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Equivalent Networks for SAW Gratings

MASANORI KOSHIBA, SeENIOR MEMBER, IEEE, AND SEIICHI MITOBE

Abstract—An equivalent network approach is described for the anal-
ysis of surface acoustic wave gratings. Circuit parameters can be the-
oretically determined by applying the finite-element method to an in-
finite array. In this approach, all of the effects of piezoelectric
perturbation, mechanical perturbation, and energy storage are taken
into account. To show the validity and usefulness of this approach,
examples are computed for groove and metallic gratings. Both short
and open circuited metallic gratings are treated. For grooves on iso-
tropic and Y-Z LiNbO; substrates, the dependence of reflection char-
acteristics on groove depth is investigated. For aluminum strips on X-
112°Y LiTa0;, 34° Y-X quartz, Y-Z LiNbO;, and 128°Y-X LiNbO; sub-
strates, the dependence on metallization ratio is investigated in detail.

I. INTRODUCTION

N EQUIVALENT CIRCUIT of a step discontinuity

in surface-acoustic-wave (SAW) gratings is of inter-
est in many SAW devices such as delay lines, filters, re-
flectors, and resonators for signal processing applica-
tions. The equivalent network approach does have the very
definite virtues of minimizing the algebra required in the
analysis and furnishing physical insight, and has been ap-
plied to various SAW gratings such as groove [1]-[3] and
metallic gratings [4]-[16]. In this approach, however, it
is difficult to consider all of the effects of piezoelectric
perturbation, mechanical perturbation, and energy storage
due to evanescent bulk waves. Also, in general, circuit
parameters have been empirically determined.

In this paper, a theoretical method for determining cir-
cuit parameters for SAW gratings is described. The fiaite-
element method (FEM) [17]-[19] is used to calculate the
dispersion curves cf an infinite array. Circuit parameters
are then calculated by matching the dispersion curve from
the equivalent network with that obtained by the FEM. In
this approach, all of the effects of piezoelectric perturba-
tion, mechanical perturbation, and energy storage are
taken into account. To show the validity and usefulness
of this approach, examples are computed for groove and
metallic gratings. Both short and open circuited metallic
gratings are treated. For grooves on isotropic and Y-Z
LiNbO; substrates, the dependence of reflection charac-
teristics on groove depth is investigated. For aluminum
strips on X-112°Y LiTaO,, 34°Y-X quartz, Y-Z LiNbOs,
and 128°Y-X LiNbO; substrates, the dependence on me-
tallization ratio is investigated in detail.
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II. EQUIVALENT NETWORK MODEL

We consider a groove or metallic grating with period d
on a surface of a piezoelectric crystal as shown in Fig.
1(a) and 2(a), respectively, where d, and h in Fig. 1(a)
are the width and depth of a groove, respectively, and d,,
and h in Fig. 2(a) are the width and thickness of a metal
strip, respectively. The groove or metallic grating can be
modeled by the equivalent network [1] in Fig. 1(b) or 2(b),
respectively, where k; and k,, are the wavenumbers for
Rayleigh waves on free and metallized surfaces, respec-
tively, ¥, and Y are the characteristic admittances, and B
is the susceptance representing the energy storage effect.
The wavenumbers k;and k,, are calculated by the relations
ki = 2xf/vs and k,, = 2@f/v,,, respectively, where f is
the frequency, and vy and v,, are the Rayleigh wave ve-
locities on free and metallized surfaces, respectively.

III. DETERMINATION OF CIRCUIT PARAMETERS

In the equivalent network in Figs. 1(b) or 2(b), a sec-
tion of one period corresponding to the center distance
between neighboring ungrooved or unmetallized parts is
chosen as a unit circuit. The elements 4,, B, C,, and D,
of the standard transfer matrix for this unit circuit are cal-
culated as
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where
¢ = cos (2xfd;/vy) (2a)
s = sin (2nfd;/vy) (2b)
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Fig. 1. Groove grating. (a) Configuration. (b) Equivalent network.

%5 [ms (27fd, [ vy) for groove grating (20)
cos (2nfd,,/v,,)  for metallic grating

i [sin (2nfd, /vy), for groove grating )
sin (2nfd,/v,),  for metallic grating

For an infinite array the dispersion relation is given by
cos Bd = (A, + D,)/2 (3)

where 3 is the phase constant in the x direction.

Substituting (1) into (3), considering the first Bragg
condition 3d = =, and putting the lower and upper cutoff
frequencies of the first stop band to f; and f,,, respectively,
we obtain

L

2 B
1+ I _Bi‘ il ST ]
1 C Ci St 1+E5!Cf
1B% - ¢
N —1)sis5i=0 4
(2 l + e )f ; )
1 + cic, — Bc's, — R
1 + €
1 B2 — ¢ )
A =Li)sgs, =10 5
(2 1 + ¢ (5)
where
e =(%/Y) — 1
B =B/Y, (6)

Here c;, 5, ¢/, and s; are given by replacing f in (2) by
the lower cutoff frequency f;, and similarly, ¢, s,, ¢, and
s, are given by replacing fin (2) by the upper cutoff fre-
quency f,.

The cutoff frequencies f; and f, are easily calculated by
applying the FEM to an infinite array [17]-[19]. There-
fore, the values of the admittance mismatch € and the nor-
malized susceptance B are determined by solving (4) and
(5) simultaneously. Since there are plural pairs of simul-
taneous solutions (e, fj} of (4) and (5), one should choose
a pair of solutions appropriate to circuit parameters. The
appropriate circuit parameters for SAW gratings should
satisfy the following conditions:

lel << 1, |B| <1 forh/N<<1  (8)
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Fig. 2. Metallic grating. (a) Configuration. (b) Equivalent network.

where Asis the wavelength for Rayleigh wave on free sur-
face.

Noting that (8) should be satisfied and that the voltage
standing wave distribution on equivalent network should
be coincident with the electric potential distribution in
substrate obtained by the FEM, from (4) and (5) only one
pair of solutions appropriate to circuit parameters can be
determined.

SAW reflection characteristics for groove or metallic
gratings of finite periodic structure can be easily calcu-
lated by using the equivalent network in Fig. 1(b) or 2(b),
respectively [20]. For the uniform array of N grooves or
N metal strips the reflection coefficient Ry is given by

_ Ay — Dy + ByYy — Cy/ Y,
~ Ay + Dy + ByY, + Cy/Y,

Ry (9)

where Ay, By, Cy, and Dy, are the elements of the transfer
matrix for the uniform array.

IV. CoMPUTED RESULTS

First, we consider a groove array. Fig. 3 shows the
magnitude of reflection coefficient per single groove (re-
flectivity’ per groove) and the normalized center-fre-
quency shift (fractional frequency shift), where o is a
Poisson’s ratio for isotropic substrates and the fractional
frequency shift (FFS) is given by

FFS = [(f + £)/2 = fol/%e- (10)

Here f, = v;/N\sand N\ = 2d. Our results for grooves on
Y-Z LiNbO; substrate agree well with the experimental
results [21], [22]. For the ¥-Z LiNbO; substrate, two
equivalent Poisson’s ratios ¢ = 0.309 [1] and ¢ = 0.335
[2] have been proposed. Note that for the reflection per
groove and the fractional frequency shift, our results ob-
tained by using ¢ = 0.335 and ¢ = 0.309 are closer to
those for the Y-Z LiNbO; substrate, respectively.

Next, we consider aluminum (Al) strips on X-112°Y
LiTaO;, 34°Y-X quartz, Y-Z LiNbO;, and 128°Y-X Li-
NbO; substrates. Both short and open circuited metallic
gratings are treated. Figs. 4 and 5 show the values of
Y5/Y, — 1 and B/Y,, respectively. Figs. 6 and 7 show
the magnitude of reflection coefficient per two strips (re-
flectively per wavelength [15]) for short and open cir-
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Fig. 3. Reflectivity per groove and fractional frequency shift for groove
gratings.
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Fig. 4. Values of admittance mismatch. (a) Al/X-112°Y LiTaO,.
(b) Al/34°Y-X quartz. (c) Al/Y-Z LiNbO,. (d) Al/128°Y-X LiNbO,.
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Fig. 5. Values of normalized susceptance. (a) Al/X-112°Y LiTaO,.
(b) Al/34°Y-X quartz. (c) Al/Y-Z LiNbO;. (d) Al/128°Y-X LiNbO,.

cuited metallic gratings, respectively. The reflectivity per
single strip is one-half of the reflectivity per wavelength.
Our results for X-112°Y LiTaO; and 34°Y-X quartz sub-
strates agree well with the experimental results reported
by Wright [15]. Our results for ¥-Z LiNbO; and 128°Y-X
LiNbO; substrates, on the other hand, are different from
these experimental results [15], and agree approximately
with another experimental results [7] and the earlier the-
oretical results [23], [24].

The data in Figs. 3-7 may be useful for designing
groove or metallic gratings.

V. CoONCLUSION

An equivalent network approach was described for the
analysis of SAW gratings. Circuit parameters can be the-
oretically determined by applying the FEM to an infinite
array. In this approach, all of the effects of piezoelectric
perturbation, mechanical perturbation, and energy storage
are taken into account. Computed results for grooves or
aluminum strips on a piezoelectric substrate agree well
with the earlier theoretical and experimental results.

The frequency response of a uniform array can be easily
calculated by using the equivalent network in Figs. 1(b)
or 2(b) [20]. This approach may be applicable to new
types of reflectors [24] consisting of reflecting elements
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Fig. 7. Reflectivity per wavelength for open circuited metallic gratings.
(a) Al/X-112°Y LiTaO,. (b) Al/34°Y-X quartz. (c) Al/Y-Z LiNbO;.
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with both a positive and negative reflectivity, in which
each element is spaced with a period of one-quarter wave-
length.
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