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Large-wave-vector phonons in highly dispersive crystals: Phonon-focusing effects 

Shin-ichiro Tamura 
Department of Engineering Science, Hokkaido University, Sapporo 060, Japan 

(Received 7 March 1983) 

The anisotropic propagation or the focusing of large-wave-vector acoustic phonons in highly 
dispersive crystalline Ge is studied in detail. Our analysis is entirely based on an elaborate 
Born-von Karman model of the lattice dynamics which is constructed so as to reproduce the ob­
served phonon dispersion curves very accurately. Effects of the lattice dispersion upon the phonon 
focusing are found to be discernible above 0.3 THz and become drastic at frequencies higher than 1 
THz. These observations are made by studying complementarily the frequency dependences of the 
following objects: the shape of constant-frequency surfaces, the locations of phonon caustics, the 
distributions of phonons in real space, the angular dependences of phonon intensity, and the struc­
ture of group-velocity surfaces. A brief discussion is also given of the effects of isotopes which act 
to damp significantly the ballistic phonon intensity at frequencies in the I-THz range. 

I. INTRODUCTION 

In recent years there has been considerable activity in 
the area of high-frequency phonon propagation in 
solids. I - 7 This has been supported by the development of 
the techniques for generating and detecting acoustic pho­
nons of frequencies up to several THz.8 Some important 
information to be gained by the experiments utilizing such 
high-frequency nonequilibrium phonons may be the ef­
fects of lattice dispersion upon the phonon transport in the 
thermal-frequency range. A few years ago, Ulbrich et al. 
found in high-purity GaAs that near-zone-edge 
transverse-acoustic (T A) phonons propagate in ballistic 
fashion over macroscopic distances and reveal several 
features characteristic of a dispersive medium. 1 Subse­
quently, Dietsche et al. observed in Ge the ballistic flux 
patterns of the TA phonons of frequencies higher than 0.7 
THz, which are remarkably different from those obtained 
for lower-frequency phonons.3 The large feature of the 
findings by Dietsche et al. is now believed to be interpret­
able,9,10 based on the idea of phonon focusing ll ,12 modi­
fied by acoustic dispersion. 

The possible detection of the high-frequency T A pho­
nons at low temperatures is currently understood in terms 
of their lifetime due to anharmonic phonon-phonon in­
teractions. The most important three-phonon processes in 
the regime w=2rrv»kB T Ifi are shown to yield a short 
lifetime for longitudinal-acoustic (LA) phonons in propor­
tion to w- 5, but a very long one for the TA phonons as 
described by the factor eXf(alWlkBT), where a is a con­
stant of the order of unity. 3 The former prediction on the 
LA phonons has recently been established experimentally 
by Baumgartner et al. for a weakly dispersive and quasi­
isotropic CaF2 sample. 5 It should be noted here that 
natural Ge and GaAs include isotopes. The scattering of 
the phonons by isotopic atoms is highly frequency depen­
dent14 and severely restricts the ballistic phonon transport 
at THz frequencies. Indeed, owing to the presence of this 
scattering mechanism by the isotopes, Dietsche et al. had 
to prepare thin Ge samples of D.S-mm thickness to observe 
sharp images of ballistic phonons higher than 0.7 THz 
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(which are detected by Pb-oxide-Pb tunneling junction 
detector).3 

By a recent theoretical work on the isotope scattering of 
dispersive phonons in Ge,15 the scattering rate at frequen­
cies near 1 THz is shown to grow more rapidly than w4, 
the frequency dependence being valid in the low-frequency 
limit. According to the results, the mean free path of the 
phonons at 1.5 THz is reduced to 10 /-Lm or less. Hence in 
order to detect the unscattered phonons higher than 1 
THz, thin-film samples of thickness down to several mi­
crometers are required in principle. When experiments 
that observe the ballistic transport of the phonons up to 
several THz become feasible, their anisotropic spatial dis­
tributions due to the phonon focusing are expected to be 
quite different from those of the low-frequency phonons 
by the effects of the dispersion. 

The purpose of the present work is to make a 
comprehensive study of anisotropic phonon conduction, or 
phonon focusing, at dispersive frequencies. To do this, we 
should first understand correctly the dynamics of lattice 
vibrations of the medium beyond the continuum approxi­
mation. In this paper we shall devote our attentions to 
highly dispersive crystalline Ge, for which the nature of 
dispersion relations has been well understood by experi­
ments l6,17 with slow neutrons. The key entity which plays 
a fundamental role throughout our investigations is the 
so-called dynamical matrix of the lattice. The knowledge 
on the various properties of the phonons, such as the fre­
quency, the phase and group velocities, and the curvature 
of the constant-frequency surface (w-surface) of the pho­
nons, is derived straightforwardly from the eigenvalues or 
by appropriate differentiations of the relevant dynamical 
matrix. Hence as a start we try to construct the dynami­
cal matrix which reproduces very accurately the data for 
the phonon dispersion curves being obtained by the inelas­
tic neutron scatterings. We make this in the framework of 
the lattice dynamics according to the Born-von Karman 
scheme,18 which will be described in the next section. The 
three-dimensional representations of the w surfaces at typ­
ical frequencies in the I-THz range are then exhibited for 
TA mode phonons. The implications of the shapes of 
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these w surfaces to the phonon focusing near zone­
boundary frequencies will also be remarked on in Sec. II. 

The traditional description of the phonon focusing is 
based on a ray picture of the phonons. In this geometrical 
representation for the phonons, there exist certain direc­
tions called caustics along which the phonon flux becomes 
singular. 19 The caustics are associated with folding edges 
in the multivalued ray, or group-velocity surfaces, and 
provide important insight into the nature of the focusing. 
The sharp amplifications of the phonon intensity have ac­
tually been observed by experiments in the predicted caus­
tic directions.20,21 A further global understanding of the 
focusing is gained by plotting the distribution of the pho­
nons in the real space when the phonons are assumed to be 
distributed uniformly over the w surface. In Sec. III the 
frequency dependences of such configurations as the 
phonon-enhancement map and the location of the caustics 
will be studied. 

A more quantitative understanding of the focusing will 
be provided by calculating the enhancement factor of the 
phonons introduced originally by Maris 12 for low­
frequency phonons. The enhancement factor measures an 
enhancement of phonon flux in a specified direction rela­
tive to the magnitude it would have in an isotropic medi­
um, and thereby is connected directly to the phonon inten­
sity. In Sec. IV we shall study the angular dependence of 
the phonon intensity which is substantially determined by 
the enhancement factor. The structures found in the 
directional properties of the phonon intensity will also be 
discussed with reference to the group-velocity surfaces. 

Owing to the presence of highly frequency-dependent 
s~attering by the isotopes, it will be rather hard, in prac­
tIce, to arrange for the phonons of THz frequencies an ex­
perimental situation in which the mean free path of the 
phonons may be much longer than the distance between 
the phonon source and the detector. In the experiments by 
Dietsche et at., 3 the path lengths of the phonons are com­
parable to, or shorter than, their mean free path. In these 
cases, the production of diffusive phonons which yield 
predominant background signals should act to interrupt 
the observation of anisotropic, ballistic flux patterns due 
to the phonon focusing. We shall briefly describe in Sec. 
':' the effects of the isotope scattering upon the propaga­
tIon of near 1-THz phonons. 

Throughout this work we shall concentrate our analyses 
mainly upon the T A phonons, and the LA phonons will be 
touched upon only briefly. This is because the focusing of 
the LA phonons is rather moderate up to the frequency of 
about 3 THz and does not give rise to any sharp feature in 
the phonon intensity to be observed vividly.9 In addition, 
the strong anharmonic interaction and isotope scattering 
act to prevent severely the detection of the otherwise ob­
servable sharp focusing patterns of high-frequency near­
zone-boundary LA phonons. 

II. LATTICE DYNAMICS 

Here we briefly describe the lattice dynamics of Ge we 
ha~e employed. In the harmonic approximation the prop­
ertIes of the lattice vibrations in a crystal, or of the pho­
nons throughout the Brillouin zone, are deduced on the 
basis of the equations 

(a= 1,2,3; U= 1,2, ... , r), (1) 

where u and u' specify r atoms which consist of a unit cell 
and e stands for the polarization vector of the lattice 
which is normalized according to I e I = 1. The 3r X 3r 
Hermitian matrix Q is called a dynamical matrix which 
can be expressed in terms of interatomic force constants 
<I> 's as22 

X ~ <l>a/3U,u;l',u')e -iq '[x(/)- x(l')] , 

I' 

(2) 

where mu is the atomic mass and xU) is the position vec­
tor of the lth unit cell. In the Born-von Karman model 
of the lattice dynamics, the interatomic force constants are 
regarded as adjustable parameters whose values are to be 
detennined from a comparison of the predictions of the 
theory with experimental data, 

With respect to developing quantitative discussions of 
the phonon focusing at THz frequencies, we need to know 
correct dispersive characters of the phonons in Ge. In the 
present work we have employed the Born-von Karman 
scheme and then tried to construct a dynamical matrix 
which may reproduce as accurately as possible the data of 
the dispersion obtained by the inelastic neutron scatter­
ings, 16,17 as well as the data of elastic constantsY In this 
formal force-constant model, by adding interactions ex­
t~nding to the atoms at a distance, we can obtain, in prin­
cI,ple, t~e dyna~ical matrix which may yield the phonon 
disperSIOn relatIOns fitted to any degree of accuracy to 
those measured by the experiments, provided that the 
crystal is intrinsically regarded to be harmonic. In fact, 
Herman showed a long time ago that the interatomic 
forces at least u~ t~ fifth-nearest neighbors are required to 
r~prod~ce qualttatlvely the notable flattening of the 
disperSIOn curves in the TA branches of Ge,24 More re­
cent~y, Zdetsi~ and Wong extended this scheme including 
the ,mteratomlc force constants up to eighth neighbors,25 
Their .res,ults fit considerably the dispersion curves along 
the pnnclpal .:i-, L-, and A-symmetry directions. Howev­
er, two force constants in the seventh neighbor have been 
overlooked. 

In the present work we have tried to search the best­
fitted force-constant parameters also up to eighth-nearest 
neighbors, The values of these 31 force constants we have 
found are given in Table I with the notations of Herman,z4 
The searching procedure of the parameters we adopted is 
the same as that in Ref, 25; that is, the experimental data 
used in fitting process are 70 evenly distributed points on 
the phonon dispersion curves along three principal direc­
tions in addition to the Raman frequency and three elastic 
constants. With the use of the force constants in Table I 
we have diagonalized the dynamical matrix and found ' 

( I.:iV I) =.l n I vpt_vjXpt I _ 
v ~ expl -0,74% , 

av n i=1 Vi 
(3) 

where n = 71 is the total number of fitted frequencies. The 
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TABLE I. Fitted force constants for Ge ( 104 dyn!cm). 

4.2533 /1-(6) -0.0084 
3.7007 A(6) 0.0670 

V(6 ) -0.0945 
0.3317 0+ (6 ) 0.0359 

-0.7210 o (6) 0.0539 
0.2019 
0.1686 a l7l -0.0591 

(3171 0.1068 
-0.0696 /1-171 0.1560 
-0.2547 J..I71 -0.0209 
-0.2035 V(7) 0.1128 
-0.1377 0171 -0.0262 

0.1699 /1-IS) 0.0161 
-0.2556 AIS ) -0.1565 

viS) 0.0133 
0.1484 OIS) -0.0490 
0.5472 
0.1057 
0.1728 

value of Eq. (3) is in accordance with the estimated uncer­
tainties of the measured phonon frequencies ranging from 
0.3%-0.5% for optical branches and 0.3%-1% for 
acoustic branches.!6 

The comparison of the calculated frequencies with the 
experimental ones is shown in Fig. 1. The coincidence of 
our calculations with the experiments is quite satisfac­
tory except for the LA phonons on the Brillouin-zone 
boundaries L -K. This close coincidence tells us that the 
effects of isotopes and anharmonicity upon phonon fre­
quency are rather small in Ge. The slight deviations 
recognized for the LA phonons at the zone boundaries 
may be remedied by adding interactions of atoms beyond 
the eighth neighbors, or by including the anharmonic ef­
fects. 26 

In Fig. 2 we have displayed the computer plot of the 
one-phonon density of states together with the contribu­
tion of each branchY Comparing it with the results for 
the density of states by Nelin and Nilsson!7 who employed 
the extended sampling method with experimental data, 
our results are much more smooth and exhibit numerous 

N 

i=a 
>-
~6 
w 
::::l 

~4 
a:: 
IJ.. 

2 

K x r 

critical points more distinctly. 
Plotted in Figs. 3(a)-3(c) are the sections by the (110) 

plane of the U) surfaces in the wave-vector space which are 
obtained for three acoustic branches. (We refer to the 
phonons in the lower and higher TA branches as Tl and 
T2 phonons, respectively.) In these maps we immediately 
recognize conspicuous deformations of the U) surfaces at 
dispersive frequencies. Since the focusing properties of 
the phonon are closely connected with the shape of the U) 

surface through the definition of the group-velocity vec­
tor, it is such that the deformations of the U) surfaces 
should lead to drastic alterations of the focusing behaviors 
of the large-wave-vector phonons. For instance, the 
strong magnification of the T2 phonon focusing in the 
[110] axis and also in the direction rotated about 25° away 
from the [001] axis are expected at near-zone-boundary 
frequencies. In addition, the sharp focusings of the LA 
phonons in the [001] as well as [111] directions are expect­
ed at frequencies much higher than 1 THz in spite of the 
fact that the former direction is the defocusing one in the 
low-frequency limit. These situations for the LA phonons 
have already been described in Ref. 9. 

Here we remark that the correct understanding of the 
phonon focusing even in the (110) plane in the real space 
spanned by the group-velocity vector requires the 
knowledge on the whole three-dimensional shapes of the OJ 

surfaces. This is because there exists, in general, more 
than one direction of the wave vectors for which the group 
velocities of the phonons point in the same direction, 
though they may be different in magnitude. In Figs. 
4(a)-4(d) we have illustrated the first octants of the OJ sur­
faces for the T A phonons at 0.3 and 1.5 THz. In these 
figures the regions of both the negative curvature (saddle 
areas) and positive curvature (concave and convex areas) 
are indicated explicitly. (The determination of the curva­
ture of the U) surface will be described in Sec. III.) Now it 
should be noted that the former frequency can be viewed 
as a typical one in the weak dispersive region because the 
shapes of the OJ surfaces at this frequency are nearly iden­
tical to those in the low-frequency limit.28,29 In contrast, 
the latter one may be regarded as the frequency in the 
highly dispersive region because of marked deformations 
of the OJ surfaces. 

The effects of the acoustic dispersion upon the shape of 

A L L K w x 
FIG. 1. Phonon dispersion curves for Ge. Solid lines show our calculations. Experimental values (closed circles) are from Refs. 16 

and 17. 
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10 

FIG. 2. Computer plot of one-phonon density of states calcu­
lated for Ge. 

the w surfaces are qualitatively understood by making 
reference to Fig. 4. For the T1 mode, by increasing the 
frequency the saddle areas which extend from the three­
fold [111] direction toward the [100] direction become 
narrow and the fourfold concave areas which are confined 
to exist in the proximity of the [100] direction shrink gra­
dually. The latter areas are checked to disappear at a fre­
quencyclose to 1.2 THz. On the other hand, for the T2 
mode, the saddle areas which spread on either side of the 
(100) plane broaden by increasing the frequency. These 
changes in the w surfaces make us conceive the reduction 
(magnification) of the T1 (T2) phonon focusing in the 
directions existing in the vicinity of the (110) [(00)] plane. 
However, for much more detailed understanding of the 
focusing characteristics beyond those described hitherto 
we need to examine the directional properties of the pho­
nons in the real space. This requires extensive numerical 
calculations based on the force-constant model described 
in this section and will be carried out in the following sec­
tions. 

III. CAUSTICS AND DISTRIBUTIONS 
OF PHONONS IN THE REAL SPACE 

Owing to the presence of crystal anisotropy, the w sur­
face of the phonons consists, in general, of areas of both 
the positive and negative curvatures which are separated 
from each other by the zero-curvature parabolic points. 
The direction of the group velocity is, by its definition, 
given by the outward normal of the w surface. According­
ly, an infinity of the wav~ vectors is mapped into a single 
direction in the real space which is parallel to the surface 
normal at the parabolic point. In other words, in such a 
direction, which is called a caustic, the phonon flux ex­
plodes. Thus the caustic provides a singularity in the pho­
non intensity which characterizes the phonon focusing. In 
this section we shall investigate the effects of the lattice 
dispersion upon the locations of the caustic and also upon 
the phonon distributions in the real space. 
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1. 90~0.02 
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.\ (3.51 ) o +--'-'r--'---+-L-f--L.,--l-----,'----+--I--+---L~i,_l-" 3.54±0.02 
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+--'L-f--'-...,L-'-.--'--,-I---,L----+----,,.L-~-'----,.._L,_...::. 6. 37 ~ 0.03 

1.0 0.5 
q (2lt/a) 

FIG. 3. Sections by (lTD) plane of calculated (j) surfaces of (a) 
Tl mode, (b) T2 mode, and (c) LA mode. (Frequencies indicated 
are in units of THz.) Frequencies at zone-boundary points X, L, 
and K are shown in parentheses; the calculated value is in the 
upper row and the experimental value is in the lower row. 

A. Caustics 

To begin, let us denote by dnCq,j) an infinitesimal solid 
angle occupied by j-mode phonons in the wave-vector 
space, and by dn(vCq,j» the corresponding solid angle in 
the real space spanned by the group-velocity vector v. 
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[001] (0 ) [001] (b) 

T2 mode 

0.3 THz 

[100] 
CONVEX 

[OOlJ (e) 
[001] (d) 

[100] CONVEX 

CONVEX 

FIG. 4. Plots for the first octants of the (j) surfaces of (a) T1 mode at 0.3 THz, (b) T2 mode at 0.3 THz, (c) T1 mode at 1.5 THz, 
and (d) T2 mode at 1.5 THz. The dashed lines which separate the saddle regions from the concave or convex regions are the traces of 
the parabolic points with vanishing curvature. 

Then it can be deduced that the Gaussian curvature K{b of 
the m surface [defined by m=m("q,j)] is related to these 
solid angles as30 

q 2K",Cq,j) = dO(v(q,j» 

cos8(q,j) dO(q,j) 
A-1(q,j) , (4) 

where q = I q I and 8 is the angle between q and V. It 
should be pointed out that the first equality of Eq. (4) 
holds irrespective of the presence of the dispersion, and 
the second equality defines the phonon-enhancement fac­
tor A. The ratio of the solid angles, or the enhancement 
factor A, is calculated by the formula, 12 

A -I(q,j)= [~]3 
v(q,j) 

. v(q,j)·[dVI(q,j)XdV2(q,j)] 
X w 

q'(dq\Xdq2) 

where v = I v I , dq 1 and dq2 are infinitesimal wave vec-

tors (noncollinear to each other), and dVI and dV2 are the 
corresponding increments of the group-velocity vector as­
sociated with the changes q-+q +dql and q-+q +dq2, 
respectively. Here, in order that A given by Eq. (5) de­
scribes through Eq. (4) correctly the curvature of the m 
surface at dispersive frequencies, the vectors dq 1 and dq2 
should be taken to be tangential to the surface. Of course, 
this restriction can be lifted in the low-frequency limit be­
cause the shape of the m surface is independent of the 
magnitude of the wave vector. However, it is essential to 
obtain the correct enhancement factor and the curvature 
of the m surface at a fixed and finite frequency. 

The calculation of A in accordance with Eq. (5) requires 
the knowledge of the derivatives of the frequency with 
respect to the wave vector up to second order, i.e., 
am/aqa=va and a2m/aqaaq{J=avalaq{J' In terms of the 
dynamical matrix, these can be derived from the following 
formulas: 

am2(q,j) C~I)(q;j,j). 
aqa 

(6) 
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a2 2(- ') w g,j -C(2)(-.. . ) a aq - a/1 q,j,j 
qa /1 

where 

C(n) (-., ")-C(n)* (-"") 
JLl, ... ,JLn q,j,j - JLl, ... ,p.n q,j ,j 

= l: l: e:(u I q,j) 
a,/1u,u' 

xep(u'l q,j') (8) 

and the summation over j' extends over the optical as well 
as acoustic branches. We have obtained the curvature and 
then the caustics of the T A phonons at the dispersive fre­
quencies by deriving analytical expressions for both the 
first and second derivatives of the dynamical matrix, 

(0 ) [lllJ 

, 
\... ~ .. 
, '" 

E 

l '/,0 

~ 
\ 
~\O 

\ 

C ________________________ -- --1:'-
[OOU ..c-_~:;Ji?~~~-~-~~-~____:. 

20 30 40 [101J 
9 (de9) 

(c) 
[l11J 

1.0 THz 

b() .e-
..,() ~ 

~ 0-.. 
'" ~7.0 

~ 
\ 

_-------------------1\0 

I 
[OOlJ 

10 20 30 40 [101] 
9 ( de9 ) 

which includes the interatomic forces up to eighth neigh­
bors. 

The locations of calculated caustics of the T A phonons 
are shown in Figs. 5(a)-5(d) for 0.3, 0.7, 1.0, and 1.5 THz, 
respectively. The diagrams are the polar projections of the 
irreducible ~8 th sector of the section of the caustic sur­
faces by unit sphere in the real space. The effects of the 
acoustic dispersion upon the locus of the T2 phonon caus­
tics are rather simple, that is, with increasing the frequen­
cy the caustics shift rapidly away from the (100) plane. 
This behavior has been supported by experiments.3 The 
theoretical frequency dependence of the locus of T2 caus­
tics is given in Fig. 6. According to this figure, the experi­
mental value of the opening angle of the T2 caustics ob­
tained with the tunneling junction detector corresponds to 
the frequency of 0.8 THz. 

In contrast, the change of the singularity patterns for 
the Tl phonons is more complex. We see that there are 
two sets of the caustics near the [100] directions. Firstly, 
the inner structure of the caustics in the proximity of the 
[100] axes contracts with increasing the frequency and 
then disappears at a frequency close to 1.2 THz (see Fig. 
6). (This structure of the caustics is originated from the 
fourfold closed curves of the parabolic points encircling 

(b) 
[111] 

\ 
~\O 

\ 

----------r 
10 20 30 40 [101] 

9 (de9) 

[111] 
(d) 

1,5 T Hz 

\-
~ ~() -e-

..,() , 
~ ~ 

----"G\ :A 
.... <:J 

- l '/,0 ~ 
, 

- \ - r 

L \0 
, , \ 

, , c. 

I 
[001] 

10 20 30 4O [101] 
9 (de9 ) 

FIG. 5. Polar plots for the sections of caustic surfaces by the fundamental 418 th sector of a unit sphere in the real space. Frequen­
cies selected are (a) 0.3 THz, (b) 0.7 THz, (c) 1.0 THz, and (d) 1.5 THz. Solid lines indicate the Tl mode and dashed lines represent 
the T2 mode. 
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20 

(110) 

T2 
, , 

(from [110] ) , 
I 

I 

0. 
I 

I 
III I 
~ I 

I 
UJ I 
...J 10 
C> I 

Z I 

« I 
I 

I 

T1 (from [001] ) 

---
O+-'-'-'-~-r~~~~-.~~~~r-+ 

o 0.5 1.0 1.5 
FREQUENCY (THz) 

FIG. 6. Calculated locations of the caustic directions vs fre­
quencies.in the (ITO) plane. Solid line represents the locus of the 
inner structure of the Tl caustics in the proximity of the [001] 
direction. The angle shows the value measured from the [001] 
direction. Dashed line represents the locus of the T2 caustics 
measured from the [110] direction. 

the concave regions on the w surface.) At the same time, 
the caustics situated outside those mentioned above can 
also be seen to deform considerably. The departure from 
the (110) planes of the caustics which extend from the 
[100] toward [i 11] directions is remarkable. 

It should be noted that the caustics which give rise to a 
threefold-symmetric cusp structure around the [111] 
directions remain to exist almost unchanged in all these 
figures. The presence of this structure at higher frequen­
cies has made the interpretation of the image of the pho­
nons higher than 0.7 THz obtained by the Pb-oxide-Pb 
tunneling junction detector somewhat difficult. This is be­
cause in the image the focusing structures of the T1 pho­
nons, which develop from the [100] to [111] directions, are 
missing, including the cusp structures, though they can be 
seen vividly in the low-frequency image.3 Then we have 
examined more closely the origins of these structures by 
referring to the geometrical structure of the w surfaces. 
For illustration, the details of the lines of parabolic points 
on the w surfaces at 0.3 and 1.5 THz are displayed in Figs. 
7(a) and 7(b), respectively. Also indicated in these figures 
by dotted lines are the directions of the wave vectors 
which lie out of the (110) planes but are accompanied by 
the group-velocity vector of the T1 phonons oriented 
parallel to the same plane. Note that the various points 
marked A,B, ... , are mapped onto A,B, ... , respective­
ly, in Figs. 5(a) and 5(b). It can be shown that the cusps 
on the caustic lines arise when the direction of vanishing 
Gaussian curvature touches the parabolic line on the w 
surfaceY The points on the w surface which yield the 
cuspidal edges .on the caustics are C and H in Fig. 7(a), 
and C and Fin Fig. 7(b).32 
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1,10 
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FIG. 7. Parabolic lines on the w surfaces at (a) 0.3 and (b) 1.5 
THz. Solid lines indicate Tl mode and dashed lines represent 
the T2 mode. Dotted lines show the directions out of the (110) 
plane of the wave vectors whose corresponding group-velocity 
vectors of Tl phonons point the directions in the (110) plane in 
the real space. The positions marked by A,B, ... , are mapped 
onto A,B, ... , respectively, in the real space shown in Figs. S(a) 
and S(d). 

From Fig. 7(b) we know that at 1.5 THz the points on 
the comparatively short portion of the parabolic lines be­
tween E and F, which extend over 118~,11t/>_ = 1.5",0.3° on 

q q 
the w surface, are mapped onto the corresponding long 
section E to F along the caustics which extend over 
118'v,I1t/>-v =6.5°,8° in the real space. This suggests that 
the phonon intensity along the caustics E to F should be 
reduced considerably as compared with that along the 
caustics G to H at 0.3 THz. 

B. Phonon-enhancement maps 

More explicit information on the accumulation of the 
phonons on the caustics may be gained by plotting the 
directions of the group-velocity vectors [which are deriv­
able from Eq. (6)] onto the polar plane of the real space. 
In Figs. 8(a)-8(d), the distributions of the T A mode pho­
nons in the real space can be viewed. In these plots we im­
mediately recognize the presence of heavy accumulation 
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FIG. 8. Phonon distributions in the real space at (a) 0.3, (b) 0.7, (c) 1.0, and (d) 1.5 THz. These maps are constructed by plotting 
the directions of group-velocity vectors which are associated with the wave vectors on the (J) surface distributed with a separation 
M-q,c5q,-q= 1°, 1° in the sector 0" ~ O-q ~90° and 0° ~ t/lq ~45°. 

lines of directional points which definitely separate the re­
gions where the phonons are focused from those that are 
defocused. White we can convince ourselves that the loca­
tions of those accumulation lines coincide with those of 
the caustics shown in Figs. 5(a)-5(d), it is still seen that 
the caustics do not necessarily associate high concentra­
tions of the points that are discernible from their sur­
roundings. Specifically, the deconcentration of the points 
on the caustics near the [111] directions is notable at 
higher frequencies. In fact, a distinctive concentration of 
the directional points can no longer be seen in the map of 
1.5 THz. These results are really in accordance with our 
expectation stated at the end of Sec. III A. 

In the ray picture for the phonons, the phonon flux 
tends to be infinite on the caustics by Eq. (4). However, 
the above consideration tells us that the infinity of the 
phonon flux on the caustics is integrable; that is, when in­
tegrated over a finite solid angle (which may correspond to 
the detection of the flux by a finite-size detector), the pho­
non flux becomes finite and is not uniform on the caustics. 

We also remark that with the development of the struc­
tures of the T 1 and T2 phonons which extend on either 
side of the (110) and (100) planes, respectively, the density 
of points within these structures becomes gentle at higher 
frequencies. All these results explain partly the alteration 
of the phonon image obtained by the Pb-oxide-Pb tunnel­
ing junction detector from that observed by the Al bolom­
eter which responds rather effectively to the lower­
frequency phonons.3 Much more quantitative discussions 
on the ballistic TA phonon intensities will be given in the 
next section. 

To conclude this section, the caustics and associated T A 
phonon distributions are expected to change drastically in 
the THz frequency region due to acoustic dispersion. An 
important observation is the fact that the caustics actually 
play critical roles in the analysis of the phonon focusing, 
but the search for their locations does not invariably lead 
to the correct understanding of the behavior of the phonon 
flux. More elaborate theoretical studies on the phonon 
distribution or the phonOIi intensity are required. 
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IV. PHONON INTENSITY 

A. Energy flux of the phonons 

Clearly, a quantity which may be obtained directly by 
experimental measurements is the phonon intensity, or the 
energy flux of the phonons. This implies that the study 
on the phonon intensity should provide more direct infor­
mation for the dispersive effects on the phonon focusing 
to be tested by the experiments. 

Here let us consider the phonons with frequencies in the 
range OJ-OJ+dOJ. Then the energy flux I of those pho­
nons of mode j, which may be emitted into an infini­
tesimal solid angle dO(n) around the unit vector n 
( I n I = 1) in the real space, is given by 

I(OJ,j;Ii)dO(Ii)dOJ 

=w ~ N(q,j;d3q)v(q,j)B.".,Cq,j) ' 
{d3q] 

v(q,j)lln 

(9) 

where the summation should be taken over possible 
volume element d 3q in the wave-vector space of the pho­
nons for which the group-velocity vector may be parallel 
to n, or 

v(q,j) _ 
=n, 

v(q,j) 
(10) 

and N represents the number of the phonons which take 
part in this flux. This number can be written as 

N(q,j;d 3q)B (_ .)=f(OJ,T)dD.,(q,j)dOJ, (11) 
ltJ,ltJ q ,) 

with the definition 

I 82 [n- v(!,~) ]dOCq,j)=I. (16) 
v(q,j) 

Hence identifying dO(n) with dO(v(q,j», we have 

I(OJ,j;n)=~w3f(OJ,T)W(OJ,j;n) , (17) 
(21T) 

where 

W( .• -)- I B"".,(q,j) A(-') OJ,j,n - q,j 
c 2(q,j)cosO(q,j) 

XB2 [n- v(q,j) ]dOCq,j) . (18) 
v(q,j) 

Thus it can be seen that the enhancement factor A of the 
phonon flux plays the central role in determining the pho­
non intensity. Incidentally, cosO(q,j)=dq,j)/v(q,j) 
holds for nondispersive phonons, and in this case Eq. (15) 
is similar to the expression derived by Rosch and Weis for 

where f is a distribution function of the phonons which is 
assumed here to depend on both the frequency and a tem­
perature T of the local source of the phonons. The expli­
cit expression of f, however, relies deeply upon the details 
of the excitation mechanisms of nonequilibrium phonons 
though it may be replaced essentially by the Planck distri­
bution at low excitation levels of the phonons.33 On the 
other hand, assuming that the excited phonons are distri­
buted uniformly in the wave-vector space of the crystal, 
the local phonon density of states dD., takes the following 
form: 

dD",(q,j)dOJ=~dS.,(q,j)dql , 
(21T) 

(12) 

where V is the volume of the excitation region, dS., is an 
element of area on the surface of the selected constant fre­
quency OJ=OJ(q,j) in the wave-vector space, and dql 
denotes the perpendicular distance between the surfaces OJ 

constant and OJ+dOJ constant, i.e., 

d _ dOJ(q,j) 
ql- . 

v(q,j) 
(13) 

Accordingly, it is derived that 

. _ V ~ dS",(q,j) 
I(OJ,j;n)=--3 wf(OJ,T) ~ , 

(21T) dO(n) 
(14) 

where the sum is taken over possible surface elements for 
which the surface normal becomes collinear with the vec­
tor n. Introducing further the phase velocity c and mak­
ing use of the angle 0 between q and V, Eq. (14) may also 
be written as 

(15) 

the phonon flux in thermal equilibrium. 34 

Now plotted in Figs. 9(a) and 9(b) are the angular distri­
butions of W's and their sum in the (110) plane of the T A 
phonons at frequencies 0.3 and 1.5 THz, respectively. 
Note that the angular dependence of the phonon intensity 
is exclusively included in W, and its sharp features stem 
essentially from the phonon-enhancement factor A. This 
is because the factor c 2cosO in Eq. (18) depends rather 
moderately upon the direction and acts only to reduce the 
phonon intensity of the T2 mode relative to the Tl mode, 
and also to reduce the overall magnitude of W at lower 
frequencies. 

Taking these factors into account, the structures at 0.3 
THz are found to be nearly identical to that of the phonon 
intensity in the low-frequency limit.2o,29 Comparing with 
the results at 0.3 THz, the reduction of the phonon inten­
sity in the neighborhood of the [111] direction is indeed 
remarkable in the figure at 1.5 THz. The directions 
marked by arrows in these figures are those at which the 
caustics intersect with the (10) plane [see Figs. 5(a) and 
5(d)]. The positions of the arrows coincide well with the 
directions along which the phonon intensity is amplified 
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FIG. 9. Angular dependences of TA phonon intensities in the 
(ITO) plane integrated over 0.25' and 2S within and perpendicu­
lar to the plane, respectively. Frequencies are (a) 0.3 and (b) 1.5 
THz. Dotted and dashed lines represent the contributions of TI 
and T2 phonons, respectively. Solid lines are their sum. Posi­
tions indicated by arrows show the directions at which the caus­
tic surfaces intersect with the (I fo) plane [cf. Figs. 5(a) and 
5(d»). 

strongly. Slight deviations of Hand Gat 0.3 THz and of 
F and E at 1.5 THz from the peak locations are the effects 
of finite magnitude of dD(Ji) assumed in the calculations. 
When we postulate a finer angular resolution of the pho­
non detection perpendicular to the ( 110) plane, more satis­
factory coincidences are obtained. Another characteristic 
feature observed in the phonon intensity at 1.5 THz is the 
present of the sharp hump in the T2 mode which is locat­
ed at 6S measured from the [001] axis. The origin of this 
structure cannot be attributed to the caustics in the (1 10) 
plane and will be discussed below. 

B. Group-velocity surfaces 

Further insight into the origins of various singular 
behaviors of the phonon flux including the one mentioned 

above may be provided by considering the group-velocity 
surfaces. In Fig. 10 the (110) sections of the group­
velocity surfaces of the T A phonons are plotted for 0.3 
and 1.5 THz. This figure is obtained by selecting a set of 
group-velocity vectors which lie within ±0.1° of the (110) 
plane. Hence the density of the plotted points represents 
again the concentration of the phonons in the real space. 

Apparently these surfaces are considerably complex in 
comparison with the (j) surfaces in the wave-vector space. 
It is, on one hand, due to the fact that the transitions of 
the phonon modes from Tl to T2 and vice versa happen. 
At lower frequencies these transitions tum up, owing to 
the intersection of the (j) surfaces of two T A modes in the 
[111] direction. At higher frequencies, e.g., 1.5 THz, ad­
ditional intersections take place due to large deformations 
of the (j) surfaces. At 0.3 THz the directions along which 
the T2 phonons cannot propagate in the (110) plane are 
those within ±14.3° on either side of the [111] axis, 
whereas at 1.5 THz they become 10.0° to 15.0° rotated 
away from the [001] axis, in addition to those within 
± 1O.e on either side of the [111] axis. 

The more substantial complexity stems from the mul­
tivaluedness of the surfaces, reflecting the fact that the 
phonon flux of a TA mode in a given direction consists 
generally of more than one phonon traveling with group 
velocities different in magnitude. (They should, in princi­
ple, be observed separately by the high-resolution time-of­
flight experiments.) In particular, certain phonons in the 
Tl branch whose wave vectors lie outside the (110) plane 
can still have group velocities in this plane. The locations 
of the corresponding wave vectors on the (j) surfaces have 
already been depicted in Figs. 7(a) and 7(b). The group­
velocity surfaces which are constructed by these phonons 
are those branches in which no transition points to the T2 
phonons exist in Fig. 10 . 

Now the comparison of these traces at different fre­
quencies enables us to identify some characteristic changes 
of the group-velocity surface other than the overall shrink­
age at the higher frequencies (which is evidently due to the 
dispersion). One of the observations may be the remark­
able growth at the higher frequency of the sectioned fold 
of the T2 mode in the vicinity of the [110] direction, 
which results from the development of the negative curva­
ture region of the (j) surface near the [110] direction [see 
Fig. 3(b»). It has been well established that the sectioned 
fold edges of the group-velocity surfaces are originated 
from the parabolic points on the associated (j) surfaces and 
thereupon indicate the caustic directions. The positions of 
the caustics in the (110) plane shown in Figs. 5(a) and 5(b) 
are really in one-to-one correspondence with the fold edges 
marked in Fig. 10. Here we remark that at the points H 
of 0.3 THz and F of 1.5 THz, the complete surface ter­
minates making a cuspidal edge, though it cannot be seen 
so obviously due to an overlap with the surface of another 
branch. 

Another outstanding feature observed in Fig. 10 may be 
the presence of a sharp extremum (equal to 2.85 X 105 

cm/s) in the trace of 1.5 THz situating at 7.0° measured 
from the [001] direction. The appearance of this local ex­
tremum of the group velocity stems from the fact that for 
the T2 mode, the contour lines of constant frequency in 
the wave-vector space [Fig. 3(b)] are in close order around 
the corresponding direction, i.e., about 25S to the [001] 
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FIG. 10. Sections by the (lIO) plane of group-velocity surfaces of TA phonons at 0.3 and 1.5 THz. Wave vectors on each w sur­
face distributed with a separation oe-q,o<p-q=O. 1',0. I' have been used to generate a set of group-velocity vectors. Each point 
represents one of these vectors which lie within 0.1' of the ( 110) plane. The open triangles indicate the positions at which the transi­
tions from TI to T2 and vice versa happen. The::se surfaces fold at points marked by A,B, ... , and their directions coincide with the 
locations of the corresponding points A,B, ... , in Figs. 5(a) and 5(d). 

axis as well as around the [110] direction. Incidentally, 
note that at the same frequency the sectioned lU surface of 
the T2 phonons possesses a portion which is regarded to 
be approximately flat over a finite range of directions, e.g., 
19' to 23° rotated away from the [001] axis. The existence 
of this portion of the lU surface gives rise to the strong 
enhancement of the phonon intensity to be observed in the 
T2 phonons near the [001] direction, which cannot be at­
tributed to the caustics. However, at frequencies higher 
than 1.5 THz, this hump of the T2 phonons will be re-· 
placed by the sharp ridges of the phonon intensity charac­
teristic to the caustics because the curvature of the corre­
sponding sections of the lU surfaces changes its sign at a 
frequency near 1.5 THz. 

V. ISOTOPE EFFECfS 

The effects of the phonon-isotope interaction upon the 
ballistic transmission of near 1-THz phonons are now dis­
cussed. Owing to the presence of the scattering by the iso-

topes, the ballistic component of the phonon intensity in 
Ge is attenuated. The lifetime of the phonons limited by 
the isotope scattering is described by the relaxation time 
which is spatially isotropic and independent of the polari­
zations of the phonons, i.e.,15 

r-l(lU)= ~ VaglU2!il1(lU) , (19) 

where Va is the volume per atom and !ill denotes the one­
phonon density of states shown in Fig. 2. The constant g 
is defined by 

g= ~ri(1-mi/m)2, (20) 

where ri and mj are the relative fraction and mass of the 
ith isotope, and m is the average mass of all atoms. For 
Ge, g takes a value of 5.87 X 10-4• In the low-frequency 
limit, !ilI(lU) OClU2 and then r- I oclU4• However, near 1-
THz frequencies !ilI(lU) grow more rapidly than lU2 (see 
Fig. 2). The effects of the dispersion upon r- I amount to 
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about 20% at 1 THz and become severe at zone-boundary 
frequencies. 

In the presence of the isotopes, the expression for the 
phonon intensity (18) should be modified as 

A (q,j)->-A(q,j)exp[ -t(q,j)!r(w)] , (21) 

where t(q,j)=dlv(q,j) with v(q,j)lln is the ballistic 
time of flight of the relevant phonons that traverse the 
distance d between the phonon source and the detector. 

We have displayed in Fig. 11 the transmission rate of 
the ballistic phonons which travel along three principal 
directions of the cubic crystals and then arrive at the 
detector without being subject to the scattering. The con­
figurations of the phonon detection assumed in the evalua­
tion of t are just those employed in the experiments by 
Dietsche et at 3; that is, the phonon source is assumed to 
be scanned across a (lTO) surface of a Ge crystal and the 
arrival of the phonons is observed with a fixed detector on 
the opposite face at a distance of 0.5 mm. As we have 
pointed out repeatedly, the TA phonons which can pro­
pagate in one direction consist, in general, of several 
branches. The results shown in this figure are those of the 
phonons for which q becomes collinear with v for the 
[100] and [110] propagations (i.e., pure mode phonons), 
and q lies in the (110) plane for the [111] propagation. 
For the propagation in the [110] direction, the only results 
of the T2 phonons which focus strongly in this direction 
are represented. 

Now the ballistic components of the phonons can be 
seen to decrease very rapidly at v> 0.3 THz. At the 
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FIG. 11. Theoretical rates of ballistically transmitted pho­
nons under the presence of the isotope scattering in the experi­
mental configuration by Dietsche et al. (Ref. 3); solid line, [100] 
propagation (q'11 [100], both TI and T2) with a path length 
0.5(~ mm; dashed line, [111] propagation [with q parallel to 
the (110) plane, TI] with path length O.S( V3/2) mm; dotted 
line, [110] propagation (qll[ llO],T2) with a path length 0.5 mm. 
V'hresh=0.7 THz is the lowest frequency for which the Pb-oxide­
Pb tunneling junction detector can respond. 

threshold frequency, i.e., 0.7 THz, of the Pb-oxide-Pb tun­
neling junction detector, the rate of the unscattered pho­
nons which may be detected is 26% for the [110] propaga­
tion but it amounts to 14% and 12.5% for the [100] and 
[111] propagations, respectively. The scattering of the 
phonons traveling in the [111] direction is more frequent 
than those in the [100] and [110] directions, owing to the 
smallness of the group velocity, e.g., v[!!!] =2. 76X 105, 

v[\(JO]=3.36XI05, and v[1IO]=3.48X105 in units of 
cm s-!, and also owing to a relatively long path length of 
d =0.5(V372) mm for this propagation of the assumed 
configuration (incidentally, d=O.5(V2) mm for the [100] 
propagation). Accordingly, in the experimental arrange­
ments by Dietsche et aI., 3 the scattering of the phonons 
by naturally occurring isotopes in Ge results in signifi­
cantly reducing the ballistic phonon intensities which are 
observed in the [100] and [111] directions. As remarked 
in Sec. III, the experimental value of an opening angle of 
the T2 phonon caustics obtained by the tunneling junction 
detector corresponds to the phonon frequency of 0.8 THz. 
At this frequency, the isotope scattering of the phonons 
renders the rate of the ballistic transmission of the T2 
phonon intensity to be 9% in the [110] direction. These 
observations convince us that the detection of quasimono­
chromatic phonons in a narrow band of frequencies 
0.7-0.8 THz is really intelligible. 

We further comment on the absence of the threefold 
cusp structures of the focusing in the image of the pho­
nons higher than 0.7 THz. This has partly been explained 
before by the dispersive effects on the phonon focusing. 
However, as we can understand from Fig. 8, it may be 
rather hard to account for quantitatively the reason based 
only on the dispersion. This is because the theoretical 
phonon distribution pattern near the cusp of 0.7 -THz pho­
nons is not so drastically modified from the corresponding 
pattern of 0.3-THz phonons which may be observed by the 
Al bolometer. In this connection the scattering of the 
phonons by isotopic disorder in Ge should again play an 
important role. Indeed, due to the presence of this scatter­
ing mechanism, it is only 12.5% of 0.7-THz phonons 
emanated in the [111] direction that can respond to the 
detector as unscattered ballistic phonons, whereas they 
amount to 94% at 0.3 THz. A more complete analysis of 
the phonon intensity, including the effects of the phonon 
scattering, requires further knowledge on the distribution 
function j(w,T) together with the value of T which de­
scribes the local temperature of the phonon source. 

To conclude, in order to verify experimentally the 
predicted focusing structure near the [111] direction, 
much thinner samples, or the configurations in which the 
path length of the phonons for the [111] propagation be­
comes much shorter, should be prepared. 

VI. CONCLUDING REMARKS 

In this paper we have given a detailed theoretical 
analysis for the focusing of the T A phonons in Ge with 
frequencies ranging 0.3-1.5 THz. Our calculations are 
based on a lattice-dynamical model which very accurately 
describes the phonon dispersion relations. A complemen­
tary study of various quantities which account for the 
directional characteristics of the phonons, such as the 
caustics, phonon distributions in the real space, and angu-
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lar dependence of the phonon intensity, reveals consider­
able alterations of the focusing properties of the phonons 
at frequencies higher than 0.3 THz. If we appropriately 
take into consideration the isotope effects upon phonon 
conduction which become significant at frequencies near 
the I-THz range, our results are in good accordance with 
the experimental findings by Dietsche et al.,3 including 
the absence of the structure near the [111] directions. 

The results exhibited extensively in the present work are 
those on Ge. However, the same kinds of behaviors of the 
phonon focusing at dispersive frequencies are expected as 
well for GaAs and Si. This is because their dispersion 
curves are very similar to those of Ge characterized by 
marked flattening of the TA branches in the [Ill] and 
[100] directions. Especially, for GaAs, even the magni­
tudes of the frequencies lying on the dispersion curves of 
acoustic branches are very close to those of Ge, while Si is 
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