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Localization-delocalization transition in one-dimensional electron systems with long-range
correlated disorder
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(Received 7 May 2004; published 31 August 2p04

We investigate localization properties of electron eigenstates in one-dimengl@adystems with long-
range correlated diagonal disorder. Numerical studies on the localization lgéngtaigenstates demonstrate
the existence of the localization-delocalization transition in 1D systems and elucidate nontrivial behavior of
as a function of the disorder strength. The critical exponefur localization length is extracted for various
values of parameters characterizing the disorder, revealing that ewdispbeys the Harris criterion>2/d.
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I. INTRODUCTION

Spatial correlation of disorder often causes an unexpected  _
phenomenon in quantum disordered systems. Most intriguing
is the breakdown of Anderson localization in one-
dimensional(1D) systems induced by correlated disorder.
Breakdown of the localization in 1D systems has been pre-
dicted for a random dimer mod&lwherein the on-site po- o
tential{;} has a binary distribution with ahort-rangespa-
tial correlation. Subsequently, a discrete number of extended 21
eigenstates was found numerically in the random dimer 1L
model?2 It was examined experimentally using transmission - ol
measurements on semiconductor superlatticEsese find-
ings have motivated the studies of the nature of 1D systems b p=25 . . ]
with long-rangecorrelated disorder:*2Particularly notewor- 0 2000 4000 6000 8000
thy is the system in which the sequereg has a power-law Site index
spectral density of the forn®(k) «ck™P; the function %K) is
the Fourier transform of the spatial correlation function
(eig;). For exponents greater than 2.0, there is a finite range
of energy values with extended eigenst&@his fact indi-
cates the presence of the localization-delocalization trans
tion in 1D disordered systems against the conclusion of thgations for W, for various values op allow us to establish
well-known Scaling tl‘]eor&':.;‘l4 The emergence of extended the phase diagram in thw.p space, thereby engendering
eigenstates was also observed in harmonic chains with ramywetter understanding of localization properties of the system.
dom coupling® and in those with randoms massésiote e are also interested in the value of the critical exponent
that diagonal disorder treated in Ref. 16 is characterized byor the localization length of eigenstates. Those values can be
the power-law spectral density denoted above. obtained accurately using finite-size scaling analysis.

The randomness of the long-range correlated potentials The present work is intended to reveal critical properties
{&} is characterized by two quantities. The first is the expo-of electron eigenstates in 1D systems with long-range corre-
nent of the power-law spectral densify determining the |ated disorder. Numerical studies on the localization lengths
roughness of potential landscapes, as shown in Fig. 1. The have demonstrated the nontrivial behavioréodis a func-
second quantity is the distribution widi defined by the  tion of W and p. A series of critical widths\j; and that of
relation &; e [-W/2,W/2], which characterizes the ampli- critical exponentsy are determined by finite-size scaling
tude of the potential’ Effects ofp on the localization prop- analysis. Remarkably, the results mtlisobey the Harris cri-
erties of eigenstates have been examfhedt those ofW  terion, »>2/d (Refs. 21,23, which is believed to be satis-
remain unclarified. If the disorder is spatialincorrelated  fied in general disordered systems. Our findings present pros-
(p=0), an increase iW trivially induces strongly localized pects for the study of Anderson transition in 1D systems with
wave functions because all eigenstates are localizedorrelated disorder.
exponentiallyt2° On the other hand, when the disorder is  This paper is organized as follows. Section Il describes
sufficiently long-range correlated to yield extended eigenthe long-range correlated on-site potentials to be considered.
states(p>2.0), the system shows a critical poi, sepa- It presents a numerical algorithm for calculating the localiza-
rating localized and delocalized phases. However, there is niion length of eigenstates. Section Ill analyzes the localiza-
attempt to quantitatively determine the valueWf. Calcu- tion length as a function oV andp. The transition point,

p=2.0

FIG. 1. Landscapes of spatially correlated on-site potentials. The
exponentp of the power-law spectral densi§(k) «k™ is varied as
displayed in the figure. The roughness of the energy landscape is
Pradually reduced with increasirg
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and the critical exponentare extracted by finite-size scaling

analysis. Conclusions and discussion are presented in Sec.

V.

Il. MODEL AND METHOD

A. Long-range correlated potentials

We consider noninteracting electrons in 1D disordered

systems within a tight-binding approximation. The
Schrddinger equation of the system is expressed as
it + Ui+ ¢i1) =Eg, (1)

where¢; is the amplitude of the wave function at thh site
of the lattice. The hopping energyis taken as a unit of
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energy hereafter. A sequence of long-range correlated poten-

tial {&;} is produced by the Fourier filtering methét?° This

method is based on a transformation of the Fourier compo- giG. 2. The normalized localization length= £, /L as a func-
nents of a random number sequence. The outline of thgon of the distribution widthw. Several values op are taken as

method is as follows(i) A sequence{u;} of uncorrelated

denoted in the figure. The system sizds fixed to be 26 for all

random numbers with a Gaussian distribution is prepared:alues ofp.

(i) Its Fourier componentdl,} are computed using the fast-
Fourier transformation methodii) A sequencee,} is gen-
erated for a giverp using the relationgq:q‘p’zuq. (iv) Fi-
nally, the objectivele;} is obtained as the inverse Fourier
transform of{e;}. The resulting potentials; are spatially
correlated and produce the power-law spectral deriiy
«k™P. In the following, the mean valu&:;) is set to be zero
and the periodic boundary condition is imposed.

the potential field{e;}. To obtain a typical value of, for a
givenL, we take a geometrical mean &f on more than 10
samples. Energk is fixed at the band cent&=0 through-
out this paper.

A critical point W=W, (and p=p,) can be deduced from
the dependence of the normalized localization length
=¢ /L on the system sizé. The typical values of, in-

Figure 1 displays the landscapes of long-range correlatedrease with for delocalized states, where the growthépf
potentialse; that are generated by the procedure above. Thés faster than that i, This causes the quantity to be an

system sizeL. =23 and the distribution widthw=3.0 are

increasing function of.. On the other hand\ vanishes for

fixed. An increase irp markedly reduces the roughness in sufficiently largel for localized states becauggapproaches
potential landscapes. We have confirmed that the sequencasonstant value. Therefore, at the localization-delocalization
{&;} appearing in Fig. 1 produce the power-law spectral dentransition,A must be invariant for the change in the system

sity, S(k) kP, for all values ofp.

B. Localization lengths

Localization lengths of eigenstates in a potential figld

are computed easily using the conventional transfer-matrix

method?® The Schrodinger equatiofl) is expressed by the
following matrix equation:
— 1)
0 )

[)-ul) e

The localization length at a given energ¥ is defined by
the relatioR®

E_Si
1

2

o LT MZ(0)]
& =lm N0 &
with a generic initial condition
d’l)
0=(%) 4
z(0) o (4)

Equation(3) gives the single value of only for the infinite
system sizé. — . However, wherl is finite, the calculated
result of Eq.(3)—denoted ag; —depends on the choice of

sizeL. Values ofW, are obtained accurately using the finite-
size scaling method, as explained in Sec. Ill.

IIl. NUMERICAL RESULTS

A. The W-dependence for the functionA (W)

Figure 2 plots the normalized localization lengthas a
function of the distribution widthV. The exponenp of the
power-law spectral densit§(k) is increased fronp=1.0 to
p=4.5, incrementally. The system sikze 26 is fixed for all
p. Whenp equals unity or lessA (W) is a monotonous func-
tion of W. For largerp, on the other hand, curves &f show
a kink atW=4.0, which sharpens gsincreases.

We find two striking features in Fig. 2. The first is a pe-
culiar p-dependence ok (W). The p-dependence ok (W) in
the region wher&V/< 4.0 differs completely from that in the
region whereW>4.0. Forw< 4.0, the values oA rise with
increasingp indicating that the growth op for W<4.0
causes an increase in the localization lerggtbf eigenstates.
In contrast, the values ok for W>4.0 systematically de-
crease with increasing (except for the dat@=1.0). Hence,
growth of p for W>4.0 produces strongly localized eigen-
states. This difference in the effect of increasmon & _ is
nontrivial because the increaseprsimply smoothes poten-
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FIG. 4. Scaling plots of I\ =f(x) for p=2.5(solid circley and
for p=3.0 (open circles Upper and lower branches correspond to
extended and localized phases, respectively.

FIG. 3. TheL-dependence foA(W) with settingp=1.0 (open
symbolg andp=2.5(solid symbol$. Inset: Enlargement of (W) in
the vicinity of W=4.0. The system sizk is varied toL =23 (solid
circles), 214 (open circley, 2'° (solid triangle, 218 (open triangles o _ _
and 27 (diamonds. B. Finite-size scaling analysis

Finite-size scaling analysis allows the determination of
critical properties of the transition fdr— oo from data for
tial landscapes, as shown in Fig. 1. Therefore our resultfinite L.%6 This method stems from the hypothesis that the
suggest that the effect of potential roughness on the localizarzormalized localization length close to the transition obeys

tion length& depends strongly on the value \bf. the scaling law expressed by
The second notable feature is a shoulder structure of L
A(W)—a sharp bent ofA(W)—at aroundW=4.0, engender- InA= f(g—) (5)

ing a plateaulike shape within the region €.8V<4.0. The

shoulder of A(W) appears for exponen{s>2.0, i.e., forp  where¢, is the localization length of eigenstates in an infi-
large enough to yield extended eigenstétébat fact implies  nite system. The argumeht £, becomes much smaller than
that localization properties of eigenstates Wr<4.0 (and  unity becauset,, diverges with obeying the forng,«|W
p>2.0) differ substantially from those foWW>4.0. The -W_™ near the transition pointv=W,. This allows expan-
value W=4.0 is a critical disorder strength separating a lo-sjon of the scaling function as
calized and delocalized phase, as explained later. Section B Uy —
Il B presents a demonstration that eigenstates are delocal- N A =8 +aW=WLT"+ - +a W= W"L"™, (6)
ized within the plateau region, under conditioNs<4.0 and  terminating the expansion at the orderFitting the numeri-
p=>2.0. o _ cal data of InA for various values ofV andL to Eq.(6), we
Values of the critical width/\; can be estimated from the gptain W, and v with great accuracy. Note that the optimal
dependence oA (W) on system sizé.. Figure 3 shows the \3jye of constantsy, a;,---, a, for W>W, are different
L-dependence foA(W), where the system size is increasedfrom those forW< W, because, is a function of the abso-
from L=2"3 (circles up to 2 (diamonds. Open and solid  |ute value ofW-W,.
symbols correspond to the expong# 1.0 andp=2.5, re- Figure 4 shows scaling plots of I for p=2.5(solid) and
spectively. Fop=1.0, the magnitude ok (W) declines with  p=3.0 (open. Here we definex=|W-W,/LY" and sen=4.
increasingL such that the eigenstates are localized for anyEach upper and lower branch in the figure corresponds to the
W. On the other hand, fqy=2.5, theL-dependence fok (W)  extended phas@N<W,) and the localized phagaV>W,),
is rather complicated. The inset of Fig. 3 displays detailedespectively. All data of In\ for various values ofV and L
behavior ofA in the vicinity of W=4.0, where the system fit well onto two branches. Resulting values of the critical
size is varied fromL=2"% to 2!" as denoted in the figure exponentr and the critical distribution widthV, are listed in
caption. All curves intersect on a single point W=4.0,  Table I, where the error is a 95% confidence interval. We see
suggesting the presence of the Anderson transitioWat that all values of\/, are almost identical to 4.0, as expected.
=W,=4.0 forp=2.5. On the other hand, values of exhibit a discrepancy for
We have confirmed that, whep= 2.0, A(W) shows the different branches and differeps?” This discrepancy o¥
samelL-dependence as presented in the inset of Fig. 3. Ineontradicts the principle of one-parameter scaling requiring
triguingly, all data of A(W) for p>2.0 provide an identical thatv should be independent of a choice of parameters in the
value of W.=4.0. Therefore, we conclude that the critical Hamiltonian of the system. It is surmised that the discrep-
distribution widthW;=4.0 is independent gb wheneverp ancy ofv occurs because of a finite-sized effect that causes a
=2.0. systematic error in scaling plots. A novel technique of scal-
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TABLE |. Calculated results of the critical exponentaind the critical distribution widthV,. The error is a 95 % confidence interval.

Branch v We
p=2.5 Extended 1.79£0.08 4.002+0.002
Localized 1.87+£0.04 4.001+£0.001
p=3.0 Extended 1.58+0.08 4.001+0.002
Localized 1.51+£0.02 4.001+£0.001

ing correction (two-parameter scaling®—3° would help to
solve the problem, as we shall present in a future stldy.

C. The p-dependence for the functionA (p)

Next, we examiné\ behavior as a function gd. Figure 5
shows a plot of the functiork(p) with settingW=1.0 and
3.0, where the system size is varied fram 2'3 to 217, For
all WandL, A(p) increases witlp; it then becomes constant
for p>2.5. Thisp-dependence foA is consistent with the
results displayed in Fig. 2, in which the growth pffor
W<4.0 causes an increase itn. Detailed calculations of
A(p) in the vicinity of p=2.0 reveal that all curves of(p)
that belong to differenks intersect at the point qt=2.0 as
long as W<4.0. This indicates that localization-
delocalization transition occurs at an identical poptp,
=2.0 whenevelN<4.0. The critical poinp.=2.0 estimated
above is consistent with the conclusion reported in Ref. 6.

A series of critical pointd/N, and p. we have found are

ber: 4 and 2, respectively. The same integral valueNpf
=4 has been observed in other 1D systems with correlated
disordert~334-36as discussed below.

IV. CONCLUDING REMARKS

Two open problems remain with respect to the critical
properties of the transition in 1D systems with long-range
correlated disorder. First, all results of the critical exponent
listed in Table | disobey the Harris criterion>2/d (Refs.
21,22. The inequality is widely believed to be satisfied in
general disordered systems with any spatial dimension
thereby determining the lower bound ferAccording to the
inequality, v in 1D systems must be larger than 2, which
disagrees with our results. We note here that the Harris cri-
terion was originally derived for a spatiallyncorrelated
disorder?! Therefore, the relation>2/d may be violated in
systems with long-rangeorrelateddisorder. In fact, foclas-
sical percolation model, the inequality must be modified in

summarized in the phase diagram illustrated in Fig. 6. Solidhe presence of long-range correlation in the site or bond

circles express the critical poiw=W, deduced from the

occupations?23 To elucidate the lower bound of for 1D

finite-size scaling procedure, whereas solid squares expresgstems considered, we should generalize the argument in

p=p. defined by the position at which(p) is independent of

Ref. 22 for the correlated disorder producing the power-law

L (see Fig. 5. An extended phase appears in the region surspectral densitys(k) = k™.

rounded by the two straight lines &/=4 andp=2. It is
noteworthy that values diV, and p. equal anintegral num-

T T T T T
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p

FIG. 5. TheL-dependence foA(p) with settingW=1.0 (solid
symbolg andW=23.0 (open symbolg respectively. The system size
L is varied as 2 (circle), 2%° (triangle), and 27 (square.

Second, the critical disorder widiv, is exactly equal to
an integral numberW,=4. Furthermore, the value &k, is
independent of the potential roughness characterizga by

5'I'I'I"I'l'l

Extended

Localized

FIG. 6. A phase diagram of the system in Mép space. The
critical line separating the localized and delocalized phase consists
of two straight linesW=W,=4.0 andp=p.=2.0.
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fact, the same value &/,=4 has been found in other corre- shows a nontrivial behavior as a function\Wfandp, which
lated potential models. One example is the random dimeindicates a peculiarity of 1D systems exhibiting the Ander-
model}~3 where the site energies, and ¢, are assigned in  son transition. Detailed calculations far(W, p) reveal that
pairs. The disorder widthV of the system is defined by the the transition pointW,=4 is invariant to the change of the
relation e,~ &, € [-W/2,W/2]. If Wis less than the critical potential roughness. Moreover, the critical exponeitt the
value W=4, the localization length diverges obeying the considered system is proven to violate the Harris criterion
form &.(E)<E™ yielding the delocalized eigenstate Bt > 2/d. We hope that our findings enlighten the study of

=0. Another example is the Harper mod&f®in which site  quantum phase transition in manifold disordered systems.
energies are described by a periodic function

=(W/2)cog27iw) with an irrational numbemw. This model

undergoes the localization-delocalization transitioMét4. ACKNOWLEDGMENTS
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