Society 

Cameron, R. (2018). Species spotlight: Quercus rugosa. Retrieved from 

https://www.internationaloaksociety.org/content/species-spotlight-quercus-

rugosa-née-0 

TAMU Texas A & M System. (2019). Virtual herbarium. Retrieved April 2019, from 

https://rangeplants.tamu.edu/scientific-name-index/ 

Cal Poly select tree SelecTree. (1995-2019). Tree Record. Retrieved April 2019, from 

https://selectree.calpoly.edu/tree-detail/ 

UCONN plants 

database 

Brand, M. (2019). University of Connecticut Plant Database. Storrs, CT: 

Department of Plant Science and Landscape Architecture. Retrieved from 

http://hort.uconn.edu/plants 

Cornell Woody plants Cornell University. (2019). Woody plants database. Retrieved from 

http://woodyplants.cals.cornell.edu/plant/ 

CA Martin plants Martin, C. A. (2019). Virtual library of Phoenix landscape plants. Retrieved from 

http://www.public.asu.edu/~camartin/Martin landscape plant library.htm 

Wildflower database Lady Bird Johnson Wildflower Center (2019). Native plants database. Retrieved 

from https://www.wildflower.org/plants/ 

Missouri Plant Finder Missouri Botanical Garden. (2019). Plant finder. Retrieved from 

http://www.missouribotanicalgarden.org/PlantFinder/PlantFinderSearch.aspx 

 

SI Table 1. Frequency of each taxon 

Species n 

Albizia julibrissin 87 

Alnus glutinosa 23 

Alnus oblongifolia 8 

Alnus rubra 126 

Cercocarpus ledifolius 718 

http://hort.ufl.edu/database/trees/trees_scientific.shtml
http://plants.usda.gov/
https://landscapeplants.oregonstate.edu/species
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Elaeagnus angustifolia 33 

Prosopis glandulosa 23 

Prosopis pubescens 2 

Prosopis velutina 222 

Robinia pseudoacacia 7050 

 

SI Table 2. Model Selection ΔAICcs. Table shows different fixed effect formulations. All 

individual-scale models included a random effect for plot ID to account for geographic and 

climatic differences among plots. All plot-scale models included a random effect for state to 

account for geographic and climatic differences among regions. ΔAICc values were calculated as 

the difference between models using the AICc() command (stats package, R Core Team, 2017) 

from the full model. 
Model ΔAICc 

Plot Scale 

BAI ~ BApct + BAtotal 0 

BAI ~ BApct 3534 

BAIn ~ BApct + BAtotal 0 

BAIn ~ BApct 3510 

Survival ~ BApct + BAtotal 0 

Survival ~ BApct 351 

Recruitment ~ BApct + BAtotal 0 

Recruitment ~ BApct 468 

Individual Scale 

RGR ~ NCIprop + NCI + NCI2 + DBH + NCI*NCIprop + NCI*DBH 0 

RGR ~ NCIprop + NCI + NCI2 + DBH + NCI*NCIprop 19 

RGR ~ NCIprop + NCI + NCI2 + DBH + NCI*DBH 0 

RGR ~ NCIprop + NCI + NCI2 + DBH 17 

RGR ~ NCIprop + DBH 21 

RGR ~ NCIprop + NCI + NCI2 85276 

RGR ~ NCIprop + NCI + DBH 17 

Recruitment ~ NCIprop + NCI + NCI2 + DBH + NCI*NCIprop + NCI*DBH 1 

Recruitment ~ NCIprop + NCI + NCI2 + DBH + NCI*NCIprop 0 

Recruitment ~ NCIprop + NCI + NCI2 + DBH + NCI*DBH 263 

Recruitment ~ NCIprop + NCI + NCI2 + DBH 262 

Recruitment ~ NCI + NCI2 + DBH 282 

Recruitment ~ NCIprop + DBH 270 

Recruitment ~ NCIprop + NCI + NCI2  113626 

Recruitment ~ NCIprop + NCI + DBH 262 

Survival ~ NCIprop + NCI + NCI2 + DBH + NCI*NCIprop + NCI*DBH 0 

Survival ~ NCIprop + NCI + NCI2 + DBH + NCI*NCIprop 248 

Survival ~ NCIprop + NCI + NCI2 + DBH + NCI*DBH 2 

Survival ~ NCIprop + NCI + NCI2 + DBH 251 

Survival ~ NCI + NCI2 + DBH 249 

Survival ~ NCIprop + DBH 439 

Survival ~ NCIprop + NCI + NCI2  586 

Survival ~ NCIprop + NCI + DBH 251 

Note: we selected the model with the lowest ΔAICc that included either NCIprop or BApct (for 

individual-scale and plot-scale respectively). 
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SI Table 3. Model parameters and fit (results for β1) where significant parameters are in bold. 
Response 

Variable 

(plot scale) 

Parameters Parameter 

estimates 

95% CI Marginal 

R2
GLMM 

Conditional 

R2
GLMM 

BAI BA pct 0.04253 (-0.440217, 0.525294) 

0.0352 0.5282 

 BA total -0.00085 (-0.000887, -0.000832) 

BAIn BA pct 0.495886 (0.013382, 0.978391) 

0.0640 0.1471 

 BA total -0.000856 (-0.000884, -0.000828) 

Recruitment BA pct 0.0290 (0.010117, 0.047884)  

0.0073 0.2995 

 BA total -0.000012 (-0.000013, -0.000011) 

Survival BA pct -0.013148 (-0.024977, -0.001318)  

0.0009 0.8781 

 BA total 0.000006 (0.000006, 0.000007) 

 

Response 

Variable 

(individual 

scale) 

Parameters Parameter 

estimates 

95% CI Marginal 

R2
GLMM 

Conditional 

R2
GLMM 

RGR NCI prop -0.000253 (-0.00089, 0.00038) 

0.0272 0.5870  NCI 7.595e-7 (-0.000001, 0.000002) 

 DBH -0.00040 (-0.00040, -0.00040) 

Recruitment NCI prop 0.00025 (0.00011, 0.00039) 

0.0403 0.2634  NCI 0.00079 (0.00068, 0.00091) 

 DBH -0.01891 (-0.01903, -0.01879) 

Survival NCI prop -0.00010 (-0.00023, 0.000016) 

0.00014 0.5949  NCI -0.00095 (-0.00105, -0.00084) 

 DBH 0.00075 (0.00065, 0.00085) 
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SI Table 4. P-values for Moran’s I test for spatial autocorrelation 

Demographic rate p-value 

Plot scale 

BAI 0.4427 

BAIn 0.5227 

Recruitment 0.8264 

Survival 0.5824 

Individual scale 

RGR 0.5459 

Recruitment 0.8408 

Survival 0.8368 

 

SI Table 5. P-values for differences among groups 
Scale Demographic rate Group p-value Significant 

Plot BAI 

N Deposition 0.0273 * 

Age 0.5168 NS 

Soil moisture 0.0341 * 

Plot BAIn 

N Deposition 0.0273 * 

Age 0.5168 NS 

Soil moisture 0.0341 * 

Plot Recruitment 

N deposition 0.7034 NS 

Age 0.7659 NS 

Soil moisture 0.0202 * 

Plot Survival 

N deposition 0.0120 * 

Age 0.3477 NS 

Soil moisture 0.0296 * 

Individual RGR 

Fixer vs. non-fixer 1.0e-8 *** 

Canopy position <2.2e-16 *** 

Deciduousness 4.1e-7 *** 

Foliar C:N <2.2e-16 *** 

Mycorrhizae (AM to 

EM) 

0.5365 NS 

Individual Recruitment 

Fixer vs. non-fixer 0.5787 NS 

Canopy position 7.78e-6 *** 

Deciduousness 0.9567 NS 

Foliar C:N 0.0027 ** 

Mycorrhizae (AM to 

EM) 

0.2914 NS 

Individual Survival 

Fixer vs. non-fixer 0.1798 NS 

Canopy position 0.5235 NS 

Deciduousness 2.55e-9 *** 

Foliar C:N 0.0060 ** 

Mycorrhizae (AM to 

EM) 
0.0066 ** 

Where * indicates p < 0.05, ** p < 0.01, *** p < 0.001 

 

SI Table 6. Covariation 
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SI Figure 1. Histogram showing the percent of basal area comprised of N-fixing trees at the 

plot-scale in the FIA database. When percent basal area is 0% all trees in the plot were non-

fixers. When the percent basal area is 100% all trees in the plot were N-fixers. 
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SI Figure 2. N-fixer effects (NFE) at the plot-scale in relation to geographic factors across the 

coterminous U.S. Each point represents a single plot from the analysis. The NFE is shown for 

three different demographic rates: BAINFE (a-d), RNFE (e-h), and SNFE (i-l). Latitude and 

longitude are in degrees, mean annual precipitation (MAP) is in mm, and mean annual 

temperature (MAT) is in °C.  
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Appendix C – Supplementary Information for Chapter 3 

SI Text 1 – Methods for parameter estimates. 

1.1 Diffusivity (D) 

A ballpark estimate of diffusivity (D) was derived from a field experiment conducted at 

Black Rock Forest, a deciduous forest in New York dominated by oaks and maples. Though we 

had a low recovery rate for marked leaves in the experiment which prevented us from obtaining 

robust diffusivities, the field work gave us a range of possible values for leaf diffusivity. Single 

species leaf clusters (from Q. rubra, Q. alba, A. rubrum, R. pseudoacacia, or F. grandifolia) 

were constructed with 20 spray painted leaves of a single species and tracked across 4 months to 

observe the diffusion of leaves. When tracking leaves, we searched the area around the initial 

cluster position for 5 minutes and recorded the distance and angle of each painted leaf found. 

Diffusion was calculated by: 𝐷 =
∑ 𝑑𝑖

2𝑛
𝑖=1

4𝑡
 following Turchin (1998) where D is diffusivity [m2 

year-1], d is distance of leaf i [m] from its starting point, and t is time [years].  

 

1.2 Advection velocity (u) 

 Horizontal leaf movement across the forest floor is variable and season dependent. In a 

study of a West Virginian hardwood forest, Orndorff & Lang (1981) found that the average 

downslope movement of leaf litter in December was 1.21 m day-1 while in April and May it was 

0.65 m day-1. Of the leaves they tracked 28% of leaves did not move, 69% moved 0.5 m or more 

downslope, and 3% of leaves moved upslope. They also observed that 90% of movement 

occurred in a wind storm on a single day. This suggests that most leaf movement occurs on a few 
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notable days so the advection velocity is driven by a small number of wind events. Hillslope is 

also an important driver of the advection velocity (i.e. most leaves move downhill). Boerner & 

Kooser (1989) also found that most redistribution occurred from January to April and that 

different species had different downslope redistribution rates. From Orndorff and Lang (1981), 

assuming that litter moved 1.21 m day-1 in December, 0.65 m day-1 in November and January 

through May, and 0 m day-1 during the other months, a rough estimate for the advection rate is 

150 m year-1.  

 The rank order of advection velocity for species was determined from the same field 

experiment described above where single species clusters of painted, senesced leaves were 

assembled and allowed to move for 4 months. Advection (u) was calculated as: 𝑢 =
𝑑𝑚𝑒𝑎𝑛

𝑡
. 

Within the range of litter advection velocities reported in the literature above, we varied the 

advection velocity of our target species according to rank order from the field work.  

 

1.3 Initial leaf fall ε(x) 

 The normal distribution has two parameters: μ and σ. Since the average position of leaves 

falling from a tree on a flat surface is at the trunk of the tree we used μ = 0 m. The standard 

deviation of the normal distribution was determined from literature. Ferrari & Sugita (1996) 

found that on average in one temperate hardwood forest 90% of litter falls within 17.1 m of a 

tree. We used this to estimate the average standard deviation in a temperate hardwood forest is 

around 10.4 m. For the anisotropic wind dispersal distribution (equation 2) and the empirically 

derived litter distribution (equation 3), tree dbh was used to calculate the distribution. Uriarte et 

al. (2015)’s dispersal kernel was developed for several Puerto Rican tree species and specified 

the litter mass by distance from the tree as a function of dbh and several species-specific 
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parameters. We used a “wide”, “narrow”, and “typical” kernel based on three species 

parameterized in their study. The “wide” kernel represented windy conditions where litter falls 

farther from the base of the tree during the initial dispersal event or species that had wider litter 

fall.  

Three initial conditions (ε(x)) were considered: (1) a normal distribution where all litter is 

deposited instantaneously near the base of the tree, (2) an anisotropic litter dispersal model 

where litter is deposited instantaneously but asymmetrically based on wind (Staelens et al. 2003), 

and (3) an empirically derived leaf litter dispersal kernel (Uriarte et al. 2015). These three initial 

conditions represented a temperate, deciduous forest where litter was dropped across a short time 

period relative to the time of subsequent movement. 

Normal distribution: 𝜀(𝑥) = 𝑇𝐿𝑃 ∗
1

𝜎√2𝜋
𝑒

−
(𝑥−𝜇)2

2𝜎2   (2) 

Here σ is the standard deviation of the distribution, μ is the mean of the distribution set at 0 m, 

and x  the distance from the tree. 

Anisotropic dispersal: 𝜀(𝑥) =
𝑎

𝑁
∗ (𝐷𝐵𝐻𝑏 exp(−𝑐0𝑥 − 𝑑 ∗ 𝐷𝐵𝐻))  (3) 

Here a, N, b, c0, and d are species-specific parameters from Staelens et al (2003), DBH is the 

diameter at breast height (cm), and x is the position in linear space. 

Empirical distribution: 𝜀(𝑥) = 𝑇𝐿𝑃 ∗ (
𝐷𝐵𝐻

30
)𝛼 1

𝜂
𝑒

−0.5(
ln(

𝑥
𝑋0

)

𝑋𝑏
)2

 (4) 

Here TLP is the total litter production (g yr-1), DBH is the diameter at breast height (cm), α, η, 

X0, and Xb are species-specific parameters obtained from Uriarte et al (2015), and x is the 

distance from the tree. 

 

1.4 Rooting radius (βmax) 



149 

 

 Maximum rooting radius was estimated from a literature search. Schenk & Jackson 

(2002) conducted a literature review of root length in water limited environments and found that 

lateral tree roots ranged from 0.5 to 50 m with an arithmetic mean at 11.5 m. Hruska et al. (1999) 

found that a large oak had roots that extended 82 m from the base of the tree while a small oak 

had roots that extended 21 m from the base. This corresponded to 125% and 130% of the crown 

radius respectively. They also observed that the radius of the 8 largest roots was about 10 times 

the stem diameter of the tree. Stout (1956) excavated several large trees in Black Rock Forest 

and recorded the mean root area to crown area ratio. The average ratio for all oaks was 7.4 (σ = 

9.3), the average for all maples was 13.0 (σ = 9.8), and for beech one tree was sampled with a 

ratio of 3.9.  

 Maximum rooting radius was tied to tree dbh using two literature derived relationships: 

(1) for trees less than 20 cm dbh 𝛽 = 5.5264 ∗ ln(𝑑𝑏ℎ) + 8.1023 based on logarithmic 

regression using data from Stout (1956), and (2) for trees greater than 20 cm 𝛽 = 2.8961 ∗

𝑑𝑏ℎ + 5.5059 based on the linear regression using Stout (1956) data. 

 

1.5 Rooting distribution ψ(x) 

Litter nutrients that decompose in the rooting zone of a tree may not be taken up by a 

focal tree; active roots may not access that particular point or another tree’s rooting system may 

overlap and steal the nutrients. The likelihood that nutrients are taken up by a tree varies through 

the rooting zone. To add this realism to the model we tested several rooting distributions (ψ(x)). 

Wider rooting distributions allow greater nutrient recovery while deeper rooting distributions do 

not. The farthest horizontal extent of the roots determines the farthest distance litter can diffuse 

before decomposing and still be recovered by the focal tree (model parameter βmax, m). The 
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density and distribution of absorbing root tips changes by species and forest structure 

(Nadelhoffer et al. 1985, Nadelhoffer and Raich 1992, Jackson et al. 1997, Hajek et al. 2013). 

We compare the percent of litter recovered under different rooting distributions to determine the 

potential effects of mycorrhizae that could dramatically extend the effective rooting zone of a 

tree well beyond where the roots actually stop (Simard and Durall 2004, Phillips et al. 2013, 

Treseder 2013, Chen et al. 2016). 

Four possible rooting distributions were examined with the model: (1) uniform roots 

where the probability of finding roots was 1 until the root length (βmax) where it dropped to 0, (2) 

there was a high probability of finding roots which dropped off farther from the tree where 

𝜓(𝑥) = 𝑏𝑎𝑏𝑠(𝑥) where b = 0.99, (3) the likelihood of finding roots dropped off rapidly some 

distance from the tree trunk  such as the transition between coarse roots and fine roots or 

mycorrhizae where 𝜓(𝑥) =
2

1+𝑒(𝑥+0.5), and (4) the probability of finding roots dropped off as an 

exponential decay where 𝜓(𝑥) = 𝑒−𝑎𝑏𝑠(𝑥). 

 

1.6 Immobilization rate (k) 

 The immobilization rate (k) was the rate at which nutrients stop moving. This 

incorporates chemical N immobilization as part of decomposition (Chapin III et al. 2011) and 

physical litter immobilization as leaves get trapped by objects such as fallen logs (Orndorff and 

Lang 1981) or aggregated into leaf mats through fungal cementing. The minimum 

immobilization rate for a species is defined by the decomposition rate for that species. The 

minimum rate assumes that N is released uniformly throughout decomposition and that leaves 

are not immobilized by any other processes (e.g. entrapment or aggregation). These minimum 
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immobilization rates (kmin) were derived from a literature search for species-specific 

decomposition rates (SI Text 2).  

 Immobilization rates are likely larger than kmin because entrapment and aggregation are 

frequent forest processes. In a West Virginian hardwood forest, Orndorff and Lang found that 

average downslope movement of litter in the surface layer was 14.3 m between December and 

April, however, if a particular leaf was caught under a log the average downslope movement in 

the same time period was only 1.4 m (Orndorff and Lang 1981). Entrapment decreased litter 

movement to one tenth. When conducting the field experiment, leaf litter aggregation was 

qualitatively important in stopping leaf litter which likely further increases k.  

 

SI Table 1. Model parameters and their biological significance 

Parameter Range Interpretation 

φ 0 – 100 % Percent of nutrients that a tree dropped in litter fall which it 

can recover based on where the litter decomposed and 

where the tree had roots 

β 1 – 80 m Lateral length of longest roots on tree 

ψ(x) 1/exp, uniform, 

b^x, exp decay, 

modified exp 

decay 

Root distribution – trees are more likely to have actively 

absorbing roots near the base of the tree but moving out the 

roots become less dense so fewer actively absorbing roots 

farther from the base (considers roots and mycorrhizae as 

equivalent) 

ε(x) Gaussian, 

Staelens, narrow, 

typical, wide 

Shape of initial, instantaneous litter fall of leaves falling 

from tree 

k 0.1 – 10 year-1 The immobilization and decomposition rate of litter due to 

litter breakdown, N leaching, or immobilization from 

matting or leaves getting trapped under rocks and logs 

D 30 – 120 m2 year-

1 

The diffusion coefficient or how quickly the litter spreads 

across the forest floor due to random motion (leaves 

circulating in air, animals shifting litter) 

u 30 – 120 m year-1 Advection velocity or how quickly the litter moves due to 

non-random motion (such as wind-driven movement, 

movement downhill, water directed movement) 

 

 



152 

 

 

SI Figure 1. Pulse of litter density through time. t = 0 reflects the initial litter distribution ε(x). 

As time advances the plume spreads out due to diffusion, moves right due to advection (e.g. 

wind, hillslope, water transport), and gets smaller due to decomposition. 
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SI Figure 2. Diffusion coefficients (D) from field data. Note: outlier in maple with D = 309 m2 

year-1. Robinia was tested in two configurations: RobiniaF was full leaves and RobiniaL was a 

set of leaflets 

 

 

SI Figure 3. Advection coefficients (u) from field data. Robinia was tested in two 

configurations: RobiniaF was full leaves and RobiniaL was a set of leaflets 
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SI Text 2. Sources for decomposition rates. 

Quercus rubra: 

Lee, Y. C., Nam, J. M., & Kim, J. G. (2011). The influence of black locust (Robinia 

pseudoacacia) flower and leaf fall on soil phosphate. Plant and Soil, 341(1–2), 269–277. 

doi: 10.1007/s11104-010-0642-5 

Midgley, M. G., Brzostek, E., & Phillips, R. P. (2015). Decay rates of leaf litters from arbuscular 

mycorrhizal trees are more sensitive to soil effects than litters from ectomycorrhizal trees. 

Journal of Ecology, 103(6), 1454–1463. doi: 10.1111/1365-2745.12467 

 

Acer rubra: 
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SI Text 3. Methods for stand level analysis 

 A forest stand was simulated using 5 trees along a line. We examined several scenarios, 

including even sized stands and uneven sizes stands as well as a range of root overlaps: 0% 

overlap, 25% overlap, and 75% overlap. Root overlap is an indicated forest density where more 
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dense forests have more root overlap and less dense forests have less root overlap. The tree 

spacings in meters are shown below with tree dbh in cm in parentheses for each tree: 

Scenario Tree 1 
position (m), 

dbh (cm) 

Tree 2 
position (m), 

dbh (cm) 

Tree 3 
position (m), 

dbh (cm) 

Tree 4 
position (m), 

dbh (cm) 

Tree 5 
position (m), 

dbh (cm) 

Even, 0% -160 (40) -80 (40) 0 (40) 80 (40) 160 (40) 

Even, 25% -140 (40) -70 (40) 0 (40) 70 (40) 140 (40) 

Even, 75% -100 (40) -50 (40) 0 (40) 50 (40) 100 (40) 

Uneven, 0% -180 (20) -100 (60) 0 (40) 50 (10) 90 (30) 

Uneven, 25% -150 (20) -90 (60) 0 (40) 47.5 (10) 77.5 (30) 

Uneven, 75% -90 (20) -70 (60) 0 (40) 42.5 (10) 52.5 (30) 

 

To calculate stand-level φ we divided the amount of litter from a given species that decomposed 

within the rooting radius of any other individual of the same species. For stand-level φ we used 

the even size, 25% root overlap scenario with u of 50 m year-1. The decomposition rate, k, and 

diffusion coefficient, D, were species-specific and match values in Table 1. For the mixed-

species stand-level φ we assumed trees 1, 3, and 5 were the focal species while trees 2 and 4 

were a non-focal species. 

 

SI Table 2. Diffusion coefficient data. Mean values are shown for D with standard deviation in 

parentheses. We assumed that missing leaves went to 1000 cm at a random angle (drawn from a 

uniform distribution).  

Species Slope D (m2 year-1) 

Beech Flat 256 (322) 

Beech Steep 314 (445) 

Maple Flat 404 (595) 

Maple Steep 154 (187) 

Oak Flat 575 (1357) 

Oak Steep 101 (138) 

Robinia (full) Flat 37.9 (28.1) 

Robinia (full) Steep 0.30 (NA) 

Robinia (leaflets) Flat 33.6 (NA) 

Robinia (leaflets) Steep  67.6 (19.7) 
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This analysis likely overestimates D since missing leaves were not spread uniformly around the 

radius. For species-level analysis half the average experimental D value was used. Instead slope 

or wind likely pushed them in one direction which would have decreased the diffusion 

coefficient data. For species-specific simulations we used half the species average value for D. 
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SI Figure 4. The percent of litter recovered as an effect of parameters: (a) dbh in cm, (b) k in 

year-1, (c) u in m year-1, and (d) D m2 year-1. For all parameters that are not the parameter on the 

x-axis values used were: dbh = 20 cm, k = 0.7 year-1, u = 80 m year-1, and D = 70 m2 year-1. 

 

 

 

SI Figure 5. The effect of tree properties on the percent of leaf litter recovered (ϕ) by a focal 

tree. The facets show different rooting radii. Here the initial litter fall distribution was a normal 

distribution with a varying standard deviation (higher standard deviation indicated that leaf litter 

distributed farther). The diffusion coefficient (D) was 100 m2 yr-1 and the advection velocity (u) 
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was 100 m yr-1. In (a) facets show different rooting radii, u = 100 m year-1, and D = 77 m2 year-1. 

In (b) facets also show different rooting radii, u = 1 m year-1 and D = 77 m2 year-1. 

 

 

 

SI Figure 6. The effect of (a) advection velocity (u), and (b) diffusion coefficient (D) on the 

percent of nutrients recovered. For small trees (β = 1 m) the percent of litter recovered remains 

low regardless of advection. However, for large trees (β = 50 m) the percent of litter recovered 

varies by advection velocity. (a) Facets show different rooting radii, D = 100 m2 year-1, and the 

initial litter fall is a normal distribution with standard deviation 10 m. (b) Facets show different 

advection velocities (u), the initial litter fall is a normal distribution with a standard deviation of 

10 m and the tree has a rooting radius (β) of 30 m. 
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SI Figure 7. a) The effect of the relative strength of u (advection) and D (diffusion) on the 

percent of litter recovered (φ). Colors represent different decomposition (k) values. Facets show 

different B (root radius). Trees with faster decomposing litter recover a greater percent of litter 

regardless of other model parameters. However, nutrient recovery increases with both longer tree 

roots and a lower ratio of u to D. b) Interaction between advection (u) and decomposition (k) for 

a tree of DBH 20.6 cm and D 70 m2 year-1. Color represents the fraction of nutrients recovered 

(φ) on a scale of 0 to 100%. A tree can recover the vast majority of its nutrients if it has a 

sufficiently large k or sufficiently low u. 
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SI Figure 8. Time for 50%, 68% or 95% of litter to get 10 m away from tree trunk. a) Advection 

velocity (u) varies across the x-axis, time for percent of litter to reach 10 m is reported on the y-

axis, and facets show different percentages. Litter that reached 10 m could have decomposed or 

reached that position as mobile litter. Missing points represent conditions under which the 

specified percent of litter never reached 10 m. D = 100 m2 year-1. Faster decomposing litter 

(larger k) was less likely to reach 10 m and when it did reach 10 m it took longer for the 

specified percent to reach that distance. As u increased the time for a specified percent of litter to 

reach 10 m decreased. b) Diffusion coefficient (D) varies across the x-axis, time for percent of 

litter to reach 10 m is reported on the y-axis, and facets show different percentages. u = 50 m 

year-1. As D increased, the time for a specified percent of litter to reach 10 m increased.  
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SI Figure 9. Stand level model average percent of litter shared with neighbors. Columns show 

stands of even size (dbh = 40 cm) and uneven stands (variety of dbh). Rows show the diversity 

of the stand where nsp = 1 is a single species stand, nsp = 2 is a 2 species stand, and nsp = 4 is a 

stand with all species present. AR: Alnus rubra, FG: Fagus grandifolia, QR: Quercus rubra, RP: 

Robinia pseudoacacia. Robinia litter decomposes fastest and diffuses the slowest which resulted 

in the greatest percent being shared with neighbors. Even aged stands share more litter with 

neighbors because the spacing of trees tends to be less.  

 

SI Table 3. Stand level model calculation of species-level φ. Tree positions are as described for 

stand-level analyses in SI Text 3. Values for k (year-1) and D (m2 year-1) for each species are as 

follows: AR: 0.48, 180.5, FG: 0.55, 139.5, QR: 0.67, 196, RP: 1.32, 21.6. We used the base value 

for u of 50 m year-1. 

Species Species-level φ (%) 
Single–species stand 

Species-level φ (%) 
Mixed–species stand 

Acer rubra 74.0 47.9 

Fagus grandifolia 77.6 50.1 

Quercus rubrum 81.8 53.7 
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Robinia pseudoacacia 89.6 63.4 

 

 

SI Figure 10. Percent litter nutrients recovered by time elapsed since litterfall. Panel a) shows 

φultimate or the percent of nutrients a tree recovers in a given period of time out of all nutrients 

dropped in litterfall. Panel b) shows φcurrent or the percent of nutrients a tree recovers in a given 

period of time out of the nutrients decomposed from litter at that time. The “high” level 

corresponds to k=0.9 y−1, u=25 m y−1, D=50 m2 y−1, “moderate” level corresponds to k=0.6 y−1, 

u=50 m y−1, D=100 m2 y−1, and “low” level corresponds to k=0.3 y−1, u=75 m y−1, D=150 m2 

y−1. 
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SI Text 4 – Methods for forest stand model 

Using this model with a single tree probed the extent to which a tree can access its own litter 

nutrients, a central assumption in many ecosystem and plant-soil feedback models (questions 1 

and 2). To explore the extent to which a tree “share” litter with neighbors (question 3), we extend 

our model to a stand of several trees. This model was a one dimensional stand where we adjusted 

the spacing between trees and tree properties. We assumed that all trees experienced similar 

environmental conditions (e.g. wind speed, precipitation) so there was some similarity in u, D, 

and k. Litter that decomposed within the rooting radius of a neighbor could be accessed by that 

neighbor. We also investigated stand configurations where tree roots overlapped and separately 

considered the litter that immobilized in the zone of root overlap and the litter that immobilized 

in an area where the neighbor had exclusive root overlap. 

 

SI Text 5 – Stand-scale dynamics results 

 The percent of litter that decomposed within a neighbors roots after 25 years (γ) informed 

theory on plant-soil feedbacks and facilitation theory. Our model showed that trees can share 

virtually no litter with a neighbor (< 0.0001%) or the majority of their litter (67%) depending on 

the spacing between neighbors, root overlap, and whether the neighbor was downwind of the 

focal tree. For a neighbor with 20 m-long roots situated 50 m downwind of a focal tree with 82 m 

roots in a high wind environment (u = 130 m y−1, D = 100 m2 y−1) with a moderate 

decomposition rate (k = 0.8 y−1), the neighbor captures 25% of the focal tree’s litter. However, a 

similar neighbor upwind of the focal tree captures < 0.0001% of the focal tree’s litter. In some 

cases, a focal tree will share more of its litter with neighbors that it can recapture itself. For 

example, a tree with 50 m-long roots situated 100 m upstream of a large tree (β = 82 m) with the 
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same parameters above will share 67% of its litter with the downwind neighbor while only 

capturing 31% of litter itself.  

In an even sized stand, as the root overlap of trees increases, γ also increases (Figure SI 

11). In both even and uneven sized stands as root overlap increased, the percent of litter shared 

with an average neighbor increased (Figure 5). When decomposition rate was faster, the percent 

shared with a neighbor increased more as root overlap increased. The amount of litter that trees 

shared with neighbors also depended on tree traits and environmental parameters. The effect of k 

was mediated by the root overlap. In low u stands a greater fraction of litter was shared with 

neighbors when k was slower. Since less litter immobilized in the focal tree’s rooting zone, a 

greater fraction moved into the rooting zones of neighbors (Figure SI 11 across grid).  
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SI Figure 11. Average percent of litter shared with neighboring trees in even and uneven stands. 

Colors indicate different decomposition rates. Even stands were composed of three trees with 40 

m rooting radii and trunks 70 m apart. Uneven stands were composed of three trees: β = 60 m, β 

= 10 m, and β = 40 m. Different degrees of root overlap are shown on the x-axis (0%, 25%, and 

75%). For uneven stands the root overlap was defined based on the smaller tree.  

 

SI Text 6 – Discussion of temporal dynamics 

The percent of total litter that a tree could recover increased slightly over time, though after the 

first few years most of the litter had already decomposed or moved out of the rooting zone and so 

additional time had little effect on φultimate (Figure 10a). The percent of litter decomposed at that 

point in time that the tree could capture (φcurrent) decreased over time (Figure 10b). As more time 
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passes there is also more opportunity for other organisms to take up mineralized N and prevent 

nutrient return to the focal tree. 

 

SI Text 7 – Discussion of leaf traits 

Other leaf traits were important determinants of nutrient recovery including specific leaf area 

(SLA) and shape irregularity. Leaves with higher SLA tended to have lower D (Pearson 

correlation -0.09) and u (Pearson correlation -0.17). So individuals with higher SLA would 

recover an even greater percent of litter nutrients than would be predicted from a correlation with 

foliar N alone. Irregularly shaped leaves may immobilize more because they easily mat together, 

effectively increasing k. 

 

SI Text 8 – Discussion of stand level implications 

The effect of traits on PSF depends on an individual’s immediate neighbors. If trees grow in 

monodominant stands, such as R. psuedoacacia then it could still be advantageous at the species-

level to have a low individual φ and make good conditions for conspecifics. The species-level φ 

for a pure R. pseudoacacia stand was 90% (SI Table 3). By contrast, when R. pseudoacacia grew 

in a mixed-species stand the species-level φ was only 63% (SI Table 3). Plants whose offspring 

recruited close to the parent tree could benefit from high nutrient retention near the parent plant. 

The effects for offspring could further the advantages of dropping nutrient rich litter which does 

not spread out and might favor a nutrient recovery strategy over reducing nutrients dropped in 

leaf litter to begin with (Clark et al. 2005).  

 Tree density also impacted nutrient return. In tightly packed stands, trees would benefit 

from their neighbors more with fast decomposition. Given that the early successional forests 

studied in Batterman et al (2013) were densely packed with small trees it is plausible that N-
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fixers could provide 50% of N demand through leaflitter nutrient transfer. However, in low 

density forests, the decomposition rate did not impact neighbor litter sharing as strongly (Figure 

SI 11). Though litter sharing could be substantial (up to 25% even for small trees with β = 40 m) 

it largely depended on environmental conditions and may not be enough to drive the competitive 

interaction between N-fixers and their neighbors.  

 


