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Dielectric anomaly in coupled rotor systems
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The correlated dynamics of coupled quantum rotors carrying electric dipole moment is theoretically inves-
tigated. The energy spectra of coupled rotors as a function of dipolar interaction energy are analytically solved.
The calculated dielectric susceptibilities of the system show a peculiar temperature dependence different from
that of isolated rotors.
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I. INTRODUCTION II. HAMILTONIAN

Suppose two dipole rotorgr; andqr, are separated by
e vectorR. The Hamiltonian for the system is given by
=Hyg+W)p, where the kinetic term is

With the advent of nanotechnologies, quantum rotors havrtnh
attracted much attention in relevance to a fundamental ele-
ment of molecular scale machinéry Arrays of surface

mounted quantum rotors with electric dipole moments are of 22( g2 52
particular interest because dipole-dipole interactions can be He=— —| —+— (1)
controlled and even designed to yield specific behavior, such Al ﬁ@)f a®§

as ferroelectricity. Ordered two-dimensional arrays of dipole ) )

rotors yield either ferroelectric or antiferroelectric ground @nd the interaction term becomes

states, depending on the lattice type, while disordered arrays

are predicted to form a glass phdse. W q i+ 1 11 )
Besides technological problems, the microscopic dynam- 4me\|R|  |R+ri—15 |R+11]  |R—T1y

ics of quantum rotors have been extensively studied from the

point of physical and chemical interest. The idea of quan'[un]_|ere| is the moment of inertia for dipole rotors amdthe

rotors is applicable to interstitial oxygen impurities in crys- . ; . . :
talline germanium, where oxygen atoms are quantum-d'elecmc constant. Figure 1 shows a configuration of two

mechanically delocalized around the bond center pos?‘tion.dipoIes rotors ””d?r con;io!eration. We assume t_hat rotors do
X . o : not feel any potential variation along a ring of radiusn the

The rotation of oxygen impurities around the Ge-Ge axis haa bi dinate. th i dR . b
been experimentally observed by phonon spectrostopy: acobr coordinate, the Vectars,r;, andi are given by
While the rotation of oxygen impurities in Ge is weakly
hindered by an azimuthal potential caused by the host lattice,
several materials are known to show a free rotation of mol-
ecules. An example is ammonia groups in certain Hofmann
clathratesM (NH3),M’ (CN),-G,8~ 1% usually abbreviated as
M-M’-G, whereM andM' are divalent metal ions ar@ is
a guest molecule. Nearly free uniaxial quantum rotation of
NH; has been observed for the first time in Ni-Nig)
by inelastic neutron scatterifigRecently, a surprising varia-
tion of the linewidth has been observed for Ni-Ni-
(CisH10)2, 1 which has been interpreted by a novel line
broadening mechanism based on rotor-rotor coupffigis
also known that the8 phase of solid methafitas well as
methane hydraté shows almost free rotation of GHnol- z
ecule. The linewidths of methane in clathrates show inhomo-
geneous broadening owing to the dipolar coupling with wa-
ter molecules? It is therefore expected that new interesting
phenomena will be found by investigating the influence of X
dipolar interaction between quantum rotors.

In the present paper, we study the correlated dynamics of
coupled quantum rotors carrying electric dipole moments.
We give the exact solution of eigenvalue problem of inter-
acting rotors with arbitrary configurations. It is revealed that
coupled rotors show a peculiar dielectric response at low FIG. 1. Schematic configuration of coupled rotors. Each rotor
temperatures, which can be interpreted by taking account akpresented by, andr, rotates along a ring of a radius and
the selection rule of dipolar transition for coupled rotors.  carries dipole momertr, ().

2

ry=r(cos®,,sin®;cosa,sin®;sina;),

r,=r(cos®,cosB—sin®,cosa,Sing,
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2.0 q2r2 2
w) = cicos A 6,+ ;). 6
D ameR® L i 20+ v) (6)
159 The parameterg; and y;(i=1,2) are functions of angles
aq,a,, and B defined in Fig. 1, whose explicit forms are
g .
5” 10 given by
1 1 . — X
=Xty m=ptan T e @)
I

054
with the definitions

0.0 i y X, =sinB(cosa;— cosas,),
0.0 0.5 1.0 1.5 2.0
® /n X,=SsinB(cosa;+ CoSay),
1
FIG. 2. Contour plot of the interaction teriy in the (©,,0,) y1=C0Sp(1—cosa;Cosay) + 2 sinesina;,
plane. Two maximdwhite region$ and two minima(dark regiong

are realized at positions with differencA®,~ = and A®,~ . Y2=C0SB(1+cosa;c08a,) — 2 sina;sina; . ®)
Parameter values are given in the text. Consequently, we can decompose the Sdimger equation
_ _ _ _ HoWo(61,0,)=EqW¥y(64,6,) into two independent Mathieu
€0s®,sin B+ sin®,cosa,C0SB,SiNO ,Sina,), equations. Setting’ o( 01, 6,) = @1(61) ©2(6,), we obtain
R=R(0,0,1). ©) Po; 2 _
— >+ g [CiEpcosA 6+ v)—Eilei=0, (i=12),
A spatial profile of W, as a function of ©,,0,) is dis- 90; K
played in Fig. 2 by a contour plot, in which the angles (€)

(a1,a7,B) are set as §/4,— w/6,m/3). We should remark \yhere the quantitie&,=%%/(21) and Ep=q?r%/(4meR3)

that two minima(dark regionsand two maximawhite one$  represent the kinetic and the interaction energy, respectively.

are located at the antiparallel or parallel dipolar configura-The ejgenvalueE of the initial Schialinger equation is ex-

tion, indicating that the dipoles prefer an antiparallel con-pressed as the sum &=E;+E,. Note that the periodic

figuration. The two minima ofVp(01,0,) arise from the  termsccos 2+ y,) originate from two minimaor maxima

dipole interaction between two rotors, i.e., the dipole inter-of the interaction ternwp(®,,0,) shown in Fig. 27

action plays a key role for creating barriers and two potential - gjgenfunctions of Eq(9) are described by four types of

minima, which strongly affect the energy spectra and thgne Mathieu functions, given by §€v;,6,), Sens1(v:,6:),

dielectric response of the system. cen:1(vi,6), and se,.,(vi,6) with the definitionsu;
Provided that the spacing is large enough compared —¢E_/E, andn=0,1,2 . ... Each of them belongs to a

with the radius, the interaction termwp, can be expanded in  gjfferent eigenvalue and can be expressed in terms of the

lar interaction given by
9 3(r,-R)(rp-R) cen(vi, )= 2 AN (vi)cosam(fi+y). (10

3 r1~r2—T . (4) m=0
The coefficients{A(ZZ,J,‘)} are determined by a successive rela-
The higher-order termvi)=Wp — W) is O(r¥/R*), which  tion obtained by substituting E¢10) into Eg. (9). The am-
can be negligible for the cage>r. Actually we have con- Pplitudes of {AZD} rapidly decrease with increasing, so
firmed that the calculated results presented in this papéhat we can truncate the summation in Ef0) at m=20 in
change very little by taking into account the te¥f}" . actual calculations.

Figure 3 plots the calculated spectra of eigenenergies
=E;+E, as a function ofep, whereEy is taken as an en-
ergy unit. The anglesd; ,a,,8) are set to be#£/4,0,0), for

The Schrdinger equation for the HamiltoniaH o= H example. We find, though some levels are degenerate when
+WS) has analytic solutions as shown below. TransformingEp=0, that they split off for finiteEp with a monotonous
variables tog; = (0, +0,)/2 andd,= (0, —0,)/2, Eqs.(1)  Vvariation with increasingp . For high€p, limit, some levels

3)_
W(D)_

47eR

IIl. EIGENVALUES AND EIGENFUNCTIONS

and (4) yield become degenerate again. It indicates that the relative motion
of paired rotors is frozen out fdE,>Ey due to the strong
12| 2 52 Coulomb interaction. This behavior can be understood from
Hg=— a ( —t —2) , (5)  the spatial profile of the interaction tei (®,,0,) shown
9601 96 in Fig. 2. With increasindEp , the depths of two minima of
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FIG. 4. The dielectric susceptibilityy,,(T) for the zero-
guency limitw— 0 as a function of the inverse temperatur€.1/
The strength of dipolar interaction is increased from top to bottom;
(i) Ep=0 (solid), (i) Ep=0.01 (dasheg, (ii) Ep=0.1 (dash-
dotted, and iy Ep= 1.0 (dotted in units of Ex . Bumps at around

. . . . Ex /(kgT)~5.0 appear in the cases @f) and (iii). Inset shows
Wp(01,0,) gr_qw, and Iargelr barrier heights hmder th(_a three components of; |(T) for the case ofiii ), whose definitions
quantum transition of a particle through the barrier. This, given in text. '

gives rise to localized wave functions around these minima.
Consequently, in the limit oEp>E,, the amplitudes of the which are dominant for the dielectric susceptibiljpfw, T)
eigenfunctions are strongly localized around the two minimaat temperature3 ~Ey /kg . The rest of the allowed dipolar
and these two localized eigenstates are nearly degenerateansitions do not contribute to the susceptibility given by
Even if the higher-order terrwg‘) is taken into account, the Eg. (11), because the energy differenld‘ej— E,| is so large
energy spectra do not change much, since it only slightlyand/or the Boltzmann factor expg;/kgT) becomes much
disturbs the symmetry of the depths of two minima shown insmaller than unity. The interpretation of three lab@s-(c)

Fig. 2. When varying the angles(,a,,8), the curves in  shown in Fig. 3 will be given later.

Fig. 3 slightly shift upwards and/or downwards except for We have calculated the temperature dependence of the

FIG. 3. The energy spectra of the paired rotor as a function Ogre
Ep . Solid arrows indicate a part of allowed dipole transitions for
the componenp, in the case of &, ,a,,8)=(7/4,0,0). The expla-
nation on three label&@)—(c) is given in text.

the unchanged values & at E;=0. dielectric susceptibilityy,,(w,T) for variousEp . Figure 4
shows the calculated results of dc susceptibitity(T) nor-
IV. DIELECTRIC SUSCEPTIBILITIES malized by a factoqzrzl(s Ex). We have taken four values

) ) . ) of Ep/Ek: the solid line Ep=0), the dashed one
Let us consider the dielectric response of dipole rotorgg /g, =0.01), the dash-dotted onEf/E,=0.1), and the
coupled via dipolar interaction. The real part of theqotted one Ep/Ex=1.0). The angles are set to be
frequency-dependent dielectric susceptibility is expressed &%y, | a,, 8) = (7/4,0,0) for allEp. For the case 0Ep=0,

the susceptibility monotonically increases with decreasing

Xuu(® T)=—i Z (E:|p,| )2 temperature and becomes constant at lower temperatures.
pps Z e The crossover temperature between the steady increase and
the almost constant value in Fig. 4 is determined by the
y E,—E exy{ B i) 1 minimum-energy difference of eigenstatesEat=0 that are
(E;— E)2— (fhw)? kgT)’ allowed for dipole transitionnamely, indicated a&) in Fig.

3. For the case oEp/Ex>1, the strong Coulomb interac-
whereZ =X ;exp(—E;/kgT) is the partition function an#EQ tion prevents from the relative motion of rotors so that the
is the eigenvector belonging to the eigenvaije The quan- magnitude of the susceptibility(T) decreases with increas-
tity p, is the u component of the total dipole momept ing Ep.
=q(r,+ry), which depends on the relative orientation with It is noteworthy that, for relatively weak interaction
respect to the external field. We should note that the susceji, /Ex<0.1, a bump appears in the susceptibility at about
tibility depends on the selection rules for dipole transitionsg, /(kgT)~5.0. The kinetic energ¥«=%2/(21) for actual
between different eigenstates. In Fig. 3, allowed dipole tranrotating molecules is of the order of 1 m&indicating that
sitions forp, are indicated in parts by solid arrows. Note thatthe characteristic temperatufé = Ey /kg< 0.2 correspond-
only a part of allowed transitions are shown in the figure,ing to the bump is estimated as about 1 K. We made sure that
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the bump can be observed for any angles,,,8) when ) gpg ue Y2

Ep/Ek is less than 0.1. This anomaly stems from the corre- 7no(U)= 2Eq Z(u) (22)

lated rotation of paired rotors via the dipolar interaction, and K

can be interpreted by the argument on the selection rule for sz e 5ui2

dipolar transition. 7%(u)= ¢ , (23)
To understand the origin of the bump, we decompose the eBc Z(u)

total susceptibilityx,,(T) given in Eq.(11) as where we definei=E, /(kgT). The quantitieg,, p,, and

p. become equal to the value [{fEj|p,|E))| for the case of
Yol = > 7ii(T), (12) 7%, 7°, and 5°, respectively. The explicit form of the parti-
REDH tion functionZ(u) is
: 2 |<Ej|pX|E|>|2[ p( E; ) p( E, ” Z(u)=1+4e "2+ 4e "+4e 2+ 8e Mt 4e M

(TMy=—— —L——— —— | —exg - —]||,

77],|( 8Z EJ - E| kBT kB_lElS) +4e— 9U/2+ 88—5U+ cee, (24)

which monotonically decreases with risingand reaches
unity for the limit u—. This means that the component
7?(u) is a monotonically increasing function of On the
other hand, the componentg®(u) and 7°(u) are convex
functions giving a maximum at finite. The conditions ofl
for the maximum ofy° and 7° are expressed by

whereX; .y is the summation over all possible combina-
tions of (j,I) under the conditiorl #j. Note the fact that
only threecomponents ofy; |(T) are responsible for the total
susceptibility(12) around the characteristic temperatire.
We denote these components b§, 7°, and %°, which are
characterized by the eigenfunctih;= (6, ,6,|E;) and ¥,

=(6,,0,|E,) as follows: u  Z'(u) .
1—§—u Z(0) =0, for %", (25)
7, Wi=ceyb)cen(b), Vi=ce(d;)ceb,),
" 1- 20— o for 26
o ¥=ca(eca(), Vimca(oca(): Uz 7O fr 9

TDe solutions of Eqg25) and(26) are estimated as~4 for
Co A — _ 7° andu~0.5 for °. Since the total susceptibility(T) is
7 Wj=sa(00s(8),  ¥i=se(f)sa(6,). (16 given by the summatiom?®+ 7°+ 7°, it is expected that the
The alphabets superscribed grcorrespond to three dipolar convex features of°(u) and 5°(u) cause the bump of the
transitions labeled bya)—(c) shown in Fig. 3. For example, total susceptibility ati=5 shown in Fig. 4.
the solid arrow of(a) in Fig. 3 connects the eigenstatés The argument is clarified by the numerical results shown
andW¥, defined in Eq(14). in the inset of Fig. 4, where the dependence of the compo-
For weak couplingEp<E, the solution of the Mathieu nents forEp /Ex=0.1 are displayedy? (dashed-dotte 7°
equation(9) is easily solved. In the lowest order of the per- (dotted, 7° (dashed-dotted-dottgdtogether with that of the
turbation theory, the eigenvalué&s(i=1,2) read total susceptibilityy= 72+ °+ #° (solid). The component
7° clearly shows a maximum at~4, whereas the contri-
bution of 7° is negligible due to the fact@ 5“2 in Eq. (23).
As a result, the summatiop?(u) + 5°(u) shows a bump at
u=5.0, which is the origin of the anomalous bump of the
total susceptibility y(T) at the characteristic temperature
T* =Ek/kgx0.2. We should note here that, if quantum ro-
tors are not interacting at all, the componefitexactly van-
a. A _ ished due to the degenera&y=E;=E«/2 [see Eq.(19)],
75 (B B)=(0Ect 0B, (18 and only the componen? is?ominant for the total suscep-
Ex Ex tibility x(T). This means that the total susceptibility is a
7% (E ’E'):(Ti SEy, - F 5Eb), (199  monotonic function same ag® so that the bump does not
emerge. The anomalous bump of the susceptibility, therefore,
manifests the relevance of the dipolar interaction to the di-
- SE ) (20) electric response of quantum rotors.
el

Ek ,

Ei=7n +aEp (n=0,£1,=2,...) (17
with a constant. The solution(17) gives the eigenenergies
of the stategE;) and|E,) relevant to the three components
as follows:

5 5E, 5E,
7, (Ej,E|): Ti(SEC, >

The small correctionsSE stem from the small interaction V. CONCLUSIONS

energy Ep<E . Substituting these eigenenergies into Eq. |t js important to recall experiments reported in Ref. 18
(13), we find that the three components are approximated byor the dielectric susceptibility of KCI crystals with Li de-
fects. It has been found that the susceptibility does not scale
linearly with the Li concentration, and even becomes smaller
with increasing concentratior1000 ppm), where the in-

2p2 1—e Y
cEx Z(U)

7(u)= (21
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teraction between defects becomes relevant. In addition, ias of two dipole rotors coupled via dipolar interaction. By
bump of the susceptibility is observed at about 200 mK forsolving analytically the eigenvalue problem of coupled
concentrations of 200—1000 ppm. These temperature deperstors, we have demonstrated the energy spectra of coupled
dences of the susceptibility together with the bumps are rerotors as a function of dipolar interaction. The anomalous
covered well by our results shown in Fig. 4. Noting thattemperature dependence of dielectric susceptibility is also
defects in both systems move along closed loops andhown. Our model is so general that it should be applicable
correlate each other, it is natural to assume that the similan a variety of physical context relevant to quantum rotors.
picture holds. For a quantitative discussion, of course, one
should take into account the effect of potential variation
hindering the free rotation of LYi, which is caused by the
Coulomb interaction between a mobile “Liion and the One of the authoréH.S) was financially supported in part
host atoms K and CI". The problem has been theoretically by the NOASTEC Foundation for young scientists. This
investigated in Refs. 19 and 20 based on the two-leveWork was supported in part by a Grant-in-Aid for Scientific
tunneling model. Research from the Japan Ministry of Education, Science,
In conclusion, we have investigated the quantum dynamSports and Culture.
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