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Localized vibrational modes in superlattices 

Shin-ichiro Tamura 
Department of Engineering Science, Hokkaido University, Sapporo 060, Hokkaido, Japan 

(Received 12 September 1988) 

The effect of an impurity cell on the vibrational properties of superlattices is studied theoretically. 
The continuous equation governing the elastic-wave motion in a superlattice is transformed exactly 
to a discrete form which is analogous to the equation for the displacement in one-dimensional 
discrete lattices. With the use of this equation isolated frequencies associated with the vibrations lo
calized near the impurity cell are predicted in the band gaps at the center and boundary of the fold
ed Brillouin zone of the host superlattice. Numerical calculation reveals further the existence of im
purity states in the intrazone gaps due to intermode Bragg reflection. The calculated phonon 
transmission rate shows local enhancements due to these localized states, suggesting their observa
bility by phonon spectroscopic experiment with a quasi monochromatic phonon detector. 

I. INTRODUCTION 

Recently, there has been an accumulation of studies on 
the vibrational properties of superlattices (SL'S).1-15 
However, they are mainly restricted to those in perfect, 
periodic,I-12 and quasiperiodic systems. \3-16 The vibra
tions in disordered SL's should also provide an interest
ing subject of both experimental and theoretical 
researches. The lattice vibrations in disordered crystals 
analogous to the corresponding problem for the SL's 
have been studied for more than 20 years. 17 It is well es
tablished that even a small concentration of defects in a 
crystal lattice can radically alter the frequencies of the 
normal modes of vibration as well as the pattern of atom
ic displacement associated with these modes. The same 
kinds of effects are also expected to occur when the layers 
with different thickness or different constituents, i.e., im
purity cells, are embedded in an otherwise perfect SL. 

More specifically, when a sufficiently light-mass defect 
is added substitutionally to a crystal, it causes a mode 
outside the band of allowed frequencies of the perfect 
crystal. This is a local mode of the vibration whose am
plitude is strongly localized in the vicinity of the defect. 
In a SL with an impurity cell the similar local mode, if 
any are present, should appear in frequency gaps pro
duced at the center, boundary, and even inside the folded 
Brillouin zone of the SL. 

The purpose of the present paper is to analyze the ex
istence and nature of the localized vibrational modes in 
the "impure" SL with an isolated impurity cell. This 
study will also provide a clue to investigating the vibra
tional properties of intentionally disordered, random SL's 
because the effects of a finite concentration of impurity 
cells can be deduced rather well from a knowledge of the 
effects of only one or two isolated defects. 

Through this work we employ the continuum model 
for lattice vibrations,18 which has successfully explained a 
number of recent experiments on acoustic phonons in 
SL's. 3, 7, 9, \0 The basic equations of this model can be 
transformed into a discrete form which is more con
venient for analyzing vibrations in an impure SL. Then, 
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the equation for determining the frequencies of normal 
modes which are perturbed by the introduction of the im
purity cell is derived. Generally, this equation can only 
be solved numerically. However, in the particular cases 
of practical interest it can be studied analytically and the 
existence of localized modes of vibration is predicted in 
the frequency gaps of the host SL. 

One of the physical quantities readily accessible by 
phonon spectroscopic experiments related to this subject 
is a phonon transmission rate. The calculated transmis
sion rate in the impure SL's with a finite number of cells 
reveals sharp enhancement in the frequency regions cor
responding to forbidden gaps of the host SL, i.e., the re
gions with vanishing phonon transmission. The angular 
dependence of the transmission shows the similar local 
enhancement in the gaps due to intermode Bragg 
reflection, 8,9 indicating the presence of the localized 
mode also within the frequency gaps inside the folded 
Brillouin zone of pure SL's. Thus the observability of the 
localized vibrational states by a phonon transmission ex
periment will be possible. 

II. FORMULATION 

The SL system we shall consider is shown schematical
ly in Fig. 1. An impurity cell denoted by X consisting of 
generally different x and y layers with thickness dx and 
dy (dx +dy =.D') is embedded in the periodic array of al
ternating a and b layers with thickness da and db' respec
tively. This means that the host SL is constructed by unit 
cells denoted by A with the periodicity D =da +db • We 
can treat the case of a single impurity layer by assuming 
that x and yare the same constituents, or by putting 
dx =0 or dy =0. 

In our formulation the continuum model for the lattice 
vibration is assumed. ls For simplicity we shall consider 
the case where the wave vector of the vibration (phonon) 
is parallel to the growth direction of the SL. (The more 
general case will be discussed in Sec. III.) In this case the 
lattice vibration is conveniently described by a two
component column vector W(z)= (U(z), S(z) )1, where U 
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FIG. 1. Schematic superlattice (SL) system. An impurity cell 
X consisting of binary x and y layers occupies the n = 0 site of 
the otherwise perfect, periodic superiattice consisting of alter
nating a and b layers. The width D = d a + db of the unit cell A 
gives the periodicity of the host SL. The vibrational amplitude 
at the cell interface Z=Zn is denoted by Un. U* indicates the 
vibrational amplitude at the interface between x and y layers. 

and S are the nonvanishing components of the displace
ment and stress fields, respectively, and t represents a 
transposition.9,18 Explicitly, U and S are written as 

+) ik z I) -ik/z 
U(z)=cj e / +cI- e , 

I +) ik z I) ik z 
S(Z)=iWZI(CI e / -CI- e /), 

(1) 

where I is the index specifying different layers (i.e., l=a, 
b, x, and y), c l +) (c l -)) is the amplitude of the 
+z (-z)-propagating wave, k is the wave number, 
Z =pv is the acoustic impedance with p the mass density 
and v the sound velocity, and w = kv is the angular fre
quency. 

At each interface of adjacent layers W should be con
tinuous. With the use of this condition we find that W 
changes to I A W (Ix W) after the propagation of a pho
non through an A (an X) cell. The "transfer matrix" IA 
is unimodular, and defined byl5 

with 

t = = 

cosa 

(2) 

1 . ---sma 
iwZa 

cosa 
(3) 

where a=kada, and.L, is defined similarly with a and Za 
replaced by /3= kbdb and Zb' respectively. Explicit ex
pressions for the elements of IA are given by 

AA =cosacos{3-(Za /Zb )sina sin/3 , 

1. {3+ 1 . {3 a A =-.--smacos -.--cosasln, 
1WZa 1WZb 

SA = -iwZasina cos/3-iwZbcosa sin/3 , 

J1 A = cosa cos/3 - ( Z b / Z a )sina sin{3 , 

(4) 

and they satisfy detIA =AAJ1A -a ASA = 1. The transfer 
matrix Ix related to the impurity cell is also defined simi
larlyas 

Lx= [~; :; J ' (5) 

where the matrix elements are written in the form of Eq. 
(4) in terms of parameters relevant to the impurity layers. 

Now, introducing Wn=(Un,Sn)t=W(zn)' we can 
write 

Wn+I=InWn , (6) 

where 

[An an J 
T= 
-n {;n J.Ln 

is the generalization of Eqs. (2) and (5), that is, the 
transfer matrix In is related to the nth unit cell of the SL 
and In = IA for n =1=0 and In = Ix for n = 0 (see Fig. 1). 
Our goal is to derive the equation involving only Un's, 
i.e., the equation for displacement amplitudes at cell in
terfaces. 

At the interface Z =zn' Eq. (1) takes the form 

E= liW~1 -i~ZI J. (9) 

In order to fix the index I in the above equations an 
infinitesimal positive number may be added to or sub
tracted from z = Z 1/' Of course the result does not depend 
on this choice because of the continuity of W at each in
terface. Equation (8) allows us to rewrite Eq. (6) as 

Wn =!inCn +1 , (10) 

where 

R =T -Ip 
-n -n-

(11) 

is obtained by combining Eqs. (6) and (8). Hence, from 
Eqs. (8) and (10), we have 

(12) 

and 

(13) 
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These equations are summarized as 

(14) 

where Vn =( Un' Un_I)1 and 

Xn = [(l~:) II (Ii:) 12 J . (15) 

Eliminating C n from (14) with the aid of Eqs. (8) and (10) 
we have the equation for two consecutive V's, 

(16) 

By noting that 

[ 
1 

P y-I= 
--II fLn/an (17) 

Eq. (16) is expressed explicitly as 

[ 0 1 J[Un+IJ 
l/a n -An/a" Un 

(18) 

Thus we have the discrete equation governing the dis
placement amplitude at interfaces of adjacent unit cells, 

(19) 

The above procedure for obtaining Eq. (19) is similar to 
the one for transforming the one-dimensional 
Schrodinger equation with multiple scattering potentials 
to a discrete, tight-binding form. 19 

In the perfect, periodic SL consisting of only A-type 
cells, Eq. (19) is reduced to 

Substituting Un = e inQ into this equation, we obtain 

By putting Q = qD, this gives the well-known phonon 
dispersion relation w =w( q) in the periodic SL. 18 With 
these results the study of the effect of an impurity cell 
embedded in a periodic SL becomes analogous to the cor
responding problem for one-dimensional lattices. 

For the following discussion it is convenient to write 
Eq. (19) in the form 

(1+8Kn )Un fl+(1+8Kn- I )Un -- 1 

=(D'A +8Jn +8Mn- 1 )Un, (22) 

where 8Kn=(a A/an)-l, f>Jn=[(An /a n )-(A,1/ 
aA)]a A, and f>Mn=[(fLn/an)-(fLA/aAl]aA' Note 
that 8K n' 8J n' and 8M n are nonzero only at the 
impurity-cell site, or for n =0. Thus it holds that 

In order to solve Eq. (22) we formally express it as l7 

~ (L nm +8Lnm )Um =0, 
m 

where 

f>L llm =8K(8n,08n,m -I +8n, 18n,m + I) 

-(8J 8n,o+8M 8n, 1 )8n,m 

(23) 

(24) 

(25) 

In terms of L nm , Eq. (20) for the perfect, periodic SL 
takes the form 

(26) 
m 

Now, we introduce the Green's function Gnm defined by 

~ LnlGlm =f>n,m , 
I 

or equivalently, 

(27) 

(28) 

Expanding G nm in a Fourier series, we have for the ideal 
SL with an infinite repetition of A-type cells, 

G (!1 )=.l f 1T cos[(n -m )Q] dQ 
nm A 1T 0 2 cosQ - 0 A (w) 

=:gn-m(n A ) . (29) 

The integration can be performed analytically and we 
find 20 

g (!1 )=-----
n A (n~ -4)112 

[ n A -(n2~ -4)1/2 J Inl , 

(30) 

where this result is obtained for real n A larger than 2. 
Now, gn has a branch cut along a straight line 
- 2 < n A < 2 and, by analytic continuation, the resulting 
expression for gn should be valid throughout the physical 
sheet of the complex n A plane. Here, we note that for 
n A which is real and satisfies I n A I > 2, the modulus of 

E= [0 A -(!1~ -4)1/2]12 

is smaller than unity, and hence gn decreases exponential
ly, i.e., gn _Elnl , with increasing Inl. 

Next, we consider the SL with N -1 A-type cells on ei
ther side of the impurity cell and express the 2N X 2N 
matrices (G nm) and (8Lnm) by Q and 8,L" and the 2N
component column vector 
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by U. Thus, from Eq. (24), we have 

(l+QBL.)U=O, (31) 

where 1 is the 2N X 2N matrix. Because BL. has only four 
non vanishing components, we introduce the 2 X 2 matrix 
B1 defined by 

[
-M 

B1= BK BK 1 
-BM (32) 

and write BL. as 

Q Q Q 

BL.= Q B1 Q (33) 

Q Q Q 

In Eq. (33) B10ccupies (n,m ) components of BL., where n 
and m are either N or N + 1. For the coordination with 
Eq. (33) we also partition the matrix Q and vector U in 
the same fashion, 

gIl l. gl3 V 

g= r £ at , U= u (34) 

gb a g33 w 

where j, g, and a are, respectively, (N - 1 ) X 2, 2 X 2, and 
(N -1 fX2 matrices defined by 

l.= 

(35) 

a= 

and 

U-N + I 

v= , u= w= (36) 

With the use of the quantities given by Eqs. (32)-(36), Eq. 
(31) reduces to 

(1 +£ BlJu=O , 

v= -l. B1·u, 

w= -a M·u , 

(37) 

(38) 

(39) 

where 1 is now a 2 X 2 unit matrix. Thus the normal
mode frequencies perturbed by the presence of the impur
ity cell and the vibrational amplitudes u at interfaces be
tween the impurity cell and host cells are determined by 
solving Eq. (37). Once these quantities are obtained, the 
amplitudes v and w at other interfaces are calculated 
from Eqs. (38) and (39). We explicitly write Eq. (37) as 

[1-go M + g I BK - g I BM + g 0 BK 1 [U 0 1 = [0 1 
- g I M + go BK 1 - go BM + g I BK U I . 0 . 

(40) 

The solvability condition for this equation, i.e., 
deH 1 + £ BlJ = 0 leads after a bit of algebra to 

I +BK =0 , (41) 

where we have used Eq. (23), and Ox(co)=Ax+ILx. As 
discussed by Maradudin et al. 17 the solutions of Eq. (40) 
should give the frequencies of only those normal modes 
in a SL perturbed by the introduction of an impurity cell. 
We shall consider these two solutions in more detail. 

According to Eq. (23), Eq. (41) means that 0" A =0 and 
hence A AIL A = 1. This leads to lOA (CO) I > 2, that is, the 
perturbed frequency appears in the gaps of forbidden fre
quency of the host SL. However, the frequency satisfying 
0" A =0 must be excluded as a solution of Eq. (19) from 
which Eq. (40) has been derived, because at this frequen
cy at least one of 0" nand 0" n _I vanishes. Hence this solu
tion should be considered more carefully. It is easily seen 
that if n is a site of an A-type host cell detXn =0 holds at 
this frequency, and accordingly the inverse matrix X;;-I 
to Xn used in Eq. (16) does not exist. Taking this result 
into account, we find that Un (n =0, ± I, ±2, ... ) van
ishes identically for 0" A =0. Thus the perturbation in
duced by the introduction of an impurity cell does not ex
cite any vibration at the frequency predicted by Eq. (41) 
in a band gap of the host SL. 

For an arbitrary choice of the impurity cell, Eq. (42) 
has to be solved only numerically. However, if we spe
cialize to the following case of practical interest, a further 
insight into the characteristics of the impurity mode will 
be gained by analytic calculations. In view of the grow
ing procedure of SL's the most easily obtainable impurity 
cell may consist of the same kind of constituents as the 
host cell, e.g., x =a and y =b, but with different layer 
thickness. The impurity cell consisting of layers with 
different elastic properties from the host layers is general
ly possible. Unfortunately, impurity layers with large 
acoustic mismatch will also produce large lattice 
mismatch with the host layers, and therefore they are 
hard to grow properly. Accordingly, in what follows we 
assume that x =a and y =b. Equation (42) is now re
duced to 



39 LOCALIZED VIBRATIONAL MODES IN SUPERLAITICES 1265 

where r=kxdx =kadx and B=kydy =kbdy. This equa
tion is still too complicated to be analyzed as it stands. 
The evaluation of Eq. (43), however, simplifies greatly in 
the following two cases. 

(a) db =dy and da=l=dx , Le., {3=B and a=l=r. This 
means that one of the layers comprising the impurity cell 
is exactly the same as one of the constituent layers in the 
host SL. Thus this is equivalent to assuming a single lay
er as the impurity cell. Note that the structure of this 
impure SL is symmetric with respect to the impurity lay
er. Now, Eq. (43) is simplified as 

(44) 

Substituting Eq. (30) for go and gl into Eq. (44), we have 

(45) 

where the negative (positive) sign is applied for n A > 2 
(n A < -2). Because the modulus of the denominator of 
Eq. (45) is smaller than 2 for w in a frequency gap of the 
host SL, i.e., InA(w)1 >2, Eq. (45) has a solution only 
when In x( w) I < 2 is satisfied. This indicates that the per
turbed frequency cannot exist in a region that is a com
mon gap for both the pure A-type SL and the pure X
type SL. This is exactly what the Saxon-Hutner theorem 
states.21 

(b) dx =da /2 and dy =db /2. In this particularly sim
ple case the thickness of each layer in the impurity cell is 
equal to one-half of the corresponding layer thickness in 
the host cell, and hence r=a-r and B={3-B. Equation 
(43) now leads to 

(46) 

since go = g I does not hold. It is easily proven that for w 
satisfying this condition, n A (w ) < - 2 and the perturbed 
frequency appears only in the zone-boundary gaps of the 
host SL. The absence of the impurity-mode frequency in 
the zone-center gaps is also the consequence of the 
Saxon-Hutner theorem. The conditions a=2r and 
(3= 2B imply that the width of the folded Brillouin zone 
in the pure A-type SL is a half of that in the pure X-type 
SL. Accordingly, the frequencies in the zone-center gaps 
in the host SL are always within the gaps of the pure X
type SL, and they lie in the spectral gaps of any disor
dered SL consisting of A-type and X-type cells. 

The displacement amplitudes at interfaces away from 
the impurity cell are determined by Eqs. (38) and (39) in 
terms of the impurity-mode frequency and amplitudes U 0 

and U I given by Eq. (37). Explicitly, they are written for 
n >2 as 

Un=gn(BJ Uo-BK UI)+gn_I(-BK Uo+BM U I ), 

(47) 

As we have already noted, for w satisfying I n A I > 2, 
Green's function gn depends on n as gn _€Inl. According
ly, the displacement amplitude of cell interfaces which vi
brates with frequencies in forbidden gaps of the host SL 
decays exponentially with increasing distance from the 
impurity cell. This localized characteristic of the dis
placement amplitude is quite similar to that in a linear 
chain with a defect atom. Note that the rate of exponen
tial decay of gn' or U ±n' is greater, the greater the dis
tance of w is from band edges satisfying I n A I = 2. 

III. NUMERICAL RESULTS 

A. Phonon transmission rate 

In a perfect, periodic SL with an infinite repetition of 
the unit cell, the phonons with wave number at the center 
and the boundary of the folded zone are Bragg reflected 
and cannot be transmitted through it. This is related to 
the occurrence of frequency gaps in the phonon disper
sion relation at the center and edge of the mini-Brillouin 
zone. For an actual SL with a finite number of periods 
the exact periodicity is lost, but there still exist distinct 
dips in transmission for phonons in those frequency gaps. 
These dips in transmission have been observed by phonon 
spectroscopy3, 7,10 and phonon imaging.9,16 Hence, with 
regard to the experimental observability of the localized 
impurity states in SL's, we shall calculate numerically the 
phonon transmission rate in SL's involving an impurity 
cell. In Sec. II we have shown that isolated frequencies 
should appear in the forbidden gaps of the spectrum of 
the host SL, where significant dips are predicted in pho
non transmission. Therefore, in a perturbed SL, we can 
expect that the local enhancement in transmission should 
occur in the corresponding frequency ranges, which evi
dences the existence of the impurity states. If the magni
tude of this enhancement is large enough we can observe 
in principle the presence of the impurity mode in a SL by 
acoustic-phonon transmission experiments with quasi
monochromatic phonon detectors. 

The numerical results for the frequency dependence of 
transmission rate are shown in Figs. 2 and 3 for 
longitudinal-acoustic (LA) phonons propagating in the 
growth direction of o 11}-AIAs/GaAs SL'S.22 The calcu
lation of transmission rate has been published elsewhere.9 

Figure 2(a) exhibits a result corresponding to case (a) 
given in Sec. II, where an A-type host cell consists of 15 
monolayers (ML's) of AlAs (a layer) and 6 ML's of GaAs 
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(b layer), while an X-type impurity cell consists of 8 ML's 
of AlAs (x layer) and 6 ML's of GaAs (y layer).23 The 
impurity cell is assumed to be sandwiched in between 30 
A-type cells. Comparing with Fig. 2(b), which shows the 
transmission rate in the perfect SL with the impurity cell 
replaced by the host cell, the sharp enhancement in the 
transmission can be seen in the frequency ranges exhibit
ing strong dips. The frequencies calculated from Eq. (44), 
i.e., vI =0.433 THz and v 2 =0. 901 THz, coincide exactly 
with the ones at which those local enhancements in 
transmission occur in Fig. 2(a). 

It is also recognized in Fig. 2(a) that no enhancement is 
present at all in the small dip in transmission at about 
1.35 THz. This is the result of the Saxon-Hutner 
theorem. We note that for the layer thickness assumed in 
this example the pure A-type and X-type SL's have com
mon frequency ranges in which their band gaps overlap 
each other. This happenes in every third frequency gap 
of the pure A-type SL. 

The example for the LA-phonon transmission rate in a 
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FIG. 2. Frequency dependence of LA-phonon transmission 
rate in (l1l)-AlAs/GaAs SL, (a) with an impurity cell and (b) 
without an impurity cell. The total number of cells is 31. The 
host cell ( A) consists of 15 ML's of AlAs and 6 ML's of GaAs, 
and the impurity cell (X) consists of 8 ML's of AlAs and 6 ML's 
of GaAs. In (a) the X cell is located at the middle of 30 A cells. 
Frequencies VI =0.433 THz and Vl =0. 901 THz are calculated 
from Eq. (42) or (44). 

(111)-AIAs/GaAs SL satisfying criterion (b) of Sec. II is 
given in Fig. 3(a). Here, we assume 12 and 14 ML's for 
the thickness of a (AlAs) and b (GaAs) layers of the A
type host cell, and 6 and 7 ML's are assumed for the 
thickness of x (AlAs) and y (GaAs) layers in the X-type 
impurity cell. The propagation configuration is the same 
as that in the previous case and 15 A-type cells are as
sumed on both sides of the impurity cell. Comparing 
with Fig. 3(b), showing the transmission rate in the pure 
A-type SL, we also recognize the local enhancements in 
transmission at certain isolated frequencies in the first 
and third dips. We have again confirmed that these 
enhancements are really due to the impurity modes by 
checking the coincidence of the frequencies VI =0. 342 
THz and v2= 1.032 THz calculated from Eq. (46) with 
those at which the enhancement in transmission occurs, 
It should be remarked that the absence of impurity-cell 
effects in the zone-center gaps, i.e., every second dip in 
transmission, observed in Fig. 3(a), is exactly in accord 
with the prediction made in Sec. II. 
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FIG. 3. Frequency dependence of LA-phonon transmission 
rate in (l1l)-AlAs/GaAs SL, (a) with an impurity cell and (b) 
without an impurity cell. The host cell (A) consists of 12 ML's 
of AlAs and 14 ML's of GaAs, and the impurity cell (X) con
sists of 6 ML's of AlAs and 7 ML's of GaAs. Cell 
configurations are the same as those in Fig. 2. Frequencies 
VI =0.342 THz and V2= 1.032 THz are calculated from Eq. (42) 
or (46). 
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B. Amplitude profiles 

In Sec. II we have discussed that for frequencies satis
fying InA I> 2 the Green's function gn decreases as €Inl 
( I €I < 1) with increasing I n I, i.e., the site number of inter
faces counted away from the impurity cell. This result 
together with Eq. (47) leads to the localized nature of 
impurity-mode vibration in SL's analogous to the case of 
ordinary lattices. In order to see the localization charac
teristics we have plotted in Figs. 4 and 5 the profiles of 
the displacement amplitudes Un (as well as the ampli
tudes at interfaces inside the unit cells) at perturbed fre
quencies in SL's for which the local enhancement in 
transmission shown in Figs. 2 and 3 is obtained. The 
mode of the vibration is LA. Explicitly, those frequen
cies are again VI =0.433 THz and v2=0.901 THz for 
Figs. 4(a) and 4(b), and vI=0.324 THz and v2=1.032 
THz for Figs. 5(a) and 5(b). For all these frequencies the 
localization of vibrational amplitudes near the defect cell 
is evident. The decay rates of these profiles depend on 
the distance of the corresponding frequency from the 
band edges. Here we note that the spatial structure of 
the SL for which Fig. 4 is obtained is symmetric with 
respect to the one of the impurity layers, and hence the 
amplitude profiles should be symmetric or antisymmetric 
with respect to the center of this layer. However, no 
such symmetry exists in the SL for which Fig. 5 is calcu-
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FIG. 4. Profiles of vibrational amplitudes at interfaces in the 
SL corresponding to Fig. 2(a). Frequencies are (a) VI =0.433 
THz and (b) v2=0.901 THz. 

lated, and as a result the amplitude profiles in this figure 
do not reveal any symmetry as in Fig. 4. 

C. Transmission rate at oblique propagation 

So far, we have considered the effects of an impurity 
cell on the SL vibration with wave vector perpendicular 
to the interfaces of layers. For the vibration with wave 
vector oblique to the interfaces the situation becomes 
much more complicated, and it is generally difficult to 
predict the effects by analytic calculations. This is main
ly because both the displacement and stress fields have 
three independent components, and the transfer matrix 
corresponding to Eq. (2) becomes a 6 X 6 instead of a 2 X 2 
matrix. Even in this case, however, we may still expect 
the existence of localized vibrational states in the fre
quency gaps of the host SL. 

In order to check this expectation we have numerically 
calculated the angular dependence of phonon transmis
sion rate in a SL with an impurity cell. Here, we note 
that for a fixed frequency the transmission rate in a 
periodic SL exhibits certain characteristic features also in 
its angular dependence. The condition for Bragg 
reflection of phonons in a SL depends on their propaga
tion angle as well as frequency. Hence the dips in 
transmission should occur at several angles satisfying the 
Bragg condition. The most interesting feature in the ob-
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FIG. 5. Profiles of vibrational amplitudes at interfaces in the 
SL corresponding to Fig. 3(a). Frequencies are (a) VI = 0.342 
THz and (b) V2= 1.032 THz. 
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lique phonon propagation in SL's is the possibility of in
term ode Bragg reflection in addition to ordinary in
tramode Bragg reflection, which yields a frequency gap of 
the spectrum inside the folded zone. 8 This reflection of 
phonons causes extra dips in transmission. Thus, by 
scanning the propagation direction of phonons with a 
fixed frequency, one or more dips in transmission are gen
erally obtained. 

Figure 6(a) shows the calculated angular dependence of 
the transmission rate of 0.85-THz LA phonons in a 
(OOll-AIAs/GaAs SL. The thickness of both layers in the 
A-type host cell is assumed to be equal, i.e., 7 ML's. For 
the X-type impurity cell 7 and 14 ML's are assumed for 
the thicknesses of AlAs (x) and GaAs (y) layers, respec
tively. In Fig. 6 we denote by () the polar angle in the 
plane rotated 22.5° away from the (100) and (110) planes 
in the real space of GaAs. The X cell is again assumed to 
be sandwiched in between 30 A-type cells. For 
comparison's sake we have also plotted in Fig. 6(b) the 
corresponding transmission rate in the pure A-type SL 
with 31 cells. The relatively narrow dip in Fig. 6(b) at 
about tan(} =0. 8 is due to the first-order intramode Bragg 
reflection yielding the zone-boundary gap in the disper
sion relation of the LA mode. The broader dip in 
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FIG. 6. Angular dependence of LA-phonon transmission in 
(OOl)-AlAs/GaAs SL, (a) with an impurity cell and (b) without 
an impurity cell. The total number of cells is 31. The host cell 
( A l consists of 7 ML's of AlAs and 7 ML's of GaAs, and the 
impurity cell (Xl consists of 7 ML's of AlAs and 14 ML's of 
GaAs. In (a) the X cell is located at the middle of 30 A cells. 

transmission found at about tan() = 1.4 is due to the inter
mode Bragg reflection of LA phonons into fast transverse 
phonons. Comparing Figs. 6(a) and 6(b), we find that the 
local enhancement in transmission similar to the ones in 
Figs. 2(a) and 3(a) exists in both dips in transmission. 
This result suggests that the localized vibrational mode 
occurs also within the intrazone frequency gaps of the 
host SL due to intermode Bragg reflection. 

IV. CONCLUSIONS 

An appropriately light-impurity atom added substitu
tionally to a lattice is responsible for a spatially localized 
vibration at a frequency above or in a gap in the host vi
brational spectrum. In this paper we have examined the 
presence of the same kind of localized vibrations in an 
impure SL by deriving and exploiting a difference equa
tion governing the motion of cell interfaces. In the 
several cases of practical interest we have found that the 
localized states appear in the frequency gaps of the host 
SL as far as the condition for the Saxon-Hutner theorem 
is not satisfied. Those frequency gaps are not restricted 
to the ones at the center and edge of the folded zone orig
inating from the intramode phonon-Bragg reflection. 
The existence of the localized states in the intrazone fre
quency gaps due to intermode phonon-Bragg reflection is 
also suggested but only numerically by the presence of lo
cal enhancement in transmission. The detection of the 
enhancement in transmission predicted at frequencies in 
the spectral gaps of the host SL should provide an experi
mental verification of the localized modes in SL's. A 
quasimonochromatic phonon detector is needed to 
resolve the existence of the enhanced transmission in rel
atively narrow frequency ranges. 

For frequencies in the allowed bands of a host SL, the 
impurity cell causes the scattering, or reflection of pho
nons which are otherwise transmitted perfectly. In this 
case gn is complex, and there is a possibility of the reso
nance scattering of phonons. 17 It should occur at fre
quencies w, for which the real part of Eq. (42) vanishes. 
Whether or not the actual resonance occurs depends on 
whether or not the width of the assumed resonance is 
much smaller than w,. For the combination of layers to 
be allowed by the growth condition of the SL, the possi
bility for the true resonance to occur would be small. In 
fact, we cannot see any evidence of the resonance scatter
ing in Figs. 2 and 3. The detailed study on this problem 
is currently under way. 

To conclude, the localized vibrational modes generally 
exist in frequency gaps of the host SL irrespective of the 
propagation direction and modes participating in the 
Bragg reflection responsible for these spectral gaps. 
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