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Annealin g metho d for operatin g quantum-cellular-automato n systems
M. Akazawaa) and Y. Amemiya
Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Sapporo 060, Japan

N. Shibata
Dai-Nippon Printing Co., Ltd., Nisbi-Gotanda 3-6-21, Shinagawa-ku, Tokyo 141, Japan

~Received 25 November 1996; accepted for publication 1 August 1997!

We propose an annealing method as an effective way of operating quantum-cellular-automaton
~QCA! systems, which are devices for computation that utilize the minimum energy state of
electrons in a quantum cell system. A QCA system has an energy function with many local minima
and therefore cannot be operated as desired if placed under the conditions of a thermodynamically
open system. Accordingly, for successful operation of a QCA system ~i.e., making the QCA system
converge successfully to its minimum-energy state!, we propose amethod of operation based on the
concept of thermodynamic annealing. Wesimulate thedynamicsof variousQCA logic-gatesystems
operated by this annealing method, and show that data processing in QCA systems can be carried
out accurately by means of this annealing method. The applicability of QCA systems to
non-Neumann parallel-processing computation is also described. © 1997 American Institute of
Physics. @S0021-8979~97!01722-2#

I. INTRODUCTION

The quantum cellular automaton ~QCA!1–3 is a compu-
tation device that utilizes the energy-minimizing property of
quantum cell systems. It was proposed by Lent and
colleagues1 and has been receiving increasing attention be-
cause it affords the possibility of producing quantum large-
scale integrated circuits ~LSIs! with large integration capa-
bility and low power consumption. To develop the QCA for
practical use, we must find away of operation that can make
the QCA system compute successfully, or settle down ex-
actly to its minimum-energy state. This article proposes such
a method of operation, namely, an annealing method for
operating QCA systems.

The concept of the QCA is as follows. To perform bi-
nary logic computation, first a many-body electron system is
prepared that consists of a large number of simple identical
quantum-dot elements ~cells!, where each cell has bistable
states and changes its state through Coulomb interaction with
its neighboring cells. In computing, some of the cells are
used as input cells and others as output ones. The input bi-
nary data are provided for the system by fixing the states of
the input cells. Under a given input, each cell adjusts its own
state to those of all the others. After some interaction time,
all the cells finally reach maximal consensus about their in-
dividual states, and the whole system then stabilizes in the
minimum-energy state. By an ingenious arrangement or lay-
out of the cells, the system can be so constructed that, when
its minimum-energy state is achieved in response to a given
input, the states of the output cells wil l represent the result of
the computation. Thus the result of the computation can be
retrieved by sensing the states of the output cells.

To develop QCAs into practical devices, we have to deal
with the following two fundamental problems. The first is:
can such a quantum-cell layout really exist, of which the
minimum-energy state represents the result of the computa-

tion? Study of this problem by Lent and colleagues has
shown that such a cell layout certainly can exist and that
several elemental logic-gate circuits can probably be con-
structed by using QCAs.1–3

The second problem we must deal with is the subject of
this article. It is: starting with a given initial state, how can
we make the system settle down to its minimum-energy state?
The initial state ~i.e., just after data input! is not the
minimum-energy state for the given input and, for computa-
tion, the QCA has to change its state to settle down to the
minimum-energy state corresponding to the input. Because a
many-body electron system in general has many states of
locally minimum energy, we cannot be certain that the QCA
system can achieve the state of globally minimum energy
without being stuck in the local minima. The way of dealing
with this problem depends on whether the electron system in
the QCA is an adiabatic system or an open system. ~The term
‘‘adiabatic system’’ means that the electrons in aQCA inter-
change no energy with the crystal lattice that forms the QCA
device, and the ‘‘open system’’ means that the electrons do
interchange energy with the crystal lattice.! Under adiabatic
conditions, the electron system excited in energy by an input
signal wil l maintain its ‘‘hot’ ’ properties during the comput-
ing operation. Consequently, the electron system wil l change
its configuration freely without being stuck in the local
minima, and successful QCA operation wil l result. This has
been confirmed by Tougaw and Lent.3 They simulated signal
transmission in a QCA under adiabatic conditions and
showed that a signal can travel properly through the QCA in
the form of an energy-excited part ~called a ‘‘kink’’ ! in the
electron system. Thus we can expect that QCAs wil l operate
correctly under adiabatic conditions.

The situation is quite different if the electron system in a
QCA is an open system. Under open-system conditions, the
electron system excited by an input signal wil l lose its en-
ergy through interaction with the crystal lattice and transfer
to lower energy levels, and consequently wil l fall into the
local minima. Therefore, as things stand, the QCA cannot bea!Electronic mail: akazawa@sapiens.huee.hokudai.ac.jp

5176 J. Appl. Phys. 82 (10), 15 November 1997 0021-8979/97/82(10)/5176/9/$10.00 © 1997 American Institute of Physics

Copyright ©2001. All Rights Reserved.



operated as desired. In most quantum-dot structures, the
electron system interacts with the crystal lattice to inter-
change energy with lattice vibration, and so must be consid-
ered an open system. It is therefore essential to find a way of
operation that can drive the system into the global-minimum
energy state under open-system conditions.

In this article, we wil l propose an effective method for
operating QCAs that can be applied to open-system condi-
tions. In the following sections, first we calculate the poten-
tial energy of a QCA system as a function of the electron
states. It wil l be shown that the QCA system has an energy
function that has many local minima and therefore, under
open-system conditions, cannot perform data processing as it
stands ~Sec. II !. After that, to make the circuit operate cor-
rectly or converge to the minimum-energy state, we propose
an annealing method for operating QCA systems. We will
illustrate the concept of this method and then show by simu-
lation that it can be used to operate QCAs ~Sec. III !. We will
simulate data processing in various logic-gate circuits to
show the effectiveness of the proposed method. The depen-
dence of the processing speed on the size of the circuits will
also be estimated ~Sec. IV !. Finally we wil l conclude by
suggesting the applicability of QCAs to non-Neumann
parallel-processing computation ~Sec. V!.

II. ENERGY FUNCTIONS AND LOCAL MINIMA IN THE
QCA

A. QCA structures

The QCA is a computation system composed of many
identical quantum cells. For details, see Refs. 1–3. Each cell
consists of five dots located at the corners and the center of a
square @Fig. 1~a!# and has two electrons that can tunnel be-

tween any neighboring dots within the cell. ~A fixed positive
charge is also assumed to exist on each dot, to maintain
charge neutrality in the cell.! Because of Coulomb repulsion,
the two electrons tend to occupy diagonally opposed sites in
the cell. As this gives the cell two states for polarization @Fig.
1~b!#, we can encode a binary signal by manipulating the
polarization. In an array of identical cells @Fig. 1~c!#, the
polarized state of an input cell ~the left-end bold-edged cell
in the figure! wil l induce the same polarization in all the cells
in the array. From this it can be expected that a binary signal
wil l be transferred through the array. By combining identical
cells in appropriate layouts, various logic circuits can be con-
structed.

The energy of a QCA system depends on its electron
arrangement ~that is, which dots in the circuit are occupied
by electrons!. Lent and colleagues have calculated the value
of the energy by solving the Schrödinger equation for vari-
ous cell layouts to find the minimum-energy states. Based on
the results of the calculation, they designed appropriate cell
layouts for elemental logic-gate circuits.2,3 For the following
discussions, we here give instances of their results @Figs. 2~a!
through 2~d!#. Each gate circuit has one or more input cells
~bold edged in the figures! and an output cell ~double edged!.
Its cell layout is such that its energy wil l become the mini-
mum for a specific electron arrangement in which the binary
data of the input cells and of the output one satisfy the logic
function to be implemented. Figures 2~a! and 2~b! illustrate a
linear signal-transmission array and an angled one, for inputs
‘‘0’ ’ and ‘‘1’ ’ with the corresponding minimum-energy elec-
tron arrangements. ~In the figure, each electron is represented
as a single particle. Strictly speaking, this is inaccurate be-
cause the electron wave function can extend over five dots
within a cell. But in practice the electron wave functions for
global and local minimum-energy states for a given input are
localized mostly on two diagonally opposed dots in the cell,
so we can represent the electron arrangement as shown in the
figure.! Figure 2~c! shows an AND/OR gate circuit. It can
switch between AND and OR operations by means of a con-
trol input: i.e., an AND operation when the control cell is
fixed to 0, or an OR operation when fixed to 1. In this figure
the electron arrangement for an AND operation with inputs
A51 and B50 is shown. Figure 2~d! illustrates an inverter,
with the electron arrangement for an input 0.

There are three parameters that determine the circuit
characteristics. They are: the nearest-neighbor distance be-
tween two corner dots in the same cell ~denoted by a in the
figures!, the nearest-neighbor distance between two dots in
neighboring cells ~denoted by d!, and the fixed positive
charge on each dot.

B. Calculatin g the energ y of a QCA system

To analyze the behavior of a QCA system, we must first
decide on a way to calculate the energy of the QCA system
as a function of the electron arrangement.

The usual method for calculating QCA energy is the
intercellular Hartree approximation.3 In this method, the
state of each cell is determined by solving the Schrödinger
equation for the cell, using a Hubbard-type Hamiltonian with
a Coulomb interaction term and assuming the Hartree ap-

FIG. 1. Concept of the QCA circuit. ~a! A unit cell consisting of five quan-
tum dots with two electrons. ~b! Two polarization states, 0 and 1. ~c! Signal
transmission through a cell array.
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proximation, which treats the charge in differing cells as the
generator of a Hartree mean field. The minimum-energy state
of the circuit as a whole is obtained by repeating self-

consistent calculation until the results of the calculation con-
verge.

This method, however, cannot be used in our analysis.
The present purpose is to study the process of QCA systems
converging to a minimum-energy state. Hence, we have to
consider the dynamics or time-dependent behavior of QCA
systems under open-system conditions. As wil l be shown
later, we have to perform many iterations to simulate the
state transitions in a QCA system. An enormous and imprac-
tical amount of computing time is required to accomplish
such dynamics simulation by means of Hartree-type approxi-
mation.

In the present analysis, we assume asimplified model for
QCA circuits. In this model a QCA system can be regarded
as aclassical electrostatic system consisting of electrons and
background positive charges, and its energy can be given
simply as Coulomb potential energy. We also assume that
the electron charge is a point charge, and that the size of each
dot in cells is zero and therefore the background positive
charge is a point charge. This simplification means that we
ignore the effect of exchange coupling between electrons in a
cell. This is not a problem, however, because the QCA sys-
tem is generally designed for achieving distinct polarization
of each cell, such that the exchange effect is small enough
compared to the effect of Coulomb energy.2 ~No exchange
coupling exists between electrons in differing cells because
the electrons cannot tunnel between differing cells.! Using
this simplified model, we calculated in advance the electron
arrangement that gives the minimum energy for each gate
circuit in Figs. 2~a! through 2~d!. The results agreed with
those in Fig. 2 predicted by the intercellular Hartree approxi-
mation. This shows that the simplified model suffices for
grasping the general situation of QCA systems.

C. Loca l minim a in QCA energy

The energy of a QCA system is a function of the elec-
tron arrangement. For each of the logic-gate circuits given in
Fig. 2, we have calculated the Coulomb potential energy for

FIG. 3. Coulomb energy vs electron arrangement for a five-cell linear array
circuit.

FIG. 2. Elemental logic-gate QCA circuits. Each has one or more input cells
~bold edged! and an output cell ~double edged!. ~a! Linear signal-
transmission array. ~b! Angled signal-transmission array. ~c! AND/OR gate.
~d! Inverter. Also illustrated is the minimum-energy electron arrangement
for a given input.
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all possible arrangements of electrons. We found that all the
circuits have many local minima in their energy functions.

As an example, we illustrate in Fig. 3 the calculated
energy function of a five-cell linear array circuit. We fixed
the polarization of the input cell to state 1, and calculated the
energy for each possible arrangement of electrons in the
other four cells. The horizontal axis of the figure indicates
the number of the electron arrangement; one number corre-
sponds to one arrangement of electrons; 104 arrangements
are possible because ten possible arrangements exist for two
electrons in each of the four cells. In calculation, we as-
sumed, following Ref. 2, that d51.2 a ~for a and d, see Sec.
II A! and the background positive charge QB on each dot
was (2/5)e ~e is the elementary charge!. In the figure, the
energy is normalized to e2/(4pe0e ra) ~e0 is the permittivity
in vacuum, ande r a relative dielectric constant of the QCA
circuit!.

As illustrated in the figure, the energy of the circuit be-
comes minimum for a specific arrangement of electrons in
which every cell takes the same polarization as that of the
input cell—the desirable electron arrangement that transmits
the input signal correctly. But it can also be seen that many
local minima exist that have energy values close to that of
the minimum-energy state. It is therefore not possible to be
certain that, under open-system conditions, the circuit can
always achieve the minimum-energy state, starting with a
given initial state. In most cases the circuit wil l get stuck in
a local minimum and therefore wil l not be able to transmit
input signals.

This situation is illustrated simply in Fig. 4. Figures 4~a!
through 4~e! depict the several states of the linear array cir-
cuit with the corresponding normalized energy values. Fig-
ure 4~a! corresponds to the initial state in which the input cell
is fixed to state 1 and the other four cells are in state 0. It
might be expected that the polarized state of the input cell
wil l induce the same polarization in all the cells in the array

circuit, as illustrated in Figs. 4~b! through 4~e!. But this can-
not happen under open-system conditions. Because state b
has ahigher energy than that of the initial state a, the circuit
cannot make the transition to state b. And if it could, the
circuit might not transfer from state b to state c because the
energy is the same for both states.

III. ANNEALIN G METHOD FOR OPERATING QCA
CIRCUITS

A. Concep t of QCA annealing

Our objective in operating a QCA circuit is to reach a
minimum-energy state without getting stuck in local minima.
One effective way to avoid ~or escape! local minima is to
accept in a limited way energy-up transitions corresponding
to an increase in the value of the energy. Tougaw and Lent
reported that, in an adiabatic system, such excitation can be
accomplished by input change ~because the configuration
changes from ground state to excited state!, and the excita-
tion energy is not dissipated until the end of dominolike
signal transfer.3 Such transition cannot be guaranteed in an
open system, where a QCA circuit is put in a heat bath and
can interchange energy with it. Here, another way is needed.

We propose here an effective way of operating QCA
circuits of open systems. It is the annealing operation
method. The method consists of the following four steps
~Fig. 5!.

~1! Provide an input signal to a QCA circuit by fixing the
polarization state of the input cells.

~2! Increase the temperature of the heat bath to a maxi-
mum value at which the QCA circuit changes its electron
arrangement randomly.

~3! Carefully decrease the temperature of the heat bath
until the QCA circuit arranges its electrons in the minimum-
energy arrangement ~or until the QCA circuit reaches con-
vergence!.

~4! Read the result of the computation by detecting the
polarization state of the output cell.

If the lowering of the temperature is done slowly
enough, the QCA circuit can reach thermal equilibrium at
each temperature, and therefore can approach a minimum-
energy state with decrease in temperature. ~Here the ‘‘tem-
perature’’ need not be thermal temperature; any factor that
can activate a QCA circuit, e.g., light and electromagnetic
waves, can be used.!

FIG. 4. A sequence of state transition for dominolike signal transfer through
a five-cell linear array circuit, under open-system conditions. The corre-
sponding normalized Coulomb energy E is shown for each state.

FIG. 5. Concept of the annealing procedure.

5179J. Appl. Phys., Vol. 82, No. 10, 15 November 1997 Akazawa, Amemiya and Shibata

Copyright ©2001. All Rights Reserved.



Originally, the term ‘‘annealing’’ was confined mostly to
the metallurgical process for obtaining a perfect metal crystal
without deformations and dislocations—heating a body of
metal to near its melting point and then cooling it slowly to
room temperature. In this study, we adopted annealing as an
effective method for achieving successful QCA operation. In
the following sections, we wil l show by computer simulation
that a QCA circuit can carry out correct data processing
through settling down, or converging successfully, to its
minimum-energy state by means of annealing.

B. Simulate d annealing

We simulated the process of QCA annealing by means
of Monte Carlo techniques. In advance of the annealing, the
cooling schedule, i.e., a decrement function for lowering the
temperature, must be determined. Among several cooling
schedules,4–7 we used the natural cooling given by T
5T0 exp(2rt), whereT is the temperature,T0 is an initial
value of the temperature,r is a cooling-speed coefficient,
and t is time. The values of T0 andr govern the convergence
of a QCA circuit during annealing. To achieve the conver-
gence successfully within the shortest annealing time, the
optimum set of T0 andr has to be determined. This depends
on the structure of the QCA circuit to be operated, and can
be determined only through simulation.

The algorithm for the simulation is as follows.

1. Initial setup for the annealing

Given a QCA circuit to be operated, provide input data
to the circuit by fixing the polarization of input cells through-
out the annealing procedure ~the other cells are unrestrained!.
Choose appropriate values for the cooling-schedule param-
eters T0 andr. Choose the starting state of the QCA circuit,
and set t50. ~In the following, astate means an arrangement
of electrons in the QCA circuit.!

2. Monte Carlo iteration of the annealing process

~a! Step 1. Compute the energy E0 for the current state
of the QCA circuit. Then enumerate all possible subsequent
states and compute the energy Ei for each subsequent state i .
~A subsequent state means astate into which the current state
can be transformed by one tunneling of an electron. The
co-tunneling phenomenon is ignored for simplicity.!

~b! Step 2. Compute the energy difference DEi (5Ei

2E0) for each subsequent state. From the value of DEi ,
calculate the waiting time for a tunneling process corre-
sponding to each subsequent state. The waiting time t(DEi)
is given as follows ~see Appendix!:

t~DEi !5H t0 ln~1/r ! ~ if DEi<0!

t0 exp~DEi /kBT!ln~1/r ! ~ if DEi.0!,
~1!

where the constantt0 is the mean waiting time for tunneling,
r is a uniform random number (0,r ,1) generated for each
tunneling event, kB is the Boltzmann constant, and T is the
temperature given by the cooling schedule T5T0

exp(2rt).
If DEi.0, the waiting time t0 ln(1/r ) is multiplied by a

factor of exp(DEi /kBT). This corresponds to the fact that a

tunneling process for DEi.0 needs the assistance of thermal
energy or of a phonon. ~The factor exp(DEi /kBT) corresponds
to the reciprocal of acceptance probability exp(2DEi /kBT) in
the simulated-annealing process proposed by Metropolis and
colleagues8 to simulate the evolution of a solid in aheat bath
to thermal equilibrium.!

The mean waiting time t0 depends on the distance tun-
neled by an electron. Two kinds of tunneling can occur
within a QCA cell: the tunneling between a corner dot and
the center dot ~short-distance tunneling! and the tunneling
between two corner dots ~long-distance tunneling!. We
named the mean waiting time for the former the Monte Carlo
time unit. The latter tunneling is expected to be less frequent
than the former, so we assumed the mean waiting time for
the latter to be ten times that of the former.

~c! Step 3. After calculating the waiting time t (DEi) for
all possible tunnelings, take the tunnel event that has the
shortest waiting time, and accept the corresponding subse-
quent state as the current state. Then put the time forward by
t (DEi) and return to step 1 to repeat the iterations.

3. Judgment of the convergence

Steps 1through 3 of the Monte Carlo iteration above are
repeated until it appears that a convergence has been
achieved. We need suitable criteria for deciding to stop the
procedure. In the present calculation, we judge that the states
of the QCAs have converged if the current state has not been
updated for 50 000 Monte Carlo time units. We then check
to see whether the converged state is the minimum-energy
state. If it is, theannealing has succeeded; if not, it has failed.
We call the above annealing procedure a trial .

For a given QCA circuit, we repeated 100 trials, using a
different series of random numbers for r , and then judged
the annealing to be successful if all the trials were successful.

4. Determination of the optimum values of T 0 and r

We must find the optimum set of cooling-schedule pa-
rameters ~the initial temperature T0 and the cooling-speed
coefficientr! that achieves the successful convergence in the
shortest annealing time. The procedure for finding the opti-
mum T02r set is as follows. We first select a large value of
T0 and repeat the simulated annealing for various values of r
to determine the r value that gives the shortest annealing
time for the given T0 value. Then we reduce the T0 value by
a slight decrement and repeat the same calculations. By re-
peating this procedure, we can find the optimum T02r set
for that particular QCA circuit.

Many iterations or much computing time is required to
determine the optimum T02r set for a given circuit. There-
fore we determined the optimum set only for the AND/OR
gate circuit @Fig. 2~c!, the most complex circuit among the
elemental QCA circuits shown#, and used that value of T0 ,
6.69 K, for all other circuits ~the r value was optimized for
each circuit!.

C. The resul t for a linea r array circuit

We first simulated the annealing process for linear
signal-transmission array circuits. The result of a trial for a
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five-cell linear array is shown in Fig. 6. The energy transition
resulting in convergence is illustrated as a function of time
normalized to the Monte Carlo time unit. The polarization
state of the input cell ~the left-end bold-edged cell! was fixed
to 1 throughout the annealing procedure, and at the start
(time50) the other four cells were set to 0. The scheduling
parameters were T056.69 K and r5531024 ~1/Monte
Carlo time unit!. The structure parameters were assumed to
be a510 nm, d512 nm, ande r510.

We calculated the energy of the circuit for every tran-
sient state, but for simplicity plotted in the figure the mean
values for every 10 Monte Carlo time units. As more than
2,500 tunneling events or state transitions occurred, it was
not possible to plot each event.

It can be seen in the figure that after many state transi-
tions the electron arrangement in the QCA circuit finally
converges to the energy-minimum state. Consequently, the
QCA circuit was able to transmit the input signal correctly.
The mean convergence time for 100 annealing trials was
10 100 Monte Carlo time units ~apart from the 50 000 Monte
Carlo time units expended in judging the convergence!.

In this QCA circuit, the energy difference between the
minimum-energy state and the second-lowest energy state,
under the given input, is 1.1 meV, corresponding to 13 K.
Therefore, to prevent thermal agitation, the temperature at
the final stage of the annealing has to be much lower than 13
K. The maximum value of final temperature, which varied
from trial to trial, for 100 trials, was 1.03 K.

It is possible to convert the Monte Carlo time unit into
physical time, provided that the value of the mean waiting
time for tunneling between a corner dot and the center dot in
a cell can be known. Experiments for several quantum struc-
tures have shown that the tunneling interaction time between
two coupled dots can be 0.05–2 ps,9–11 so the unit of Monte
Carlo time in QCA circuits can be expected to be similar in
value. Assuming the unit to be 1 ps, the mean convergence
time can be estimated at 10.1 ns.

IV. SIMULATED ANNEALIN G FOR ELEMENTAL
LOGIC-GATE CIRCUITS

This section illustrates the results of simulated annealing
for elemental logic-gate circuits ~an angled signal-
transmission array, an inverter, and an AND/OR gate! to
show the effectiveness of annealing in QCA operation. In the
simulations, the polarization of an input cell ~or cells! was
fixed to a given state ~1 or 0! throughout the annealing pro-
cedure. At the start (time50), the electrons in the other cells
were set into the arrangement that would give the minimum
energy if the input cell were in an opposite state. ~The struc-
ture parameters were a510 nm, d512 nm, and e r510 for
all sample circuits. A background positive charge QB

5(2/5)e on each dot was assumed.!

A. Angle d array circuit

The result of a trial of the annealing for a five-cell
angled array is illustrated in Fig. 7. Plotted are the mean
energy values for every ten Monte Carlo time units. The
annealing parameters were T056.69 K and r5331024

~1/Monte Carlo time unit!. After many state transitions, the
circuit converged to the minimum-energy state, and thereby
transmitted the input signal correctly. The average conver-
gence time for 100 trials was 12 500 Monte Carlo time units
~12.5 ns for a unit of 1 ps!.

B. Inverte r circuit

The annealing process for an inverter circuit ~a NOT
gate! is illustrated in Fig. 8. Again, successful convergence
was obtained, and consequently the circuit was able to per-
form the NOT operation correctly. The annealing parameters
were T056.69 K and r5531025 ~1/Monte Carlo time
unit!. The mean convergence time for 100 trials was 56 500
Monte Carlo time units ~56.5 ns for a unit of 1 ps!.

FIG. 6. Simulated annealing for a five-cell linear array circuit. Initial state:
the input cell is 1 and the other cells are 0. Final state: all the cells are 1.

FIG. 7. Simulated annealing for a five-cell angled array circuit. Initial state:
the input cell is 1 and the other cells are 0. Final state: all the cells are 1.
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C. AND/OR gate circuit

As described in Sec. II A, the AND/OR gate circuit op-
erates as an AND gate if the control cell is fixed to 0 and as
an OR gate if the control cell is fixed to 1. We have simu-
lated and confirmed the logic operation for both AND and
OR operations for all possible input combinations. We here
illustrate in Fig. 9 the result for AND operation with one
input set at 1 and the other input set at 0. The annealing
parameters were T056.69 K and r56.731026 ~1/Monte
Carlo time unit!. Through annealing, the circuit converged to
the minimum-energy state at which the polarization of the
output cell was 0, and thereby performed the AND logic

operation correctly. The mean convergence time for 100 tri-
als was 186 000 Monte Carlo time units ~186 ns for a unit of
1 ps!.

D. Relatio n betwee n convergenc e tim e and circuit
size

In previous sections, we confirmed that data processing
or logic operation in QCA can be carried out successfully by
use of the annealing method. But if the convergence time
increases rapidly with increase in the number of cells, it will
be impossible to operate large-sized QCA circuits within a
practical span of time. An increase in the number of cells
leads to an exponential increase in the number of possible
electron arrangements, so the convergence time may also
increase exponentially with the number of cells.

To investigate this problem, we carried out simulated
annealing for a linear array circuit, changing the number of
cells from 2 to 17. ~In this calculation, we assumed four
dots—one at each corner—in a cell, instead of a five-dot cell.
This is because simulation for a large-sized five-dot-cell ar-
ray requires enormous computing time.! The result is illus-
trated in Fig. 10, which shows the convergence time as a
function of the number of unrestrained cells. Contrary to our
expectations, the convergence time showed hardly any de-
pendence on the number of unrestrained cells. Though a de-
finitive conclusion cannot be drawn before other QCA cir-
cuits have been investigated, it seems that the convergence
time for the annealing does not increase rapidly with an in-
crease in the size of the QCA circuit.

V. APPLICATIO N TO NON-NEUMANN COMPUTATION

The proposed annealing method for QCAs wil l open up
novel application fields of QCAs, in addition to digital logic
computation. An example is non-Neumann parallel process-
ing computation for solving combinatorial problems. For ex-
ample, consider the following problem: given a well-formed

FIG. 8. Simulated annealing for an inverter circuit. The input cell is fixed to
1. Initial state: the output is 1. Final state: the output is 0.

FIG. 9. Simulated annealing for an AND circuit. The control cell is fixed to
0, and two inputs are fixed to 1 and 0. Initial state: the output is 1. Final
state: the output is 0.

FIG. 10. Convergence time vs number of unrestrained cells for a linear
array circuit. The convergence time result is normalized to that of the two-
cell circuit ~one-unrestrained-cell circuit!.
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Boolean expression, is there a truth assignment for the set of
variables that satisfies the expression? ~For instance, given
the Boolean expression (X11X21X3)(X11X21X3)(X1
1X21X3), is there a combination of the values of variables
X1 through X3 that makes the logical value of the expres-
sion be 1?! This problem, the satisfiability problem, belongs
to the class of NP complete ~nondeterministic polynomial-
time complete!, and is intractable for ordinary digital com-
puters because the computational steps for problem solving
increase exponentially with the increase in the size of the
problem. But it can be expected that the QCA wil l provide
an ingenious device that can quickly solve this kind of prob-
lem. We first prepare aQCA circuit that corresponds to the
given Boolean expression, then fix the output cell to a state 1
and leave the input cells unrestrained ~the states of the input
cells correspond to the binary values of variables!. After that
we anneal the QCA circuit into an equilibrium state with
global-minimum energy, then check to see whether or not
the set of the final states of the input cells is asatisfying truth
assignment for the given Boolean expression. If it is, the
Boolean expression is satisfiable and the input cell states
indicate a truth assignment for the set of variables. If it is
not, the given expression is not satisfiable.

VI. CONCLUSION

The QCA is adevice that performs computation by uti-
lizing the energy-minimizing property of quantum-cell struc-
tures. A key requirement in operating a QCA system suc-
cessfully is to make the system converge exactly to its
global-minimum energy state without getting stuck in local
minima. For this purpose, we proposed an annealing method
for operating QCA systems under open-system conditions
and performed simulated annealing to show the effectiveness
of the proposed method. We confirmed that it is possible to
successfully operate elemental QCA gate circuits such as the
linear array, the angled array, the inverter, and AND/OR
gates. We also estimated the dependence of the processing
speed on the size of the circuits and found that it showed no
decrease in speed with increased circuit size. This indicates
the possibility of operating a large QCA within a practical
time span. The proposed annealing method for QCAs will
open up novel application fields for QCAs, in addition to
digital logic computation. As an example, a non-Neumann
parallel processing computation for solving combinatorial
problems was described.

Finally, it should be also stressed that the proposed an-
nealing method is also useful for other QCA-type systems
that utilize many-body interaction effects, such as the spin-
polarized antiferromagnetic devices and the multistable
quantum-well matrix devices.12–15
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APPENDIX

In the following, we consider the electron tunneling be-
tween two dots ~one dot is occupied by an electron and the
other empty! in the same cell and calculate the waiting time
for electron tunneling from the occupied dot to the empty
one.

The probability p that tunneling wil l occur within a pe-
riod of time5t to t1Dt is given by a product of the prob-
ability that no tunneling wil l occur from time50 to t and the
probability that tunneling wil l occur within the time duration
of Dt. It is expressed as

p5$12G~DE!Dt% t/DtG~DE!Dt

5@$12G~DE!Dt%1/~2G~DE!Dt !#2G~DE!tG~DE!Dt, ~A1!

where G(DE) is the mean tunneling rate, which is a function
of the QCA-circuit energy difference DE resulting from the
tunneling. Assuming that Dt is sufficiently short ~and rewrit-
ing Dt as dt!, we have

p5exp$2G~DE!t%G~DE!dt. ~A2!

Then the probability Pt of tunneling occurring within a pe-
riod of time50 to t is given by

Pt5E
0

t

exp$2G~DE!t%G~DE!dt

512exp$2G~DE!t% ,1). ~A3!

Determining whether or not tunneling wil l occur is done by
using a random number. That is, auniform random numberj
(0,j,1) is selected, and ifj<Pt, then tunneling wil l oc-
cur. This condition is given as

j<12exp$2G~DE!t%. ~A4!

The waiting time for tunnelingt(DE) is the minimum value
of time t that satisfies the inequality above. Therefore we
have

t~DE!5G~DE!21 ln~1/r !, ~A5!

where r 512j. We assume that the tunneling forDE.0
needs the assistance of a phonon having Boltzmann distribu-
tion in energy space, while the tunneling for DE<0 needs no
assistance. Then the tunneling rate is given as

G~DE!}H 1 ~DE<0!

exp~2DE/kBT! ~DE.0!
. ~A6!

Therefore we have

t~DE!5H t0 ln~1/r ! ~DE<0!

t0 exp~DE/kBT!ln~1/r ! ~DE.0!,
~A7!

wheret0 is the mean waiting time for tunneling ~an inverse
of the mean tunneling rate!, which depends on the structure
and the material of the QCA unit cell.
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