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Abstract 

The size distribution of sea ice floes was observed by coordinated Landsat imagery and 

video monitoring conducted from an icebreaker and a helicopter for an area 38km×

26km in seasonal sea ice in the southern Sea of Okhotsk in February 2003. The 

combination of imagery on several scales allowed measurements of ice floes over three 

orders of magnitude, from 1 m to 1.5 km. Two different regimes were observed: floes 

larger than about 40 m have a power-law number density with an exponent of -1.87, in 

the lower range of earlier results. Below 40 m, the power law exponent is -1.15. The 

cause of these two different regimes is hypothesized to lie in the effects of swell on 

floes of different sizes and thicknesses. The importance of the floe size distribution for 

lateral melting is elucidated. 
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1. Introduction 

In the seasonal ice zones (SIZ), various types of ice floes are present, and their 

sizes range from about one meter to kilometers. Commonly, the present numerical 

model of sea ice treats two variables, ice concentration and thickness, to represent these 

ice states. However, the response to wind and melting depends on ice floe size, and the 

floe size distribution can also be one of the important ice state variables. Steele et al. 

[1989] pointed out that ice velocity significantly decreases for ice floes smaller than 

about 100 m in diameter due to the form drag effect. Further, Steele [1992] showed that 

the melting rate of ice floes significantly increases for floe sizes smaller than about 30 

m because lateral melting becomes more prominent for smaller ice floes. Therefore, it 

can be said that in the SIZ, where most ice floes are small, the ice floe distribution is a 

key parameter for both dynamics and thermodynamics. In addition, the size and shape 

distributions of floes possibly provide a clue to the understanding of ice floe formation 

processes. Generally a magnified image of part of an ice area looks almost identical to 

the original image. That is, the floe distribution appears to have a self-similar property. 

If this is confirmed quantitatively, it may have implications on the formation process of 

ice floes. 

So far, several researchers have addressed this issue. For the Beaufort, Chukchi, 

and East Siberian Seas, the floe size distribution was investigated by Weeks et al. [1980] 

with airborne side-looking radar data, by Rothrock and Thorndike [1984] with aerial 

photographic mosaics and Landsat imagery, and by Holt and Martin [2001] with 

ERS-1/SAR imagery. Their analyses show that the cumulative number distribution N(d), 
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the number of floes per unit area with diameters no smaller than d, behaves like d-α, 

1.7<α<2.9. For the Sea of Okhotsk, Matsushita [1985] and Toyota and Enomoto [2002] 

also showed with satellite imagery that the floe size distribution obeys N(d)∝d-α, 2.1<

α<2.5. These results indicate that these floe size distributions in the SIZ are basically 

self-similar. However, all these analyses focused on ice floes larger than 100 m and little 

is known about ice floes smaller than 100 m. Although Inoue et al. [2004] indirectly 

estimated the size distribution of ice floes smaller than 100 m with airborne video 

imagery, they did not treat individual ice floes. Moreover, the problem is that the 

exponent α often exceeds 2 in the past results. Mathematically, α must be less than 

2 for small ice floes, otherwise the ice area would become infinite [Rothrock and 

Thorndike, 1984]. This suggests that the size distribution must change for floes smaller 

than 100 m, and therefore an analysis including floes size down to meters, is desirable. 

For this purpose, we conducted in-situ observations in the southern Sea of Okhotsk and 

analyzed floes ranging from 1 m to 1.5 km with imagery from ship-borne and heli-borne 

video cameras and from Landsat. The purpose of this study is to examine the ice floe 

distribution in this region and then to determine the statistical characteristics, which 

may serve to shed light on the ice floe formation process. 

 

2. Measurement 

The in-situ observations were conducted with an icebreaker P/V “Soya” on 

February 11, 2003, coordinated with a Landsat-7 overpass. The study area is shown in 

Figure 1. Along the cruise track, ice conditions were monitored at different altitudes 
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with ship-borne and heli-borne video cameras. The individual tracks are shown in 

Figure 1a. Four rectangular regions with sides of 19 km and 13 km containing the cruise 

track were selected from the original scene of Landsat-7/ETM+ for analysis. The 

weather was clear and cloud free. Although the cruise track covers only a limited part of 

satellite imagery, it seems to be approximately representative. 

A ship-borne video camera was installed on the ship’s mast at a height of 19 m 

above the sea level and monitored ice conditions ahead of the ship. The video images 

were taken from an oblique angle, so reprocessing was needed before floe analysis. 

Here, we used a one-dimensional analysis method. First, we set a fixed row around the 

center of video images so that sea ice is clearly recognized and the width is long enough 

(60 m) on the row. As the ship proceeded, we sampled the brightness data on that row 

and then aligned them in temporal order, which gives us a picture as if it were taken 

from the air. The sampling interval was 1/30 sec. For convenience, each picture was 

renewed at the interval of 5 minutes (corresponding to about 1.5 km). Since there are 

700 pixels in each row, one pixel represents about 9 cm. The interval between rows is 

estimated from ship speed to be about 15 cm. Thus, the horizontal resolution of this 

dataset is about 10 cm. The error caused by the freeboard of ice floes seems to be trivial, 

mostly less than 10 cm. 

Heli-borne video images were taken at altitudes of 180, 440, 730, and 1300 m. 

The individual tracks were the same as the ship’s. At each altitude, the ice conditions 

right below were recorded. Among these the 440 and 1300 m level data were used here 

to complement the ship-borne and satellite imagery. The widths of the image are 
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estimated to be 180 m and 430 m, and the horizontal resolutions are about 0.4 m and 1.3 

m. During the flight, the altitudes fluctuated slightly from the nominal levels with the 

standard deviations of 11.3 m (at 440 m altitude) and 8.8 m (at 1300 m). However, it 

does not seem to be vital, because the error due to this fluctuation is only 1 to 3 % of the 

floe size. To provide for efficient floe analysis, consecutive video images taken every 

1/30 sec. were integrated into a composite picture by merging the images at the best 

fitted point, using the method developed by Oda et al. [1998]. For convenience, each 

picture was renewed every one minute, corresponding to about 3 km in length. 

 

3. Floe Analysis 

The procedures of analysis are basically the same for the three kinds of dataset. 

By means of image processing, each sea ice floe was extracted according to its 

brightness, and then its area (S) was measured. In this study, floe size (d) is evaluated as 

the diameter of a circle that has the same area as that of the floe: d=(4S/π)1/2. For 

heli-borne video and Landsat imagery, the perimeter and maximum/minimum caliper 

diameters (dmax/dmin) were also measured to examine the shape properties of ice floes. 

Here a caliper diameter is the size of opening through which the floe may pass in a 

particular orientation. For the video imagery, the ship speed was also taken into account 

to calculate the floe area. 

In this analysis, the most important but difficult task is to precisely determine the 

edges of ice floes. Here, the difference of brightness between water and sea ice was 

used in principle. To do this quantitatively, the RGB color brightness of each pixel was 
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converted into grey scale (L) by L=0.3R+0.59G+0.11B: 0<R,G,B<4095, then 0<L<4095 

as well. To strengthen the contrast, the highest (lowest) 3% pixels of L within one image 

were replaced by 4095 (0), and then the grey scales (L’) of the remaining pixels were 

interpolated linearly between these two levels. With these grey scaled images, the edge 

of each ice floe was determined according to the following procedure: first, based on the 

histogram of L’ for each image, the threshold which separates ice floe from water was 

determined. In most cases, the histogram shows a bimodal distribution in 

correspondence to water and ice floes (Figure 2a). The local minimum brightness (Bmin) 

between these two peaks could be a threshold. This, however, sometimes failed in 

extracting ice floes one by one when they are closely distributed. Therefore the 

threshold should be somewhat higher than Bmin. On the other hand, as it becomes higher, 

the shadow on the floes made by ridged ice tends to be categorized into water. By 

comparing with the visual floe pattern on the images, the brightness obtained by adding 

0.3×(maximum brightness (4095) - Bmin) to Bmin was adopted as a threshold. This 

method allowed us to efficiently extract numbers of ice floes, but did not work well 

when ice floes were directly in contact with the neighboring floes, as in the blue circles 

in Figure 2b. In such cases, we manually corrected the edge lines so that each floe is 

basically convex and matches the visual floe pattern as much as possible. Ice that 

crosses the boundary of the region or appears to be smaller than the resolution of the 

image was excluded from the analysis. The numbers of floes analyzed from ship-borne 

video images, 440-m heli-borne video images, 1300-m video images, and Landsat 

images were 7,331, 19,847, 14,803, and 29,612. 
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4. Results 

Following Rothrock and Thorndike [1984], the results for each dataset are 

represented in the form of cumulative number distributions N(d). It should be noted that 

each dataset has a suitable scale for analysis according to its pixel size and areal 

coverage. The lower limit should be a few times the pixel size, that is, 0.3 m for ship 

data, 1.3 m and 4 m for the two altitudes of heli data, and 80 m for Landsat data. 

Although the upper limit of the suitable scale was not determined, the value from higher 

altitude was adopted preferentially if N(d) was duplicated between different datasets for 

the same diameter. This is because the imagery from a higher altitude contains a larger 

number of floes and is more representative. 

Figure 3 shows the cumulative number distribution obtained through these 

procedures. The log-log graph has two slopes with a transition zone at a diameter of 

about 40 m, indicating that N(d) behaves like d-αwithin each slope range. The exponent 

α is estimated by the least squares method to be 1.87 for floes larger than 40 m and 

1.15 for floes smaller than 40 m. Although the first value is less than 2 and the result of 

2.1<α<2.5 [Toyota and Enomoto, 2002], it is within the range of the earlier results for 

ice floes larger than 100 m [e.g., 1.7<α<2.5 by Rothrock and Thorndike, 1984] and is 

consistent with the past research. Of importance is the result that αdecreases to 

significantly below 2 for smaller ice floes. This result solves the “infinite area” problem 

mentioned in section 1. Further, this also suggests that the processes of ice floe 

formation are different for different floe sizes. In Figure 3, the slope decreases 

significantly again below 1 m, but this does not seem to be meaningful. This is because 
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at this size most ice floes belong to brash ice in irregular shapes, and it is almost 

impossible to extract them accurately. 

Next, we would like to mention the shape of ice floes. Here, we define the 

diameter (dp), defined by that of a circle which has the same perimeter as the floe: dp=P/

π, where P is the floe perimeter. When the ratio of dp to d is unity, the shape should be 

exactly a circle. The greater the ratio becomes, the more distorted the shape becomes 

from a circle. Therefore, this ratio is regarded as a parameter of the degree of distortion. 

Figure 4a shows the relationship between d and dp for all the ice floes analyzed. It is 

noticeable that they are almost linearly correlated and the ratio is estimated as 1.145±

0.002 with the 95% significance level. This value is somewhat lower than 1.29 by 

Toyota and Enomoto [2002] and close to 1.11 estimated from Rothrock and Thorndike 

[1984]. If we assume ice floes of elliptical shape, the ratio dp/d of 1.145 corresponds to 

the ellipse whose aspect ratio is 2.4. To examine this more explicitly, the relationship 

between the maximum and minimum caliper diameters, dmax and dmin, are also plotted 

for individual ice floes in Figure 4b. It is shown that they are also correlated, though not 

so well as d and dp. The ratio dmax/dmin is estimated as 1.78±0.4. This value is almost 

within the range of the result (1.2 to 2.2) obtained for multi-year ice by Hudson [1987]. 

Consequently, our results show that the ice floes have the aspect ratio of around 2 on 

average and are usually distorted, not of a circular shape. These values are almost the 

same for the two regimes, suggesting that the property of ice floe shape is almost 

independent of floe size. 
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5. Discussion 

Here we discuss what caused the two regimes in the size distribution. As for 

physical processes that determine the floe geometry, Rothrock and Thorndike [1984] 

pointed out melting of ice floes, failure due to collision of ice floes, and flexural failure 

by ocean swell. Among these processes, it seems to be the flexural failure by swell that 

works differently depending on the floe size. Therefore, we focus on the flexural failure 

due to swell here. Concerning the response of sea ice to swell, Higashi et al. [1982] 

showed using the general equation of elastic motion that when ice plate is shorter than 

100 m, flexural failure becomes relatively difficult with the decrease of ice length for 

any wave period and amplitude. Meylan and Squire [1994] also showed from a precise 

linear mathematical theory that the vertical strain of ice floe due to swell decrease much 

for ice floes smaller than 100 m for any wavelength. This is consistent with our result 

that the slope of the floe size distribution is gradually reduced below 100 m. In addition, 

from the viewpoint of the mechanical flexure of ice floes the minimum size of breakup 

can be estimated as 14, 24, and 33 m for 1, 2, and 3 m thick ice [Mellor, 1986]. This 

implies that sea ice smaller than about 40 m in diameter can scarcely be broken up 

mechanically. Thus in the regime of ice smaller than 40 m, the floe size distribution may 

be determined by the welding of smaller sea ice such as pancake ice, rather than by the 

breakup due to swell or by uneven melting of larger floes. On the other hand, in the 

regime of floes larger than 40 m diameter, breakup seems to play an important role as 

well as welding in determining the ice floe distribution. Between the two regimes, we 

surmise that the different conditions of swell and ice thickness affect the distribution 
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and produce the transition zone. 

Next we discuss how much influence the size distribution for smaller floes has on 

a lateral melting process of sea ice. To examine this, we calculate the total perimeter of 

all the ice floes and compare it with that for the case where there is only one regime. 

Here let us suppose that the cumulative number distribution be described as 

1
1)( αβ −⋅= ddNa  for d1<d<d2 and 2

2)( αβ −⋅= ddNb  for d2<d<d3. In this case, the 

ice concentration A is given by  
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, −=  are the number of floes whose 

diameters are x to x+dx  per unit area, and s(x) is the area of a floe (=πx2/4). From the 

boundary conditions Na(d2) = Nb(d2), β1 should be equal to β2d2
-α2+α1. With these 

equations, β1,2, and then Na,b(d) are determined for the fixed parameters of A, d1, d2, 

d3, α1, and α2. This allows us to calculate the total perimeter of ice floes. Based on 

our results, we assign the values of 1 m, 40 m, 1500 m, 1.15, and 1.87 to the parameters 

of d1, d2, d3, α1, and α2. In calculation, the ratio dp/d (=1.145) is also used, and A is 

assumed to be 0.8. The result is compared with that for only one regime where α1 and 

α2 are both equal to 1.87. Consequently, it is found that the perimeter for two regimes 

is as much as 4.8 times less than that for only one regime. This result indicates that the 
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size distribution of ice floes smaller than 40 m has a strong effect on a lateral melting 

process. Recently the importance of lateral melting has been pointed out from 

observation for the Antarctic sea ice in melting season [Nihashi et al., 2005] and from 

numerical simulation for the Sea of Okhotsk even in mid-winter [Watanabe et al., 2004]. 

Therefore, it appears that taking account of floe size distribution especially for small 

floes, should significantly improve sea ice models. 

    In this study, the size distribution of ice floes over three orders of magnitude, from 

1 m to 1.5 km, is evaluated for the first time in the SIZ. It is revealed that there are two 

regimes for floes larger than and below 40 m in diameter and the significant effect on 

melting is discussed. However, since our study is limited in both time and region, the 

accumulation of more data is required to enhance our understanding of floe size 

distribution. To elucidate the effect of lateral melting, further analysis especially in the 

melting season is desirable in the future. 
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Figure Captions 

Figure 1: (a) Map of the Sea of Okhotsk with the cruise tracks of the P/V “SOYA”  

(thin line) and the helicopter (red line). 

(b) A Landsat-7/ETM+ image of the solid line area in Fig.1a with parallels and 

 meridians. In the picture, the regions surrounded by thick blue lines are the  

study area. The horizontal resolution is 15 m. The red line denotes the cruise  

track, where video monitoring observation was conducted by a helicopter.  

Figure 2: One example of analysis. 

(a) A histogram of grey scaled brightness (L’) with a threshold line. 

   See the text for the details of the method to determine the threshold. 

(b) The ice edges drawn in red at the threshold determined in Fig.2a. 

   Note that the ice floes surrounded by blue circles are not analyzed correctly. 

   In such cases, manual corrections of ice edges were made. 

Figure 3: The cumulative number distribution of floe diameter N(d).  

Three kinds of datasets by a ship, a heli, and satellite are compiled to draw this  

graph. The two lines indicate the two regimes. 

Figure 4: The properties of the shape of individual ice floes. 

      (a) The relationship between diameters d and dp, obtained from area and  

perimeter, respectively. The ratio dp/d is an index of distortion from a  

circle. 

      (b) The relationship between maximum (dmax) and minimum (dmin) caliper  

diameters. 
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