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Numerical evidence for the bottleneck frequency of quasidiffusive acoustic phonons

Shin-ichiro Tamura
Department of Applied Physics, Hokkaido University, Sapporo 060, Japan

~Received 25 July 1997!

A kinetic equation on quasidiffusion of phonons was recently analyzed by Esipov and he predicted the
existence of a bottleneck frequency (nBN) which separates the phonons decaying from those diffusing to a
detector. We have solved numerically the kinetic equation and obtained the temporal evolution of phonon
concentration excited at the center of a spherical sample. We have also performed Monte Carlo simulations of
phonon propagation in the same geometry. At a time much later than the ballistic arrival time of phonons, both
sets of results exhibit a sharp peak in the phonon concentration around the predictednBN . With Monte Carlo
simulations we have also confirmed the same relaxation rate for the phonons of frequenciesn,nBN .
@S0163-1829~97!01645-7#

Propagation of high-frequency acoustic phonons in non-
metallic crystals at low temperatures is governed by the~1!
focusing effect due to the anisotropy of the lattice,1,2 ~2!
elastic scattering due to foreign and isotopic impurities,3 and
~3! anharmonic decay via three-phonon interaction.4–6 The
propagation in the regime where the latter two effects are
dominant is called quasidiffusion.7–10 Because of a highly-
frequency-dependent decay rate of phononstA

215An5 (A is
a constant depending on phonon polarization andn is the
frequency!, there exists a characteristic frequencyn(t) at an
elapsed timet determined bytA(n)5t. This frequency gives
the length l of space expansion at a timet as
l;v@tA(n)t I(n)#1/2;t9/10, where v is the Debye velocity
and t I

215Bn4 (B is a constant! is the elastic scattering
rate.7,8 Thus the average phonon distribution in a sample
spreads more slowly than in ballistic propagation but faster
than in normal diffusion.

More recent observations show that the characteristic be-
havior of quasidiffusive phonons appears in the time trace of
the detected phonon signal as an exponentially decaying tail
at a time much later than the ballistic time of flighttb

through the sample.11–13Experimentally, this exponential be-
havior has been observed for several semiconducting
samples of slab geometry such as silicon, germanium, and
GaAs with a photoexcitation technique at a low input power
level.13 It is critical for observing the exponential tails to
remove liquid helium from the surface where the phonons
are excited. Otherwise, the high-frequency phonons excited
at the sample surface are lost into the helium bath and the
quasidiffusive tail originating from these phonons is hardly
observed. The quasidiffusion is also important in analyzing
the phonon signal produced by high-energy particles in a
crystal.14–18

The applicability of a quasidiffusive model is seen by
comparing the experimental heat pulses with Monte Carlo
simulations.19–21 Originally a simple one-branch model was
proposed, where three-phonon polarizations were approxi-
mated by a single mode with the Debye velocity.19 The
Monte Carlo simulations based on this model can reproduce
the exponential tail in the time-of-flight spectrum of phonons

arriving at a detector fort@tb though they fail to account for
the shape of the phonon signal arriving att.tb.20 In this
sense the one-branch model is useful in discussing the be-
havior of phonons in the time regiont@tb . Simulations with
a more sophisticated three-branch model taking account of
focusing effects have also been done and they reproduce the
shape of observed time traces well even fort.tb.20,21

The kinetic equations describing the quasidiffusion of
phonons have been proposed and analyzed by several
authors.7,8,19,22Specifically, Esipov has recently studied the
kinetic equation in the framework of a one-branch, isotropic
model and found a novel result.22 He claims that the equation
governing the phonon concentrationN(n,t) involves a char-
acteristic frequency~called the bottleneck frequencynBN)
which separates the phonons into two groups; i.e., the
phonons withn,nBN have the same relaxation time deter-
mined bynBN but those withn.nBN decay with time con-
stants depending on their frequency. However, it is still not
obvious if the existence ofnBN has a clearly visible influence
on the solutionN(n,t) of the kinetic equation.

The purpose of the present work is to study the validity of
the kinetic equation for quasidiffusion and to give explicit
evidence for the presence ofnBN . This is done by numeri-
cally solving the equation studied by Esipov and obtaining
the time evolution of the phonon concentration. We also
carry out Monte Carlo simulations for phonon propagation in
the same sample geometry. As we shall see below, the results
of both studies explicitly suggest the existence of a bottle-
neck frequency in the quasidiffusive regime. More specifi-
cally, at t@tb the numerical solution for the frequency dis-
tribution of phonons inside a sample exhibits a sharp peak at
the predicted bottleneck frequencynBN . This distribution
gives good agreement with the phonon concentration ob-
tained by the Monte Carlo simulation if the initial phonon
frequency is high enough. Also the simulations reveal that
the tails of the detected phonon signals forn,nBN decay
with the same relaxation rate as predicted by Esipov.

We start with the kinetic equation that Esipov studied.22

Neglecting the upconversion of phonons, the kinetic equa-
tion governing the propagation of phonons in the one-branch
isotropic model is written
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whereN is the phonon concentration,D(n)5 1
3v

2t I(n) is the
averaged diffusivity, andG(n8,n) describes the probability
of a phonon of frequencyn8 producing a phonon of fre-
quencyn in a decay via a three-phonon process. The kernel
G(n8,n) is assumed asG(n8,n)5@tA(n8)#21P(n8,n) with
P(n8,n)560n2(n82n)2/(n8)5. This form of P satisfying
*0

n0nP(n0 ,n)dn5n0 was originally introduced by Maris.19

First we consider the case ofpure diffusionby neglecting
the right-hand side~RHS! of Eq. ~1! and also the term pro-
portional to tA

21 . Suppose that the phonons are excited at
t50 at the center of a spherical sample of radiusR and with
the boundary conditionN(n,R,t)50. This boundary condi-
tion implies that the surface of the sphere is covered with a
perfect absorber of phonons. The solution of the diffusion
equation is then

N~n,r ,t !5N0(
n51

`
n

r
sin

npr

R
exp@2n2p2D~n!t/R2#, ~2!

whereN0 is the initial number of phonons. In order to check
our Monte Carlo code we compare in Fig. 1 the flux
¹ rNur 5R derived from the solution~2! and the corresponding
results of the Monte Carlo simulations for the phonon propa-
gation in the presence of elastic scatteringt I

215Bn4 with
B52.43310242 s3, valid for silicon. The details of the
Monte Carlo simulations are described in Ref. 20. As ex-
pected both results coincide very well. An important obser-
vation is that in the sum of Eq.~2!, the first term (n51)
gives the dominant contribution at larget. Thus Esipov has

kept only the first eigenwave in the Fourier series putting
N(n,r ,t)5N1(n,t)sin(pr/R)/r. Now N1(n,t) obeys the
integro-differential equation

F ]
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tA~n!
1

1

tD~n!GN1~n,t !5E
n

`

dn8N1~n8,t !G~n8,n!,

~3!

with tD
215p2D(n)/R2 for a sphere. This is the equation

which Esipov analyzed closely. At a timet much later than
tb Esipov found that the solutionN1 behaves as
;exp@2t/t0(n)#, the time constantt0 being determined from

@ t0~n!#215min
ñ >n

F 1

tA~ ñ !
1

1

tD~ ñ !
G . ~4!

This can be readily seen by discretizing the frequency
n as n1 ,n2 , . . . ,nn , . . . , and converting Eq. ~3! into
a set of coupled linear differential equations
for N1(n1 ,t),N1(n2 ,t), . . . ,N1(nn ,t), . . . , where

FIG. 2. Frequency dependences of phonon concentrations in the
sample at several timest much later than ballistic time of flighttb .
~a! The solutionsN1 of Eq. ~3! and~b! the Monte Carlo results for
R55.5 mm. To compare the profiles the maxmum value of each
trace is normalized to unity.

FIG. 1. Flux versus arrival time of purely diffusive phonons in
silicon sphere of radiusR55.5 mm. Phonons of 2 THz frequency
are assumed to be generated at the center of the sphere att50. Dots
are the Monte Carlo results and the solid line is the analytical result
derived from Eq.~2!.
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n1,n2, . . . ,nn, . . . . BecausetA
21 andtD

21 are propor-
tional ton5 andn24, respectively, their sum has a minimum
at n5nBN[(4/5)1/9n*, where

n* [S p2v2

3R2AB
D 1/9

~5!

and the corresponding relaxation rate of the phonon signal at
t@tb is

@ t0~nBN!#215
9

4
AnBN

5 . ~6!

Thus, if the initial frequency is high enough, the phonons
with n.nBN decay with a decay rate given by
1/t0(n)51/tA(n)11/tD(n), whereas those withn<nBN de-

cay with the same time constantt0(nBN). It should be noted
that this bottleneck frequencynBN depends on the system
size but not on the initial frequency of phonons exited. Nu-
merically nBN51.68 THz andt0(nBN)53.0 tb for a spheri-
cal silicon sample of radiusR55.5 mm, where we have used
v55.193105 cm/s for the Debye velocity and
A51.2310256 s4 for the mode-averaged decay constant in
silicon.

In order to see more explicitly the existence of the bottle-
neck frequency we have solved Eq.~3! numerically and plot-
ted the time evolution of the phonon concentrationN1(n,t).
Figure 2~a! exhibits the solutions of Eq.~3! for ten selected
times much later than the ballistic time of flighttb . The
frequency distributions of phonons quasidiffusing in the
sample exhibit sharp peaks which move towardsn5nBN for
t→`. This clearly indicates the existence of the predicted
bottleneck frequency for phonons att@tb ; that is, the relax-
ation time is the longest atn5nBN . The abrupt decrease of
N1(n,t) for n.nBN is due to the strong anharmonic decay as
predicted. The phonons forn<nBN should decay with the
same time constantt0(nBN) but the shape of then-dependent
profile of N1(n,t) depends on the selected form ofP(n8,n).
It should be noted that the same relaxation rate for phonons
of n,nBN at t@tb arises from the fact that those phonons are
produced via a decay of the phonon withn5nBN .

Figure 2~b! also plots the time evolutions of phonon con-
centration calculated by the Monte Carlo simulation in the
same sample geometry. An initial frequency~4 THz! higher
thannBN is assumed. The simulated frequency distributions
at later times also show peaks aroundnBN and their profiles
are very similar toN1(n,t) plotted in Fig. 2~a! except in the
low-frequency region. Note that the low-frequency phonons
propagate nearly ballistically and are excluded in the calcu-
lation with the diffusion approximation.

The phonon flux in the diffusion approximation is given
by J(n,r ,t)52D(n)¹N(n,r ,t) ~Fick’s law!. So in this ap-
proximation the number of phonons hitting the surface of the
sphere at t@tb should be proportional to
D(n)¹ rNur 5R;n24N1(n,t). We have shown in Fig. 3 the
frequency dependence of the phonon flux arriving at the sur-

FIG. 3. Frequency dependences of the phonon numbers arriving
at the surface of the spherical sample are plotted at several timest
much later than ballistic time of flighttb . ~a! The results derived
from the solution of Eq.~3! and ~b! the Monte Carlo results for
R55.5 mm integrated over the time intervals indicated. The aver-
age arrival times of the traces in~b! correspond to the arrival times
labeled for the first four traces of~a!. To compare the profiles the
maximum value of each trace is normalized to unity. The diffusion
approximation fails at the low-frequency region hatched in~a!.

FIG. 4. Monte Carlo results for intensities vs arrival time for
phonons with frequencies within the intervals indicated. The
straight line indicates the exponentially decreasing profile with time
constantt0

sim53.1tb . R55.5 mm andv55.913105 cm/s are used.
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face of silicon sample. The majority of phonons detected at
the sample surface consist of those withn,nBN . We note
that the frequency dependence at late times exhibits a bump
at aboutnBN/2 in addition to the peak aroundnBN . This
bump becomes more significant when we assume
P(n8,n);nn(n82n)n/(n8)n11 with n.2; that is, the anhar-
monic decay splits a parent phonon more frequently into
daughter phonons of equal energy. It should be pointed out
that the solution of the kinetic equation@Fig. 3~a!# coincides
qualitatively with the Monte Carlo result@Fig. 3~b!# which
also exhibits shoulders in addition to peaks nearnBN at later
times. However, the diffusion approximation again leads to
an unphysical~divergent! result at the low-frequency region
@hatched region in Fig. 3~a!# where this approximation is no
longer valid.

The Esipov prediction that the time constantt0 is the
same for any phonons withn,nBN can be also confirmed by
Monte Carlo calculations. This is done by plotting the time
traces of the phonon intensity hitting the sample surface~Fig.
4!. The initial frequencyn0 of the phonons excited is again 4
THz (.nBN), but the results are insensitive to the frequency
assumed ifn0 higher than 4 THz is chosen. We see that the
tail of the simulated phonon signal exhibits an exponential
decay in time, and the decay constants for three chosen fre-
quency intervalsn,0.7 THz, 0.7 THz,n, 1.1 THz, and
1.1 THz ,n,1.5 THz are the same; that is,t0

sim53.1tb . In
addition this time constant is consistent witht0(nBN)53.0tb
given by Eq.~6! for R55.5 mm, but slightly smaller than the

experimental valuet0
expt53.6tb observed in the slab geom-

etry. A more quantitative comparison with the experiments
would require Monte Carlo simulation including three dis-
tinct phonon modes and the exact sample geometry of the
experiments.

To conclude, we have solved numerically the kinetic
equation for quasidiffusion and also conducted Monte Carlo
calculations of phonon propagation in the presence of both
elastic scattering and frequency downconversion. Both re-
sults have confirmed the existence of the bottleneck fre-
quencynBN predicted by Esipov, which governs the quasi-
diffusion of phonons att.tb : ~1! The frequency distribution
of phonons in a sample has a sharp peak atn5nBN , and~2!
the quasidiffusive tails of the phonons withn,nBN decay
with the same time constantt0(nBN). However, the kinetic
equation we consider is based on the diffusion approxima-
tion and hence fails at low phonon frequencies. It would be
an interesting challenge to construct a model which explains
both the ballistic and quasidiffusive regimes including three-
phonon branches.

The authors would like to thank S. E. Esipov and H. J.
Maris for valuable discussions, and O. B. Wright for useful
comments on the manuscript. This work was supported in
part by a Grant-in-Aid for Scientific Research from the Min-
istry of Education, Science and Culture of Japan~Grant No.
09640385!.
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