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We classified thé&-operators which satisfy the quantum Yang—Baxter equation on
a function space. In this study, we gave all the meromorphic solutions of the system
of the functional equations which is a necessary and sufficient condition for the
R-operator to satisfy the Yang—Baxter equation. Most of the solutions were ex-
pressed in terms of the elliptic, trigonometric and rational functions. 2091
American Institute of Physics[DOI: 10.1063/1.1367326

[. INTRODUCTION

During the last 8 years, significant advances have been made in our understanding of the
solutions of the(quantum Yang—Baxter equation on a function space, which we call the
R-operators:3

Definition 1 (R-operatd): For X;,X,,...X,eC and r>0, define the set(x;,r) and
C((X1,X2,...Xp),r) by C(xq,r)={xeC|x—x4/<r} and C((X1,X2,...Xn),I)=C(Xq,r)

X C(X5,r)X...XC(X,,r). Let functions A(x) and B(u,x) be meromorphic onC(0y) and
C((0,0) 1), respectively. For a functiohmeromorphic onC((0,0)r/2), we define the function
(R(u)f)(z4,2,) meromorphic orC(0,r) X C((0,0),r/2)(> (u,z,,2,)) as

(R(W)T)(z1,22)=A(z,—2,)1(21,2,) —B(U,2,—2,)1(2,,29).

We call this operatoR(u) the R-operator.

There are three kinds of tHeoperators expressed in terms of the elliptic, trigonometric, and
rational functions, respectively. The elliptR-operator has been investigated in particular. We
found it by taking the limitn—o of Belavin's R-matrix} Belavin’s R-matrix is conversely
obtained through restricting the domain of a modified version of the elliRtaperator to a
suitable finite-dimensional subspdt&his suggests that the properties of BelaviRsnatrix are
generalized to those of the elliptR-operator. Actually the author constructed the incoming and
outgoing intertwining vectors for the ellipticR-operator, and proved the vertex-IRF
correspondenceThe boundank-operators;” which satisfy the boundary Yang—Baxter equation
for the elliptic R-operator, are also obtained. We essentially use the elitiperator and bound-
ary K-operators to construct tHgeneralizeliRuijsenaars operatofs:°the commuting difference
operators. Therefore, it is very important to find out new solutions of the Yang—Baxter equation in
order to investigate the integrable models. What remains a question is the classification of the
R-operators.

The aim of this article is to classify the-operators.

Proposition 1.1: For any function f meromorphic on((®,0,0)r/2), a necessary and suffi-
cient condition for the functions R U)R3(U+v)Rys(v)f and Rs(v)Riz(u+v)Ry5(u)f mero-
morphic on ¢(0,0,0,0,0)t/2) to satisfy the YangBaxter equation

RiaU)Ry3(U+v)Rog(v) f=Rog(v)Ryg(u+v)Ryx(u)f

is that the meromorphic functions A and B satisfy the following equations(60,@0,0)r/2):

#Dedicated to Professor Yoshiyuki Shimizu on the occasion of his sixtieth birthday.
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B(u+v,x+y)(AX)A(=X)—A(Y)A(—-Y))
=B(v,y)B(u+v,x)B(u,y) —B(u,x)B(u+uv,y)B(v,x), (1)
A(Y)B(u,x)B(v,x+y)=A(Yy)(B(u+uv,x+y)B(u,—y)+B(v,y)B(u+wv,x)). (2

Therefore, in order to classify thie-operators, we gave the complete classification of the mero-
morphic solutionsA and B of the functional equation€l) and (2).

Theorem 1.2: The meromorphic solutions(&) and B(u,x) of Egs. (1) and (2) defined on the
polydiscs ¢O,r) and C((0,0),r), respectively, are one of the following
0. Trivial case:

A(X) is arbitrary, B(u,x)=0.
A(x)=0,
B(u,x)=exp(F(x)u)G(u) on C(0r)XC(0yr;)
(0<r,<r).

1. Generic case:
1-1. Elliptic:

A(X)=c-h(x) o(X+S;7,72)

0(X;71,72)0(8;71,72)

o(X+au;7ry,7)

B(u,x)=cexppux) o(X;7y,Tp)o(au; 1y, 7p)

(a,c,71,70e CO\{O},Im 7,/ 7{>0,5€ O\(Z1,+77;),p € C).

1-2. Trigonometric:

e-h(x) sinh(x+s)/\

*) Sinf(x/N)sinh(s/\)
A(X)=

€09 Sinrtxiny
sinh(x+au)/\
sinh(x/\)sinh(au/\)’
exp(£x/\)
sinhx/\

c exp(pux)

B(u,x)=
c exp(pux)

(a,c,\ e ({0}, se O\Z7r\/—1\,pe ().

1-3. Rational:
X+s X+au
c-h(x)g, c exp(pux) T
A(x)= 1 B(u,x)=
c-h(x);, cex;ipux);

(a,c,se \{0},peC).
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2. Singular case:
1
A(X)=c1h(x), B(u,x)=Ccyexp(pux)

(Cl,pE\C,Cze‘C\{O}).

Here the function F is holomorphic on(Gyr,), the function G#0) is meromorphic on
C(0,), the function h is meromorphic on(G,) satisfying the relation (x)h(—x)=1 and the
functiono(x) = o(X; 71, 7,) is the Weierstrass sigma function

X 2
I

X X 1
1——)exp<—+—
w w 2

where(m;,m,) in the product above runs over all the elementnexcept(0, 0).

We can show the following theorem easily.

Theorem 1.3: The functions A and B in Theorem [.2 satisfy Egs. (1) and (2)

Our strategy to solve the functional equatidfg and(2) is as follows. We reduced Eqggl)
and(2) to the functional equation introduced by Braden and Buchstdber:

D1(X+Y) (Da(X) Ps(Y) = ba(y) Ps(X)) = ho(X) h3(Y) — ho(Y) P3(X). ©)

They have proved that the solutions of this functional equation above were characterized by those
of the functional equation discussed by Bruschi and Calotfetd:

o(X;T1,T2) =X H [

Ww=My71+My7y

a(X+y)—a(X)a(y)=@(X)e(y) p(X+y). (4)

Since Kawazumi and the autttbrhave given the complete classification of the meromorphic
solutions near the origin of E@4), we obtained all the meromorphic solutions of Eds.and(2)
near the origin.

Let us now explain how this article is organized. Section Il gives a brief summary of the
functional equations above. In Sec. Ill, we solve the functional equatibnand (2) on the
assumptions thaB#0 and thatA(x)A(—Xx) is not identically constant. There are three kinds of
meromorphic solutions of Eq$l) and (2) expressed in terms of the elliptic, trigopnometric and
rational functions. We discuss the elliptic case in Sec. IV, the trigonometric case in Sec. V and the
rational case in Sec. VI, respectively. Section VII presents the classification of the meromorphic
solutions of the functional equatiori$) and (2) on the assumptions th&==0 and thatA(x)A
(—x)(s£0) is identically constant. In the final section, Sec. VIII, we classify the meromorphic
solutions of the functional equatiori$) and(2) with A=0 or B=0.

After finishing this article, the author found the théSis which Komori investigated the
R-operators associated with root algebras. We note that the definition &-tperators in his
thesis was slightly different from that in this article.

Il. REVIEWS OF CERTAIN FUNCTIONAL EQUATIONS OF ADDITION TYPE
In this section, we review the solutions of the functional equati@hand(4) of addition type.
A. Solutions of Eq. (4)

Bruschi and Calogero have investigated the general analytic solution 6HE¢ 3 They have
obtained the elliptic solution in the most general case and some trigonometric and rational solu-
tions by degenerating the periods of the elliptic functions.

Kawazumi and the author classified the meromorphic solutions near the origin ¢4)Eq.

Theorem I1.1 (Kawazumi-Shibukawa'®): Let o, ¢ and ¢ be holomorphic functions defined
on a punctured diskx e C;0<|x|<r'} for some ¥ >0. If they satisfy the functional equation (4),
then they are equal to one of the following functions
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(0-)  a(x)=0 or exp(px) (peC),
¢=0 and : arbitrary, or ¢: arbitrary and #=0.
(0-ii)  a(x)=Cexppx), ¢@(x)=CqexpCyx),
$(x)=C(1-C)C; expl(p— C2)x)
(C,p,C1,CreC,C#0,1C,#0).

o(v; 71, T2) O(X+ u; 71, 72)

() a()=exp(px) o(u; 71, 72)0(X+v,71,72)
o(X)

@(X) =exp(Cix+ CZ)cr(x—+v)’

ov)yo(pu—v)o(X+u+wv)
o*(p)o(X+v)

P(x)=exp(p—Cy)x—2Cy)

(p,p,v,C1,CreC, 7,750}, IMm7y/7>0 w,véZm+ilry, pu—vélrm+ir).

a(exp2x/IN)—1)+b
c(exp2x/\)—1)+b’

(I a(x)=exp(px)

exp(2x/Nn)—1
(exp(2x/IN)—1)+b’

o(X)=exp(Cix+C,) c

(a—c){—ac(exp(2x/\)—1)+b%—b(a+c)}

YOO =exp—Cix—2C;) c(exp2xIn) 1)+ b

(\,p,a,b,c,Cq,CreC, A#0, b(a—c)#0).

ax+b X
— 7 ¢(X)=expCix+Cy) ——

(M) a(x)=exp px) o0 b oxtb’

(c—a){acx+b(a+c)}
cx+b

P(x)=exp((p—Cy)x—2C,)

(p,a,b,c,C;,CreC, b(a—c)#0).

All the solutions except for the cag@-i) extend themselves to meromorphic functions defined on
the whole plan€..
Remark:ln Theorem I1.1(l), we user;, 75, u andv instead ofry /N, 75/N\, w/\ andv/\ in
Ref. 14. Moreover, we note that the conditipn- v ¢ Z7,+ 77, in Theorem I1.1(I) was dropped
in Ref. 14.

B. Solutions of Eq. (3)

Braden and Buchstablétave investigated E@3). They have shown that the solutions of Eq.
(3) were characterized by the solutions of Ed).. We review their results briefly.

Let ¢, be a holomorphic function o€(2xq,2rp) and ¢,, ¢35, ¢, and ¢s be holomorphic
functions onC(xq,rp) for somexye C and ry>0. We assume that they satisfy the following
conditions:
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(@ Eq.(3) for all x,y e C(xq,ro),
(b)  Pa(Xo) P3(Xo) — P2(Xo) P3(Xo) #O,
(©)  Pa(Xo) Ps(Xo) — da(Xo) Ps(Xo) #O.

Lemma I1.2: We define the functigh, holomorphic on €0,2r ;) and the functions,,...,¢s
holomorphic on @O, y) as follows

$1(X) =y (X+2X),

( bok(X) ) k=12,

( P Xo) P2k Xo)
Do 1(X)

_1( DoKX+ Xo)
dokr1(X0)  Daks1(Xo)

Dok 1(X+Xo)

where

‘< P 4(Xo) ¢4(Xo)) / ( ¢2(Xo) ¢2(Xo))
c=det , det , .
d5(Xo)  bs(Xo) b3(Xg)  P3(Xp)

Then they satisfy

D1(X+Y) (Da(X) bs(Y) — Ba(Y) bs(X)) = da(X) Pa(y) — baly) Pa(X)

for all x, ye C(0ry).

By straightforward computation, we dedude,(0)= ¢, 1(0)=0 and ¢4 (0)= ¢y 1(0)
=1 fork=1,2.

Lemma I1.3: There exis(0<)r,=<r,, the functionsy, and &, (k=1,2) holomorphic on
C(0,,) such thaty,(x)# 0 for all xe C(0,r5),

( Doi(X) ): 1 (fk(x))
Do 1(x) ] 700 L E(X)

for all xe C(0r,), £(0)=0, and &, (0)=y,(0)=1.

For k=1,2, defineé,(x)=exp(—\X)&(X), where\ = — ¢4, (0)/2. Then the functiong(x)
are holomorphic or€(0,r,) and satisfyé,(0)=¢,(0)=0 and,(0)=1. We define the functions
% on xeC(0,2,) and y on xe C(0r;) by &y(x)=exp(h—A)X)¢i(X) and y(x)=exp(2Q,
=N2)X) ¥2(X)/ y1(X). o

Lemma 11.4:(1) The function&,(x)/&,(x) is holomorphic on €O,r5).

(2) For all x,ye C(0y,)

Eo(x+Y) (EX)ES(Y) — Ex(Y)E(X)) = ¥(X) ¥(Y) (E1(X) EL(Y) — E1(Y) EL(X)).

Since there exists (@)rs=<r, such thatZ;(x)#0 and&,(x)#0 for all xe C(0,r3)\{0}, we
are led to the following.
Theorem 1.5 (Braden—Buchstaber'}):

(D) y(x)=(E(x)/€.(x))? and &y(x) =E,(x)/&.(x) for all xe C(Or3).
(2) Define the functionsy and ¢ holomorphic on Q0,r3) by a(x)=&,(X)/€,(x) and ¢(X)
=¢,(x). Then they satisfy Eq. (4) for all y e C(0,r3/2)\{0}.

It is to be mentioned that the functian is determined by the functions and ¢. We can
reconstruct the solutiong,,...,¢5 of Eq. (3) from the functionsa and ¢ in the theorem above.
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lll. GENERIC CASE

In this section, we solve Eqg$l) and(2) on the assumption below.

Assumption 1:(1) The meromorphic functiorA(x)A(—x) is not identically constant on
C(0r).

(2) The meromorphic functiol is not identically zero orC((0,0) ).

The purpose of this section is to prove the following theorem.

Theorem IIl.1: (1) The function Ax)A(—x) meromorphic on the disk @) is one of the
following:

a1 (X;71,72) +ay
azp(X;71,7)+ay’

elliptic: A(X)A(—x)= (5)

a; sinh 2(x/\) +a,
azsinh ?(x/\)+a,’

trigonometric:  AX)A(—X)=

ti | X 2 a;
rational: A(X)A(—X)= ————
( ) ( ) a3X 2‘| a41
wherego (X) _—p(X; 7'1,7'2) is the Weierstrass pe function

d
PO T)=—

U’(X§Tla7'2))
O-(X;TlvTZ) ,

and the constants;, 7., A e (\{0} and &, a,, az, a,e C satisfy the relationdm r,/7>0 and

a,a,—aras#0.
(2) There exists Qu;,r;) C C(0,r/4) such that the function @i,x) is one of the following:

- o(x+a(u);,7)
elliptic:  B(u,x)=exp(p(u)x)b(u) oy (6)
V(u,x)eD;ND®N(C(uy,r1) XC(Or)),
trigonometric: B(u,x)=exr(7»(u)x)5(u)
><c(u)(exp((erZﬁl(u))/)\)—exp(—x/)\))Jrexp(—x/)\) @)

sinh(x/\) '
V(u,x)eD;ND'N(C(uy,r1)XC(0r)),

_ b(u)+a(u)x
rational: B(u,x)=exr1p(u)x)f.

V(u,x)eD;ND"N(C(uq,r;)xXC(0y)),

wherep(u), a(u), b(u) eC for all ue C(uq,r,). Here D;(CC((0,0),r)) is the domain of the
meromorphic function Bu,x) and

De=C(0,r) X (C(O1 )\(Z7y+Z7p)),
D'=C(0,r) X (C(O\Zm\—1N),

D'=C(0,r) X (C(0r)\{O}).
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Assumption 1 implies the following lemmé-or part(2), see Lemma 5 in Ref. 111.
Lemma 111.2: (1) Equations (1) and (2) on 0,0,0,0)r/2) are equivalent to the following
equations:

A(X)A(—Xx)—A(y)A(—Yy)=B(u,x)B(u,—x)—B(u,y)B(u,—y), 8

B(u,x)B(v,x+y)=B(u+uv,x+y)B(u,—y)+B(v,y)B(u+wv,x) 9
on C((0,0,0)r) and C((0,0,0,0)r/2), respectively

(2) The meromorphic solutions(&) and B(u,x) of the previous equations satisfy the equa-
tion

B(v,X+Y)(AX)A(=X)—A(Y)A(—Y))
=B(u,—x)B(u+v,x)B(v,y)—B(u,—y)B(u+v,y)B(v,x) (10

as meromorphic functions on((,0,0,0)r/2).

Now we intend to apply Sec. |1 B to Eq10).

Lemma 111.3: For any Q(u(,x(),rg)CC((0,0)r/2), there exist(uy,x1) € C((Ug,Xg) o)
and r,(>0) such that

(O) C((Ul,Xl),rl)CC((Ué 'X(,)):r(,)),

(1) B(u,x) is holomorphic on @(uq,x4),r1), C(uq,r;)xXC(2x4,2r1) and C(2u4,2r4)
X C(X1,r1),

(2) B(u,—x) is holomorphic on @©(uq,x;),r;) and Cluq,rq1) X C(2x4,2r4),

(3) A(x) is holomorphic on €x,,r;) and C(2x4,2r),

(4) A(—x) is holomorphic on €x4,rq) and C(2x4,2r ),

(5) B(u,x)#0 for all (u,x) e C((uq,X1),rq)-
By C((ug,Xg).re):==C((0,0)r/4) in Lemma III.3, there exist,x;) € C((0,0),r/4) andr,
(>0) satisfying the conditions in Lemma 111.3.

Lemma 111.4:(1) (d/dx)(A(X)A(—x))#=0 on C(Xq,r4).
(2) For all u, v e C(uy,ry),

B(u,—x)B(u+uv,x) %(B(u,—x)B(uﬂ,x))
#0
B
B(v,x) (?—X(U,X)

on C(xy,ry).
Proof: We prove part2) only. The proof is by contradiction. Assume the assertion were false.
Then there would existiy, vge C(uy,rq) such that

d
B(Ug, —X)B(Up+vg,X) &(B(Uo,—X)B(Uo"‘Uo,X))

ll
o

B(vg,X) &(UO'X)

on C(Xq,rq). Thus there exists e C such that

B(ug,—X)B(ugt+uvg,X)
B(UOIX)

=c on C(Xq,rq).
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By Eq. (10) and Assumption 11), we haveB(vq,x)=0 on C(2x4,2r;). From Lemma Il1.5, we
get B(vg,x)=0 on C(0y), which implies a contradiction of Assumption(1) because of Eq.
(8). O

Lemma llI.5: Let ,r,>0 and F(u,x) be a function meromorphic on the polydis¢a3} ;)
XC(0r,). For anyv e C(0,r) such that the function F is holomorphic &t,y)(ye C(0yr5,)),
the function Kv,x) is meromorphic on Q0y,).

Proof: Because the polydis€(0,r;) X C(0,r,) is Stein andH?(C(0,r;) X C(0,5,),7Z) =0, the
sharp form of the Poincartheorem is valid orC(0,r;) X C(0y,). (See, for example, Chap. V,
Sec. 2 in Ref. 16 and Secs. | and K in Ref.)IFhen there exist two functiorggandh holomor-
phic onC(0,r;) X C(0,r,) such thath is not identically zeroF(u,x)=g(u,x)/h(u,x), and the
functionsg and h are coprime locally. Since the functidn is holomorphic at ¢,y), we have
h(v,y) # 0, which impliesh(v,x)#=0 on C(0,r,). Thus the functiorg(v,x)/h(v,X) is meromor-
phic onC(0,,). For anyxe C(0r,) such thath(v,x)#0, F(v,x)=g(v,x)/h(v,x). This com-
pletes the proof of the lemma. O

Let ug, voe C(uy,rq). Because of Lemmas 111.82) and 1ll.4, we can apply the method
introduced in Sec. IIB to Eq(10) for u:=uy and v:=vy. That is to say, there exists
C(Xp,rg) CC(xq4,rq) such that ¢¢(x):=B(vg,x) defined on C(2xq,2rp), ¢»(x):=B(uq,
—X)B(Ugtvg,X), d3(X):=B(vg,X), ¢a(X):=A(X)A(—X), and ¢5(X)=1 defined onC(xq,ro)
satisfy the conditionga)—(c) in Sec. I B.

From Theorems II.1 and 11.5, the functiar(x) = £,(x)/&,(x) defined near the origin is one of
the following.

(0)  a(x)=Cexp(px),

(1) a(x)=exp(px) ZEM;TlaTZ)O-(X+ yir7)

V71, To) O(X+ @i 71,72)

a(e®*—1)+b

(1 a(X)=eXp(PX)m,

ax+b
cx+b’

(M) a(x)=exp(px)

Lemma 111.6: a(X) # C exp(pX).

Proof: The proof is by contradiction. Assume the assertion were false. With the aid of Theo-
rem I1.5, we gete(0)=1, and, consequenthB(vo,X)=c~ exp((p—A\i+\)(X—2%y)) near Xq.
Here the constardwas defined in Lemma 11.2. From Lemma 111.5 and the identity theorem for the
meromorphic functions, the above equation is also vali€d,), which implies a contradiction
of Assumption 1(1) by virtue of Eq.(8). O

From this lemma, the functiop is uniquely determined by the functiam and so are the
functions¢; and,.

Proof of Theorem IIl.1 (1):We first note that Assumption 1 implies the conditiapa,
—ayaz#0.

By means ofp5(x)=1, we haveps(x)=1 andy,(x) = £5(x), andd,(X)=&,(X)/£5(x) as a
result. By the definition in Lemma 11.2,
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AX)A(—X)
Pa(%o)
|
A B v Ew e o7 »
h4(Xo)
sl o5
+ — — — ——,
()\2+ 20)\ 1>(exp<2(x)\ XO))—l)(c(exp{Z(X)\ XO))—1)+1]+ éex4z(xx XO))
Salke) + P 4(Xo) (X—Xg){C(X—Xo) + 1} (i

(Nt c)(Xx=xp){c(X—Xg)+1}+1"

near Xo, Where ((xX)={¢(x;71,7) is the Weierstrass zeta function{(Xx;rq,75)
=o' (X;71,7)o(X;71,75). With the aid of the identity theorem for the meromorphic functions,
the equation above is valid dd(0,r). BecauseA(x)A(—x) is an even function ol€(0,r), we
obtain the desired result. O
Now we prove Theorem I11.12).
Proposition III.7: Let yye C(uq,rq1). For anyvge C(uq,r4), there exist ¥(vg) € C(X1,r1)
and ry(vg)(>0) such that the function @,,x) is one of the following: For all x
€ C(2xo(v0) r2(vo)),

o(X+a(vg);71,72)

elliptic: B(vg,X)=exp(p(vg)X)b(vy) (X 11.75)
trigonometric: B(u,x)=exr(p(u)x)5(u)

c(u)(exp((x+2a(u))/N)—exp(—x/\))+exp(—Xx/\)
X . L
sinh(x/\)

rational:  B(vg,X)=exp(vo)X) M,

wherep(vg), a(vg), b(vg) eC.

Proof: For the sake of brevity, we only show the elliptic case. For agy C(u4,r;), there
exists C(Xo(vg),ro(vo)) CC(Xq1,r )\(Z71+7Z75) such that ¢1(x):=B(vg,x) defined on
C(2Xo(vo), 2ro(vo)), ¢2(X):=B(Ug,—X)B(Upo+vo,X), ¢3(X):=B(vg,X), da(X):=A(X)A
(—x), and ¢5(x)=1 defined onC(xq(vy),ro(vy)) satisfy the conditionga)—(c) in Sec. 11 B by
means of Lemma Ill.4. Thus we deduce

0(2Xo(v0); T1,72) 0(X; T1,75)

£200) = eXHL(2X0(vo)i 71, 2)X) —— T e

(11

wherer; and , are in Theorem I11.1(1).

Lemma 111.8: a(x) # 0, exppx).

The proof is quite similar to that of Lemma I11.6, so we omit it. Equatiad) tells us that the
zeroes of the functiod, areZr,+Zr,. Hence the functior is an elliptic solution of Eq(4) by
means of Lemma 111.8, and the periods of the Weierstrass sigma funetinrihe functiona are
7, and 7, as a consequencéSee Secs. 3 and 4 in Ref. 1&hus there exists (€)r,<2r; such
that
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o(u;71,72)0(X;71,72)
o(X+w;7q,75)

El(x) =exp({(p; 11,72)X)

on C(0yr,). From Lemma 1.2, Theorem 1.5, Eq11) and ¢,(x)=B(vq,x), we have proved the
proposition. O

Proof of Theorem Ill.1 (2)For the sake of brevity, we only prove the elliptic case. For any
voe C(uy,rq), the functionB(vg,x) is meromorphic orC(0,) by Lemma IIl.5. On the other
hand, by Proposition II1.7,

+
B00.6) = exp(p(voXb(vg) T

on some small disk i€(0,r). Because the right hand side of the equation above is meromorphic
on C(0r), we have proved the theorem. O

IV. ELLIPTIC CASE

This section presents the solutioAsndB of Eqgs.(8) and(9) in the elliptic case of Theorem
I.1.

Lemma IV.1: For all u= C(uq,ry), o(a(u))#0 and b(u)#0.

Proof: We only show thatr(a(u))#0 for all ue C(uq,r;). The proof is by contradiction.
Assume the assertion were false. Then there would exst(uq,r) such thato(a(u))=0. By
means of Eq.6), there exist function$ andb such thatB(u,x)zexp(b(u)x)B(u) for all x
e C(Xq,r1)\(Z7m,+7Z15), and this equation is also valid @y0,r) from Lemma ll1.5. By Eq.(8),
this contradicts Assumption (). O

By virtue of Egs.(5), (6), (8) and the lemma above, we conclude Lemma IV.2.

Lemma IV.2: We havesa0, that is to say A(X)A(—X)=3a.9(X)+3, on C(0O,r), where
a,=ajla, andd=a,/a,.

We note that the relatioa;a,—a,a;# 0 implies@; #0. It follows from the Lemma IV.2 and
Eq. (8) thatb(u)?e?(a(u))=—3, for all ue C(uy,ry).

Lemma IV.3: There existe(C\{0} and C(u,,r,)CC(uy,r4) such that ju)a(a(u))=c for
all ue C(u,,r,), and

o(x+a(u))

B(u)=cexplp(UX) Zeisy o0

for all (u,x) e D;ND®N(C(u,,r,)XC(0,r)) as a consequence

For the proof, it suffices to show the following lemma.

Lemma IV.4: There exists (Qu,,0),r,)CC(uq,ri)XC(0y) such that the function
B(u,x)o(x) is holomorphic on @(u,,0),r,).

Proof: Since the sharp form of the Poincateorem is valid orC((0,0)r), there exist two
functionsg and h holomorphic onC((0,0)r) such thath is not identically zeroB(u,x)o(x)
=g(u,x)/h(u,x), and the functionsg and h are coprime locally. By Eq.(6), g(u,x)
=exp(u)x)b(u)o(x+a(u))h(u,x) for all (u,x) eD,;NDEN(C(uy,r,) XC(Or)).

We fix anyue C(uq,r;). Because the function exg()x)b(u)o(x+a(u)) is holomorphic on
C(0,r) and g(u,x)=expp(ux)b(u)a(x+a(u))h(u,x) for all xe C(xy,r{)\(Z7,+7%7r,), we have
g(u,x) =expl(u)x)b(u)a(x+a(u))h(u,x) for all xe C(0r). Thus g(u,0)=b(u)o(a(u))h(u,0),
which tells us thati,0) is not a pole of the functioB(u,x)o(x) for all ue C(uy,r;). Since the
set of points of indeterminacy of the meromorphic function of two variables is isolated, there
exists a regular pointu,,0)e C(u;y,r;) XC(0r) of the functionB(u,x)o(x). We have thus
proved the lemma. O

Using Eq.(8), we are led to the following theorem.

Theorem IV.5: The elliptic solution Ax) defined on QO,) is
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Al —c.h ag(X+s)
(x)=c-h(x) e X)0(s)’
where h(x) is a meromorphic function defined on(@r) satisfying the relation (x)h(—x)=1
and s is a complex constant such thgts) = —3a,/3a; .
In the sequel, we determine the functiBn
Proposition 1V.6: There exists @3,5") CC(u,,r,) such that

o(x+ay(u))

B(ux)=exp(p(Wx) e otx)

for all (u,x)e D;ND®*N(C(u3,8")XC(0r)), where the function a is holomorphic on
C(ug,d").

We only give the proof in the case that there exist& C(u,,r,) such thatp’(a(v,))#0
because the proof is rather simple in the case giéa(u))=0 onC(u,,r,). The functionp (x)
is holomorphic ak=a(v,) by using Lemma IV.1, and the functignhas a holomorphic inverse
g near a(vq) as a result.(See, for example, p. 215 of Ref. 18Then there exists
C(v4,8)CC(u,,r,) such thatp(a(u)) is in the domain of the functiog for all ue C(v4,9).
Define a functiona holomorphic onC(v,8) asa(u)=g(g(a(u))). There exists a function
e(u)e{0,1} such thata(u)=(—1)“Y&(u) (modZr,+Zr,) for all ue C(v,,6), and conse-
quently

o(x+(—1)<Wa(u))
o(a(u))o(x)

B(U,X) = exqﬁ(u)x)( _ 1)e(u)

for all (u,x) eD;ND®N(C(v4,8)XC(0,r)), wherep(u) e C.

Proposition IV.6 now follows from the following lemma.

Lemma IV.7: There exist @;,5')CC(v4,5) such that gu)=3a(u)(modZr,+Zr,) for all
ueC(vy,8") or a(u)=—3a(u)(modZr,+7,) for all ue C(vy,5’).

To prove this lemma, it suffices to give the proof in the case that, fa€@ll ;) CC(v4,9),
there existv,we C(u,d;) such thate(v)+# e(w). By the sharp form of the Poincatbeorem,
there exist two functiong and h holomorphic onC((0,0) r) such thath is not identically zero,
B(u,x)o(x)=g(u,x)/h(u,x), and the functiong andh are coprime locally. We omit the proof of
the lemma below because it is similar to that of Lemma IV.4.

Lemma IV.8: There exists(@;,5")CC(vy,5) satisfying the following conditions

(1) The function Bu,x)o(x) is holomorphic on €(u3,0),8").
(2) For all (u,x) e C((ug,0),8"),

—1)€lury
CexpBU(— 1) o(x+(=1)Ya(u))

o(@(u))

h(u,x)=g(u,x).

By means of Lemma V.8,
exp(B(u)x)(— 1) Wo(x+(—1)Wa(u))=c™'B(u,x)o(x)o(E(u))
for all (u,x) e C((u3,0),8"). Since the functiof@(u) is holomorphic onC(ug,é’), the function

f(u,x):=c~'B(u,x)o(x) o(a(u)) is holomorphic orC((u3,0),8"). The function ¢f/dx)(u,0) is
consequently holomorphic o@(uj,s"), and

of
5(U,0)=7)(U)0(5(U))+(—1)5<”)0’(5(U)) 12

for all ue C(us,d").
By B#0 and Lemma V.1, we conclude the following.
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Lemma IV.9: There exists(Qu3,x3),8”)CC((ug,0),8") satisfying the following conditions
(1) C(x3,8")P0.
(2) f(u,x)#0 for all (u,x) e C((uz,x3),3d").
(3) a(x—a(u))#0 for all (u,x)eC((u3,x3),5").
(4) a(x+a(u))#0 for all (u,x)eC((uj,x3),38").

Lemma IV.7 follows from Lemma V.10 immediately.
Lemma IV.10: For all .t C(u3,8"), 2a(u) e Zry+7Zmy.
Proof: To prove this lemma, we show

_ o(Xz+3a(ug))

O'(X3_§.(U3)) = exq2X3£(ﬁ(u3)))

for all (us,x3) e C((uj,x3),8"). From Lemma IV.9, the functions-f(u,x)/o(x—3(u)) and
f(u,x)/o(x+3a(u)) are holomorphic o€ ((uj,x3),8") and satisfy— f(u,x)/o(x—2a(u))#0 and
f(u,x)/o(x+3a(u))#0 for all (u,x)eC((uj,x3),8"). For any {s3,x3) e C((uj,x3),d"), let
Log®™(x) and Lod?(x) be branches of the logarithm defined on open connectedvsets,C C
such that exf(us)xs)eV; and (—1)<U) 1 (ug x3)/ o(x3+ (— 1)) 1A (ug)) e V,, respec-
tively. Because the function<{1)€“s) "1 (u,x)/o(x+ (— 1)€“9 *1&(u)) is continuous at ,x)
=(uz,X3), there existe>0 and$>0 satisfying the following conditions.
(1) C((— 1) (ug,xg)/ o(Xa+ (— 1) 1A (uy)) &) C V.
(2) C((u3,%3),0)CC((u3,X3),8").
(3) For all (u,x) e C((uz,X3),0)
(=) H(ux)
o(xcH(— 1) () ©

(— 1)+ 1f(Ug Xg) ~>
(% H(— DT By (uy)) €)

Let Ne N such that IN<'8. For alln=N, there existdi, e C(us,1/n) such thate(T,) # e(uz).
(This is the case which we now considefhen we haves(U,)=e(uz)+1 (mod 2), lim,_.U,
=uz, and (1)UL (T, ,x3)/ o (X3+ (— 1)U T 1A(T,))) e V, for all n=N. By the conditions
(1) and(2) above, ex@(li,)x3) €V, for all n=N, and, consequently,

(= 1)« H(Ty,xa) )

(T = (2)
Pl hos (o<x3+<—1>f<“3>+1amn>>

for all n=N. On account of Eq(12),

of
(?_X(u3| )_ Ima_x(un! )

n—o

__1\€(u )+1f
- ( (=1)<™ " (uz,Xa) o(E(ug)) +(— 1)U 5" (A(uy)).
3

a(Xg+(— 1) 1A(ug))

Because of exfp(uz)xs) e Vy,

(— 1) (ug,x3)
(Xg+(—1) "9 (ug))

of
IX

o(A(Ug)) +(—1) "o’ (A(ug)).

1
(Us,0)= —Log<l>(
X3 g

By the straightforward calculation, we obtain the desired result, thereby completing the proof of
Proposition 1V.6. O
Proposition IV.11: There exists(@z,r3) CC(uq,r;) such that
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o(x+aq(u))

BluX)=expp1(WX) i o)

13

as meromorphic functions on(Gs,r3) X C(0,r), where the functionp, anda; are holomorphic
on C(us,rg).

Proof: It is enough to show that the functignin Proposition 1V.6 is holomorphic locally.
Define fy(u,x):=e’Wo(x+a;(u)). Since the function f; is expressed asf;(u,x)
=c !B(u,x)o(x)a(ai(u)), there exist((u3,0),8”) CC((u3,0),8”) such that the functiofy is
holomorphic on C((u3,0),8") (see Lemma IVA and @f/9x)(u,0)=p(u)o(ay(u))
+ 0o’ (as(u)) onC(ug,d") as a result. By Lemma IV.1, we are leddda,(u))#0 onC(uz,d"),
thereby completing the proof. O

Proposition IV.12: We havp,(u)=pu+ p3 and a (u) =au+as, wherep, p3, a, azeC.

For the proof, we need the following.

Lemma IV.13: There exist(@,,r4) CC(us,r3) and a function a holomorphic on Quy,r,)
such thato(as(u) +a.(v))#0 for all u,v € C(us,r,) and o(as(u))#0 for all ue C(uy,ry).

Proof: If o(2a,(u))#0 on C(us,r3), putas:=a;. The proof in the case that(2a,(u))
=0 onC(ugz,r3) is simple, so we omit it. O

We take C(X4,T1) C(C(Xy,r)\(Z7,+7Z1y)) such thatC(2X%,,2F1)N(Z7,+7Z71)=0. From
Theorem IV.5 and the three term identity @f(see, for example, p. 377 of Ref. 19 and p. 461 of
Ref. 20,

B(v,X+Y)(AX)A(=Xx)—A(Y)A(—Y))
B(v,x)B(v,y)

_ co(a(v))
o(as(u))o(as(u)+a(v))
o(X+as(u)+a(v))o(X—as(u)) o(y+as(u)+a(v))o(y—asu))
o(X)o(x+ay(v)) a(y)o(y+ay(v))

for all u,v e C(u4,ry4) andx,ye C(Xy,741). By virtue of Eq.(10), for all u,v € C(u4,r,4), there
exists a constany(u,v) e C such that

B(u,—x)B(u+v,x) co(ay(v))o(x+asu)+ay(v))o(x—asu))
B(v,x) g o(x+ay(v))o(as(u) o(as(u)+ay(v))

+y(u,v) (14

for all X,y e C(X{,T4).

From Lemma 1.3 and C((2u42x),2rs)CC((0,0)r/2), there exist @7,X1)
€ C((2uy4,2%4),2r,) andr;(>0) such that the conditions in Lemma I11.3 hold. The proof of
Lemma IV.14 is similar to that of Proposition IV.11, so we omit it.

Lemma IV.14: There exists(G;,r;) CC(uy,r) such that

o(x+ay(u))

B(u,x)==cexppa(u)x) a(X)a(ay(u))

(19

as meromorphic functions on(G3,r3) X C(0r) with the functionsp, and & holomorphic on
C(ug,rg).
Proof of Proposition IV.12By Egs.(13)—(15),
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zexp(pz(utv)=pi(u) = pi(v))X)o(x—2a(u))o(x+az(u+v))
xXo(ay(v))o(as(u))o(as(u)+ay(v))
=o(ay(v))o(x+ay(u)+ay(v))o(x—ay(u))o(ay(u))o(az(ut+v))
+y(Uv)o(as(u))o(x)o(axutv))o(x+as(v))o(as(u)+a(v))

for any xe C(X;,T;) andu,v e C(ug/2r3/2). We note that the equation above is valid ©n
(= x) also by means of the identity theorem for the holomorphic functions. Since the both sides of
the equation above are quasi-periodic with the periegsand 75,a,(u+v)—a;(u)—a;(v)
e Z7,+77,. Because the functiors, anda, are holomorphic and the s&t-; + 77, is discrete,
the functiona,(u+v)—a;(u) —ay(v) is constant orC((u3/2,u3/2),r4/2) and so is the function
po(utv)—py(u)—p1(v). Hence we get the desired result. O

It is to be noted thap,(u)=pu+p, and thata,(u)=au+a,, wherep,,a,eC. By the
straightforward computation, we deduce the following.

Theorem [V.15: The elliptic solution Bu,x) of Egs. (8) and (9) defined on the polydisc
C((0,0)r) is

o(X+au)

B(u,x)=cexqpux)m,

where as (\{0} andp e C.

V. TRIGONOMETRIC CASE

In this section, we solve Eq$8) and(9) in the trigonometric case of Theorem IIl.1.

The proof of Lemma V.1 is the same as that of Lemmas IV.1 and IV.2, so we omit the proof.

Lemma V.11(1) For all ue C(uy,r4), c(u)(exp(Z(u)/\)—1)+1+0 and B(u) #0.

(2) We have g=0, that is to say A(x)A(—x) =3, sinh 2(x/\)+3, on C(0r), where™g
=a,/a, and®=a,/a,.

From Egs.(7), (8) and Lemma V.1(2),

s 2a(u)
A(x)A(—x)—B(u,x)B(u,—x)=a2+4b(u)2ex;{ )c(u)(l—c(u)) (16)
for all ue C(uq,rq),xe C(Xq,r)\Zam~ —1\.

Lemma V.2: There exists(G; ,r;) CC(uq,r4) such that

sinh(x+a(u))/\

1
sinh(xin) 0 " B(u,x)=exp(p(u)x)b(u) z——-=

B(u,x)=exp(p(u)x)b(u) sinh(x/\)

for any (u,x) e D;ND'N(C(uy,r;)xC(0Oyr)).

If there existsC(uj,r;)CC(uy,r;) such thatc(u)—c(u)?+#0 for all ue C(uj,r;), then
there existsa(u) e C such thatc(u) = exp@(u)/\)/(2 sinh@(u)/\)) for all ue C(uy,ry). For the
proof of Lemma V.2, it suffices to show the following lemma.

Lemma V.3: If, for all Qu,f)CC(u,,rq), there exists ge C(u,f) such that ¢ugp)
—c(up)?=0, then qu)=0 or 1 for all ue C(uy,r).

Proof: The proof is by contradiction. Assume the assertion were false. Then there would exist
uge C(uq,rq) such thatc(ug)#0, 1. We takeN e N such thatC(ug,1/N)CC(u4,r,). For alln
=N, there existsl, e C(ug,1/n) such thatc(u,)—c(u,)?=0 and, for alln=N,

2a(un)

§2+45(un)2exp< )c(un)(l—c(un))=§2
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as a result. The left hand side of EL6) is holomorphic onC(u,,r;) for a fixed x
e C(Xq,r)\Zm/— 1\, so it is continuous. Since lim... u,=ug,

= !

~ 2a(u
’éz+4b(u(’))2exp< (Uo)

)C(Ué;)(l—c(uc’))):éz,

which is a contradiction of the choice af, and Lemma V.1(1). O
The proof of the theorem below is the same as that in Sec. IV, so we omit it.
Theorem V.4: (1) The trigonometric solution &) of Egs. (8) and (9) defined on the polydisc
C(0y) is

sinh(x+s)/\
sinh(x/\)sinh(s/\)

A(x)=c-h(x) or c-h(x)

sinh(x/\)’

where c= C\{0}, se (\Zmy/— 1\ and h(x) is a meromorphic function defined or(@r) satisfy-
ing the relation {{x)h(—x)=1.

(2) There exists Qu3,r3) C C(uy,r4) such that the trigonometric solution(B,x) of Egs. (8)
and (9) is expressed as

sinh(x+aj(u))/\
sinh(a;(u)/\)sinh(s/\)’

B(u,x)=cexppi(u)x) or cexpp(u)x)

sinh(x/\)

on C(us,r3) X C(0,r). Here the functiong, and a are holomorphic on Qus,r3).

(3) There exist Quy,r,) CC(us,r3) and a function @ holomorphic on Qu,,r,) such that
sinh(@y(u)+a;(v))/\)#0 and sinh(@,(u)/\)#0 for all ue C(uy4,r4).

(4) There exists Quj,r3) CC(2uy,2r,) such that the trigonometric solution(B,x) of Egs.
(8) and (9) is expressed as follows

sinh(x+ay(u))/\
sinh(ay(u)/N)sinh(x/\)

B(u,x)=*=cexp(ps(u)x) or =cexppa(u)x)

1
sinh(x/\)

on C(uz,r3) X C(0yr). Here the functiong, and & are holomorphic on Cug,r3).
We takeC(X,T1) C(C(Xq,r1)\Zm/—1\) as C(2X,,2Zr{)NZmw~—1n=0, and fix anyu,v
e C(u3/2r3/2). From Eq.(10) there existsy(u,v) e C such that

B(u,—x)B(u+wv,x)
B(v,x)

csinh(a(v)/N)sinh((x+a4(u)+a(v))/N)sinh(x—a,(u))/A
sinh((as(u)+aq(v))/N)sinh((az(u)/N)sinh(x/N)sinh((x+a4(v))/\) ty
—cexp—Xx/N)
~sinhix/N)

(u,v),

+y(u,v),

7

for all xe C(X,,T1), and, as a result, we are led to the four cases below:
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Fexp((pa(utv)—pa(u) = p1(v))X)

sinh((Xx+a,(u+wv))/N)sinh((—x+aq(u))/N)sinha(v)/\)
x sinh(a,(u+0)/N) sinh(ag(U)/N)

_ csinh(@;(v)/N)SInh{ (x+a(u) +ay(0))/\)sinhl (x— ag(u))/\)
B sinh((a4(u)+ay(v))/N)sinh(ag(u)/\)

i X . X+a1(l))
+ y(u,v)smhx sth, (18)
sinh((—x+aq(u))/N)sinh(a;(v)/N\)
= expl(pa(U+0)~ pa()  pal))x) Si;&al(u),h)“ i
B csinh(as(v)/N)sinb((x+a4(u)+aq(v))/N)sinh((x—ay(u))/N)
B sinh((a4(u)+ay(v))/N)sinh(a,(u)/\)
X XFag(v)
+y(u,v)smhxsth, (29
_ sinh((x+ay(u+wv))/N\) X X
Feexp((pa(utv)—pi(u)—pi(v))X) Sinfay(u+ 0)/N) =—cexg — ¢ +7(u,v)SInhx,
(20
X X
Icexp((pz(u+v)—pl(u)—pl(u))x)=—cex;{—X)er(u,v)sinhx, (21

for anyx e C(X;,7;). We note that the equations above are validioBubstitution of 0 irx yields
that all the signatures of Eqél8)—(21) are —1. From the periodicity of Eq918)—(21),

Fexp(pa(utv)—py(u)—py(v))m/—1N) =1, (22)

and consequently, we have the following.

Lemma V.5: There exist,p3,p4€ C such thatp,(u)=pu+p; for all ueC(us,r3) and
po(Uu)=pu+p, for all ue C(ug,rj).

In the case 0f20), we can express the functidin two ways

sinh((x+ay(u))/\)
sinh(ay(u)/N)sinh(x/\)

1
B(u,x)=cexp((pu+ p3)Xx) SN ,Cexp((pu+ pa)X)

This is a contradiction. In the case @9), we deduce a contradiction in a similar fashion.
From Eq.(22) there exists e 7 such thatp,—2p3=n/\, and one can regard Eq4.8) and
(21) as the polynomials of the variable exfX). Thus we deduce the following.
Proposition V.6: On @(0,0) )

sinh((x+au-+ag)/\)
¢ exP(but PaX) ki) sinh(@u-+ az)/n)

for (18),
B(u,x)=

cexp(pu+py)Xx) for (21),

1
sinh(x/\)

where gaze C.
From Eq.(17) we getp3;=0, p,= = 1/\ andaze Zmw— 1\, that is to say,
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Theorem V.7: The trigonometric solution 84,x) of Egs. (8) and (9) defined on the polydisc
C((0,0)r) is

sinh(x+au)/\ exp(E=Xx/N)
sinfx/nsintaun)’ O S &PPUX) SrE iy

B(u,x)=cexp pux)

where c is in Theorerv.4, ae (\{O} andp e C.

VI. RATIONAL CASE

In this section, we continue solving Eq8) and(9) in the rational case of Theorem III.1.

The proof of Theorem VI.1 is the same as that in Sec. IV, so we omit it.

Theorem VI.1: (1) The rational solution Ax) of Eqgs. (8) and (9) defined on the polydisc
C(0r) is

X+s 1
A(x)=c-h(x)g, or c-h(x);,

where ¢se (\M{0} and h(x) is a meromorphic function defined on(@r) satisfying the relation
h(x)h(—x)=1.

(2) There exist Qus,r3)CC(uy,ry) and C(uj,r3) C C(2us,2r3) such that the rational solu-
tion B(u,x) of Egs. (8) and (9) is expressed as follows:

a (u)x+c
explpy(U)x) ————, 0n C(us,r3)xC(0r),
B(u.x)= a,(u)x=c o
exp(pz(u)x)T, on C(uz,r3)xXC(0yr).

Here the functiong; and & are holomorphic on Qus,r3) and the functiong, and & are
holomorphic on Quj,rs).
We fix anyu,v e C(u3/2,r5/2). From Eq.(10), there existsy(u,v) e C such that

B(u,—x)B(u+v,x) c? .
B(v.X) = Xagoxre) T YY)
for all xe C(x4,r1)\{0}, and consequently
C2

X (po(U+0) = pa(U) = P2(0) )= 3 ) ar (T o)

y(u,v)x(ay(v)x+c)
~ (—ay(u)x+c)(ay(utv)x=c)

(23

for all xe C(x4,r{)\{0}. Since the equation above is valid 6nwe obtain the following.

Lemma VI.2: There exigt,p; e C such thatp,(u)=pu+ p5 for all ue C(us,r3) and p,(u)
=pu+2p; for all ue C(ug,rj).

From Eq.(23), a;(u)a,(u+v)=(as(u)—a,(u+v))as(v) for all u,v e C(uz/2r3/2), which
implies the following.

Lemma VI1.3: The function,&u) is identically zero on Qus,r3), or there exists ga; e C such
that
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1 _au+a3 VUeC
aw ¢ ¢ ueC(us,rs),

1 au 2a3 VUeCul 1!
az(u)— c c ueC(uz,rj).

By the straightforward computation, we deduce the following.
Theorem VI.4: The rational solution Bu,x) of Egs. (8) and (9) defined on the polydisc
C((0,0)r) is

X+au
aux

1
B(u,x)=cexp pux) , or cexp(pux);.

Here c is in TheorenVl.1, ac (\{0} andp e C.

VII. SINGULAR CASE

This section describes the solutiohsandB of Egs.(1) and(2) on the assumption th&=0
and thatA(x)A(—x)(#0) is identically constant. It is to be mentioned that the assumption above
and Egs(1) and(2) imply Egs.(9) and

B(u,x)B(u,—x)=B(u,y)B(u,—y) (24)

onC((0,0)r). LetD,,D,CC((0,0)r) be the domains of the meromorphic functiBfu,x) and
B(u,—x), respectively. From Eq24), for all ue C(0,r) such that ¢,x) e D;ND,, there exists
a(u) e C such that

B(u,x)B(u,—x)=a(u) ¥xeC(0r)s.t(u,x)eD,;ND,. (25)

It follows immediately that(u) is holomorphic au=ug if (ug,yg) e D;ND5.

Lemma VII.1: If(ug,Y) e D;N D5, then(ug,0) is not a pole of the function @,x).

Proof: The proof is by contradiction. Assume the assertion were false. Fareall, there
would exist {,,x;,) € C((0,0)r) such that @;,x;) € C((up,0),2h)ND,. Then there exists,,
>0 such thatC((u,x;),r,)CC((ug,0),1h)ND,. Hence there existsuf,,x,) e D, such that
(un,Xn) € C((u},xp),r}). Because ,,x,) e C((up,0),1h)ND;ND,, lim,_.u,=ug and
lim,_,.X,=0. Since (y,0) is a pole ofB(u,x), lim,_..|B(uU,,X,)|=lim,_.|B(u,,—X,)|=,
and lim,_,..|B(u,,X,)B(u,,—X,)| =« as a consequence. As we mentioned earlier, we are led to

lim,_,.. a(u,)=a(ug), which is a contradiction of E¢25). O
Thus the point (p,0) in Lemma VII.1 is a regular point or a point of indeterminacy of
B(u,x).

Lemma VII.2. For any(0<)r’=<r, there exists ye C(0,sr’') such that(uy,0) is a regular
point of B(u,Xx).

Proof: It suffices to consider the case that(0) e C((0,0)r") in Lemma VII.1 is a point of
indeterminacy of the functioB(u,x).

Because the set of the points of the indeterminacy of the meromorphic function with two
variables is isolated, there existg>0 such thatB(u,x) has no points of indeterminacy in
C((ug,0),rg)\{(ug,0)} and C((ug,0),rg)CC((0,0),r"). That is to say, for anyu;
€ C(ug,ro)\Mug}, (uq,0) is not a point of indeterminacy d@(u,x), and there exists>0 such
that C((u4,0),s) CC((ug,0),rg)\{(ug,0)} as a result.

For (uz,y3) e D;ND,N(C(uy,8)XC(0r")), (us,0) is not a pole ofB(u,x) by means of
Lemma VII.1. From (15,0) e C((u4,0),s), (u3,0) is not a point of indeterminacy &/(u,x). This
point u; is the desired one. O

Proposition VII.3: There existg(>0) and we C(0,r) satisfying the following conditions
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(1) C((4uo,0),4r0) CC((0,0).r).
(2) B(u,x) is holomorphic on @(ug,0),rg) UC((2ug,0),2r¢) UC((4ug,0),4r ).
(3) B(u,x)#0 for all (u,x) e C((ug,0),rg) UC((2ug,0),2rg) UC((4ug,0),4r ).

Proposition VI1.3 follows from Lemma VII.4 immediately.

Lemma VII.4:(2) If there exists ©(ug,0),rg) CC((0,0),r) such that Bu,x) is holomorphic
on C((ug,0),rg) and C((2ug,0),2ro) CC((0,0),r), then there exists Eu4,0),r1)CC((ug,0),rg)
such that Ru,x) is holomorphic on ©(2u4,0),2r,).

(2) If there exists @(ug,0),rg)CC((0,0),r) such that Eu,x) is holomorphic on
C((ug,0),rg), then there exists u4,0),r1) CC((uq,0),rg) such that Bu,x)#0 for all (u,x)
€ C((ulvo)!rl)'

Proof: We prove(1) only. We takeC((u,,Y>),r») C(C(2ugq,2rg) XC(0,r))ND,ND,, and,
for all ue C(u,,r,), there existy/ e C(y,,r,) such that ¢,y) e D;ND, as a result. By Lemma
VII.1, (u, 0) is not a pole ofB(u,x) for all ue C(u,,r,). Because the set of the points of
indeterminacy of the meromorphic function of two variables is isolatedud?d C(ug,r) for all
ue C(u,,r,), there existau; e C(ug,rg) such that (2,,0)e D,;. Thus there exists;>0 such
thatC((u4,0),r1) CC((ug,0),rg) andC((2u,,0),21)CD,. This completes the proof. O

By Eg. (9), there existsy(u,v) € C such that

B(u+wv,x) - 26
B(U,X)B(U,X)—‘}/(u,v) ( )
for all xe C(0,r¢/2),u,v e C(ug,ro/2), and, consequently, we have the following.

Proposition VII.5: We fix any w € C(ug,r¢/2) and put

B(u+uv,x)

1
a(x)= “Blux) e(x)= Bux)’ p(x)=a(u)y(u,v)B(u+uv,x).

Then they satisfy Eq. (4) for all,xe C(0,y/4).

With the aid of Proposition VII.3, the functions, ¢ and are all holomorphic o€ (0, 4/2).
Moreover,¢(x) #0 and(x)#0 for all xe C(0,y/2). This tells us that the functionsg ¢ and ¢
are the solutions of Eq4) with the conditionse(0)#0 and a(x+y)—a(X)a(y)#0 for all
X,y € C(0,o/4). By virtue of Theorem II.1, we conclude the following.

Proposition VI1.6: For ue C(ug,r/2) and xe C(0,ry/4),

B(u,x)=cq(u)exp(pi(u)x),

where g and p, are holomorphic on Qug,ry/2). The function ¢ satisfies ¢(u)#0 for all u
S C(Uo,r0/2).

We obtain Proposition VII.7 in a similar fashion.
Proposition VII.7: For ue C(2ugq,rg) and xe C(0,ry/2),

B(u,x)=ca(u)exp(pa(U)X),

where ¢ and p, are holomorphic on C2ug,rg). The function ¢ satisfies g(u)# 0 for all u
S C(ZUO,ro).

By virtue of Egs.(9) and(26), we deduce Theorem VII.8.

Theorem VII.8: The singular solutions &) and B(u,x) of Egs. (1) and (2) defined on the
polydiscs ¢O,r) and C((0,0)r), respectively, are as follows

A(X)=cq1h(x), B(u,x)=c,exppux) é
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Here ¢, c,e (\{0}, peC and h(x) is a meromorphic function defined on(@r) satisfying the
relation h(x)h(—x)=1.

VIIl. TRIVIAL CASE

In this section, we solve Eqg$l) and(2) with A=0 or B=0.

Lemma VIII.1: If the function B is identically zero on((®,0),), then, for any function A
meromorphic on €O0,r), the functions A and B=0) satisfy Egs. (1) and (2)

In the sequel, we assume ths=0 andB=0. From the previous assumption, E¢B. and(2)
are equivalent to

B(u+v,x)  B(utuv,y)
B(u,x)B(v,x) B(u,y)B(v,y)

on C((0,0,0,0)r/2). By differentiating the equation above in the variakleve get

(aBlax)(u+uv,x) (dB/dx)(u,x) ((7B/(9x)(u,x)_
B(u+v,x)  B(u,x) B(v,x)

on C((0,0,0)r/2) and, as a resultdfB/du?)(u,x)=0 on C((0,0)r), whereB(u,x) = (dB/ax)
(u,x)/B(u,x).

Lemma VIII.2: There exists a function f meromorphic of®€) such that Bu,x)=f(x)u as
meromorphic functions on (€0,0),r) and the function f is holomorphic at=x0.

Proof: We only show that the functiohis holomorphic ak=0. LetD, be the domain of the
meromorphic functiorB. By means oB#0, there exist€((u,X4),r1) CD;\({0} X C(0,r)) such
that B(u,x)#0 for all (u,x)eC((uq,x4),r1). Hence, for allue C(us,ry), f(x)=(dB/dx)
(u,x)/(uB(u,x)) is meromorphic onC(0y). (See Lemma IIl.b Laurent’'s expansions near
=0 of the functiond and (@B/dx)(u,x)/(uB(u,x)) are

(oB/ax)(u, x) 1

uB(u,x) Uk E bkz(“)xk2 (Ib_y(w) e?),

f0= 2 a x4,
K=l 1t

and we get=—1 anda_;=b_4(u)/u for all ue C(uq,r;) as a result. Ib_;(u,) #0, then, for
all ue C(uq,rq), u=(b_4(u)/b_4(uy))u; e Quy, which is a contradiction. Thub_;(u;)=0,
and consequentlg_;=0. We have completed the proof. O
Therefore we deduce the following theorem.

Theorem VIII.3: There exist(0<)r,(=<r), a function F holomorphic on @) and a
function G meromorphic on @) such that the function G is not identically zero an@luix)
=expF(X)u)G(u) as meromorphic functions on(G,r) X C(0,,).
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