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Band structure of acoustic waves in phononic lattices: Two-dimensional composites with large
acoustic mismatch

Yukihiro Tanaka, Yoshinobu Tomoyasu, and Shin-ichiro Tamura
Department of Applied Physics, Hokkaido University, Sapporo 060-8628, Japan

~Received 30 March 2000!

The finite-difference time-domain method is applied to the calculation of dispersion relations of acoustic
waves in two-dimensional~2D! phononic lattices, i.e., periodic solid-solid, solid-liquid, and solid-vacuum
composites, for which the conventional plane-wave-expansion method fails or converges very slowly. Numeri-
cal examples are developed for 2D structures with polyethylene, mercury, and vacuum cylinders forming a
square lattice in an aluminum matrix. The implication of the calculated dispersion relations for ultrasound
transmission experiments is discussed.

I. INTRODUCTION

There has been a growing interest in recent years in the
study of two-dimensional~2D!, periodic, dielectric struc-
tures, so-called photonic crystals.1,2 The existence of com-
plete band gaps~photonic band gaps! of electromagnetic
waves in these structures can lead to a variety of phenomena
of both fundamental and practical interest. The analogy be-
tween photons and phonons suggests the consideration of
periodic elastic composites of two or more vibrating materi-
als called phononic crystals or phononic lattices. By appro-
priate modulation of elastic properties in the constituent ma-
terials, forbidden frequency gaps~acoustic stop bands!
extending throughout the Brillouin zone can also be
realized.3–6 A possible application of such phononic crystals
is designing phonon filters or heat insulators, which selec-
tively reflect phonons in desirable frequency ranges.

To probe the acoustic band structure of these composites,
ultrasound transmission experiments in both the bulk and on
the surface of the structures have been performed.7–12 The
dimension of the phononic crystals used in the experiments
is typically in the range of millimeters and a composite struc-
ture is made by drilling in a solid substrate a periodic array
of cylinders. The simplest structure should be the one with
vacuum or air-filled cylindrical holes. Intuitively, these holes
should scatter acoustic waves strongly, and the transmission
of ultrasound through the structure is expected to be small or
even prohibited for a large cross section of the cylinders.
Another interesting and still easily accessible structure is that
of cylinders filled with a liquid7 or a low-melting-point
polymer12 ~which may solidify at room temperatures!. These
composites are characterized by a large acoustic mismatch
between the cylinder and substrate materials, or by the fact
that two modes of acoustic waves~transverse modes! are not
allowed to exist in the cylinders.

So far, several authors have calculated acoustic band
structures of 2D phononic crystals for both the bulk3–6 and
surface13,14 vibrations with a plane-wave-expansion~PWE!
method. This simple method usually works very well. How-
ever, within this framework a large number of plane waves is
required to obtain a reliable band structure for a composite of
elastic media with a large acoustic mismatch. Moreover, if

the cylinder material is a nonviscous fluid~or vacuum! which
does not support the propagation of transverse~or both the
transverse and longitudinal! waves, the PWE fails by produc-
ing unphysical flat frequency bands. Thus more efficient
methods beyond the PWE scheme are necessary for the cal-
culation of the dispersion relations in some interesting
phononic crystals.

The purpose of the present study is to calculate realistic
dispersion relations of phonons in a variety of 2D phononic
crystals for which the conventional PWE method is not ap-
plicable. This is carried out by solving the elastic wave equa-
tions by the finite-difference time-domain~FDTD!
method.15–17 The FDTD method is a popular numerical
scheme for the solution of many problems in electromagnet-
ics. It is especially effective for a large-scale simulation of a
finite complex system, and has recently been applied to the
study of both the transmission and frequency spectra of elec-
tromagnetic waves in photonic crystals.~Very recently, this
scheme has been applied to the calculation of transmission
rates in 3D-phononic crystals.18! More explicitly, we calcu-
late the acoustic band structures of the 2D elastic composites
consisting of cylinders of a solid, fluid, or vacuum arranged
periodically in an aluminum substrate. The results obtained
are compared with the published ultrasound transmission ex-
periments.

II. FORMULATION

A. Finite-difference time-domain „FDTD… method

We consider 2D composite structures consisting of a pe-
riodic array of cylinders~denoted byA) embedded in a back-
ground elastic material~denoted byB). The cylinder mate-
rial A can be an elastic medium like a solid or liquid, or just
vacuum. The equation governing the motion of lattice dis-
placementu(r ,t) in this inhomogeneous system is given by

r~x!üi~r ,t !5] js i j ~r ,t !, ~1!

s i j ~r ,t !5ci jmn~x!]num~r ,t !, ~2!

wherer5(x,z)5(x,y,z) ~thez axis is taken to be parallel to
the cylinder axis!, r(x) and ci jmn(x) are the position-
dependent mass density and elastic stiffness tensor of the
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system, respectively, ands i j (r ,t) is the stress tensor. Note
that r andci jmn do not depend onz because of the homoge-
neity of the system along the cylinder axis. The summation
convention over repeated indices is assumed in the present
paper.

For the propagation of bulk acoustic waves in thex plane
normal to the axis of the cylinders, we may find solutions
homogeneous in thez direction, i.e.,ui(r ,t)5ui(x,t) and
s i , j (r ,t)5s i , j (x,t). Owing to the periodicity within thex
plane, the lattice displacement and the stress tensor take the
forms satisfying the Bloch theorem

ui~x,t !5eik•xUi~x,t !, ~3!

s i j ~x,t !5eik•xSi j ~x,t !, ~4!

where k5(kx ,ky) is a Bloch wave vector andU(x,t) and
Si j (x,t) are periodic functions satisfyingU(x1a,t)
5U(x,t) and Si j (x1a,t)5Si j (x,t) with a a lattice transla-
tion vector. Thus Eqs.~1! and ~2! are rewritten as

r~x!Ü i~x,t !5 ik jSi j ~x,t !1] jSi j ~x,t !, ~5!

Si j ~x,t !5ci jmn~x!@ iknUm~x,t !1]nUm~x,t !#. ~6!

Now we try to solve these equations with respect to the re-
duced fieldsUi(x,t) and Si j (x,t) within a unit cell of the
structure.

First we specify a 2D wave vectork in the first Brillouin
zone. Once appropriate initial and boundary conditions are
specified, Eqs.~5! and~6! can be solved numerically for each
normal mode by discretizing both the time and space do-
mains.@The explicit expressions for the discretized versions
of Eqs.~5! and~6! are given in the Appendix.# More explic-
itly, when the displacement fields are specified at an instant
t50, their spatial derivatives are determined using simple
finite-difference formulas. Equations~5! and~6! then give us
the time derivative of the displacement fieldU, which allows
us to updateU(x,t) for small but positivet. In this way, the
displacement fieldsU(x,t i) at discretized points on the time
axis t i ( i 51,2, . . . ) aredetermined for many 2D grid points
sampled in thex plane. For a sufficiently large number of
theseU data on the time axis, the displacement fields are
Fourier-transformed into the frequency space. The positions
of the existing peaks in the frequency spectra are then iden-
tified as the eigenfrequencies of the normal vibrational
modes for a given wave vectork.

B. Plane-wave expansion„PWE… method

For comparison we also briefly recapitulate the PWE
method for solving the wave equations~1! and ~2!. In this
scheme we expand the position-dependent quantities as

u~x,t !5(
G

ei (k1G)•x2 ivtaG , ~7!

r~x!5(
G

eiG•xrG , ~8!

ci jmn~x!5(
G

eiG•xcG
i jmn , ~9!

whereG5(Gx ,Gy) is a 2D reciprocal-lattice vector andv is
an angular frequency. The Bloch theorem is again used for
the displacement vectoru in Eq. ~7!. For a square lattice
where circular cylinders of radiusr 0 are embedded periodi-
cally in a background material with spacinga, the reciprocal-
lattice vector isG5(2pN1 /a,2pN2 /a) with N1 and N2
integers. The Fourier coefficients of the mass density and
elastic stiffness tensors are thus given by

aG5H f aA1~12 f !aB for G50,

~aA2aB!F~G! for GÞ0,
~10!

where a5(r,ci jmn), f 5pr 0
2/a2 ~the maximum value is

f max5p/450.785) is the filling fraction which defines the
cross-sectional area of a cylinder relative to the unit-cell
area, and

F~G!5
2 f J1~ uGur 0!

uGur 0
~11!

with J1(x) a Bessel function. Thus truncating the expansions
~7!–~9! by keepingN3N5N2 reciprocal-lattice vectors~i.e.,
N2 plane waves!, Eq. ~7! gives 3N2 eigenfrequenciesv
5v l ( l 5123N2) for a given 2D wave vectork.

III. NUMERICAL EXAMPLES

For the propagation of acoustic waves in thex plane nor-
mal to the axis of cylinders~thez axis!, the wave polarized in
thez direction@a transverse~T! wave# is decoupled from the
other two modes@the otherT and longitudinal~L! modes# of
the waves polarized in thex plane. We call the former mode
of the wave the ‘‘single’’ mode and the latter two modes
coupled to each other the ‘‘mixed’’ mode. In the numerical
calculation, polycrystalline aluminum~elastically isotropic!
is assumed for the background material~B! and we consider
three kinds of 2D lattices with the cylinders~A! filled with ~i!
polyethylene~a soft solid!, ~ii ! mercury ~liquid!, and ~iii !
vacuum, respectively.19 In the FDTD scheme for wave
propagation, we divide the unit cell of a 2D square lattice
into a grid of n3n (n51002200) points and simulate the
time evolution over 219(5524 288)2220(51 048 576) time
steps with each time step 0.003a/v t , wherev t is the sound
velocity of the transverse mode in the background material.

A. PolyethyleneÕAl lattices

First we consider a 2D polyethylene/Al square lattice. The
PWE method is still applicable to this lattice but its conver-
gence is slow. Figure 1 illustrates the FDTD~dots! and PWE
~solid lines! calculations of the dispersion relations for the
acoustic waves along the boundary of the irreducible part of
the Brillouin zone (f 50.4). Only frequencies of the mixed
mode are plotted. The FDTD scheme assumes a grid ofn
3n51202 points in a unit cell and the PWE method assumes
N3N541251681 plane waves, or reciprocal lattice vectors.
The latter results lie slightly above the frequencies obtained
by the FDTD scheme. A large acoustic mismatch between
polyethylene~PE! and aluminum (ZPE/ZAl50.1 for the lon-
gitudinal mode!19 makes the convergence of the PWE calcu-
lation very slow, as shown in the inset of Fig. 1. This is
mainly due to the fact that a large number of plane waves is
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required @in the expansions~8! and ~9!# to reproduce the
spatial profiles of the mass density and elastic constants
changing abruptly in space. In contrast, the FDTD calcula-
tion is substantially converged forn as large asn550. The
CPU times to calculate eigenfrequencies for a given wave
vector are typically 160 sec for the FDTD scheme withn
541 and with 219 time steps, and 320 sec for the PWE
method withN541 on a HITACHI SR8000 supercomputer.

In Fig. 1, we observe no complete gap in the frequency
range plotted in spite of the large acoustic mismatch between
the constituent materials and also the large filling fractionf
assumed. A remarkable feature of the dispersion relation in
this lattice is the appearance of a number of optical-like flat
branches. The existence of these flat branches is another
characteristic feature of a composite structure constituted
from materials with a large acoustic mismatch.6 At frequen-
cies on these branches, lattice vibrations are localized in the
elastically softer medium~polyethylene! which fills the cyl-
inders. As shown in Fig. 2, the amplitude of vibration is well
concentrated at the positions of the cylinders and it is very
small in the substrate medium. We expect that the transmis-
sion of an acoustic wave is resonantly enhanced when its
frequency coincides with one of these branches. At the same
time, a large time delay should accompany the
transmission.20 Unfortunately, there is no ultrasound trans-
mission experiment to be compared with these calculated
frequency spectra.

B. HgÕAl lattices

If the cylinders embedded in a solid substrate are filled
with nonviscous liquid, the simple PWE method for calcu-
lating acoustic-wave dispersion relations fails. This is be-
cause a transverse vibration does not exist inside a liquid, but
the conventional PWE method still assumes a finite displace-
ment amplitude for this vibrational mode in the cylinders.
The calculated dispersion relation for the mixed mode~inset
of Fig. 3, for example! exhibits many flat branches like the
ones in the preceding subsection. But in this lattice they are
fictitious. This can be seen from the fact that the number of

FIG. 1. Dispersion relations of the mixed modes~the coupled
longitudinal and transverse acoustic waves! in a two-dimensional
square lattice consisting of polyethylene cylinders in an Al substrate
with filling fraction f 50.4. (v t53.113105 cm/s is the transverse
sound velocity in Al anda is the lattice spacing.! Dots and solid
lines are the FDTD~with a grid ofn3n51202 points in a unit cell!
and PWE~with N3N5412 plane waves! calculations, respectively.
The wave-vector direction is perpendicular to the cylinder axis. The
inset compares the convergence of both the FDTD~dots! and PWE
~open squares! calculations for the frequency marked by the cross
on the flat branch at theX point. The irreducible part of the Bril-
louin zone is also displayed.

FIG. 2. Pseudo-three-dimensional representation of the lattice
displacementuy ~the component perpendicular to the cylindrical
axis! in the polyethylene/Al phononic lattice, same as for Fig. 1.
The selected wave vector and frequency (va/v t51.92) are those
corresponding to the point indicated by the open circle in Fig. 1~a
point on a flat branch!. The center of the cylinders are located at
(ma,na), wherem andn are integers.

FIG. 3. FDTD results~with a grid of n3n51202 points in a
unit cell! for the dispersion relations of the mixed modes~coupled
longitudinal and transverse acoustic waves! in a two-dimensional
square lattice consisting of mercury circular cylinders in an Al sub-
strate with filling fractionf 50.4. (v t53.113105 cm/s is the trans-
verse sound velocity in Al anda is the lattice spacing.! Hatched
region is the frequency range where large transmission dips are
observed for the longitudinal sound~Ref. 6!. Inset compares the
frequencies obtained by the FDTD calculation~dots! and the PWE
method ~solid lines! with N3N5112 plane waves in theG2X
direction.

PRB 62 7389BAND STRUCTURE OF ACOUSTIC WAVES IN . . .



flat branches increases as the number of plane waves kept in
the PWE calculation is increased. We have already shown
that at a frequency on a flat branch, the amplitude in the
softer material is much larger than that in the harder material.
In the present structure the amplitude of transverse vibrations
obtained by the PWE scheme is finite inside the cylinders but
effectively zero outside at a frequency in a flat branch. Evi-
dently this is physically unacceptable. In contrast, the FDTD
calculation gives dispersion relations free of such flat
branches as shown in Fig. 3 for the mixed longitudinal and
transverse modes. The real structure of the dispersion curves
obtained by the FDTD method is recognized only indis-
tinctly in the PWE calculation.

An ultrasonic transmission experiment of the longitudinal
mode with a 2D phononic lattice has been done by Espinosa
et al. with a structure consisting of an aluminum alloy plate
with a square periodic arrangement of cylindrical holes filled
with mercury.7 Transmission dips are found in certain fre-
quency ranges, e.g., 0.6–1.1 MHz in the@100# direction (G
2X direction! for f 50.4. A similar measurement in the
@110# direction (G2M direction! suggests the existence of a
full band gap~extending from 1.0 to 1.1 MHz! for longitu-
dinal ultrasound in the Hg/Al square lattice. Unexpectedly,
in the frequency range suggested by the experiment no com-
plete frequency gap is found in the calculated dispersion re-
lations of the mixed mode which contains the longitudinal
polarization. This does not necessarily mean that the longi-
tudinal sound in the above frequency range can propagate
through this lattice. For the branches existing in the claimed
frequency range, we have to carefully check the polarization
of the waves. This is, however, beyond the scope of the
present work. Evidently, a direct calculation of the transmis-
sion rate is necessary to resolve this apparent discrepancy.
The FDTD calculation of the transmission will appear else-
where.

It should also be noted that the amalgam of the mercury
and aluminum might be formed at the boundaries of the Hg
cylinders and Al background of the structure. If this is indeed
the case, the transition regions of a finite thickness should
exist near the boundary of the cylinders for both the density
and elastic constants and thus the filling fractionf may be
changed effectively. The consideration of such effects will
also be interesting.

C. VacuumÕAl lattices

If nothing is filled in the cylinders, acoustic waves propa-
gate in a 2D phononic lattice only through the substrate ma-
terial. This means that the acoustic wave with a given wave
vector is scattered strongly from the cylinder surfaces as the
filling fraction f increases. Thus acoustic stop bands extend-
ing over entire region of the Brillouin zone are expected to
appear for some range off.

The dispersion relations of both the mixed~filled circles!
and single~open circles! modes calculated by the FDTD
method~with a grid of n3n52002 points in a unit cell! are
shown in Fig. 4 for a 2D vacuum/Al lattice forf
50.55 (r 0 /a50.42). We really find the existence of a com-
plete frequency gap which prohibits the propagation of all
three polarizations simultaneously in any direction. The
width of this complete gap is plotted in the inset as a func-

tion of the filling fraction f. The gap widthDv increases
almost monotonically withf for both the mixedL-T and
singleT modes.

An interesting observation is the fact that the PWE
method is applicable with some manipulation to the calcula-
tion of the dispersion relations for a 2D phononic lattice with
vacuum cylinders. In this lattice both the mass density and
elastic constants are zero in the cylinder regions. A question
is how to take the limitsrA , cA

i jmn→0, in cylinders~A! in
the framework of the PWE method.~In the FDTD scheme,
no elastic medium is assumed at the grid points inside the
cylinders.! If we take these limits by assumingrA /cA

i jmn

→0, the dispersion curves obtained~with N3N5412 plane
waves! are those displayed in Fig. 4 by the solid~for the
mixed mode! and dashed~for the single mode! lines, respec-
tively. The agreement between the FDTD and PWE results is
excellent. Here we note that the spurious flat branches of
both the longitudinal and transverse modes expected to ap-
pear in the PWE calculation are now pushed out to the very
high-frequency region. Thus they do not interact with real
branches of the system at a finite frequency range. This is
quite different from the case for the PWE calculation applied
to the liquid/solid lattice~the preceding subsection!, where
the mass density of the liquid~cylinder material! is not a
disposal parameter and the flat branches stay at the finite
frequency region.

FIG. 4. FDTD results~with a grid of n3n52002 points in a
unit cell! for the dispersion relations of the coupled longitudinal and
transverse modes~dots! and the single transverse mode~open
circles! in a two-dimensional square lattice consisting of vacuum
circular cylinders in an Al substrate with filling fractionf 50.55.
(v t53.113105 cm/s is the transverse sound velocity in Al anda is
the lattice spacing.! Also plotted by the solid and dashed lines are
the PWE calculations~with N3N5412 plane waves! for the
coupled and single modes, respectively. The hatched region shows
the complete gap for three acoustic modes. The inset shows the
width Dv of the complete gap versus filling fractionf. For f . f 0

50.62~the vertical dashed line!, the gap width is determined by the
highest frequency of the single mode in the first band and the lowest
frequency of the mixed mode in the second band. Forf , f 0, it is
determined by the highest and lowest frequencies of the mixed
mode in the first and the second bands.
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IV. CONCLUDING REMARKS

In the present work we have calculated the dispersion
relations of the bulk acoustic waves in 2D phononic lattices
consisting of periodic arrays of circular cylinders embedded
in a background substance. The lattices considered are those
with a large acoustic mismatch between their constituent ma-
terials, and also the cases where the transverse or both the
longitudinal and transverse modes of vibrations do not exist
inside cylinders. For these lattices the conventional PWE
method for the calculation of the dispersion relations is usu-
ally not very reliable and an alternative approach is required.
The numerical approach based on the FDTD method is
proved to be very efficient for these cases.

Contrary to the recent ultrasound transmission
experiment,7 no complete frequency gap is found in the
claimed region of a 2D square phononic lattice with mercury
cylinders embedded in an aluminum matrix. The polarization
of the branches found in this frequency region is important
for a comparison of the transmission and frequency spectra.
For a more direct comparison, the calculation of the trans-
mission rate is necessary. For photonic crystals, the theoret-
ical transmission rate of electromagnetic waves has been
given by Sakoda21 with the PWE method and also by Fan
et al.22 with the FDTD method. A similar calculation of the
transmission rate with the FDTD method is currently under-
way for phononic lattices.

Another interesting subject is the calculation of the band
structure of surface acoustic waves in 2D phononic crystals.
The distribution of the frequency band of surface acoustic
waves is usually well separated from those of bulk waves,
and their stop-band distribution has been observed by both
surface wave transmission and imaging experiments.11,12 An
attenuation associated with the Rayleigh surface wave propa-
gation has been measured in a 2D triangular and honeycomb
~hexagonal! lattice with vacuum cylinders drilled in a marble
quarry11 and also with polymer cylinders drilled in an alumi-
num substrate.12 The attenuation in transmission spectra in
the former lattice suggests the existence of absolute band
gaps for the surface waves. However, the measurements are
sometimes compared with a theoretical calculation with a
simple scalar-wave model. We also plan to apply the FDTD
method for the calculation of the dispersion relation of sur-
face localized vibrations in 2D periodic structures.
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APPENDIX A

In this appendix, we give the explicit expressions for the
discretized versions of Eqs.~5! and ~6!:

r l ,m

~Dt !2 @U1
l ,m;n1122U1

l ,m;n1U1
l ,m;n21#

5K1
1S11

l 1(1/2),m;n1K1
2S11

l 2(1/2),m;n

1K2
1S12

l ,m1(1/2);n1K2
2S12

l ,m2(1/2);n , ~A1!

r l 1(1/2),m1(1/2)

~Dt !2 @U2
l 1(1/2),m1(1/2);n1122U2

l 1(1/2),m1(1/2);n

1U2
l 1(1/2),m1(1/2);n21#

5K1
1S21

l 11,m1(1/2);n1K1
2S21

l ,m1(1/2);n

1K2
1S22

l 1(1/2),m11;n1K2
2S22

l 1(1/2),m;n , ~A2!

S11
l 1(1/2),m;n5C11

l 1(1/2),m@K1
1U1

l 11,m;n1K1
2U1

l ,m;n#

1C12
l 1(1/2),m@K2

1U2
l 1(1/2),m1(1/2);n

1K2
2U2

l 1(1/2),m2(1/2);n#, ~A3!

S22
l 1(1/2),m;n5C12

l 1(1/2),m@K1
1U1

l 11,m;n1K1
2U1

l ,m;n#

1C11
l 1(1/2),m@K2

1U2
l 1(1/2),m1(1/2);n

1K2
2U2

l 1(1/2),m2(1/2);n#, ~A4!

S12
l ,m1(1/2);n5S21

l ,m1(1/2);n

5C44
l ,m1(1/2)@K1

1U2
l 1(1/2),m1(1/2);n

1K1
2U2

l 2(1/2),m1(1/2);n1K2
1U1

l ,m11;n

1K2
2U1

l ,m;n#, ~A5!

where (l ,m) defines a 2D grid point~grid spacings areDx
and Dy), n specifies the time step with an intervalDt, and
K1

65(kxDx62)/2Dx and K2
65(kyDy62)/2Dy. In the

above equations, the coefficientsCi j are related to the elastic
stiffness tensorci jmn in a usual manner. The initial condi-
tions ~the displacement fields att50) are chosen such that
U1

l ,m;05d l ,l 0
dm,m0

andU2
l 11/2,m11/2;050, where the 2D grid

point (l 0 ,m0) is selected at random in the unit cell.
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