
 

Instructions for use

Title Classification of R-operators

Author(s) Shibukawa, Youichi

Citation Journal of Mathematical Physics, 42(6), 2725-2745
https://doi.org/10.1063/1.1367326

Issue Date 2001-06

Doc URL http://hdl.handle.net/2115/6060

Rights Copyright © 2001 American Institute of Physics

Type article

File Information JMP42_6.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp


Classification of R-operators a

Youichi Shibukawa
Department of Mathematics, Faculty of Science, Hokkaido University,
Sapporo 060-0810, Japan

~Received 24 August 2000; accepted for publication 6 February 2001!

We classified theR-operators which satisfy the quantum Yang–Baxter equation on
a function space. In this study, we gave all the meromorphic solutions of the system
of the functional equations which is a necessary and sufficient condition for the
R-operator to satisfy the Yang–Baxter equation. Most of the solutions were ex-
pressed in terms of the elliptic, trigonometric and rational functions. ©2001
American Institute of Physics.@DOI: 10.1063/1.1367326#

I. INTRODUCTION

During the last 8 years, significant advances have been made in our understanding of the
solutions of the~quantum! Yang–Baxter equation on a function space, which we call the
R-operators.1–3

Definition 1 (R-operator1): For x1 ,x2 ,...,xnPC and r .0, define the setsC(x1 ,r ) and
C((x1 ,x2 ,...,xn),r ) by C(x1 ,r )5$xPC;ux2x1u,r % and C((x1 ,x2 ,...,xn),r )5C(x1 ,r )
3C(x2 ,r )3...3C(xn ,r ). Let functions A(x) and B(u,x) be meromorphic onC(0,r ) and
C((0,0),r ), respectively. For a functionf meromorphic onC((0,0),r /2), we define the function
(R(u) f )(z1 ,z2) meromorphic onC(0,r )3C((0,0),r /2)({(u,z1 ,z2)) as

~R~u! f !~z1 ,z2!5A~z12z2! f ~z1 ,z2!2B~u,z12z2! f ~z2 ,z1!.

We call this operatorR(u) the R-operator.
There are three kinds of theR-operators expressed in terms of the elliptic, trigonometric, and

rational functions, respectively. The ellipticR-operator has been investigated in particular. We
found it by taking the limitn→` of Belavin’s R-matrix.1 Belavin’s R-matrix is conversely
obtained through restricting the domain of a modified version of the ellipticR-operator to a
suitable finite-dimensional subspace.4 This suggests that the properties of Belavin’sR-matrix are
generalized to those of the ellipticR-operator. Actually the author constructed the incoming and
outgoing intertwining vectors for the ellipticR-operator, and proved the vertex-IRF
correspondence.5 The boundaryK-operators,6,7 which satisfy the boundary Yang–Baxter equation
for the ellipticR-operator, are also obtained. We essentially use the ellipticR-operator and bound-
ary K-operators to construct the~generalized! Ruijsenaars operators,8–10 the commuting difference
operators. Therefore, it is very important to find out new solutions of the Yang–Baxter equation in
order to investigate the integrable models. What remains a question is the classification of the
R-operators.

The aim of this article is to classify theR-operators.
Proposition I.1: For any function f meromorphic on C((0,0,0),r /2), a necessary and suffi-

cient condition for the functions R12(u)R13(u1v)R23(v) f and R23(v)R13(u1v)R12(u) f mero-
morphic on C((0,0,0,0,0),r /2) to satisfy the Yang–Baxter equation

R12~u!R13~u1v !R23~v ! f 5R23~v !R13~u1v !R12~u! f

is that the meromorphic functions A and B satisfy the following equations on C((0,0,0,0),r /2):
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JOURNAL OF MATHEMATICAL PHYSICS VOLUME 42, NUMBER 6 JUNE 2001

27250022-2488/2001/42(6)/2725/21/$18.00 © 2001 American Institute of Physics

Downloaded 23 Mar 2006 to 133.87.26.100. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



B~u1v,x1y!~A~x!A~2x!2A~y!A~2y!!

5B~v,y!B~u1v,x!B~u,y!2B~u,x!B~u1v,y!B~v,x!, ~1!

A~y!B~u,x!B~v,x1y!5A~y!~B~u1v,x1y!B~u,2y!1B~v,y!B~u1v,x!!. ~2!

Therefore, in order to classify theR-operators, we gave the complete classification of the mero-
morphic solutionsA andB of the functional equations~1! and ~2!.

Theorem I.2: The meromorphic solutions A(x) and B(u,x) of Eqs. (1) and (2) defined on the
polydiscs C(0,r ) and C((0,0),r ), respectively, are one of the following:
0. Trivial case:

A~x! is arbitrary, B~u,x![0.

A~x![0,

B~u,x!5exp~F~x!u!G~u! on C~0,r !3C~0,r 1!

~0,r 1<r !.

1. Generic case:
1-1. Elliptic:

A~x!5c•h~x!
s~x1s;t1 ,t2!

s~x;t1 ,t2!s~s;t1 ,t2!
,

B~u,x!5c exp~rux!
s~x1au;t1 ,t2!

s~x;t1 ,t2!s~au;t1 ,t2!

~a,c,t1 ,t2PC\$0%,Im t2 /t1.0,sPC\~Zt11Zt2!,rPC!.

1-2. Trigonometric:

A~x!5H c•h~x!
sinh~x1s!/l

sinh~x/l!sinh~s/l!
,

c•h~x!
1

sinh~x/l!
,

B~u,x!5H c exp~rux!
sinh~x1au!/l

sinh~x/l!sinh~au/l!
,

c exp~rux!
exp~6x/l!

sinhx/l

~a,c,lPC\$0%,sPC\ZpA21l,rPC!.

1-3. Rational:

A~x!5H c•h~x!
x1s

xs
,

c•h~x!
1

x
,

B~u,x!5H c exp~rux!
x1au

axu
,

c exp~rux!
1

x

~a,c,sPC\$0%,rPC!.
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2. Singular case:

A~x!5c1h~x!, B~u,x!5c2 exp~rux!
1

u

~c1 ,rPC,c2PC\$0%!.

Here the function F is holomorphic on C(0,r 1), the function G(Ó0) is meromorphic on
C(0,r ), the function h is meromorphic on C(0,r ) satisfying the relation h(x)h(2x)51 and the
functions(x)5s(x;t1 ,t2) is the Weierstrass sigma function,

s~x;t1 ,t2!5x )
v5m1t11m2t2

H S 12
x

v DexpS x

v
1

1

2 S x

v D 2D J ,

where(m1 ,m2) in the product above runs over all the elements inZ2 except~0, 0!.
We can show the following theorem easily.
Theorem I.3: The functions A and B in Theorem I.2 satisfy Eqs. (1) and (2).
Our strategy to solve the functional equations~1! and~2! is as follows. We reduced Eqs.~1!

and ~2! to the functional equation introduced by Braden and Buchstaber:11

f1~x1y!~f4~x!f5~y!2f4~y!f5~x!!5f2~x!f3~y!2f2~y!f3~x!. ~3!

They have proved that the solutions of this functional equation above were characterized by those
of the functional equation discussed by Bruschi and Calogero:12,13

a~x1y!2a~x!a~y!5w~x!w~y!c~x1y!. ~4!

Since Kawazumi and the author14 have given the complete classification of the meromorphic
solutions near the origin of Eq.~4!, we obtained all the meromorphic solutions of Eqs.~1! and~2!
near the origin.

Let us now explain how this article is organized. Section II gives a brief summary of the
functional equations above. In Sec. III, we solve the functional equations~1! and ~2! on the
assumptions thatBÓ0 and thatA(x)A(2x) is not identically constant. There are three kinds of
meromorphic solutions of Eqs.~1! and ~2! expressed in terms of the elliptic, trigonometric and
rational functions. We discuss the elliptic case in Sec. IV, the trigonometric case in Sec. V and the
rational case in Sec. VI, respectively. Section VII presents the classification of the meromorphic
solutions of the functional equations~1! and ~2! on the assumptions thatBÓ0 and thatA(x)A
(2x)(Ó0) is identically constant. In the final section, Sec. VIII, we classify the meromorphic
solutions of the functional equations~1! and ~2! with A[0 or B[0.

After finishing this article, the author found the thesis15 in which Komori investigated the
R-operators associated with root algebras. We note that the definition of theR-operators in his
thesis was slightly different from that in this article.

II. REVIEWS OF CERTAIN FUNCTIONAL EQUATIONS OF ADDITION TYPE

In this section, we review the solutions of the functional equations~3! and~4! of addition type.

A. Solutions of Eq. „4…

Bruschi and Calogero have investigated the general analytic solution of Eq.~4!.12,13They have
obtained the elliptic solution in the most general case and some trigonometric and rational solu-
tions by degenerating the periods of the elliptic functions.

Kawazumi and the author classified the meromorphic solutions near the origin of Eq.~4!.
Theorem II.1 „Kawazumi-Shibukawa14

…: Let a, w and c be holomorphic functions defined
on a punctured disk$xPC;0,uxu,r 8% for some r8.0. If they satisfy the functional equation (4),
then they are equal to one of the following functions.
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~0-i! a~x!50 or exp~rx! ~rPC!,

w[0 and c: arbitrary, or w: arbitrary and c[0.

~0-ii! a~x!5C exp~rx!, w~x!5C1 exp~C2x!,

c~x!5C~12C!C1
22 exp~~r2C2!x!

~C,r,C1 ,C2PC,CÞ0,1,C1Þ0!.

~ I! a~x!5exp~rx!
s~n;t1 ,t2!s~x1m;t1 ,t2!

s~m;t1 ,t2!s~x1n;t1 ,t2!
,

w~x!5exp~C1x1C2!
s~x!

s~x1n!
,

c~x!5exp~~r2C1!x22C2!
s~n!s~m2n!s~x1m1n!

s2~m!s~x1n!
,

~r,m,n,C1 ,C2PC, t1 ,t2PC\$0%, Im t2 /t1.0 m,n¹Zt11Zt2 , m2n¹Zt11Zt2!.

~ II ! a~x!5exp~rx!
a~exp~2x/l!21!1b

c~exp~2x/l!21!1b
,

w~x!5exp~C1x1C2!
exp~2x/l!21

c~exp~2x/l!21!1b
,

c~x!5exp~2C1x22C2!
~a2c!$2ac~exp~2x/l!21!1b22b~a1c!%

c~exp~2x/l!21!1b

~l,r,a,b,c,C1 ,C2PC, lÞ0, b~a2c!Þ0!.

~ III ! a~x!5exp~rx!
ax1b

cx1b
, w~x!5exp~C1x1C2!

x

cx1b
,

c~x!5exp~~r2C1!x22C2!
~c2a!$acx1b~a1c!%

cx1b

~r,a,b,c,C1 ,C2PC, b~a2c!Þ0!.

All the solutions except for the case~0-i! extend themselves to meromorphic functions defined on
the whole planeC.

Remark:In Theorem II.1~I!, we uset1 , t2 , m andn instead oft1 /l, t2 /l, m/l andn/l in
Ref. 14. Moreover, we note that the conditionm2n¹Zt11Zt2 in Theorem II.1~I! was dropped
in Ref. 14.

B. Solutions of Eq. „3…

Braden and Buchstaber11 have investigated Eq.~3!. They have shown that the solutions of Eq.
~3! were characterized by the solutions of Eq.~4!. We review their results briefly.

Let f1 be a holomorphic function onC(2x0,2r 0) andf2 , f3 , f4 andf5 be holomorphic
functions onC(x0 ,r 0) for somex0PC and r 0.0. We assume that they satisfy the following
conditions:
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~a! Eq. ~3! for all x,yPC(x0 ,r 0),
~b! f2(x0)f38(x0)2f28(x0)f3(x0)Þ0,
~c! f4(x0)f58(x0)2f48(x0)f5(x0)Þ0.

Lemma II.2: We define the functionf̃1 holomorphic on C(0,2r 0) and the functionsf̃2 ,...,f̃5

holomorphic on C(0,r 0) as follows:

f̃1~x!5cf1~x12x0!,

S f̃2k~x!

f̃2k11~x!
D 5S f2k8 ~x0! f2k~x0!

f2k118 ~x0! f2k11~x0!
D 21S f2k~x1x0!

f2k11~x1x0! D ~k51,2!,

where

c5detS f48~x0! f4~x0!

f58~x0! f5~x0!
D Y detS f28~x0! f2~x0!

f38~x0! f3~x0!
D .

Then they satisfy

f̃1~x1y!~f̃4~x!f̃5~y!2f̃4~y!f̃5~x!!5f̃2~x!f̃3~y!2f̃2~y!f̃3~x!

for all x, yPC(0,r 0).
By straightforward computation, we deducef̃2k(0)5f̃2k118 (0)50 and f̃2k8 (0)5f̃2k11(0)

51 for k51,2.
Lemma II.3: There exist(0,)r 2<r 1 , the functionsgk and jk (k51,2) holomorphic on

C(0,r 2) such thatgk(x)Þ0 for all xPC(0,r 2),

S f̃2k~x!

f̃2k11~x!
D 5

1

gk~x!
S jk~x!

jk8~x! D
for all xPC(0,r 2), jk(0)50, and jk8(0)5gk(0)51.

For k51,2, definej̃k(x)5exp(2lkx)jk(x), wherelk52f̃2k9 (0)/2. Then the functionsj̃k(x)
are holomorphic onC(0,r 2) and satisfyj̃k(0)5 j̃k9(0)50 andj̃k8(0)51. We define the functions
j̃0 on xPC(0,2r 2) and g on xPC(0,r 2) by j̃0(x)5exp((l12l2)x)f̃1(x) and g(x)5exp(2(l1

2l2)x)g2(x)/g1(x).
Lemma II.4:~1! The functionj̃1(x)/ j̃2(x) is holomorphic on C(0,r 2).

~2! For all x,yPC(0,r 2)

j̃0~x1y!~ j̃2~x!j̃28~y!2 j̃2~y!j̃28~x!!5g~x!g~y!~ j̃1~x!j̃18~y!2 j̃1~y!j̃18~x!!.

Since there exists (0,)r 3<r 2 such thatj̃1(x)Þ0 andj̃2(x)Þ0 for all xPC(0,r 3)\$0%, we
are led to the following.

Theorem II.5 „Braden–Buchstaber11
…:

~1! g(x)5( j̃2(x)/ j̃1(x))2 and j̃0(x)5 j̃2(x)/ j̃1(x) for all xPC(0,r 3).
~2! Define the functionsa and w holomorphic on C(0,r 3) by a(x)5 j̃2(x)/ j̃1(x) and w(x)

5 j̃2(x). Then they satisfy Eq. (4) for all x, yPC(0,r 3/2)\$0%.

It is to be mentioned that the functionc is determined by the functionsa and w. We can
reconstruct the solutionsf1 ,...,f5 of Eq. ~3! from the functionsa andw in the theorem above.
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III. GENERIC CASE

In this section, we solve Eqs.~1! and ~2! on the assumption below.
Assumption 1:~1! The meromorphic functionA(x)A(2x) is not identically constant on

C(0,r ).
~2! The meromorphic functionB is not identically zero onC((0,0),r ).
The purpose of this section is to prove the following theorem.
Theorem III.1: ~1! The function A(x)A(2x) meromorphic on the disk C(0,r ) is one of the

following:

elliptic: A~x!A~2x!5
a1`~x;t1 ,t2!1a2

a3`~x;t1 ,t2!1a4
, ~5!

trigonometric: A~x!A~2x!5
a1 sinh22~x/l!1a2

a3 sinh22~x/l!1a4
,

rational: A~x!A~2x!5
a1x221a2

a3x221a4
,

where`(x)5`(x;t1 ,t2) is the Weierstrass pe function

`~x;t1 ,t2!52
d

dx S s8~x;t1 ,t2!

s~x;t1 ,t2! D ,

and the constantst1 , t2 , lPC\$0% and a1 , a2 , a3 , a4PC satisfy the relationsIm t2 /t1.0 and
a1a42a2a3Þ0.

~2! There exists C(u1 ,r 1),C(0,r /4) such that the function B(u,x) is one of the following:

elliptic: B~u,x!5exp~r~u!x!b~u!
s~x1a~u!;t1 ,t2!

s~x;t1 ,t2!
, ~6!

;~u,x!PD1ùDeù~C~u1 ,r 1!3C~0,r !!,

trigonometric: B~u,x!5exp~ r̃~u!x!b̃~u!

3
c~u!~exp~~x12ã~u!!/l!2exp~2x/l!!1exp~2x/l!

sinh~x/l!
, ~7!

;~u,x!PD1ùDtù~C~u1 ,r 1!3C~0,r !!,

rational: B~u,x!5exp~r~u!x!
b~u!1a~u!x

x
,

;~u,x!PD1ùDrù~C~u1 ,r 1!3C~0,r !!,

wherer(u), a(u), b(u)PC for all uPC(u1 ,r 1). Here D1(,C((0,0),r )) is the domain of the
meromorphic function B(u,x) and

De5C~0,r !3~C~0,r !\~Zt11Zt2!!,

Dt5C~0,r !3~C~0,r !\ZpA21l!,

Dr5C~0,r !3~C~0,r !\$0%!.
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Assumption 1 implies the following lemma.~For part~2!, see Lemma 5 in Ref. 11.!
Lemma III.2: ~1! Equations (1) and (2) on C((0,0,0,0),r /2) are equivalent to the following

equations:

A~x!A~2x!2A~y!A~2y!5B~u,x!B~u,2x!2B~u,y!B~u,2y!, ~8!

B~u,x!B~v,x1y!5B~u1v,x1y!B~u,2y!1B~v,y!B~u1v,x! ~9!

on C((0,0,0),r ) and C((0,0,0,0),r /2), respectively.

~2! The meromorphic solutions A(x) and B(u,x) of the previous equations satisfy the equa-
tion

B~v,x1y!~A~x!A~2x!2A~y!A~2y!!

5B~u,2x!B~u1v,x!B~v,y!2B~u,2y!B~u1v,y!B~v,x! ~10!

as meromorphic functions on C((0,0,0,0),r /2).
Now we intend to apply Sec. II B to Eq.~10!.
Lemma III.3: For any C((u08 ,x08),r 08),C((0,0),r /2), there exist(u1 ,x1)PC((u08 ,x08),r 08)

and r1(.0) such that
~0! C((u1 ,x1),r 1),C((u08 ,x08),r 08),
~1! B(u,x) is holomorphic on C((u1 ,x1),r 1), C(u1 ,r 1)3C(2x1,2r 1) and C(2u1,2r 1)

3C(x1 ,r 1),
~2! B(u,2x) is holomorphic on C((u1 ,x1),r 1) and C(u1 ,r 1)3C(2x1,2r 1),
~3! A(x) is holomorphic on C(x1 ,r 1) and C(2x1,2r 1),
~4! A(2x) is holomorphic on C(x1 ,r 1) and C(2x1,2r 1),
~5! B(u,x)Þ0 for all (u,x)PC((u1 ,x1),r 1).

By C((u08 ,x08),r 08)ªC((0,0),r /4) in Lemma III.3, there exist (u1 ,x1)PC((0,0),r /4) and r 1

(.0) satisfying the conditions in Lemma III.3.
Lemma III.4:~1! (d/dx)(A(x)A(2x))Ó0 on C(x1 ,r 1).

~2! For all u, vPC(u1 ,r 1),

UB~u,2x!B~u1v,x!
]

]x
~B~u,2x!B~u1v,x!!

B~v,x!
]B

]x
~v,x!

UÓ0

on C(x1 ,r 1).
Proof: We prove part~2! only. The proof is by contradiction. Assume the assertion were false.

Then there would existu0 , v0PC(u1 ,r 1) such that

UB~u0 ,2x!B~u01v0 ,x!
d

dx
~B~u0 ,2x!B~u01v0 ,x!!

B~v0 ,x!
]B

]x
~v0 ,x!

U[0

on C(x1 ,r 1). Thus there existscPC such that

B~u0 ,2x!B~u01v0 ,x!

B~v0 ,x!
[c on C~x1 ,r 1!.
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By Eq. ~10! and Assumption 1~1!, we haveB(v0 ,x)[0 on C(2x1,2r 1). From Lemma III.5, we
get B(v0 ,x)[0 on C(0,r ), which implies a contradiction of Assumption 1~1! because of Eq.
~8!. h

Lemma III.5: Let r1 ,r 2.0 and F(u,x) be a function meromorphic on the polydisc C(0,r 1)
3C(0,r 2). For any vPC(0,r 1) such that the function F is holomorphic at(v,y)(yPC(0,r 2)),
the function F(v,x) is meromorphic on C(0,r 2).

Proof: Because the polydiscC(0,r 1)3C(0,r 2) is Stein andH2(C(0,r 1)3C(0,r 2),Z)50, the
sharp form of the Poincare´ theorem is valid onC(0,r 1)3C(0,r 2). ~See, for example, Chap. V,
Sec. 2 in Ref. 16 and Secs. I and K in Ref. 17.! Then there exist two functionsg andh holomor-
phic on C(0,r 1)3C(0,r 2) such thath is not identically zero,F(u,x)5g(u,x)/h(u,x), and the
functionsg and h are coprime locally. Since the functionF is holomorphic at (v,y), we have
h(v,y)Þ0, which impliesh(v,x)Ó0 on C(0,r 2). Thus the functiong(v,x)/h(v,x) is meromor-
phic onC(0,r 2). For anyxPC(0,r 2) such thath(v,x)Þ0, F(v,x)5g(v,x)/h(v,x). This com-
pletes the proof of the lemma. h

Let u0 , v0PC(u1 ,r 1). Because of Lemmas III.3~2! and III.4, we can apply the method
introduced in Sec. II B to Eq.~10! for uªu0 and vªv0 . That is to say, there exists
C(x0 ,r 0),C(x1 ,r 1) such that f1(x)ªB(v0 ,x) defined on C(2x0,2r 0), f2(x)ªB(u0 ,
2x)B(u01v0 ,x), f3(x)ªB(v0 ,x), f4(x)ªA(x)A(2x), and f5(x)[1 defined onC(x0 ,r 0)
satisfy the conditions~a!–~c! in Sec. II B.

From Theorems II.1 and II.5, the functiona(x)5 j̃2(x)/ j̃1(x) defined near the origin is one of
the following.

~0! a~x!5C exp~rx!,

~ I! a~x!5exp~rx!
s~m;t1 ,t2!s~x1n;t1 ,t2!

s~n;t1 ,t2!s~x1m;t1 ,t2!
,

~ II ! a~x!5exp~rx!
a~e2x/l21!1b

c~e2x/l21!1b
,

~ III ! a~x!5exp~rx!
ax1b

cx1b
.

Lemma III.6:a(x)ÞC exp(rx).
Proof: The proof is by contradiction. Assume the assertion were false. With the aid of Theo-

rem II.5, we geta(0)51, and, consequently,B(v0 ,x)5c21 exp((r2l11l2)(x22x0)) near 2x0 .
Here the constantc was defined in Lemma II.2. From Lemma III.5 and the identity theorem for the
meromorphic functions, the above equation is also valid onC(0,r ), which implies a contradiction
of Assumption 1~1! by virtue of Eq.~8!. h

From this lemma, the functionw is uniquely determined by the functiona and so are the
functionsj̃1 and j̃2 .

Proof of Theorem III.1 (1):We first note that Assumption 1 implies the conditiona1a4

2a2a3Þ0.
By means off5(x)[1, we havef̃5(x)[1 andg2(x)5j28(x), andf̃4(x)5j2(x)/j28(x) as a

result. By the definition in Lemma II.2,
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A~x!A~2x!

5

¦

f4~x0!1
f48~x0!

z~x2x0!2z~x2x01n!1l21z~n!
, ~I!

f4~x0!

1

f48~x0!S expS2~x2x0!

l D21DHcSexpS2~x2x0!

l D21D11J
Sl21

2c21

l DSexpS2~x2x0!

l D21DHcSexpS2~x2x0!

l D21D11J1 2

l
expS2~x2x0!

l D , ~II !

f4~x0!1
f48~x0!~x2x0!$c~x2x0!11%

~l21c!~x2x0!$c~x2x0!11%11
, ~ III !

near x0 , where z(x)5z(x;t1 ,t2) is the Weierstrass zeta functionz(x;t1 ,t2)
5s8(x;t1 ,t2)/s(x;t1 ,t2). With the aid of the identity theorem for the meromorphic functions,
the equation above is valid onC(0,r ). BecauseA(x)A(2x) is an even function onC(0,r ), we
obtain the desired result. h

Now we prove Theorem III.1~2!.
Proposition III.7: Let u0PC(u1 ,r 1). For any v0PC(u1 ,r 1), there exist x0(v0)PC(x1 ,r 1)

and r2(v0)(.0) such that the function B(v0 ,x) is one of the following: For all x
PC(2x0(v0),r 2(v0)),

elliptic: B~v0 ,x!5exp~r~v0!x!b~v0!
s~x1a~v0!;t1 ,t2!

s~x;t1 ,t2!
,

trigonometric: B~u,x!5exp~r~u!x!b̃~u!

3
c~u!~exp~~x12ã~u!!/l!2exp~2x/l!!1exp~2x/l!

sinh~x/l!
,

rational: B~v0 ,x!5exp~r~v0!x!
b~v0!1a~v0!x

x
,

wherer(v0), a(v0), b(v0)PC.
Proof: For the sake of brevity, we only show the elliptic case. For anyv0PC(u1 ,r 1), there

exists C(x0(v0),r 0(v0)),C(x1 ,r 1)\(Zt11Zt2) such that f1(x)ªB(v0 ,x) defined on
C(2x0(v0), 2r 0(v0)), f2(x)ªB(u0 ,2x)B(u01v0 ,x), f3(x)ªB(v0 ,x), f4(x)ªA(x)A
(2x), andf5(x)[1 defined onC(x0(v0),r 0(v0)) satisfy the conditions~a!–~c! in Sec. II B by
means of Lemma III.4. Thus we deduce

j̃2~x!5exp~z~2x0~v0!;t1 ,t2!x!
s~2x0~v0!;t1 ,t2!s~x;t1 ,t2!

s~x12x0~v0!;t1 ,t2!
, ~11!

wheret1 andt2 are in Theorem III.1~1!.
Lemma III.8:a(x)Þ0, exp(rx).
The proof is quite similar to that of Lemma III.6, so we omit it. Equation~11! tells us that the

zeroes of the functionj̃2 areZt11Zt2 . Hence the functiona is an elliptic solution of Eq.~4! by
means of Lemma III.8, and the periods of the Weierstrass sigma functions in the functiona are
t1 andt2 as a consequence.~See Secs. 3 and 4 in Ref. 14.! Thus there exists (0,)r 2,2r 1 such
that
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j̃1~x!5exp~z~m;t1 ,t2!x!
s~m;t1 ,t2!s~x;t1 ,t2!

s~x1m;t1 ,t2!

on C(0,r 2). From Lemma II.2, Theorem II.5, Eq.~11! andf1(x)5B(v0 ,x), we have proved the
proposition. h

Proof of Theorem III.1 (2):For the sake of brevity, we only prove the elliptic case. For any
v0PC(u1 ,r 1), the functionB(v0 ,x) is meromorphic onC(0,r ) by Lemma III.5. On the other
hand, by Proposition III.7,

B~v0 ,x!5exp~r~v0!x!b~v0!
s~x1a~v0!!

s~x!

on some small disk inC(0,r ). Because the right hand side of the equation above is meromorphic
on C(0,r ), we have proved the theorem. h

IV. ELLIPTIC CASE

This section presents the solutionsA andB of Eqs.~8! and~9! in the elliptic case of Theorem
III.1.

Lemma IV.1: For all uPC(u1 ,r 1), s(a(u))Þ0 and b(u)Þ0.
Proof: We only show thats(a(u))Þ0 for all uPC(u1 ,r 1). The proof is by contradiction.

Assume the assertion were false. Then there would existuPC(u1 ,r 1) such thats(a(u))50. By
means of Eq.~6!, there exist functionsr̃ and b̃ such thatB(u,x)5exp(r̃(u)x)b̃(u) for all x
PC(x1 ,r 1)\(Zt11Zt2), and this equation is also valid onC(0,r ) from Lemma III.5. By Eq.~8!,
this contradicts Assumption 1~1!. h

By virtue of Eqs.~5!, ~6!, ~8! and the lemma above, we conclude Lemma IV.2.
Lemma IV.2: We have a350, that is to say, A(x)A(2x)5ã1`(x)1ã2 on C(0,r ), where

ã15a1 /a4 and ã25a2 /a4 .
We note that the relationa1a42a2a3Þ0 impliesã1Þ0. It follows from the Lemma IV.2 and

Eq. ~8! that b(u)2s2(a(u))52ã1 for all uPC(u1 ,r 1).
Lemma IV.3: There exist cPC\$0% and C(u2 ,r 2),C(u1 ,r 1) such that b(u)s(a(u))5c for

all uPC(u2 ,r 2), and

B~u,x!5c exp~r~u!x!
s~x1a~u!!

s~a~u!!s~x!

for all (u,x)PD1ùDeù(C(u2 ,r 2)3C(0,r )) as a consequence.
For the proof, it suffices to show the following lemma.
Lemma IV.4: There exists C((u2,0),r 2),C(u1 ,r 1)3C(0,r ) such that the function

B(u,x)s(x) is holomorphic on C((u2,0),r 2).
Proof: Since the sharp form of the Poincare´ theorem is valid onC((0,0),r ), there exist two

functions g and h holomorphic onC((0,0),r ) such thath is not identically zero,B(u,x)s(x)
5g(u,x)/h(u,x), and the functionsg and h are coprime locally. By Eq.~6!, g(u,x)
5exp(r(u)x)b(u)s(x1a(u))h(u,x) for all (u,x)PD1ùDeù(C(u1 ,r 1)3C(0,r )).

We fix anyuPC(u1 ,r 1). Because the function exp(r(u)x)b(u)s(x1a(u)) is holomorphic on
C(0,r ) and g(u,x)5exp(r(u)x)b(u)s(x1a(u))h(u,x) for all xPC(x1 ,r 1)\(Zt11Zt2), we have
g(u,x)5exp(r(u)x)b(u)s(x1a(u))h(u,x) for all xPC(0,r ). Thus g(u,0)5b(u)s(a(u))h(u,0),
which tells us that (u,0) is not a pole of the functionB(u,x)s(x) for all uPC(u18 ,r 18). Since the
set of points of indeterminacy of the meromorphic function of two variables is isolated, there
exists a regular point (u2,0)PC(u18 ,r 18)3C(0,r ) of the functionB(u,x)s(x). We have thus
proved the lemma. h

Using Eq.~8!, we are led to the following theorem.
Theorem IV.5: The elliptic solution A(x) defined on C(0,r ) is
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A~x!5c•h~x!
s~x1s!

s~x!s~s!
,

where h(x) is a meromorphic function defined on C(0,r ) satisfying the relation h(x)h(2x)51
and s is a complex constant such that`(s)52ã2 /ã1 .

In the sequel, we determine the functionB.
Proposition IV.6: There exists C(u38 ,d8),C(u2 ,r 2) such that

B~u,x!5exp~ r̃~u!x!
s~x1a1~u!!

s~a1~u!!s~x!

for all (u,x)PD1ùDeù(C(u38 ,d8)3C(0,r )), where the function a1 is holomorphic on
C(u38 ,d8).

We only give the proof in the case that there existsv1PC(u2 ,r 2) such that̀ 8(a(v1))Þ0
because the proof is rather simple in the case that`8(a(u))[0 on C(u2 ,r 2). The function`(x)
is holomorphic atx5a(v1) by using Lemma IV.1, and the functioǹhas a holomorphic inverse
g near a(v1) as a result. ~See, for example, p. 215 of Ref. 18.! Then there exists
C(v1 ,d),C(u2 ,r 2) such that̀ (a(u)) is in the domain of the functiong for all uPC(v1 ,d).
Define a functionã holomorphic onC(v1 ,d) as ã(u)5g(`(a(u))). There exists a function
e(u)P$0,1% such thata(u)[(21)e(u)ã(u) (modZt11Zt2) for all uPC(v1 ,d), and conse-
quently

B~u,x!5exp~ r̃~u!x!~21!e~u!
s~x1~21!e~u!ã~u!!

s~ ã~u!!s~x!

for all (u,x)PD1ùDeù(C(v1 ,d)3C(0,r )), wherer̃(u)PC.
Proposition IV.6 now follows from the following lemma.
Lemma IV.7: There exist C(v18 ,d8),C(v1 ,d) such that a(u)[ã(u)(modZt11Zt2) for all

uPC(v18 ,d8) or a(u)[2ã(u)(modZt11Zt2) for all uPC(v18 ,d8).
To prove this lemma, it suffices to give the proof in the case that, for allC(u,d1),C(v1 ,d),

there existv,wPC(u,d1) such thate(v)Þe(w). By the sharp form of the Poincare´ theorem,
there exist two functionsg andh holomorphic onC((0,0),r ) such thath is not identically zero,
B(u,x)s(x)5g(u,x)/h(u,x), and the functionsg andh are coprime locally. We omit the proof of
the lemma below because it is similar to that of Lemma IV.4.

Lemma IV.8: There exists C(u38 ,d8),C(v1 ,d) satisfying the following conditions.

~1! The function B(u,x)s(x) is holomorphic on C((u38,0),d8).
~2! For all (u,x)PC((u38,0),d8),

cexp~r̃~u!x!~21!e~u!
s~x1~21!e~u!ã~u!!

s~ã~u!!
h~u,x!5g~u,x!.

By means of Lemma IV.8,

exp~ r̃~u!x!~21!e~u!s~x1~21!e~u!ã~u!!5c21B~u,x!s~x!s~ ã~u!!

for all (u,x)PC((u38,0),d8). Since the functionã(u) is holomorphic onC(u38 ,d8), the function
f (u,x)ªc21B(u,x)s(x)s(ã(u)) is holomorphic onC((u38,0),d8). The function (] f /]x)(u,0) is
consequently holomorphic onC(u38 ,d8), and

] f

]x
~u,0!5 r̃~u!s~ ã~u!!1~21!e~u!s8~ ã~u!! ~12!

for all uPC(u38 ,d8).
By BÓ0 and Lemma IV.1, we conclude the following.
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Lemma IV.9: There exists C((u39 ,x39),d9),C((u38,0),d8) satisfying the following conditions.

~1! C(x39 ,d9)Ô0.
~2! f (u,x)Þ0 for all (u,x)PC((u39 ,x39),d9).
~3! s(x2ã(u))Þ0 for all (u,x)PC((u39 ,x39),d9).
~4! s(x1ã(u))Þ0 for all (u,x)PC((u39 ,x39),d9).

Lemma IV.7 follows from Lemma IV.10 immediately.
Lemma IV.10: For all uPC(u39 ,d9), 2ã(u)PZt11Zt2 .
Proof: To prove this lemma, we show

2
s~x31ã~u3!!

s~x32ã~u3!!
5exp~2x3z~ ã~u3!!!

for all (u3 ,x3)PC((u39 ,x39),d9). From Lemma IV.9, the functions2 f (u,x)/s(x2ã(u)) and
f (u,x)/s(x1ã(u)) are holomorphic onC((u39 ,x39),d9) and satisfy2 f (u,x)/s(x2ã(u))Þ0 and
f (u,x)/s(x1ã(u))Þ0 for all (u,x)PC((u39 ,x39),d9). For any (u3 ,x3)PC((u39 ,x39),d9), let
Log(1)(x) and Log(2)(x) be branches of the logarithm defined on open connected setsV1 ,V2,C
such that exp(r̃(u3)x3)PV1 and (21)e(u3)11f (u3 ,x3)/s(x31(21)e(u3)11ã(u3))PV2 , respec-
tively. Because the function (21)e(u3)11f (u,x)/s(x1(21)e(u3)11ã(u)) is continuous at (u,x)
5(u3 ,x3), there existẽ.0 andd̃.0 satisfying the following conditions.

~1! C((21)e(u3)11f (u3 ,x3)/s(x31(21)e(u3)11ã(u3)),ẽ),V2 .
~2! C((u3 ,x3),d̃),C((u39 ,x39),d9).
~3! For all (u,x)PC((u3 ,x3),d̃)

~21!e~u3!11f~u,x!

s~x1~21!e~u3!11ã~u!!
PCS ~21!e~u3!11f~u3,x3!

s~x31~21!e~u3!11ã~u3!!
,ẽD.

Let NPN such that 1/N, d̃. For all n>N, there existsũnPC(u3,1/n) such thate(ũn)Þe(u3).
~This is the case which we now consider.! Then we havee(ũn)[e(u3)11 (mod 2), limn→`ũn

5u3 , and (21)e(u3)11f (ũn ,x3)/s(x31(21)e(u3)11ã(ũn))PV2 for all n>N. By the conditions
~1! and ~2! above, exp(r̃(ũn)x3)PV2 for all n>N, and, consequently,

r̃~ ũn!x35Log~2!S ~21!e~u3!11f ~ ũn ,x3!

s~x31~21!e~u3!11ã~ ũn!!
D

for all n>N. On account of Eq.~12!,

] f

]x
~u3,0!5 lim

n→`

] f

]x
~ ũn,0!

5
1

x3
Log~2!S ~21!e~u3!11f ~u3 ,x3!

s~x31~21!e~u3!11ã~u3!!
Ds~ ã~u3!!1~21!e~u3!11s8~ ã~u3!!.

Because of exp(r̃(u3)x3)PV1,

] f

]x
~u3,0!5

1

x3
Log~1!S ~21!e~u3! f ~u3 ,x3!

s~x31~21!e~u3!ã~u3!!
Ds~ ã~u3!!1~21!e~u3!s8~ ã~u3!!.

By the straightforward calculation, we obtain the desired result, thereby completing the proof of
Proposition IV.6. h

Proposition IV.11: There exists C(u3 ,r 3),C(u1 ,r 1) such that
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B~u,x!5exp~r1~u!x!
s~x1a1~u!!

s~a1~u!!s~x!
~13!

as meromorphic functions on C(u3 ,r 3)3C(0,r ), where the functionsr1 anda1 are holomorphic
on C(u3 ,r 3).

Proof: It is enough to show that the functionr̃ in Proposition IV.6 is holomorphic locally.
Define f 1(u,x)ªer̃(u)s(x1a1(u)). Since the function f 1 is expressed as f 1(u,x)
5c21B(u,x)s(x)s(a1(u)), there existsC((u39,0),d9),C((u38,0),d8) such that the functionf 1 is
holomorphic on C((u39,0),d9) ~see Lemma IV.4!, and (] f /]x)(u,0)5 r̃(u)s(a1(u))
1s8(a1(u)) on C(u39 ,d9) as a result. By Lemma IV.1, we are led tos(a1(u))Þ0 onC(u39 ,d9),
thereby completing the proof. h

Proposition IV.12: We haver1(u)5ru1r3 and a1(u)5au1a3 , wherer, r3 , a, a3PC.
For the proof, we need the following.

Lemma IV.13: There exist C(u4 ,r 4),C(u3 ,r 3) and a function a4 holomorphic on C(u4 ,r 4)
such thats(a4(u)1a1(v))Þ0 for all u,vPC(u4 ,r 4) and s(a4(u))Þ0 for all uPC(u4 ,r 4).

Proof: If s(2a1(u))Ó0 on C(u3 ,r 3), put a4ªa1 . The proof in the case thats(2a1(u))
[0 on C(u3 ,r 3) is simple, so we omit it. h

We takeC( x̃1 , r̃ 1),(C(x1 ,r 1)\(Zt11Zt2)) such thatC(2x̃1,2r̃ 1)ù(Zt11Zt2)50” . From
Theorem IV.5 and the three term identity ofs ~see, for example, p. 377 of Ref. 19 and p. 461 of
Ref. 20!,

B~v,x1y!~A~x!A~2x!2A~y!A~2y!!

B~v,x!B~v,y!

5
cs~a1~v !!

s~a4~u!!s~a4~u!1a1~v !!

3S s~x1a4~u!1a1~v !!s~x2a4~u!!

s~x!s~x1a1~v !!
2

s~y1a4~u!1a1~v !!s~y2a4~u!!

s~y!s~y1a1~v !! D
for all u,vPC(u4 ,r 4) and x,yPC( x̃1 , r̃ 1). By virtue of Eq.~10!, for all u,vPC(u4 ,r 4), there
exists a constantg(u,v)PC such that

B~u,2x!B~u1v,x!

B~v,x!
5

cs~a1~v !!s~x1a4~u!1a1~v !!s~x2a4~u!!

s~x!s~x1a1~v !!s~a4~u!!s~a4~u!1a1~v !!
1g~u,v ! ~14!

for all x,yPC( x̃1 , r̃ 1).
From Lemma III.3 and C((2u4,2x1),2r 4),C((0,0),r /2), there exist (u18 ,x18)

PC((2u4,2x1),2r 4) and r 18(.0) such that the conditions in Lemma III.3 hold. The proof of
Lemma IV.14 is similar to that of Proposition IV.11, so we omit it.

Lemma IV.14: There exists C(u38 ,r 38),C(u18 ,r 18) such that

B~u,x!56c exp~r2~u!x!
s~x1a2~u!!

s~x!s~a2~u!!
~15!

as meromorphic functions on C(u38 ,r 38)3C(0,r ) with the functionsr2 and a2 holomorphic on
C(u38 ,r 38).

Proof of Proposition IV.12:By Eqs.~13!–~15!,
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6exp~~r2~u1v !2r1~u!2r1~v !!x!s~x2a1~u!!s~x1a2~u1v !!

3s~a1~v !!s~a4~u!!s~a4~u!1a1~v !!

5s~a1~v !!s~x1a4~u!1a1~v !!s~x2a4~u!!s~a1~u!!s~a2~u1v !!

1g~u,v !s~a4~u!!s~x!s~a2~u1v !!s~x1a1~v !!s~a4~u!1a1~v !!

for any xPC( x̃1 , r̃ 1) and u,vPC(u38/2,r 38/2). We note that the equation above is valid onC
({x) also by means of the identity theorem for the holomorphic functions. Since the both sides of
the equation above are quasi-periodic with the periodst1 and t2 ,a2(u1v)2a1(u)2a1(v)
PZt11Zt2 . Because the functionsa1 anda2 are holomorphic and the setZt11Zt2 is discrete,
the functiona2(u1v)2a1(u)2a1(v) is constant onC((u38/2,u38/2),r 38/2) and so is the function
r2(u1v)2r1(u)2r1(v). Hence we get the desired result. h

It is to be noted thatr2(u)5ru1r4 and thata2(u)5au1a4 , where r4 ,a4PC. By the
straightforward computation, we deduce the following.

Theorem IV.15: The elliptic solution B(u,x) of Eqs. (8) and (9) defined on the polydisc
C((0,0),r ) is

B~u,x!5c exp~rux!
s~x1au!

s~x!s~au!
,

where aPC\$0% and rPC.

V. TRIGONOMETRIC CASE

In this section, we solve Eqs.~8! and ~9! in the trigonometric case of Theorem III.1.
The proof of Lemma V.1 is the same as that of Lemmas IV.1 and IV.2, so we omit the proof.
Lemma V.1:~1! For all uPC(u1 ,r 1), c(u)(exp(2ã(u)/l)21)11Þ0 and b̃(u)Þ0.
~2! We have a350, that is to say, A(x)A(2x)5ã1 sinh22(x/l)1ã2 on C(0,r ), where ã1

5a1 /a4 and ã25a2 /a4 .
From Eqs.~7!, ~8! and Lemma V.1~2!,

A~x!A~2x!2B~u,x!B~u,2x!5ã214b̃~u!2 expS 2ã~u!

l D c~u!~12c~u!! ~16!

for all uPC(u1 ,r 1),xPC(x1 ,r 1)\ZpA21l.
Lemma V.2: There exists C(u18 ,r 18),C(u1 ,r 1) such that

B~u,x!5exp~r~u!x!b~u!
sinh~x1a~u!!/l

sinh~x/l!
, or B~u,x!5exp~r~u!x!b~u!

1

sinh~x/l!

for any (u,x)PD1ùDtù(C(u18 ,r 18)3C(0,r )).
If there existsC(u18 ,r 18),C(u1 ,r 1) such thatc(u)2c(u)2Þ0 for all uPC(u18 ,r 18), then

there existsa(u)PC such thatc(u)5exp(a(u)/l)/(2 sinh(a(u)/l)) for all uPC(u18 ,r 18). For the
proof of Lemma V.2, it suffices to show the following lemma.

Lemma V.3: If, for all C(u, r̃ ),C(u1 ,r 1), there exists u0PC(u, r̃ ) such that c(u0)
2c(u0)250, then c(u)50 or 1 for all uPC(u1 ,r 1).

Proof: The proof is by contradiction. Assume the assertion were false. Then there would exist
u08PC(u1 ,r 1) such thatc(u08)Þ0, 1. We takeNPN such thatC(u08,1/N),C(u1 ,r 1). For all n
>N, there existsunPC(u08,1/n) such thatc(un)2c(un)250 and, for alln>N,

ã214b̃~un!2 expS 2ã~un!

l D c~un!~12c~un!!5ã2
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as a result. The left hand side of Eq.~16! is holomorphic onC(u1 ,r 1) for a fixed x
PC(x1 ,r 1)\ZpA21l, so it is continuous. Since limn→` un5u08 ,

ã214b̃~u08!2expS 2ã~u08!

l D c~u08!~12c~u08!!5ã2 ,

which is a contradiction of the choice ofu08 and Lemma V.1~1!. h

The proof of the theorem below is the same as that in Sec. IV, so we omit it.
Theorem V.4: ~1! The trigonometric solution A(x) of Eqs. (8) and (9) defined on the polydisc

C(0,r ) is

A~x!5c•h~x!
sinh~x1s!/l

sinh~x/l!sinh~s/l!
or c•h~x!

1

sinh~x/l!
,

where cPC\$0%, sPC\ZpA21l and h(x) is a meromorphic function defined on C(0,r ) satisfy-
ing the relation h(x)h(2x)51.

~2! There exists C(u3 ,r 3),C(u1 ,r 1) such that the trigonometric solution B(u,x) of Eqs. (8)
and (9) is expressed as

B~u,x!5c exp~r1~u!x!
sinh~x1a1~u!!/l

sinh~a1~u!/l!sinh~s/l!
, or c exp~r1~u!x!

1

sinh~x/l!

on C(u3 ,r 3)3C(0,r ). Here the functionsr1 and a1 are holomorphic on C(u3 ,r 3).
~3! There exist C(u4 ,r 4),C(u3 ,r 3) and a function a4 holomorphic on C(u4 ,r 4) such that

sinh((a4(u)1a1(v))/l)Þ0 and sinh(a4(u)/l)Þ0 for all uPC(u4 ,r 4).
~4! There exists C(u38 ,r 38),C(2u4,2r 4) such that the trigonometric solution B(u,x) of Eqs.

(8) and (9) is expressed as follows:

B~u,x!56c exp~r2~u!x!
sinh~x1a2~u!!/l

sinh~a2~u!/l!sinh~x/l!
or 6c exp~r2~u!x!

1

sinh~x/l!

on C(u38 ,r 38)3C(0,r ). Here the functionsr2 and a2 are holomorphic on C(u38 ,r 38).
We takeC( x̃1 , r̃ 1),(C(x1 ,r 1)\ZpA21l) as C(2x̃1,2r̃ 1)ùZpA21l50” , and fix anyu,v

PC(u38/2,r 38/2). From Eq.~10! there existsg(u,v)PC such that

B~u,2x!B~u1v,x!

B~v,x!

5H c sinh~a1~v !/l!sinh~~x1a4~u!1a1~v !!/l!sinh~x2a4~u!!/l

sinh~~a4~u!1a1~v !!/l!sinh~~a4~u!/l!sinh~x/l!sinh~~x1a1~v !!/l!
1g~u,v !,

2c exp~2x/l!

sinh~x/l!
1g~u,v !,

~17!

for all xPC( x̃1 , r̃ 1), and, as a result, we are led to the four cases below:
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7exp~~r2~u1v !2r1~u!2r1~v !!x!

3
sinh~~x1a2~u1v !!/l!sinh~~2x1a1~u!!/l!sinh~a1~v !/l!

sinh~a2~u1v !/l! sinh~a1~u!/l!

5
c sinh~a1~v !/l!sinh~~x1a4~u!1a1~v !!/l!sinh~~x2a4~u!!/l!

sinh~~a4~u!1a1~v !!/l!sinh~a4~u!/l!

1g~u,v !sinh
x

l
sinh

x1a1~v !

l
, ~18!

7exp~~r2~u1v !2r1~u!2r1~v !!x!
sinh~~2x1a1~u!!/l!sinh~a1~v !/l!

sinh~a1~u!/l!

5
c sinh~a1~v !/l!sinh~~x1a4~u!1a1~v !!/l!sinh~~x2a4~u!!/l!

sinh~~a4~u!1a1~v !!/l!sinh~a4~u!/l!

1g~u,v !sinh
x

l
sinh

x1a1~v !

l
, ~19!

7c exp~~r2~u1v !2r1~u!2r1~v !!x!
sinh~~x1a2~u1v !!/l!

sinh~a2~u1v !/l!
52c expS 2

x

l D1g~u,v !sinh
x

l
,

~20!

7c exp~~r2~u1v !2r1~u!2r1~v !!x!52c expS 2
x

l D1g~u,v !sinh
x

l
, ~21!

for anyxPC( x̃1 , r̃ 1). We note that the equations above are valid onC. Substitution of 0 inx yields
that all the signatures of Eqs.~18!–~21! are21. From the periodicity of Eqs.~18!–~21!,

7exp~~r2~u1v !2r1~u!2r1~v !!pA21l!51, ~22!

and consequently, we have the following.
Lemma V.5: There existr,r3 ,r4PC such thatr1(u)5ru1r3 for all uPC(u3 ,r 3) and

r2(u)5ru1r4 for all uPC(u38 ,r 38).
In the case of~20!, we can express the functionB in two ways

B~u,x!5c exp~~ru1r3!x!
1

sinh~x/l!
,c exp~~ru1r4!x!

sinh~~x1a2~u!!/l!

sinh~a2~u!/l!sinh~x/l!
.

This is a contradiction. In the case of~19!, we deduce a contradiction in a similar fashion.
From Eq.~22! there existsnPZ such thatr422r35n/l, and one can regard Eqs.~18! and

~21! as the polynomials of the variable exp(x/l). Thus we deduce the following.
Proposition V.6: On C((0,0),r )

B~u,x!5H c exp((ru1r3)x)
sinh((x1au1a3)/l)

sinh(x/l)sinh((au1a3)/l)
for ~18!,

c exp~~ru1r4!x!
1

sinh~x/l!
for ~21!,

where a,a3PC.
From Eq.~17! we getr350, r4561/l anda3PZpA21l, that is to say,
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Theorem V.7: The trigonometric solution B(u,x) of Eqs. (8) and (9) defined on the polydisc
C((0,0),r ) is

B~u,x!5c exp~rux!
sinh~x1au!/l

sinh~x/l!sinh~au/l!
, or c exp~rux!

exp~6x/l!

sinh~x/l!
,

where c is in TheoremV.4, aPC\$0% and rPC.

VI. RATIONAL CASE

In this section, we continue solving Eqs.~8! and ~9! in the rational case of Theorem III.1.
The proof of Theorem VI.1 is the same as that in Sec. IV, so we omit it.
Theorem VI.1: ~1! The rational solution A(x) of Eqs. (8) and (9) defined on the polydisc

C(0,r ) is

A~x!5c•h~x!
x1s

xs
, or c•h~x!

1

x
,

where c,sPC\$0% and h(x) is a meromorphic function defined on C(0,r ) satisfying the relation
h(x)h(2x)51.

~2! There exist C(u3 ,r 3),C(u1 ,r 1) and C(u38 ,r 38),C(2u3,2r 3) such that the rational solu-
tion B(u,x) of Eqs. (8) and (9) is expressed as follows:

B~u,x!5H exp~r1~u!x!
a1~u!x1c

x
, on C~u3 ,r 3!3C~0,r !,

exp~r2~u!x!
a2~u!x6c

x
, on C~u38 ,r 38!3C~0,r !.

Here the functionsr1 and a1 are holomorphic on C(u3 ,r 3) and the functionsr2 and a2 are
holomorphic on C(u38 ,r 38).

We fix anyu,vPC(u38/2,r 38/2). From Eq.~10!, there existsg(u,v)PC such that

B~u,2x!B~u1v,x!

B~v,x!
52

c2

x~a1~v !x1c!
1g~u,v !

for all xPC(x1 ,r 1)\$0%, and consequently

exp~~r2~u1v !2r1~u!2r1~v !!x!5
c2

~2a1~u!x1c!~a2~u1v !x6c!

2
g~u,v !x~a1~v !x1c!

~2a1~u!x1c!~a2~u1v !x6c!
~23!

for all xPC(x1 ,r 1)\$0%. Since the equation above is valid onC, we obtain the following.
Lemma VI.2: There existr,r3PC such thatr1(u)5ru1r3 for all uPC(u3 ,r 3) and r2(u)

5ru12r3 for all uPC(u38 ,r 38).
From Eq.~23!, a1(u)a2(u1v)5(a1(u)2a2(u1v))a1(v) for all u,vPC(u38/2,r 38/2), which

implies the following.
Lemma VI.3: The function a1(u) is identically zero on C(u3 ,r 3), or there exists a,a3PC such

that
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1

a1~u!
5

au

c
1

a3

c
, ;uPC~u3 ,r 3!,

1

a2~u!
5

au

c
1

2a3

c
, ;uPC~u38 ,r 38!.

By the straightforward computation, we deduce the following.
Theorem VI.4: The rational solution B(u,x) of Eqs. (8) and (9) defined on the polydisc

C((0,0),r ) is

B~u,x!5c exp~rux!
x1au

aux
, or c exp~rux!

1

x
.

Here c is in TheoremVI.1, aPC\$0% and rPC.

VII. SINGULAR CASE

This section describes the solutionsA andB of Eqs.~1! and~2! on the assumption thatBÓ0
and thatA(x)A(2x)(Ó0) is identically constant. It is to be mentioned that the assumption above
and Eqs.~1! and ~2! imply Eqs.~9! and

B~u,x!B~u,2x!5B~u,y!B~u,2y! ~24!

on C((0,0),r ). Let D1 ,D2,C((0,0),r ) be the domains of the meromorphic functionB(u,x) and
B(u,2x), respectively. From Eq.~24!, for all uPC(0,r ) such that (u,x)PD1ùD2 , there exists
a(u)PC such that

B~u,x!B~u,2x!5a~u! ;xPC~0,r !s.t.~u,x!PD1ùD2 . ~25!

It follows immediately thata(u) is holomorphic atu5u0 if ( u0 ,y0)PD1ùD2 .
Lemma VII.1: If(u0 ,y0)PD1ùD2 , then (u0,0) is not a pole of the function B(u,x).
Proof: The proof is by contradiction. Assume the assertion were false. For allnPN, there

would exist (un8 ,xn8)PC((0,0),r ) such that (un8 ,xn8)PC((u0,0),1/n)ùD1 . Then there existsr n8
.0 such thatC((un8 ,xn8),r n8),C((u0,0),1/n)ùD1 . Hence there exists (un ,xn)PD2 such that
(un ,xn)PC((un8 ,xn8),r n8). Because (un ,xn)PC((u0,0),1/n)ùD1ùD2 , limn→` un5u0 and
limn→` xn50. Since (u0,0) is a pole ofB(u,x), limn→`uB(un ,xn)u5 limn→`uB(un ,2xn)u5`,
and limn→`uB(un ,xn)B(un ,2xn)u5` as a consequence. As we mentioned earlier, we are led to
limn→` a(un)5a(u0), which is a contradiction of Eq.~25!. h

Thus the point (u0,0) in Lemma VII.1 is a regular point or a point of indeterminacy of
B(u,x).

Lemma VII.2. For any(0,)r 8<r , there exists u0PC(0,r 8) such that(u0,0) is a regular
point of B(u,x).

Proof: It suffices to consider the case that (u0,0)PC((0,0),r 8) in Lemma VII.1 is a point of
indeterminacy of the functionB(u,x).

Because the set of the points of the indeterminacy of the meromorphic function with two
variables is isolated, there existsr 0.0 such thatB(u,x) has no points of indeterminacy in
C((u0,0),r 0)\$(u0,0)% and C((u0,0),r 0),C((0,0),r 8). That is to say, for any u1

PC(u0 ,r 0)\$u0%, (u1,0) is not a point of indeterminacy ofB(u,x), and there existss.0 such
that C((u1,0),s),C((u0,0),r 0)\$(u0,0)% as a result.

For (u3 ,y3)PD1ùD2ù(C(u1 ,s)3C(0,r 8)), (u3,0) is not a pole ofB(u,x) by means of
Lemma VII.1. From (u3,0)PC((u1,0),s), (u3,0) is not a point of indeterminacy ofB(u,x). This
point u3 is the desired one. h

Proposition VII.3: There exist r0(.0) and u0PC(0,r ) satisfying the following conditions.
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~1! C((4u0,0),4r 0),C((0,0),r ).
~2! B(u,x) is holomorphic on C((u0,0),r 0)øC((2u0,0),2r 0)øC((4u0,0),4r 0).
~3! B(u,x)Þ0 for all (u,x)PC((u0,0),r 0)øC((2u0,0),2r 0)øC((4u0,0),4r 0).

Proposition VII.3 follows from Lemma VII.4 immediately.
Lemma VII.4:~1! If there exists C((u0,0),r 0),C((0,0),r ) such that B(u,x) is holomorphic

on C((u0,0),r 0) and C((2u0,0),2r 0),C((0,0),r ), then there exists C((u1,0),r 1),C((u0,0),r 0)
such that B(u,x) is holomorphic on C((2u1,0),2r 1).

~2! If there exists C((u0,0),r 0),C((0,0),r ) such that B(u,x) is holomorphic on
C((u0,0),r 0), then there exists C((u1,0),r 1),C((u0,0),r 0) such that B(u,x)Þ0 for all (u,x)
PC((u1,0),r 1).

Proof: We prove~1! only. We takeC((u2 ,y2),r 2),(C(2u0,2r 0)3C(0,r ))ùD1ùD2 , and,
for all uPC(u2 ,r 2), there existsyPC(y2 ,r 2) such that (u,y)PD1ùD2 as a result. By Lemma
VII.1, ~u, 0! is not a pole ofB(u,x) for all uPC(u2 ,r 2). Because the set of the points of
indeterminacy of the meromorphic function of two variables is isolated andu/2PC(u0 ,r 0) for all
uPC(u2 ,r 2), there existsu1PC(u0 ,r 0) such that (2u1,0)PD1 . Thus there existsr 1.0 such
that C((u1,0),r 1),C((u0,0),r 0) andC((2u1,0),2r 1),D1 . This completes the proof. h

By Eq. ~9!, there existsg(u,v)PC such that

B~u1v,x!

B~u,x!B~v,x!
5g~u,v ! ~26!

for all xPC(0,r 0/2),u,vPC(u0 ,r 0/2), and, consequently, we have the following.
Proposition VII.5: We fix any u,vPC(u0 ,r 0/2) and put

a~x!5
B~u1v,x!

B~u,x!
, w~x!5

1

B~u,x!
, c~x!5a~u!g~u,v !B~u1v,x!.

Then they satisfy Eq. (4) for all x,yPC(0,r 0/4).
With the aid of Proposition VII.3, the functionsa, w andc are all holomorphic onC(0,r 0/2).

Moreover,w(x)Þ0 andc(x)Þ0 for all xPC(0,r 0/2). This tells us that the functionsa, w andc
are the solutions of Eq.~4! with the conditionsw(0)Þ0 and a(x1y)2a(x)a(y)Þ0 for all
x,yPC(0,r 0/4). By virtue of Theorem II.1, we conclude the following.
Proposition VII.6: For uPC(u0 ,r 0/2) and xPC(0,r 0/4),

B~u,x!5c1~u!exp~r1~u!x!,

where c1 and r1 are holomorphic on C(u0 ,r 0/2). The function c1 satisfies c1(u)Þ0 for all u
PC(u0 ,r 0/2).

We obtain Proposition VII.7 in a similar fashion.
Proposition VII.7: For uPC(2u0 ,r 0) and xPC(0,r 0/2),

B~u,x!5c2~u!exp~r2~u!x!,

where c2 and p2 are holomorphic on C(2u0 ,r 0). The function c2 satisfies c2(u)Þ0 for all u
PC(2u0 ,r 0).

By virtue of Eqs.~9! and ~26!, we deduce Theorem VII.8.
Theorem VII.8: The singular solutions A(x) and B(u,x) of Eqs. (1) and (2) defined on the

polydiscs C(0,r ) and C((0,0),r ), respectively, are as follows:

A~x!5c1h~x!, B~u,x!5c2 exp~rux!
1

u
.
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Here c1 , c2PC\$0%, rPC and h(x) is a meromorphic function defined on C(0,r ) satisfying the
relation h(x)h(2x)51.

VIII. TRIVIAL CASE

In this section, we solve Eqs.~1! and ~2! with A[0 or B[0.
Lemma VIII.1: If the function B is identically zero on C((0,0),r ), then, for any function A

meromorphic on C(0,r ), the functions A and B([0) satisfy Eqs. (1) and (2).
In the sequel, we assume thatA[0 andBÓ0. From the previous assumption, Eqs.~1! and~2!

are equivalent to

B~u1v,x!

B~u,x!B~v,x!
5

B~u1v,y!

B~u,y!B~v,y!

on C((0,0,0,0),r /2). By differentiating the equation above in the variablex, we get

~]B/]x!~u1v,x!

B~u1v,x!
2

~]B/]x!~u,x!

B~u,x!
2

~]B/]x!~v,x!

B~v,x!
50

on C((0,0,0),r /2) and, as a result, (]2B̃/]u2)(u,x)50 on C((0,0),r ), whereB̃(u,x)5(]B/]x)
(u,x)/B(u,x).

Lemma VIII.2: There exists a function f meromorphic on C(0,r ) such that B̃(u,x)5 f (x)u as
meromorphic functions on C((0,0),r ) and the function f is holomorphic at x50.

Proof: We only show that the functionf is holomorphic atx50. Let D1 be the domain of the
meromorphic functionB. By means ofBÓ0, there existsC((u1 ,x1),r 1),D1\($0%3C(0,r )) such
that B(u,x)Þ0 for all (u,x)PC((u1 ,x1),r 1). Hence, for all uPC(u1 ,r 1), f (x)5(]B/]x)
(u,x)/(uB(u,x)) is meromorphic onC(0,r ). ~See Lemma III.5! Laurent’s expansions nearx
50 of the functionsf and (]B/]x)(u,x)/(uB(u,x)) are

f ~x!5 (
k15 l

`

ak1
xk1,

~]B/]x!~u,x!

uB~u,x!
5

1

u (
k2521

`

bk2
~u!xk2 ~ l,b21~u!PZ!,

and we getl 521 anda215b21(u)/u for all uPC(u1 ,r 1) as a result. Ifb21(u1)Þ0, then, for
all uPC(u1 ,r 1), u5(b21(u)/b21(u1))u1PQu1 , which is a contradiction. Thusb21(u1)50,
and consequentlya2150. We have completed the proof. h

Therefore we deduce the following theorem.
Theorem VIII.3: There exist(0,)r 1(<r ), a function F holomorphic on C(0,r 1) and a

function G meromorphic on C(0,r ) such that the function G is not identically zero and B(u,x)
5exp(F(x)u)G(u) as meromorphic functions on C(0,r )3C(0,r 1).
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