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Global Solutions with a Single Transonic Shock Wave for
Quasilinear Hyperbolic Systems

FuMmioki ASAKURA

Abstract: We shall study global solutions containing a single transonic shock wave for
general quasilinear hyperbolic system U; + F, = G. The presence of G brings about
secondary waves and the amount of such wave is finite along characteristics whose speeds
are away from zero. We shall show that global in time solutions exist provided 7.V.Ug
and ||G||;: the L'-norm in the space variable are sufficiently small and the total amount
of secondary wave along the transonic characteristic is uniformly bounded.

1. Introduction
We study the Cauchy problem for a general quasilinear hyperbolic system of the form:

(—%UJr %F(U) = G(z,U), (z,t) € RX Ry, (1)
U(z,0) = Up(z), z € R. (2)

Here U is a vector function which takes on values in an open set 8 C R™ ; F'is a smooth
map from Q to RB™ and G from R x Q to R". We assume that the system (1) is strictly
hyperbolic, which says that the Jacobian matrix F'(U) has n real distinct eigenvalues:

MUY < X(U)<---<(U), Uel.
We also assume that each characteristic field is genuinely nonlinear:
R;-gradX; #£0 for UeQ,1<5<n

where R;(U) denote the right eigenvector of F'(U) corresponding to A;(U). Since solutions
to these quasi-linear hyperbolic systems become singular in general after a finite time, we
shall discuss weak solutions.



When the characteristic speeds are away from zero, a solution exists provided T.V.Up
and the L'-norm of the quantity:

G(z) = max{|G(z,U)| + |Gy(z,U)|;U in a small neighborhood of Us(z)}  (3)

are sufficiently small and the solution converges, as t — oo, to the superposition of shock
waves, rarefaction waves, and steady state solutions whose strengths and speeds depend
only on the data at infinity (Liu [7]). If one of the characteristic speed can be zero (the
flow is transonic) new phenomena occur; in the transonic 1-D flow along the contracting
duct, a standing shock wave is dynamically unstable, and stable along the expanding duct
(Liu [8]).

In this paper we shall discuss an intrinsic approach to the above phenomena. We
assume that the p-th characteristic speed alone can be zero: there exists 6 > 0 such that

MO 26 j#p, UeQ and Ny ={Ue€Q; &({U)=0}#¢. (4)

Solutions to (1) are called steady state solutions if they do not depend on i:

%F(U) ~ G(a,U), sek (5)

We say that U(z) defined by

Ul(x), z<0
{ (6)

ﬁ2($), z>0

is a p-standing shock wave, if: (1) U;(z) and Us(z) are steady state solutions, (2) The
Rankine-Hugoniot condition and the Lax entropy condition are satisfied along = = 0 with
speed 0.

Let U(z) be a standing shock wave whose strength is denote by a,. We shall study
the global existence of solutions to (1) containing a single transonic shock wave, whose
initial data are the perturbation of U(z) in the total variation norm:

U (z), <0
Us(z) = { _ (7
Us(z), z>0,

YTV, (Ui(z) = Uj(z)) € . (8)
7=1,2
In this case, the amount of secondary wave produced by j-th waves (j # p) is estimated
in the same way as Liu [7] and those produced by p-th waves only remain. Let A denotes
the mesh length, G the local maximum of G(z), and o the speed of the transonic shock
wave. Our local interaction estimates indicate that the total amount of the secondary
wave produced by p-th waves is

Ly )



where the summation runs along the transonic shock wave. Thus global solutions exist
provided e, ||G||1/a? are sufficiently small and the quantity (9) is uniformly bounded.

2. Construction of Approximate Solutions

Let h,k be mesh lengths satisfying the C-F-L condition. Let § = {6,} be an equidis-
tributed sequence in (0,1) and m,n be integers such that n > 0. We set A4,,, =
(2(m + 0, )h, nk), which will be sampling points.

Approximate solutions are constructed by the random choice scheme introduced in Liu
[8]. Since the single strong p-shock wave is involved, we apply the front tracking method
introduce by Chern [1] which is to trace the location of the single strong shock waves.
Suppose that the approximate solution is constructed by front tracking for 0 < ¢ < nk. We
denote by*z = z+(t) the front of the single strong p-shock wave and mz(n) = [z+(nk)/2h];
by abuse of notation msz = mz(n) and zr = zx(¢).

First, we solve the steady state equation (5) in the interval 2(mz —1)h <'z < z5 and
zr <z < 2(mz + 2)h with the initial value:

U2(mr — 1+ 0)h) = Up(Amyo1n)y  U2(mz +1+0)h) = Up(Amys1n)  (10)

respectively and denote these solutions by U~ and U™ respectively. Next we solve the
Riemann problem for the system of conservation laws:
—8—U+—8—F(U)—O (z,t) e Rx R (11)
ot Oz — Y Z, +9
U= (zx(nk)), =< zr(nk)
U(z,nk) = (12)
Ut(zx(nk)), = > zz(nk).

The solution U(z,?) contains a relatively strong p-shock wave which separates the p — 1-
constant region U,_; and the p-constant region U,. We solve again the steady state
equation (5) in the interval 2(ms — 1)k < z < 27 and z7x < z < 2(mx + 2)h with the
initial value:

Uler(nk)) = Uper,  Ular(nk) = U, (13)

respectively and denote these solutions by U,,,_; and U, ,4; respectively which will be
the approximation in the front region at ¢t = nk. For nk <t < (n + 1)k, we continue the
front to be

zr(t) 1 op(t— nk) + zx(nk)

and define the approximate solution U}, by

Unr-1(z), @mzr—1h <z <z£(t)
Up(z,t) = { ' (14)

Um;-+1($), .’I}]_‘(t) <z < (2m_7-‘ + S)h.



3. Interaction Estimates and Existence of Global Solutions

If the single strong shock wave does not enter the interaction diamond A, ., the
local interaction estimates are obtained in the same manner as Liu [7]. We denote by
« the set of waves issuing from (2mh,nk) and by 8 = B the set of waves issuing from
(2(m — 1)h,nk) and entering A, ,. We define

Gnh

ol

1671 (15)

Q(Amz) = Qo(B%, @) +

where Qo(B%, @) is Glimm’s quadratic term, and G,, is the maximum of G(z) for 2(m —
1)<z < (2m+ 1)k and U in a small neighborhood of Uy(z). We have

Vi = ﬂj +a; + O(l)Q(Am,n)7 1<;<n. (16)

Now assume that ms(n) = m and the strong p-shock wave f§, enter the interaction
diamond. We denote, as before, by ‘o the set of waves issuing from (2(m — 1)k, nk).
The waves in « entering the interaction diamond A, , are denoted by of, and +F the
set of waves issuing from (2(m — 2)h,nk) and entering A, —y,. We define the quantity

Ql(Am,n) = Ql(a77; /8*) by

Qile,%8.) = B> lef|+ > {layhil; u and 4} are approaching,
IZp
I satisfying 1 <l<p or [>p, of #0}.
and set

Gnh

2
ax

(le®] + [7™)) (17)

@(Am:'ﬂ) = Ql(Am,n> +

Let € denote the set of waves issuing from (2(ms — 1), (n + 1)k) and leaving A, . Then
€ have the estimates:

Lemma 1 (cf. Chern [1])  Assume that | \p(Vp—1())], [As(Vp(2))| = cau (¢ > 0), and
Ur(z),Un(z) and Ug(z) are close to a constant vector Us. Then it follows that
~ oG h
i +7; +01)Q(Amn) + O(1) ,
G (18)

G = ~ oGk ,
of + 7+ 0()Q(Ans) +O(1) ==, p<j<n,

*

B = Bt o+ O()Q(Ams) + 0T, (19)

*

Here O(1) depends only on Ur,Ur and the system.

Let (3, denote also the magnitude of the single strong shock wave crossing J. Let
W(J) denote the collection of waves crossing J other than f, and
L(J)= > lel
aeW(J)
L(J) together with f, measures the total variation of Uy, ¢(z,t) on J.

The global interaction estimates are to show that the total amount of interaction in
the Glimm approximate solutions is uniformly bounded.



Theorem 1 If o, and ||G||1/a? are sufficiently small and L(O) < a., then it follows
that
~ n Gm n h
50 <0 {10 + o + 1Y 4 oy s leelbneh g
A @ n>0 *

where the single strong shock wave enters Ap (), with speed o,. If moreover the sign of
speed of the single strong shock front in the Glimm approzimations never changes, then

3> Q(A) <0(1) {L(O) +on + ”f”l} : (21)
A *
This theorem is proved by introducing the potential function Q(J) defined by
Q) = Qo(J) + @p(J) + > Q5(J) (22)
i#p

where

Qo(7) = SIofl; @, € W(J) and approaching} + 8. flaf a € Wa(J)},
Qu(J) = > { o] Z Gpnh; o is any p-wave in W(J) entering in A,y n, mz < mo}

* M=Nx

Z Gnh; ais any p-wave in W(J) entering in Ay n, Mo < mf} ,

> {152—' ; Gnh; o is any j-wave in W(J) entering in Amo,n} )
* m<mo
1<j7<p,
> {—&3 >Z Gmh; ais any j-wave in W (J) entering in Amo,n} ,
* m2mo
\ p<y<n.

In case the sign of o never changes, for example o > 0, we define

Q) = G s + Db = 25) 4 — 3 G

where the single strong shock wave crossing J issues from (zz,nk) and

Q) = Q;(J) + Q).

If we can prove that the right side of (20) is uniformly bounded, by repeating the
argument in Glimm [2], Liu [6] and [7], we have global solutions within L>(Ry; BV(R))N
Lip (R4; LL .(R)). Thus we can find global solutions in the following cases.

Case 1. The sign of speed of the single transonic shock front in the Glimm approzimations
never changes.

Case 2. A priori L™ bounds are obtained.

Case 3. The initial speed of the transonic shock wave is large compared to G(z):

o(Uy(z.), Us(z.)) = O(1)ef, G(z) = 0(1)a?. (23)
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INTEGRABLE NONLINEAR EVOLUTION
EQUATIONS IN MULTIDIMENSIONS

F.Calogero

Abstract: Some nonlinear partial differential equations of evolution type are presented,
which are integrable (in fact, C-integrable, as explained below) in N + 1 dimensions (IV
space variables and 1 time variable, with arbitrary NN, including N > 3). Particular
attention is focussed on an equation which has a certain character of “universality”.
In the introducation, this notion of “universality” is reviewed in the (141)-dimensional
context, including its relevance to provide a heuristic explanation of the remarkable fact,
that certain nonlinear PDEs - such as the (1+1)-dimensional Nonlinear Schrédinger
Equation - are both widely applicable and integrable.

1. Introduction

The purpose and scope of this paper is to provide a terse overview of some recent de-
velopments, one of whose main outcomes is the identification of a universal C-integrable
nonlinear partial differential equation in N+1 dimensions [4]. To illustrate this result
- including the notions of “universality” and “C-integrability” - we review in the next
Section - in a (1+1)-dimensional context - our heuristic explanation of the remarkable
fact, that certain nonlinear evolution PDEs are both widely applicable and integrable
[7,8,2]. In the subsequent Section 3, the universal C-integrable nonlinear partial differ-
ential equation obtained by a rather straightforward extension of the same approach to
an (IN+1)-dimensional context, is exhibited [4]. A final Section 4 displays some other
C-integrable nonlinear evolution PDEs in N + 1 dimensions [5].

This paper is mainly intended as a guide to the relevant literature, which is referred
to herein, and whose presentation is followed almost verbatim whenever appropriate.

2. Universal equations: why certain nonlinear PDEs are widely applicable
and integrable.

The relevance of the notion of “universality” to identify “important” hence “inter-
esting” Nonlinear Partial Differential Equations (NLPDEs) is based on the following
reasoning [7,2].

Consider a large class of NLPDEs, and assume that, by applying some convenient
limiting process to all these NLPDEs, there obtains a specific NLPDE. It is then justified



to identify this NLPDE as “universal’, inasmuch as it is uniquely associated with a large
class of NLPDEs.

Assume then that the limiting process that generates in this manner the universal
NLPDE is, in some sense, ezact (perhaps asymptotically see below), and that therefore
it preserves integrability, namely, it yields again an integrable equation whenever it is
applied to an integrable equation. It is then justified to expect that the universal equation
be integrable. Indeed, while the property to be integrable is certainly not a generic
feature of NLPDEs (on the contrary, it is quite exceptional), it is instead likely that a
large class of NLPDEs - precisely because it is large - contain at least one integrable
specimen. But this is then enough, according'to the reasoning detailed above, to imply
that the universal NLPDE, obtained from all the NLPDEs of the large class by a limiting
procedure that preserves integrability, be itself integrable.

If the limiting process that generates the universal equation has moreover the prop-
erty of being “phenomenologically reasonable and relevant,” namely to correspond to
phenomenological circumstances that are likely to have applicative relevance, it is also
justified to expect that the universal NLPDE be widely applicable; since the large class
of NLPDEs from which it has been obtained is itself likely to contain - again, precisely
because it is large - several equations having applicative relevance.

This train of reasoning has been proffered as heuristic explanation of the remarkable
fact that certain NLPDEs are both widely applicable and integrable [7,8,2]. In particular
much attention has been focussed on the large class of autonomous NLPDEs whose
linear part is dispersive and whose nonlinear part is (in some very weak sense) analytic
[7,8,2]. In the eztreme “weak field” limit, in which all nonlinear terms are neglected
and only the linear part of the equation is retained, the equations of this class possess,
as special solutions, those describing a single dispersive wave; and there are indeed
several cases in which such a solution represents the main phenomenological feature of
the phenomenon modeled by the equation under investigation. It is then generally of
interest to investigate how the phenomenological description gets modified in the less
drastic version of the “weak field” limit, in which the main nonlinear effects, however
weak, are consistently taken into account. It is then known (already since long ago;
see, for instance, the papers by T.Taniuti and his school [10]) that: (i) the main effect,
relevant on a “slow” time scale and a “coarse-grained” space scale, is an amplitude
modulation of the dispersive wave; (ii) this phenomenon is indeed ruled by certain
universal NLPDEs, of which the so-called Nonlinear Schrédinger (NLS) equation,

iq;bt‘{"/)ma:“f’sf"/)'zw:a ) ¢E¢($7t) ) (2'1)

is the prototype (but there also are others); (iii) these universal NLPDEs are indeed



both widely applicable and integrable [7,8,2].

For the mathematical physicist or applied mathematician, an appealing outcome
of this line of reasoning is the identification of NLPDEs which deserve focused atten-
tion. This is important, since a methodological difficulty that has bedeviled the study
of NLPDEs has been the following dichotomy. On the one hand, any approach appli-
cable to “all” NLPDEs, or at least to vast classes of such equations, could not hope
to go beyond the investigation of general properties, such as existence and uniqueness,
forsaking any ambition to acquire a more detailed understanding of the behaviour of
the solutions of such NLPDEs. On the other hand, for some special equations, there
do exist mathematical techniques that allow a much deeper understanding of the be-
haviour of the solutions; but such equations tended to be classified as “flukes”, unworthy
of much attention (expecially if their solution could be mastered without recourse to
sophisticated mathematical techniques). It is therefore obvious that the possibility to
identify universal NLPDFEs which are likely to be both widely applicable and integrable
provides appealing candidates for focused attention.

‘We have used so far the terms “integrable” and “integrability” in a rather loose
manner. Indeed, a universally accepted definition of this notion is, in the context of
NLPDES, still lacking. But for our purposes it is sufficient to recall the notions of “S-
integrability’ and “C-integrability.” loosely speaking, a NLPDE is S-integrable if it can
be solved via the “Spectral transform technique’ or the “inverse Scattering method;”
it is “C-integrable” if it can be solved (i.e., linearized) by an appropriate “Change of
variables” (for a somewhat more precise definition along these lines, see the Addendum
in [2]; and note that this more precise definition entails that C-integrable NLPDFEs are
also S-integrable, while of course the converse is not necessarily true).

There exist techniques to manifacture classes of S-integrable and C-integrable equa-
tions; in the latter case, an obvious method is to start from a linear PDE, and obtain
from it a monlinear PDE via an invertible Change of variables that introduces some
nonlinearity. In this manner, however, one is more likely to produce “flukes” than
“goldfishes” (i.e., interesting specimens ; in the terminology of V.E.Zakharov [11]).

In the light of the above discussion there does however emerge a rather clear strat- -
egy to arrive at universal equations which are likely to be important hence interesting
(“goldfishes”): by taking as starting point a (perhaps artificially manufactured) inte-
grable equation, and by then applying to it a limiting process of the kind mentioned
above. In this manner one obtains universal NLPDFEs, which are likely to be both
integrable and widely applicable (goldfishes!).

Let us briefly review the findings arrived at by applying this approach in the con-
text mentioned above, which as we have seen yields NLPDEs describing the amplitude



modulation of a single dispersive wave, in a regime of weak nonlinearity. As mentioned
above, the prototypical NLPDE yielded by this approach is the NLS equation (2.1);
a NLPDE that is indeed widely applicable, and whose S-integrability, uncovered two
decades ago [12], has been instrumental in promoting the remarkable surge of research
on integrable NLPDEs and related topics, that has characterized the recent develop-
ment of theoretical and mathematical physics, as well as applied and pure mathematics,
over the last twenty or so years.

An apparent paradoz has however been noted in this context [6]. The NLS equation
(2.1) is S-integrable (provided the coefficient s is real; in which case this parameter can
of course be eliminated, except for its sign, by appropriate rescaling of the dependent
variable 9); but it is not C-integrable. Yet the class of NLPDEs from which the NLS
equation is extracted via an asymptotically exact, hence integrability-preserving, limit-
ing process, also contains C-integrable specimens [1]. How come, then, that NLS is not
itself C-integrable?

The mechanism that bypasses this paradox operates as follows [6]. If one starts
from a C-integrable equation and applies to it the limiting reduction technique that
generates the NLS equation (2.1), one discovers that a “miracle” occurs: the coefficient
s in (2.1) turns out to vanish, hence the equation obtained starting from a C-integrable
NLPDE is the linear Schrodinger equation (which is, of course, trivially C-integrable,
being itself linear).

This observation removes the apparent paradox [1]. But in fact, as pointed out by
W .Eckhaus, one can then go further. An appropriate interpretation of the vanishing
of the parameter s in (2.1) is that, due to a “miraculous” cancellation, the amplitude
modulation due to the nonlinear effects is prevented from showing up on the slow and
coarse-grained time and space scales that characterize the emergence of the NLS equa-
tion (2.1). It is then appropriate to repeat the analysis on slower and coarser-grained
time and space scales; and the equation that tipically then emerges, to characterize the
amplitude modulation of a single dispersive wave on such a scale (when one starts from
a C-integrable NLDPE) is the “Eckhaus equation” [7,6,2]

iy + o + [ Y 1P +2( 9 P =0 , Y =9(z,t) . (2.2)

This NLPDE is indeed C-integrable, as demonstrated by the (invertible)' Change of
dependent variable that linearizes it [7,6,2]:

T

so(mt)r—zb(w,t)exp[/ do' | 9@t f (2.30)



X

B(z,1) = (o, L +2 / dr'| e’ t) PI7F (2.30)

-0

i(pt + ()OIEIC - O . (2.4)

Note that, for simplicity, in writing the transformations (2.3) we have implicity assumed
that ¢ (z,t) and ¢(z,t) both vanish as z — —oo fast enough to make the integrals in
the r.h.s of (2.3) converge.

This derivation of the Eckhaus equation provides an illustration of the research
strategy outlined above. This approach has been rather extensively explored in the
context of NLPDEs in 1+1 [7,8,2] and 2+1 dimensions [9,2]; and recently, by extending it
to the (IN+1)-dimensional context, a universal C-integrable NLPDE in N+1 dimensions
has been obtained: the “(N+1)-dimensional Eckhaus equation”. [4]

3. Universal C-integrable equation in N+1 dimensions

In this Section we continue to follow almost verbatim the Introduction to [4], and
we thereby obtain the (N+1)-dimensional Eckhaus equation and justify our qualifying
it as “universal.”

The starting point of our treatment is the following C-integrable NLPDE in N + 1
dimensions [3],

Uy — Au+u + (2 + p)uPug — 2v - Vu+ u?® — v — (V- Vju=0 , (3.1a)

vy = puP I Vu = VuP . (3.1b)

Here the scalar field u, and the N-vector field v, are functions of the N-vector space
coordinate r and of the time ¢:

u=u(r,t) , v=v(rt) ; (3.1¢)

while the first-order N-vector differential operator V, and the second-order scalar dif-
ferential operator A = V?, are the standard gradient and Laplacian in N-dimensional

space.
This NLPDE is C-integrable for any choice of the parameter p, as demonstrated
by the following linearizing transformation [3]:

w(r,t) = u(r,t) exp[F(r,t)], (3.2a)



Fy(r,t) = [u(r,t)]?, (3.20)
VF(r,t) = v(r,t), (3.2¢)
wye(r,t) — Aw(r, t) + w(r,t) =0 ; (3.2d)

which is however applicable, see (3.2¢), only to the subclass of solutions of (3.1) restricted
by the condition that the vector v(r,t) be irrotational,

Vxv=0 . (1.6e)

Note however that, thanks to (3.1b), it is sufficient that this requirement (3.2e) hold at
any one time tg, for it to hold for all time.

Let us now restrict consideration to the case p = 2, and rewrite for convenience
(3.1) in the form

usr — Au+ u = e[—4uluy + 2v - Vu + (V- v)u] + e2[—u® + v2u), (3.3a)

vy = 2uVu (3.3b)

which corresponds to (3.1) via the rescaling u — €3U,V — EV.
Hereafter € plays the role of “small parameter.” For ¢ = 0, (3.3a) becomes the
(dispersive) Klein-Gordon equation, and it admits the (real) solution

u(r,t) = Aexpli(kz — wt)] + cc. . (3.4)

This represents a single dispersive wave; for notational simplicity (but without loss of
generality) we have assumed that this wave travels along the z-axis; here and below
we accordingly denote by z the “first” component of the N-dimensional space-vector r,
and by the (N — 1)-dimensional space—véctor y the remaining components:

r=(z,y) . (3.5)

The “wave vector” k of the dispersive wave (3.4) is an arbitrary real paraméter; while
the corresponding “frequency” w is related to it by the “dispersion relation”

w=(1+k%)% . (3.6a)

Let us recall that, to the dispersive wave (3.4), is associated the “group velocity” (in
the z-direction)



c=dw/dk =kjw=k(1+k*)"F . (3.60)

The amplitude A in (3.4) is an arbitrary complex constant; and it is of course a
trivial exercise to verify that this is consistent with the requirement that (3.4) with
(3.6a) satisty (3.3a), provided € vanishes. The question we wish to focus upon is, how
does the solution (3.4) get modified, if € is indeed small but not exactly zero?

The answer to this question is, that the main effect is to induce a modulation of
the amplitude of the dispersive wave (3.4):

u(z,y,t) = ap(¢, 0, 7) expli(ka — wb)] + c.c. + . (3.7)

Here the dots indicate additional correction terms, which of course disappear as € — 0.
As for the modulated amplitude 9, as explicitly indicated in (3.7) it is a function of the
“coarse-grained and slow” space and time variables £, 4 and 7,which are related to the
space and time variables z,y and ¢ by the formulas

€ = ea(z — ct) , (3.8a)
n7=¢fy (3.8b)
T = >yt . (3.8¢)

Of course 9 is a (N — 1)-dimensional space vector; while the constant ¢ in the r.h.s.
of (3.8a) is the group velocity (3.6b). As for the constants a,, 3,7, they are merely
introduced to perform “cosmetic” rescalings of the variables, so as to write the final

result (see below) in neater form.
The main finding of [4] is the NLPDE satisfied by the amplitude . It reads as

follows:
ithr + A+ (|9 [*+ 20 ¥ [P)elb +iftp + 28 - Vo + (Vg - 2)b + 8% =0,  (3.90)

ge=Vy(v ) (3.9b)

fe+2| 9 [P f = 2ig - (" Vah — V") +i(¥* V2 — hVa*). (3.9¢)



Here of course the complex scalar field 1, as well as the real auxiliary fields f and g
(f being a scalar, g an (N — 1)-dimensional vector) are functions of the coarse-grained
and slow variables £,% and 7:

v=dEnr) , =), g=ellnT) (3.10a)

Note that in (3.9) V, is the first-order (N — 1)-vector differential operator (gradient)
acting on the (NN —1)-vector %, while A indicates the Laplace operator in N-dimensional
space, so that

A=0%/06% + VL . (3.100)

Let us emphasize that, in contrast to (3.1) and (3.3), in (3.9) the space variables
enter asymmetrically; the preferred direction £ is of course identified by the direction of
propagation of the dispersive wave, see (3.4) and (3.7).

As for the condition (3.2e), it yields the restriction

Va xg(9,7)=0. (3.11)

Note that (3.9b) implies that it is sufficient that this condition (3.11) hold for one value
&o, for it to hold for all values of &.

The universal character of (3.9) originates from the manner it has been obtained
here; in this respect the analogy, in the (1 4 1)-dimensional context, with the Eckhaus
equation (2.2) is telling. It is moreover clear that, if there is no dependence on the (N —
1)-vector variable %, one can set g = 0 (consistently with (3.9b)) and f = 0 (consistently
with (3.9¢)); then (3.9a) reduces to the (1 + 1)-dimensional Eckhaus equation (2.2).

The fact that the NLPDE (3.9) is obtained, via a procedure which is exact in the
asymptotic limit € — 0, from the C-integrable equation (3.3), entails that it must be
itself C-integrable. This is indeed demonstated by the following invertible transforma-
tion, that is, in fact, essentially identical to the transformation (2.3) that linearizes the
Eckhaus equation (2.2):

£

so(ﬁ,ﬁ,ﬂ:«p(g,n,f)exp[/_ ae'| (e ) [ (3.120)
3 9i 1

W&, m7) = o€, 7)1 +2 / ae'| o€ ) 7 . (3.125)

(For simplicity, we have again assumed here that (£, 9,7) and ¢(£,9, 7) both vanish
as £ — —oo, sufficiently fast to guarantee convergence of the integrals in the r.h.s.



of these formulas). It is indeed easily seen [4], using (3.9b) and (3.9c), that via this
transformation, the NLPDE (3.9) gets transformed into the linear Schrédinger equation

ior+Ap=0 . (3.14)

These results provide our justification for considering (3.9) a universal equation,
deserving to be singled out as worthy of focussed attention [4] and further study, and
appropriately called (N+1)-dimensional Eckhaus equation.

4. Other C-integrable equations in N1 dimensions

In this final Section we display some other C-integrable NLPDEs in N+1 dimensions
which have been recently identified. The reader interested in more information on these
equations than that reported here (which is in fact limited to the mere display of them)
is referred to the original papers [3,5].

Notation: r is an N-dimensional vector, V the corresponding N-vector gradient
operator, and A = V? the standard N-dimensional Laplacian. Three C-integrable
NLPDEs read as follows:

wg + Aw = —2v - Vw — [h(w) + w*(V - v)]w, (4.1)
ith + A = —2v - Vo — [ih(|9]) + v* + (V- V)], (4.2)
Ugy — Au+u = 2v - Vu — [2h(u) + ub/(u) — v? — (V- v)]u. (4.3)

Here we assume w = w(r,t) and u(r, ) to be real, and 9 = ¢(r,t) to be complex. Note
that, for N = 3, the left-hand-sides of these equations correspond to linear PDEs of
major physical relevance: the diffusion equation, the Schédinger equation and the Klein-
Gordon equation (in the 3-dimensional world we inhabit). The right-hand sides of these
equations display the nonlinear parts; they contain the (arbitrarily given) function h
(of the arguments shown in each case), and the N-vector v = v(r,t), which is an
auxiliary dependent variable whose time evolution is characterized in all three cases by

the evolution equation
Vi = Vh, (44)

with h = h(w) or h = h(|¥]) or h = h(u), as the case may be. Of course in the case of
(4.1) and (4.3), but not in the case of (4.2), h and v are restricted to be real.

Each of these equations, (4.1), (4.2) and (4.3) (of course each supplemented by
(4.4)), is C-integrable, provided the N-vector field v(r,t) is irrotational:

V Av(r,t) =0. (4.5a)



Note that this condition in compatible with the time evolution (4.4), and it is therefore
sufficient that it hold, say, at the “initial” time %o,

V Av(r,tp) =0, (4.5b)

to insure that it hold for all time, see (4.5a).

The property of C-integrability entails the possibility to solve by quadratures the
initial-value problem for each of these equations, for any initial data which satisfy the
constraint (4.5b), as well as to manufacture a large class of completely ezplicit solutions
(satisfying the same constraint) [3].

Note incidentally that, for A(u) = u?, (4.3,4) coincide with (3.1).

Two other classes of C-integrable (coupled) NLPDEs read as follows:

n

[y8/0t+ Alf; =2 [A%+ (VF) - (VIR = fr)y 5= 1,0, (4.6)

k=1,k#j

[02/0% — A+ M2 f; =23 [A*+ (V) - (Vr) = Fipfial/(fi = fu), 3= 1, me (47)
k=1

Here n is an arbitrary integer, n > 1, the quantities A%, M? and  are arbitrary constants
(which clearly can be eliminated by rescalings), and the functions f; = f;(r, t) are the n
dependent variables. The linearizing transformation which subtends the C-integrability
of these systems of m nonlinearly coupled evolution PDEs in N+41 dimensions is the
relation between the coefficients of a polynomial of degree n and its n zeros [5).

Note that again, for N = 3 (and for the two choices v = 1 or v = i of the arbitrary
constant ), the left-hand-sides of these equations correspond to linear PDEs of major
physical relevance, and (4.7) is a relativistically invariant nonlinear partial differential
equation in our 4-dimensional space-time.
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THE INITIAL VALUE PROBLEM FOR
SEMILINEAR SCHRODINGER EQUATIONS

Hirovyuk:l CHIHARA

Abstract. We present local and global existence theorems of the initial value problem
for semilinear Schrodinger equations which do not allow the classical energy estimates.
To avoid this difficulty, we make strong use of S. Doi’s method for linear Schrédinger type
equations.

This paper is concerned with the initial value problem for semilinear Schrédinger
equations of the form

Bu—ilu = Flu,Vu) in (0,00) xR, (1)
w0,7) = w(z) @ R, 2)

where u(t,z) is C-valued, 0, = 9/0t, 0; = 0/0z; (j = 1,---,N), V. = (01,--+,0n),
A=8+---+08%, 1=+-1and N € N is the spatial dimension. We assume that the
nonlinear term F'(u, q) satisfies

F(u,q) € C°(R* xR™";C), F(u,q) = O(|ul’ + |g|) near (u,q) =0

with some integer p > 2. In the same way as complex analysis, we define 9/0u, 0/84,
8/8q; and 807, by

0 17 0 .0 o 17 6 .0
55%(515”%5)’ 55 5(5“+55>
0 17 0 .0 0 170 .0
Bg; (5;;" 5;;;) 3g; 'z‘(av,“az;;)’



UO:Reu, 'wO:Imu, 'Uj:Req]', wj:]:mqj7 ]:1,71\[

We introduce the followong Sobolev spaces

™ = {ueS®") | |lullzm = (1 - 8)™2ull < +oo},
g™ = fue s'®Y) | ellzmen = 1L+ [ )*/2(1 = 2)™?u]] 12 < +o0}

where m,n € NU{0} and S'(]R{N) is the set of all tempered distributions on R". e RY is

a dual variable of z € R” under the F ourier transformation. For the sake of convenience,
we put D = —iV.

When we try to solve (1)—(2), we have the difficulty of so-called loss of derivatives
because the nonlinear term F'(u, Vu) contains Vu. We remark here that V@ does not
cause the loss of derivatives. Then the studies on the initial value problem (1)—(2) were
mainly concerned with the case of

OF .
Imaqj(u,q) =0, j=1,---,N (3)
(see [1], [9], [14] and [17]). Recently, however, several researchers studied (1)—(2) without
the restriction (3) (see [2], [3], [4], [5], [6], [10], [11], [12], [13], {16] [18]). Except for
[13], these works are applications of the theory of linear Schrédinger-type equations (see
S. Mizohata, [15] and S. Doi [7], [8] for instance). In order to explain the basic idea of the
linear theory, let us consider the following linear equation

N
(0~ ir+ 3 bj(t,2)8;)u=0 i (0,T) xR",
j=1

J:

where b;(t,z) € C([O,T];Bw(RN)) and B°°(]RN) is the set of all C®—functions on R
whose derivatives of any order are all bounded on R”. The basic idea is to find a trans-
formation u — Ku so that the commutator [K, —iA]K~! eliminates the bad first order
term > {Im b;(¢, z)}0; in some sense.

[2], [10], [11], [12], [16] and [18] are applications of gauge transformation which is
available for the case of N =1 ([2], [10], [12]), radially symmetric case ([11]) and the case
of

Bj(Img(—]F;(u, Vu)) - 8k(Im g—g(u, Vu)) =0, j,k=1,---,N (4)
for any u € C* (]RN) ([16], [18]). If N = 1, then the condition (4) is satisfied automatically.

For general nonlinear terms and general spatial dimension, first C. E. Kenig, G. Ponce
and L. Vega ([13]) obtained the sharp smoothing estimate of ¢ and applied it to proving
local existence theorem for (1)—(2) under the smallness condition on the initial data ug.
Roughly speaking, they showed that 8;(8;—iA)~! (j =1, -+, N) were bounded operators
and they constructed the inverse of Schrodinger-type operators, which corresponded to
(1), provided that the solution was sufficiently small. Secondly H. Chihara ([3], [4],
[5], [6]) made strong use of S. Doi’s method ([7], [8]) to show local and global existence
theorems for (1)-(2). Using S. Doi’s method under an appropriate condition on Im b, (%, )



(j=1,--,N), one can find a transformation u — Ku so that [K, —A]K " is a first order
elliptic pseudo-differential operator which is stronger than 3 {Imb;(Z,z)}9;. Combining
[3], [4], [5] and [6], we have

Theorem 1 (Local existence) (i) We assume p > 3. Let m; be a sufficiently large
integer. Then for any ug € H™ (m > my), there exists a time T = T1(||uo||gm1) > O such
that the initial value problem (1)—(2) possesses a unique solution u € C([0,T1); H™).

(ii) We assume p = 2. Let my be a sufficiently large integer. Then for any up € H™ N
H™ 22 (m > my), there ezists a time Ty = To(||uol| gz + ||uo|| gma-22) > O such that the
initial value problem (1)—(2) possesses a unigue solution u € C([0,Tz); H™ N H™=22),

Theorem 2 (Global existence) (i) We assume N > 3 and p > 3. Let m3 be a suffi-
ciently large integer. Then there ezists a small constant 63 > 0 such that for any

2 2
ug € (VH™ 7 (m>mg+2) satisfying Y |luollgms-2s < 83,
the inital value problem (1)—(2) possesses a unique solution
2 . .
u € () C([0, 00); H™ %),
J=0

(ii) We assume that N =2, p > 3 and
F3(e®u,e?q) = €®F3(u,q) for (u,q) € C X (CN, el (5)

where F3(u,q) is a homogeneous cubic part of F(u,q) near (u,q) = 0. Let my be a
sufficiently large integer. Then there exists a small constant 64 > 0 such that for any

1 1
uw € (YH™ 7 (m>ms+2) satisfying Y [[uoll gma-2is < 84,
J=0 =0
the inital value problem (1)—(2) possesses a unique solution
1 » s
u € () C([0, 00); H™ %),

=0

(iii) We assume N > 13 and p = 2. Let ms be a sufficiently large integer. Then there
exists a small constant 65 > 0 such that for any

2 2
u € (VH™ ™7 (m>ms+2) satisfying Y |lugllgms—255 < 65,
=0 =0

the inital value problem (1)—(2) possesses a unique solution

u € (] C([0, 00); H™ ).

3=0



Remark 1 Since our analysis is based on the symbolic calculus of psuedo-differential op-
erators, it is very troublesome to determine the minimum of m;, ms, mg, m4 and my.

Remark 2 According to (2] or [10], if N = 1 and p = 2, then one can get local solutions
to (1)-(2) in H™ N H™ b1, Therefore one seems to be able to improve the part (i) of
Theorem 1. If one would employ S. Mizohata’s method ([15]) instead of S. Doi’s method,
one could probably get the local solutions to (1)—(2) in H™ N H™ 11 also for the case of
p=2and N > 1.

We will explain the outline of the proofs. Basically Theorem 1 follows from the energy
estimates. Theorem 2 is proved by the energy and the decay estimates.

Concerning the energy estimates, we treat the equation (1) as a 2 x 2 system for (u, @)
because the nonlinear term F'(u, Vu) contains not only Vu but also Vi. More precisely,
first we diagonalize this system modulo bounded operators. In fact, the following symbol
of 2 x 2 partial differential operator

]512 0 b11_7 (t,z) biai(t,x) .
[ 0 - :} +Z { bo1j(t, ) bag;(t,x) ]SJ’
bng(t,2) € CH(0, T BX(RY)), mn=1,2 j=1,-- N,

can be easily diagonalized modulo bounded operators provied that |¢| is sufficiently large.
Secondly we make use of the linear theory. Since the system becomes a couple of single
Schrédinger type equations essentially, S. Doi’s method obtains the energy inequality. We
suppose here the Doi-type condition, that is to say that there exist functions

¢i(t,z) € C((0, T B®(R)) N CYO, T L'(R)) (j=1,---,N)
such that
[ byt )], [Tmbaoy(t,2)| < ¢5(t,2;) for (t,2) € [0,T) xR, j=1,---,N.

Then we have a symbol of transformation
e-p(tiw,g) O
k(t7 Z, ‘5) - [ 0 6317(1;'._1:,6) ’

i) = 32 ([ ostodis) g0+ )7

It is easy to see that the operator k(t,z, D) is an automorphism on (L?)? in some sense.
In the application to semilinear equations, we choose ¢;(t,s) (j = 1,---, N) satisfying

OF ot, ), Vult, z))

6 S¢j(tamj)7 j:17"',N

sup

;€

where Ii'j = (11,'1, L1, Tyt ,Z‘N).

On the other hand, to get the decay estimates, we employ well-known methods. For the
cubic nonlinearlity, we combine the Gagliardo—Nirenberg inequalities and the operators
Jp =z +2i(1 +t)0x (k= 1,---,N) (see [9] and [12] for instance). For the quadratic
nonlinearlity, we make use of the LP-L? estimates (see [14] and [17]).



Remark 3 Our analysis is very suited to cubic nonlinearlity. In this case, we choose ¢;(Z, s)
(.7:171N) as

M f]Rm-:l(l — A)=1/22 m)\2dij (for local existence),

i) M(1+ ¢ty /Rw—l (1 — A)WN=D2H1 (¢ 2)|?dz;  (for global existence),
where M > 0 is a constant, [{] is the largest integer < [, d = d(N) > 0 is a decay-ratio
determined by the spatial dimension N, and J = (J1,- -, Jy). When the nonlinear term
F(u,q) satisfies the gauge invariance (5), our results are optimal. On the other hand,
the condition of the part (iii) of Theorem 2 is stronger than that of [14]-[17], that is
N(p—1)?/2p > 1. The former follows from N(p—1)?/2p > 3 with p = 2. In this case, for
the integrability of ¢;(¢,s) (j=1,---,N) in s, we lose some time-decay. In other words,
we need an extra time-decay. We should say that our method is not so good to deal with
quadratic nonlinearlity.
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LOW-FREQUENCY ASYMPTOTIC EXPANSION
FOR SECOND ORDER ELLIPTIC SYSTEM
IN A TWO DIMENSIONAL EXTERIOR DOMAIN

WAKAKO DAN

1. Introduction and main results

Let Q be an unbounded domain in the 2-dimensional Fuclidean space R? having
a boundary 02 which is infinitely smooth and compact. Let A(z,d) (0 = (01,0,),
0; = 8/8zj, © = (z1,22) € R?) be an m x m matrix of differential operators of the
form:

(1.1) A(z,0)= A(a) + P(z,0)

A(@)u(z) = Y AY8;9;u(z), P(z,0)u(z)= Y  8:i(PY(z)du(z)),

i,j=1 Hy=1

where u is an m-dimensional column vector, AY and PY (z) are m x m matrices. The
elements of A" are all real constants and the elements of P*/(z) are real valued functions

in C§°(R?). Put A¥(z) = AY + Pi(z) and A(£) = Y7 ) A&, for £ = (£1,6) € RP.
In the present paper, we consider the boundary value problem with spectral parameter
k in the domain §2:

(1.2) (I + A(z,0))u=f inQ, u=0 on 02,

where I is the m X m unit matrix.
Now, we introduce the assumptions (A.1) — (A.4) below.

(A1) LAY (z) = AVi(z).
(A.2) 3C > 0s.t. Y (AY()9;u,du)g > C||Vulf3,

for u € L? (), Vu € L?(Q) and u = 0 on dQ. Here, || - |l and ( , )q denote usual

loc
L? norm and inner product on .



In view of (A.1) and (A.2), A(z,0) is a strongly elliptic system. If we note that P/(z)
vanish for large |z|, we have A(€) is a symmetric matrix and that

36 >0 s.t. A) > 6l€[*T  for any £ € R%
Let A1(€),...,An(£) denote distinct characteristic roots of A(¢), then
(A.3) Aj(€), 7 =1,...,N have constant multiplicity for all £ € R?\ {0}.
Put 3, = {¢ e R* | \;(¢) =1}, =1,..., N. The final assumption is that
(A.4) the Gaussian curvatures of the curves ¥;, j = 1,... , N do not vanish.

Now, we shall give the notation. Let G be a domain in R?. Put

Sp={z€R?||g| =R}, Br={c€R?||¢| <R}, Qr=Brn,
L%(G) = {u € L*(G) | u(z) = 0 for |z| > R},
H(Q) = {u e H],(Q) | 63u € L*(Q),1 < |o| < p},
Sp={z€R?*||z| =R}, Bp={z cR?||z| <R}, Qr=BrnQ.

Take a constant a > 0 so that 0Q C B,y and A(z,0) = A(9) when |z| > a — 1. Let C
be the set of all complex numbers. Put

'D={keC\{0}| -n/2 <argk < 37/2}, Di={keD|Skz0}.

When we assume that (A.1) — (A.4) are satisfied, Vainberg [14, 15, 17] proved that
there exists an operator Ry € B(L2(2), HZ (Q)) which depend meromorphically on the
parameter k € D and the asymptotic expansion of the operator R; as |k| — 0 has the
form

oo mé

(1.3) Re=k""> %" [P(l ] log" kP n,

m=0 n==0

where « is an integer, £ is a non-negative integer, P is a polynomial with constant
coefficients, and Pp, n: L2(R2) — H} () are bounded operators independent of k. We
can get expansion (1.3) from the corresponding expansion for the case of general elliptic
problems. But the integers o and £ and the polynomial P was not known, even for
equations of second order. Recently, Kleinmann and Vainberg [5] obtained the complete
asymptotic expansion in the case that A(z, ) coincides with the Laplace operator in
some neighbourhood of infinity. We apply the idea of [5] to the system case.

We denote by uy (m-dimensional column) and U; (m x m matrix) the solutions of
the problems:

(1.4) A(z,0)ug =f in Q,
u =0 ondf, |u|=0(1) as|z|— oo,
(1.5) A(z,0)U; =0 in Q,

U =0 onof), |Uj—Ey]=0(1) as|z|]— oo,



where Ej is a fundamental solution: A(0)E, = 6I. Here, ¢ is Dirac’s distribution in
R?. We can show that the uniqueness and the existence of solutions of (1.4) and (1.5).

Since we can show that the solution of (1.4) converges to some constant, we can define
the constant matrix and vector as follows:

L= lim (U1-E0), b= lim Ug.

|2|—c0 |z]—ro0

With this notation, we shall state our main results.

Theorem 1.1. For the solution u = Ryf of (1.2) with f € L%() in the case that
B(z, 0) is the identity, the following asymptotic expansion is valid when k € D, |k| — 0:

N

(1.6) Rif =) i k™ log ™" kG of + i,

m=0 n=-—m
where G, ., € B(L2(Q), H*(Q,)) are independent of k and
lanll 2, < Cla)lklog kN |[£]l 12 a)-
The leading terms of the asymptotic expansion have the form

i

(1.7) u=u,(z)+ U (<1ogk -3 ) M+B-— L)_l b + O(klog k),

where

2
M = c,,/ A(w)™1dSy, cr = <L> )
Sy 2m

N
Pj(w) )
— E 2_J ) , )
B =cq p /):j log [« |§7/\j(w)|d23’ dX; is the surface element of 3,

the matrices P;(£) are projections on the eigenspaces corresponding to the Aj(£).

Let A denotes the set of all poles of Ry in D.

Theorem 1.2. Assume that (A.1)—(A.4) are valid. Then, AND, = 0.
When A(z,0) = A(0), we have AN (R \ {0}) = 0.

2. Sketch of the proof :
As a fundamental solution: A(8)Eq = 61, we adopt Ey(z) = —F *[p.v.A(£)"!]. Then
we have a representation of Ey(z) such that

(2.1) Eo(z) =log|z|M + Q,



where M is a constant matrix. Furthermore, projecting on the eigenspaces correspond-
ing to the Aj(€), we have that for fundamental solution: (k%I + A(9))Ex = 61,

(2.2) Ex(z) = Eo(z) + <log k— %E) M + B + Fi(z) + Fi(z),
where
(2.3) SIéBIFI:(CU)l = O(klogk) and ||F{ * f|[g2(gey = O(K?)

for f € L2(Q) as k — 0.

Let us denote by 1 a particular function which is infinitely smooth, n(z) = 0 for
|z] < a—1and = 1for |z] > a—1/2. For any smooth u let us denote by g the following
function: ‘

g(u) = A(9)(qu) —nA(Q)u, zeR’.
Since A(z,8) = A(9) for |z| > a — 1, for u = Rif, nu satisfies the following in R?

(K*I + A(9)) (nu) = g(u) + nf,

-where the right-hand side has compact support. Representation

(24) na = Ex * (g(u) + nf)
follows immediately.
From (1.3),
(2.5) u= k”M + O(k**1log" k), in Q,, k — 0,

S(log k)

where s in an integer, S is a polynomial with constant coefficients and @ is a polynomial,
not identically zero, whose coefficients are functions of z.

Substituting (2.2) and (2.5) into both sides of the equality (2.4) and equating the
leading terms which contain the multiplier £* and using the uniqueness of the problems
(1.4) and (1.5), we get the leading terms. If we have the leading terms, we can obtain
the asymptotic expansion by the usual perturbation method.

3. An application
We shall discuss the rate of the local energy decay of solutions to the dynamical
system:

0?u(t,z) — A(d)u(t,z) =0 in R x Q,
(3.1) u(t,z) =0 on R x 09,
u(0,z) = f'(z), 8:u(0,z) = £(z) in §,



where ¢ denotes the time variable and 8; = §/9t. Put
f=(f1,), Lf= (%, A9)f"),

2
(f7 9)7‘( = Z /&;A”a]fl : Bzglda: + (f27g2)97 ”f”%i = (f) f)?‘b
1,J=1

H={5|f € B (Q),f e L}Q),f =0 on 60},
D(&) = {f| f' € B (Q),£* € H(Q),f =0 (j = 1,2) on 3Q}.

Let us adopt (f,8)» as the inner product of H, then H is a Hilbert space. Since £ is
skew self-adjoint in H, from Stone’s theorem it follows that £ generates one parameter
unitary group {U(t) | t € R} (cf.[12]). Put U(¢)f = (u(t, z),0:u(t,z)). Then, u(t,z) is
a unique solution to (3.1) with initial data f' € HI(Q) and f2 € L2(Q).

Definition. We shall say that () is non-trapping if there exists a T' > 0 depending only
on a and () such that all components of U(t)f, § = (0, f*), belong to C*®([T, o) x Q)
for any £2 € L2(Q).

Vainberg [16, 17] proves the following theorem.

Theorem 3.1. Assume that () is non-trapping and that (A.1)-(A.4) are valid. Then
there exist positive constants o, §, C' and T' such that for integers s and j, 0 < s < 1,
0<5 <2,

Y. 07 Riflla, < Cl[*Ie™9H Y 7 J1o8|lq

[7l1<2+s—j lv|<s
for any k € {k € D | |Sk| < alog|Rk| — B} and f € L2(Q).
Put Heo = {f | £ € C$°(Q) j = 1,2}. As is well known, we have

1 +ocotic )
(3.2) U@ = 5 / e FGRT + £)~fdh

—oo+tia

for any f € Heo and o > 0. Then, we have the local energy decay of solutions.

Theorem 3.2. Assume that ) is non-trapping and that (A.1)—(A.4) are valid. Let
f € D(L) and suppf’? C Q,, j =1,2. Put U(#)f = (u(t,z), 8:u(t,z)). Then, we have the
local energy decay estimate:

(83) ) llo*u@t, la. + 18:ut, - )la. < Cuft|™ log 2 ¢ [Z l0°£ 1o + Hlein}

lal<1 lal=1

with some positive constant C; depending only on a and Q for t — oo.
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LANGMUIR SOLITARY WAVES IN A WEAKLY MAGNETIZED PLASMA

A. DE BOUARD AND J.-C. SAUT

Abstract : We consider a nonlocal nonlinear Schrédinger equation which extends the
equation modelling the nonlinear evolution of Langmuir waves in a weak magnetic field
under the assumption that the characteristic transverse length scales are sufficiently
larger than longitudinal ones. We classify, according to the nonlinearity and the dimen-
sion, the existence and non existence of localized solitary waves. We also give optimal
decay rates and symmetry properties of the solitary waves.

1. Introduction

We are interested here in some models for waves in a weakly magnetized plasma
which lead to new interesting nonlinear Schrodinger equations. We refer to [5] and the
bibliography therein for a detailed description of those models, which is only sketched
below.

We consider first upper-hybrid waves in a weakly magnetized plasma (the electron
plasma frequency wp, is larger than the electron cyclotron frequency wee, wpe >> wee).
In this case the dispersion law is

‘ ’ 3 2 1 U) Ik_j_l
(1.1) 'LU(k') = Wpe - 1 -+ §|k12 (TDG) —5 —== {klz
where rp, is the Debye radius, k is the wave vector and & is the wave vector transverse
to the direction z of the magnetic field. The equation for the complex envelope ¥ of
the high frequency waves writes in dimensionless variables

(1.2) A(ihe + A) — oA 1+ V - (|Vy[* V) = 0.
Here A is the Laplacian 52 + 02 + 07 and A the transverse Laplacian 92 + 82 and
o = jw? /w,.

Equatlon (1.2) can be simplified if the wave condensate has characteristic longi-
tudinal scales much smaller than the transverse ones, i.e. |ki] << |k|, so that (1.1)
becomes approximately

k) = 2 24 1 wfe.]kj_lz

(1.3) w(k) = wpe |14 = k 2(TDe)” + 5 w?, B2
Then (1.2) reduces formally to (in dimensionless Va.riables) :

% . o? dp |2 o




Note that o has been taken equal to one by a simple scaling transformation.

The aim of this paper is to study (1.4) for which no mathematical results seem to
be known so far (on the other hand (1.2) with o = 0 has been studied intensively by
T. Colin [3], [4] in the three dimensional case).

More precisely we will consider (localized) solitary wave solutions for (1.4) in 2 or 3
spatial dimensions. We will in fact consider a slightly more general equation than (1.4),
namely

8% /. 8%y 0
<l¢t+—a—;2~> —A_L¢+-a—a';(

L "
(1.5) Oz?

8_a: oz
/‘!):")b(:’c_st), .@.EIRd, d=2737 >0,

where o > 0. The physical problem corresponds to a = 2. We have denoted z = (z,z’)
where &' represents the transverse variables, namely ' = yifd =2, 2' = (y,2) if d = 3.
Setting ¢ = %Ef—, (1.5) reduces to

a,. o . .
55(2% + Pzz) — ALY + e [le]*e] =0,

_ o
T 9z’

(1.6)

We will completely classify the existence and non existence of localized solitary waves
solutions of (1.6) and prove qualitative properties of the solitary waves : regularity,
symmetries, decay. The results are parallel to those for the generalized KP equations
studied in [1], [2]. The Cauchy problem for (1.6) will be studied in a subsequent paper.

2. Solitary waves
We shall denote for d = 2,3, ¥ the closure of 8;(CS°(IR?)) for the norm

/
1081y = (17l + 32e]%:) "

where 9;(C§°(IR%)) denotes the space of functions of the form 9% with ¢ € Cg°(IR?)
(i.e. the space of functions ¢ in C$(IR?) such that IZ o(z,2')Ydz = 0 for every
' e R4,

By standard imbedding theorems, if ¢ € Y and d = 3, then ¢ = 8,9 where
¥ € L8(R®); if d = 2 and u € Y then ¢ = 8,9 where ¢ € L _(IR?), V ¢ < +00. Note

loc
that for d = 2 the choice of 1 € L] _such that ¢ = 8,% is not unique, but two such ¢
will differ by a function independent of z. Hence, only one of them (up to a constant)
satisfles v = 09 € L?(IR?). We assume in all what follows that when ¢ € ¥ and when
we take ¢ € L] with 0:¢ = ¢, we also have v = 8,9 € L*. We then denote v = 8,%

21 loc
by D7 .

Definition 2.1. A solitary wave of (1.6) is a solution of the type e'“'®(z,z') where ®
is real valued and ® € Y and w > 0.



We are thus looking for “localized” solutions to the system

| ~w® + Bppr — ALY + (|B]°8), =0
(2.1) 5 g

which we write also
(2.2) ~0Bas+ By — AL + (|2]°), = 0.

We will from now on assume that w = 1, since the scale change &(z,z') =
w™l/*®(z/wl/?, 3’ [w) transforms the system (2.1) or (2.2) in & into the same in & but
with w = 1.

At this stage it is worth noticing that (2.2) is (except for the absolute value in
the nonlinear term) exactly the elliptic equation satisfied by the solitary wave solutions
of the generalized Kadomtsev-Petviashvili equations (see [1] [2]). The next theorem
concerns the non existence of solitary waves to (1.6).

Theorem 2.1

(i) Assume that d = 2. The equation (2.1) does not admit any nontrivial solitary wave
® satistying ® = ¥, €Y, & € H(R*) N L2 (IR?) and 20 € L} (R?), if a > 4.

(i) Assume that d = 3. The equation (2.1) does not admit any nontrivial solitary
wave satisfying ® = ¥, € ¥, & € HY(R®) n L2(=+)(R?) n L2 (R?), 528, 92¥ and
920 € L (R, if a > £.

Remark 2.1 : The assertion in (ii) rules out the existence of solitary waves in the physical
case a = 2, d = 3. This has been observed formally in [6].

Proof of Theorem 2.1 : It is very similar to the proof of Theorem 1.1 in [1] and based
on Pohojaev type identities. The regularity assumptions of Theorem 2.1 are needed to
justify them by a standard truncation argument which will be skept here (see [1]).

In the two-dimensional case we first multiply (2.1); by z® to get after several
integrations by parts :

12 § 2 Loz _atl oaia)
(2.3) /W[zcb +3t-sut - S g g

Then we multiply (2.1); by y¥, to get after several integration by parts

1 1 1 1
: —=®% — @2 4+~ ¢ ——|3|*t?| = .
(24) /m[ 2 %=ttt ol } 0

To prove a third identity we first remark that if & € YNL2(+1) satisfies (2.1) in D'(IR?),
and if Y’ is the dual space of Y, then ® satisfies

—®+®,,+(®|°® - D' ¥, =0 in Y’



where D0,y € V' is defined by (D;'Wyy,9),, = (¥y,D;'g,) for any g € Y. Here
(-,-) denotes the scalar product in L2. Taking then the product of this last equation with
® € Y, we obtain

(2.5) / . [-@% — ¢2 — U2 +|3|*F?] = 0.
R

By a suitable combination of (2.3), (2.4), (2.5) we get easily

(2.6) /}Rz [2@2 + ( +2) ]@1““} =0,

which rules out the existence of solitary waves when a > 4.

The case d = 3 is treated in a similar way. We sketch a formal proof which again
can be made rigorous by a truncation argument. We rnultlply successively (2.1); by z®,
y¥,, z¥, and integrate to get

log loo log 3.0 at+l o opo]
@2.7) /}R [2@ 3V -5V 450 - Sjae| o,
1 -
(28) /;Rs ...5@2‘*_2\1,2__2_\112___5@2_*_ |¢'a+2 =0,
[ 1.0 1oo 1oo 1o 1 ]
. —— | _Z - = at+2| _ )
(29) /ma_ 2¥ —gly gl m %4 gl =0

Integrating (2.1); once in z and taking the duality product of the resulting equation
with ® € Y as in dimension 2, one obtains

(2.10) / [-®° — &2 +|®]°F? — 92 - ¥2] =0.
Re
We substract (2.10) from two times (2.7) to get

3a+4
2 2 _ at2| _
(2.11) /ms [2@ +4®; ( o ) |®| } 0.

Eliminating the |®|**? term between (2.8) and (2.11) and using (by (2.8)-(2.9))

that
2 _ g2 —
[ 15— =0,
we obtain
(2.12) / Jage 3a—tp]
Re | 2 2



which achieves to prove (ii).
We proceed now to the existence of solitary waves.

Theorem 2.2.

(i) For d =2 (resp. d = 3), the system (2.1) admits a solitary wave if 1 < a < 4 (resp.
1<a<}).

(ii) Any solitary wave ® is continuous and tends to zero at infinity. In the case a = 2,

® ¢ H(R?) = (] H*(R?).
k>0

Proof : The proof of (i) is identical to the corresponding one for the solitary waves of
the generalized KP equations (see [1] Theorems 3.1 and 3.2). It consists in considering
the minimization problem

(2.13) Iy =Inf {|®|2, & € Y, with / 1®[+2dzde’ = A},
]Rd

where ¢’ =y ifd =2, 2' = (y,2) if d = 3 and A > 0, and to use the concentration-
compactness principle of P.L. Lions [7].

Once a minimizer ® € Y has been found, when d = 3 for example, there exists a
Lagrange multiplier € such that

(2.14) —&,, 4+ @+ D vy, + D lw, =6 |3|% in Y'(R?)

where D;'vy (resp. D;'w.) is the element of Y’ (the dual of ¥ in the L?—duality)
such that for any ( € Y,

<‘D;Ivy’<>Y’,Y = (”’D;lgy)zﬁ
(resp. (D;lwz,oy,,y = (w,D;ICZ)Lz).

Moreover one easily checks (taking the (Y',Y) duality of (2.14) with @) that 6 > 0.
By taking the z—derivative of (2.14) in D'(IR®), using the definition of v = D;1®, =
T, (resp. w = D;1®, = ¥,), and performing the scale change ® = 6/*®, one sees
that (ci, \p) satisfies (2.1) with w = 1 in D'(R?).
The proof of (ii) is the same as the corresponding one for the solitary waves of
generalized KP equations (see [1 ; Theorem 4.1] and [2 ; Theorem 1.1].

We shall conclude this chapter by stating qualitative properties of (1.6). To start
with we prove that they decay to zero at infinity with an algebraic rate.

Theorem 2.3
(i) Any nontrivial solitary wave ® of (1.6) in IR? satisfies

(2.15) r2® € L°(R?), r?=z?+y%



(ii) Any nontrivial solitary wave ® of (1.6) in IR® satisfies
(2.16) r’® ¢ L*(R?), V6, 0< 6 <3/2, r=(a®+y° +22)/2

Remark 2.2 : The proof of Theorem 2.3 is valid for any Y solution of the elliptic equation
(2.2). 1t is based on a careful analysis of the convolution equation equivalent to (2.2)

(see [2]).

The reason why @ cannot decay fast at infinity is obvious after writing (2.2) in
Fourier variables, namely

. R f%
2.17 S = - |0|Q,
(217 e

where £ is the dual variable of z.
If & were exponentially decaying at infinity, & and |®]2® would be analytic by the

2
Paley-Wiener theorem. But this is absurd since £ — TET’E-IF—&T is not analytic at the origin.
. 1

Moreover it is even unlikely that & is integrable because if it were the case & would be
continuous, which is absurd in view of (2.17) except if [, |®|*® = 0 (a fact that we
don’t know how to disprove).

We conclude this chapter by a symmetry property of the solitary waves. Unlike
the previous ones it is valid only for the minimizers of (2.13) and not for any nontrivial
solution of the elliptic problem (2.2).

A ground state is a solitary wave which minimizes the action

5(@)=E(<1>)+‘—‘2’-/W 182, d=2,3

among all the nonzero solutions of (2.1), where E is the enegy defined for ® € Y by

-4, 4 070) - o

if d=2, and

= - Do ~1¢, - a+2
E((I)) 2/]1{2(@1:_"'( z y) +(D:c @)) (a+2) Ral@I
if d=3.
Proceeding as in [2] for the solitary waves of the generalized KP equations, one can
show that any solution constructed in Theorem 2.2 is a ground state and furthermore :

Theorem 2.4. Let o' =y € Rif d=2 and 2’ = (y,z) e R* if d = 3 ; then, up to a

translation of the origin of coordinates in z', any ground state ® is radial in z', that is
® depends only on z and [z'|.



3. Some remarks and open questions

1. Nothing is known concerning the uniqueness of the ground states of (2.1).

2. The existence of travelling waves of (1.6), that is solutions of the form ¢(z,z',t) =
e*t®(z — ct,z'), ¢ # 0 is open.

3. We conjecture that the solitary waves of (1.6) are unstable if o > 4/3, d = 2 (resp.if
a >4/5,d=3).
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Structure of Positive Radial Solutions to Scalar Field Equations

CrLAUs DOHMEN

Abstract: We will prove classification results on positive radial solutions to nonhomoge-
neous scalar field equations in space dimension N > 3. The results will be given in terms
of the data only.

1 Introduction

1.1 During the last two decades many authors considered questions of existence and
uniqueness of nonnegative solutions to semilinear elliptic equations in R" that converge
to zero if |z| — oo, the so-called ground states. This paper wants to contribute to this
field by presenting a systematic approach to the classification problem for radial solutions
to the scalar field equation

Au—u+Q(z))uy =0 inRY (1.1)

with N > 3, p > 1 and nonnegative, continuous (). This equation arises for instance in the
study of standing wave solutions to Klein-Gordon— and nonlinear Schrédinger equations
(see [1]).

The main results on this problem so far are as follows: The existence of positive solutions
in ensured by the condition Q(r) < C(1 +r') for some ! € [0, (N —1)(p — 1)/2) [3]. On
the other hand there are no positive solutions if @(r)r~"-1(-1)/2 is nondecreasing [8].
Uniqueness of ground states could be proved by Kwong [6] in case ) = 1 and by Yanagida
[9] for @ and rQ’/Q decreasing.

As to the structure of the set of radial solutions, little is known. Using a method based



on Pohozaev type identities, Yanagida and Yotsutani [10], [11] succeded in solving this
problem, provided an auxiliary initial value problem (see (1.4) below) could be solved
explicitely. So this approach remained restricted to very special nonhomogenities.

Here we will show how to avoid the use of such explicitely given functions in applying
their technique. We will state our results in terms of the data only.

1.2 Formulation of the Problem. Let u = u(r) be a radially symmetric solution of
the scalar field equation (1.1), i.e. let u satisfy

N -1

v —u+Q(r)w’ = 0  inRY:=(0,00) (1.2)
u(0) = a, u'(0) = 0.

u// +

Here @) is subject to the following conditions:

2 0, N-19 e I 0,1),
(@) { g € CORT) Z~(p+?)rr—(N§.1)(p)_1)/2Q € L'(1, 00). (1.3)

Some results will require higher regularity of @, which we will not state explicitely. As a
rule all derivatives of ) that occur in the proofs should be continuous.
Let us introduce the auxiliary function ¢, that solves the linear problem

¢"+£V—;—iqs’——¢ = 0 inR* (1.4)

¢(0)=1,  ¢'(0) = 0.

Note that ¢ is positive and (f-%) — 7 — &=L 4 (1) if r — co. Defining w by u = w - ¢,
we easily calculate that w solves

rw’) rg(r)w? = in RT
() { Ef((o)):)a:;- K(w)lg(é)): N 0 R*, L5

where

K(r) = |¢(r)P7'Q(r), g(r) =" |g(r)|*. (1.6)
It is well known that problem (P) has a unique solution w € C°([0,00)) N C?((0, 00)),
which is of one of the following types:
(i) w(.,a) is a zero-hit solution, i.e. w(.,a) has a zero in R*.
(ii) w(., @) is a slow—decay solution, i.e. w(.,a) > 0in R* and lim,_ [f°° ﬂ w(r, a) = oo.

(iii) w(., a) is a fast—decay solution, i.e. w(.,a) > 0 in R* and lim,_,co [fr°° ﬂ w(r, a) ex-
ists and is finite.

Moreover, writing the problem in divergence form, we arrived at a formulation that is

suitable for applying the technique of Yanagida and Yotsutani (see [10], [11]). Let us
state their main classification result in case that g and K are given as in (1.6):



Theorem. [11] Let @ satisfy (1.3) and define

Gr) = ;—_%g(rf [ orae - [ seserawds
#) = e [T weoran - [T [T orawas
. = inf {r e RY|G(r) < O} Tg 1= sup {r e RYH(r) < 0} (1.7)

In case that G(r) > 0 define rg = oo and in case that H(r) > 0 define ry = 0.

Then the structure of the set of positive solutions to (P) is as follows:

(a) If r¢ = co and G # 0, then the structure is of type Z, i.e. w( a) is a zero-hit solution
for all @ > 0.

(b) If r¢ < oo and ry = 0, then the structure is of type S, i.e. w(.,a) is a slow—decay
solution for all ¢ > 0.

(¢) f0 < rg < rg < oo, then the structure is of type M, i.e. there is an unique ag > 0,
such that w(., a) is a slow—decay solution for all a < ap, a fast—decay solution for a = aq
and a zero—hit solution for all a > ag.

(d) If @ =0, then w(.,a) is a fast-decay solution for all a > 0.

In the sequel we will derive criteria on () that imply the assumptions in this theorem.

2 Behaviour of G and H

The information on the structure of the set of positive solutions to (1.2) lies in the shape
and the the relation of the positivity sets of the functions of G and H. We will try to
gain some of this information via the knowledge of the limit behaviour of G and H near
r = 0 and r = oo and the possible number of their extrema. :

As a first step we calculate the derivatives of G and H.

2.1 Lemma.

6'0) = ankoran (o) - 252} - a1 [ [ U e
where ®(r) is given by
o) = 2| [ (2t - 1)+ 495 + () 22)

v

v

=:51(r)

Note that the extrema of G and H are located at the same points in R¥.



2.2 Lemma on ®. (i)

w 1
/ Sy - 2)+4( ))dt B(r) = 2 / ydtar) (2.3)

=:2/(p+3)s2(t)

- 2(N=1)+(22L)(0)
(1]) llmr..*g @(’I") = _‘—‘Iv_—q———‘*

(ii1) limy o0 @(r) = _t?;:&t, where gy := 11317%0(18_’)/(;3:).
The proof rhainly uses integration by parts and 1'Hospital’s rule.

2.3 A Technical Lemma. For large r we have
(i)

g(r) / = 2+ o(2).
(ii) If g4 = 0, then

1 A =limeoeo(X)1 1
p+1 (p+1) r r

")) Qt)dt =

1
g(r)lg(r)P1Q(r) /0

In deriving these identities we make use of the equation satisfied by ¢, integration by
parts and the asymptotic behaviour of (%5~ %) near infinity.

2.4 Lemma on G. (i) G(0) = 0, sign G'(0) = sign {®(0) — Z2}.
(ii)

{ —oo if lim, oo (™) < Ay

. _ QI
Hm o) =9 o i lim, oo (2) > .

The idea in proving (ii) is to insert the asymptotic expansions of Lemma 2.3 in the
definition of G: If g4 # 0 the statement is clear. Otherwise the sign of the leading term
in the expansion depends on the relation of (ng—l) and \; at infinity.

2.5 Lemma on H. (i)

>0 if lim,_o(™F) < Ao
lim H 9,
fim, (”{ <O if Timeo("2) > do

(i) im, o H(r) = 0.

Let us remark that at this stage we could prove existence results for positive solutions
similar to those of Ding & Ni [3]. However, we focus on structure results here.



3 Structure Results
3.1 Proposition. If ("—8—') < Ao in [rg, 00), then ®(r) < &2 in [rg, 00).

Proof: As (US—) is monotone increasing and we have the above condition on @, we can
estimate for r € [rg, c0)

I (t)32(t)dt> I —g—%t—)dt} sa(r) > [ A g(it)dtJ s1(r).

As ®(r) < 2 near infinity from Lemma 2.4 and we have identity (2.3), the estimate
follows immediately.

As an immediate consequence from Proposition 3.1 and (b) of the structure theorem
in 1.2 we can state the following

3.2 Theorem. If (2 < Ao in R*, then the structure of solutions to (1.2) is type S.
Q

If we allow (18—/) to have larger values, extrema of G may occur. Then we use that
the sign of ¢’ at successive points where @ = 22 (or, equivalently, G'(0) = 0) must
change. In other words, if ®'|;_ 2% does not change its sign twice, G can have at most
one extremum. In this case we can obtain enough informations on G and H from the
asymptotic behaviour to locate rg and rg.

In order to do so, we calculate

P lar-ee = iy {0~ (gDl + T st

=:&I(('r)

In general the information we have on s; is not precise enough to prove something at this
stage. So we play the same trick again, which we will show here for the case (%) =const.

3.3 Theorem. If Q(r) = r®, then the structure of the set of positive solutions is

(i)  of type S, if 8 < Ag;
(ii) of type M, if s € (Ao, A1);
(iii) of type M or type Z, if s = Ay;
(iv) of type Z, if s > A,

Proof: Due to 3.2 statement (i) is clear. Otherwise straightforward calculation show
that rs}/sy can cross the level 1 at most once; to be precise: If s > A;, then rs}/s; < 1
and if s € (Ao, A1), then there is a o > 0, such that rsj/s; < 1in (0,7) and rs}/s; > 1
in (rg,00). As

V(e = P i 3 (/\D - (rgl)) 1(r)? + (p+3)*r* and
' ' 2,2 rsi(r)
r (T\II (T)|‘I'(T)=°> |(T‘1"(T)Iwr)=o)=° = 2p+3) (1 B s1(r) ) ,



this in combination with the limit behaviour of 7U’|g= implies that this function is neg-
ative if s > A; and that it has exactly one sign change (from minus to plus) in case
s € (Ao, A1). Tracing the way back to ¥, ®, observing carefully the limit behaviour of
these functions, we see that GG and H have at most one extremum. Thus from the limit
behaviour of G and H we conclude (ii) and (iv). (iii) can be proved similarily by addi-
tionally taking care of ¥” in a point where ¥ and WU’ vanish. -0

Besides the applicability to other nonhomogenities @) these arguments can be further
developed to cover the critical cases left out in the lemmata 2.4 and 2.5 by calculating a
more precise asymptotic expansion in 2.3. We intend to come back to this problem in a
forthcoming paper.
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1 Introduction

Many physical situations can be studied asymptotically using the so-called multi-scale ex-
pansion method (see for example [1]). This method yields a basic evolution equation which
is formally valid at the leading asymptotic order, as well as a sequence of evolution equations
which are formally valid at higher asymptotic orders. It turns out that for many important
physical systems the basic evolution equation is an integrable equation (see [2] for a discus-.
sion of this remarkable fact). Each integrable evolution equation is a member of a hierarchy
of infinitely many integrable equations. It is interesting that the evolution equation valid at
the next asymptotic order, differs from the next member of the associated integrable hier-
archy, only in the value of the numerical coefficients of the nonlinear terms. For example,
idealized unidirectional water waves of small amplitude and large wave length satisfy [3] the
equation

Uy + Uz + 6uu:z: + E(aluxmmmm + QoUUgry + A3Uzp Uz +- (X4U2’LL$) + 0(52) - 0, (11)

where ¢, ..., a4 are certain numbers. As € — 0, this equation becomes the Korteweg-deVries
(KdV) equation,

V¢ + Vggy + 6vv, =0, (1.2)

which is an integrable equation. Furthermore, the O(¢) terms of equation (1.1) differ from
the equation



UVt + Vgze T bvv, + Eal(vxaczxz' + 10vvzgs + 20Uzvz$ -+ 30'027).7:) =0 (13)

only in the numerical coefficients of the O(e) nonlinear terms. Equation (1.3) is the next
number of the hierarchy of integrable equations associated with the KdV equation.

If the basic evolution equation is integrable, we say that the underline physical system is
asymptotically integrable to O(g). It turns out that in certain cases it is possible to formally
extend the asymptotic integrability of the system to O(e?). For example, in the case of
water waves, Kodama found [4] an explicit transformation which maps equation (1.1) to the
integrable equation (1.3).

We have recently shown [5] that the concept of the mastersymmetries (introduced by the
author and Fuchssteiner in the early 80s [6]) provides an algorithmic approach to finding the
transformations which map the physical equations to the integrable ones.

Let 7(z,t) denote the mastersymmetry of the integrable equation

ve + M(v) = 0, (1.4)

where M (v) denotes a smooth function depending on the variable v, and on its = derivatives
Vg, Uggs --.. Lhe defining property of the mastersymmetry is that

[T(m? t), M(U)]L = MI(U), (1.5)

where M, (v) is the next commuting flow of the associated hierarchy of integrable equations;
[,]z denotes the Lie commutator defined by [A, B];, = A'B— B'A, and prime denotes Fréchet
differentiation,

0 dA 0A 0A 0
' _— . P 2oy LI~ S
A'(u)B = 66A(u +¢eB) E:O,z.e. A 5 + 8umax + aumax + 3 0p £
For example the mastersymmetry of the KdV is
7(z,1) = 80% + 4vgy + 20,070 + T(Vggy + 6vV,). (1.6)
Indeed, if
M(v) = vVggy + 6vV, (1.7)
then
[T(z,t), M(0)]z = Vozszz + 1000z50 + 200,055 + 30020, (1.8)

which is the next commuting flow of the KdV hierarchy.

The importance of mastersymmetries follows from the following observation: Let v solve
the equation (1.4). Let u be defined by

u=uv+eP(v). (1.9)

Then u solves



us + M(u) + e[ P(u), M (u)]z + O(e®) = 0. (1.10)

If P(u) = 7(z,1), then the O(e) term of equation (1.10) becomes M;(u). If the O(¢) term of
equation (1.10) differs from M; only in numerical coefficients, it follows that the transforma-
tion P(u) mapping an integrable equation (equation (1.4)) to a physical equation (equation
(1.10)) can be constructed from the mastersymmetry of the integrable equation, by replacing
the numerical coefficients in the mastersymmetry 7(z,t) with arbitrary constants.

Using the mastersymmetry of the KdV we have shown that equation (1.1) can be mapped
to KdV itself (instead of equation (1.3)). Also we have shown that equation (1.1) can be
mapped to other integrable equations. These equations are integrable generalizations of the
KdV equation and of the Gardner equation (a linear combination of KdV and of the modified
KdV equation).

2 Equations Related to KdV and to Nonlinear
Schrodinger

Proposition 2.1 [5]. (i) Let v solve the KdV equation (1.2). Let u be defined by

u=uv+e ()\11}2 + AUz + Agv 07 0 + A g2 (Vgze + 6vvm)) , (2.1)

where A\ = 283/180, A, = —37/60, A3 = 203/45, Ay = —19/30, and 9, denotes integration
with respect to z. Then u solves equation (1.1) with a; ="19/10, ay = 5/3, a3 = 23/6,
oy = —1/6, which are the numbers appearing in the modeling of unidirectional idealized
water waves.

(ii) Let v solve the integrable equation

Vi + Vper + 600, + VE(Vppt + 200000 + 40,05,) = 0. (2.2)
Let u be defined by

u=v-+e (Alvz + AUz + )\3vx8;1v) , (2.3)

where \; = —173/180, Ay = —113/60, A3 = 89/45, and let » = —19/10. Then u solves
equation (1.1), where the values of ay,..., a4 are given above.
(iii) Let v solve the integrable equation obtained by adding the terms

3pev? vy + pre*(V*Vpg + 400505 4+ 03) + pr2 S (V2 00ge + 20502)), (2.4)
to the lhs of equation (2.2). Let u be defined by

u =1+ e(Mv? + A, 07 M), (2.5)

where A, = 101/36, A, = 89/45, and let » = —19/10, p = 113/15. Then u solves equation
(1.1) where the values of ay, ..., a4 are given above.



Remark 2.1 Equation (2.2) was first derived in [7] using the bi-Hamiltonian approach
(equation (2.2) is equation (26e) and (30) of [7] and equation (5.3) of [8]). The Lax pair of
equation (2.2) and an interesting class of its solutions, called peakons, were given in [9]. The
linearization of equation (2.2) using the inverse spectral method is given in [10]. Equation
(2.2) has a rich mathematical structure only if v = O(e™1); if v = O(1) the spectral theory
of equation (2.2) is very similar to that of the KdV equation [10].

The results of Proposition 2.1 can be generalized as follows. Let v;+ M (v) = 0 denote the
KdV, or equation (2.2), or equation (2.4). Let v solve the equation v; + M (v) + eM;(v) = 0,
where M; (v) denotes the first commuting flow of the KdV, or of equation (2.2), or of equation
(2.4). Then it is possible to find a transformation of the form u = v + ¢P(v), such that u
solves (1.1). In the case that M is given by equation (1.7) and M, is given by (1.8), P(v) is
of the form of equation (2.3), and this is precisely Kodama’s result. In the other two cases
P(v) involves A\v* + Agvgz, and A;v?, Tespectively. '

- Proposition 2.1 and the above remark show that there exists a trade off between the
complexity of the integrable equation and of the associated transformation. Indeed, KdV
is the simplest equation, while equation (2.1) defines the most complicated transformation.
The extreme opposite of the KdV equation is equation (2.4) together with its first commuting
flow; in this case the associated transformation takes the simplest form u = v + eAv?.

Proposition 2.2 Let v(z,t) solve the nonlinear Schrodinger equation

it + Vg + pv|*v = 0,
where v is a complex valued function and p is a constant. Let u be defined by

u=v-+e [)\1'(),; + A0 o + sz (ver + plv|2v)] . (2.6)
Then u solves the physically important equation [11], [12]

iU+ Uz + plulPu + e [alug}xz‘ + copfulu)g + agu(]ulzjz] + 0(e*) = 0. (2.7)

3 Equations Related to Burgers and to Benjamin-
Ono Equations

Proposition 3.1 [11]. Let v(z,t) satisfy the Burgers equation

Ve = Uy + 200, (3.1)
Let u(x,t) be defined by

Q2—3 1

u=v+e¢ (—];(&3 ~ 20 )v? + 5 il v 07 v + %—m(vm + 2vvw)> , (3.2)

2
where oy, ay, a3 are constants. Then u solves

3
Ut = Upy + 2UU, + € [alumr + QU + agu’ + <oz3 + 9[2—2 — §a1> uzuz] + 0(82). (3.3)



Remark 3.1 Unfortunately there exists a linear relation among the coefficients of the O(¢)
terms of equation (3.3). This is to be contrasted with the cases of the equations related to
KdV, and to nonlinear Schrodinger , where the coefficients of the O(g) terms are arbitrary.
Further discussion of this linear constraint among the coefficient of equation (3.3) can be
found in [12]. .

Equation (3.3) (without a linear constraint among its coefficients) can be obtained from
a certaln asymptotic expansion of the acoustic waves,

sz 1 A l 2 6 + 7 9 2
pe+p PP b Y Yoy 4 ( CENYE pp (%)
where ep is the perturbation of the density,
R
- 261,(2) ' B 6(1(2) ' B zpoaol’

Py = P(po) is the equilibrium pressure, ag is the speed of sound, [ is a typical length, prime
denotes differentiation, and u is viscosity. The constraint satisfied by the coefficients of
equation (3.3) corresponds to

86+ 67 + 1 — 342 = 0.
Proposition 3.2. [12] Let v(z,t) satisfy the Benjamin-Ono equation,

00 = 200 + Home, (H F)(2)— ]l_°° SO 4. (3.4)

T [e'S) ﬁ—-:c

where  denotes a principal value integral. Let u(z,t) be defined by
u=uv+ .;- (Mv? + NaHvg + Az (200, + Hvg)) . (3.5)
Then, u satisfies equation

Uy = 2uuy + Hug,

(3.6)
+5 [auxzz + IBI(UHUI):I: 'JF ﬁZUHuxx + ﬂBH(uum)z + 7u2uz] + 0(52)’
where the coefficients of equation (3.6) satisfy the numerical constraints
3o+ By + By + s = 0, (3.7)
and
Bi+Bs—7=0, (3.8)



Remark 3.2 A particular case of equation (3.6) occurs in the modeling of long internal
waves in a deep continuously stratified fluid, and was recently derived in [13]. In this case
u denotes the horizontal velocity of the fluid and the coefficients ¢, ..., can be expressed
through the parameters of the fluid stratification. The particular case that the stratification
profile can be approximated by a two-layer model with density p; in the upper (shallow)
layer and p, in the lower (deep) layer, was studied in [14] and is described by equation (3.3)
with

4 Rigorous Considerations

It is possible to use the above formal results to study rigorously the initial value problem of
the physical equations related to the integrable ones. A rigorous methodology for achieving
this has been given in [15]. Let

u(z,0) = uo(z) + eua(z). (4.1)

Our methodology for solving the initial value problem for u(z,t) with u(z,0) given by (4.1)
involves the follow steps:

(i) Given yg and uy, define %(z,0,¢) and v(z,0,¢) by

(z,0,¢)up(z) + eluy(z) — P(uo(z))], (4.2)
and by

uo(z) + eus(z) = v(z,0,€) + eP(v(z,0,¢€)), (4.3)

respectively.

(ii) Define 9(z,t,€) and v(z,t,e) as the solutions of the integrable equation satisfying
#(z,.0,¢) and v(z,0,¢€) respectively. Using the fact that 9(z,0,€) and v(z,0,€) are close in
the Lo, norm, establish that
sup |v(z,1,€) — B(z,t,e)| < Ce®, for all t, (4.4)
zeR
where C is some time-independent constant.

(iii) Define u(z,t,¢) and @(z,t,€) by

u(z,t,e) = v(z,t,¢) + eP(v(z, t,€)), (4.5)
and by

u(z,t,€) = oz, t,€) + eP(¥(x,1,€)), (4.6)



respectively. Show that u and # are well defined, and furthermore obtain the large time
behavior of |u|w and |#|s Using these results show that

[(u—@)(-,t,€)|e < Ce®, for all t>0, (4.7)

where C' is time-independent constant.
The implementation of the above methodology to equations related to Burgers and to
KdV is given in [15] and [16] respectively.
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A REMARK ON THE EXISTENCE OF THE
NAVIER-STOKES FLOW WITH NON-VANISHING
OUTFLOW CONDITION

H. Fuisita Anp H. MoRIMOTO

Abstract. The boundary value problem of the Navier-Stokes equations has been studied
so far mainly under the vanishing outflow condition. We study this problem under non-
vanishing outflow condition for a bounded domain D in R? or R? with multiply-connected
smooth boundary. We consider the boundary value of the form b = pB3,+ 3,, where i is a
constant, 3 is the boundary value of gradient of a harmonic function and [, 3;-ndo =
0 (4= 0,1). We suppose also that the external force is a potential force. Then we can
show the existence of solutions even for large 1 with a discrete countable set of exceptional
values, if B, is sufficiently small.

1. Introduction

Let D be abounded domain in R™, n=2 or 3, with smooth boundary dD = Uk T; (k >
2), where I';’s are connected components of the boundary and D is inside of I'y. Thus one
might think that ['; is the outer wall of the vessel and I';(1 < ¢ < k — 1) are the inside
walls.

We consider the following stationary Navier-Stokes equations

. -vAu+ (u-V)u+Vp = f in D,
(Nb){ divu = 0 in D,

with the boundary condition
(BC)u=b on 8D.

The existence of solutions to (NS) (BC) is known in general context under the vanishing
outflow condition



/Pb~ndO‘:O(1§z'§k),

where n denotes the unit outward normal vector to the boundary 9D (c.f. Leray [6],
Ladyzhenskaya [5], Fujita [4]). The condition (H) is stringent than the following general
outflow condition, which could be called here the non-vanishing outflow condition

/an-ndrf:O

which is to be satisfied by the boundary value b of any solenoidal vector u. We are
concerned with the existence proof of solution to (N.S) (BC) where only (H ), is satisfied
and (H) does not hold true. An affirmative result has been obtained by Amick [1] for
2-D case under a certain assumption of symmetry. Morimoto [7] [8], Morimoto-Ukai [9]
showed exemples for 2-D annular domain case.

In this paper, we shall show the existence of solutions to (N.S)(BC') and (H), for a
certain class of the boundary values for 2-D or 3-D general domain under consideration,
namely without any hypothesis of symmetry. Specifically, we consider the boundary value
problem

—vAu+ (u-Vi)u+ Vp = f in D,
(NS) divu = 0 in D,
U = puBy+ B, on 9D,

where y is an arbitrary constant, B, is the boundary value of gradient of a harmonic
function and B, satisfies (/{)o. Then we prove that the solution to (N.S), exists for
every u except for a discrete countable set which depends on 3, if 8, is sufficiently
small(Theorem 1,Theorem 2).

A nontrivial example of such 3y is

ZV <47r1J )

in 3-dimensinal case, where ¢;’s are constants and a;’s are points outside D, each a; being
enclosed by T7;.

2. Notations and results

We use the following function spaces. Let L?(D) be the set of all vector valued
square integrable functions in D with the inner product (-, -) and the norm || - ||; W;*(D)
the Sobolev spaces; H™(D) = W3*(D); Cg, (D) the set of all smooth solenoidal vector
functions with compact support in D; H, = H,(D) the closure of C§, (D) in L*(D) ;
H! = HY(D)N H,(D); V the completion of C%,(D) in the Dirichlet norm ||V - ||. || - ||v
stands for ||V - || while V' is the dual space of V, || - ||+ being the dual norm of || - ||v.

By definition, u € H} is called a weak solution to (NS), (BC) if and only if

v(Vu, Vo) + ((u - Vu),v) = (f,v), Yv eV,



and w = b on dD in the trace sense. If the weak solution w is in H?(D), then it is called
a strong solution.

Theorem 1. Suppose that f € V' is a potential force, that By is the boundary value of
gradient of a harmonic function ¢ € H*(D), and that B is in HY*(OD) with

ndo = 0.
/zaD B - ndo

Then, there ezists a discrete countable set M C R such that for each u € R\ M, there
exists a weak solution to (NS), if ||Byllzrz@py < C* for some positive constant C* =

C*(V, I, D7 60)

Remark 1. For 2-D annular domain, a relevant result has been shown by Morimoto-Ukai
[9] under a particular circumstance but for “large” B, .

Remark 2. If |u|, B, and B, are small, then the existence of the solution can be shown
by means of a standard argument with Leray-Schauder’s principle (e.g. Ladyzhenskaya

[5], Temam [10] ).

Theorem 2. Suppose that f € L?(D) is a potential force, that B, is the boundary value
of gradient of a harmonic function ¢ € H3(D), and that B3, is in H¥?*(OD) with

/BD,Bl-nda:O.

Then, there exists a discrete countable set M C R such that for each € R\ M, there
exists a strong solution to (NS), if |B1||ger2ep) < Cs for some positive constant C, =

C*(’/a M, D7 ﬂO)

3. Lemmas
By the Sobolev imbedding theorem and the Poincaré’s inequality, we have

Lemma 1. There exist a positive constant ¢; which depends only on D, such that the
inequality:

lwllzapy < aflwlly, YweV
holds.

The next lemma is an easy consequence of integration by parts and Horder’s inequality.

Lemma 2. i) (u-V)v,w) = —((u- V)w,v), Vu,ve H}, weV.
ii) |((w- V)v,w)| < Jlullzs|lollmllwllv, VYu,v€H;, weV.



Lemma 3. If u,v € H}, then (u - V)v belongs to V' and
(- V)olly: < lul|za]lv]]zs
holds.

Proof.
Let w be an arbitrary element in V. According to Lemma 2,

(- V)v,w)| = | = ((u- Vw,v)| < [[u|a][v]|z]|w]ly.
Therefore, (u - V)v belongs to V' and
I(w - V)ollvr < lufzaflv]]s.

Q.E.D.
Let ¢ € H(D). Then, we define the operator L(¢) through the identity:

v < Lip)w,v >y= (¢ - VIw + (w - V)p,v),

Lemma 4. Let ¢ € HY(D). Then, the operator L(p) is a compact linear operator from
HY(D) to V' subject to:

IL(e)wllv: < 2llellzallwllzs, Yw € Hy(D).

Proof.
Let w be an arbitrary element in H.(D). Then, according to Lemma 2, we can
estimate as

(¢ - V)w + (w - Vg, v)|
== (¢ - V)v,w) - ((w-V)v,p)|
< 2[fepl|zallwllzal|Vollze = 2l ] |wl]|za[[v]lv-

Therefore, L(p)w € V' and
IL(p)wllv: < 2[lp]|zs[[w]lzs < 2¢]|op]|za][w]]

holds true, ¢ being a domain constant.

Let {w,} be a bounded sequence in H}(D). Since H}(D) is compactly imbedded in
L*(D), we can choose a subsequence {w,,} which converges strongly in L*(D). Then by
virtue of the above estimate, the sequence {L(p)w, } converges strongly in V'. Q.E.D.

Let G be the Green operator of the Stokes equations, originally defined through
Odgvist’s Green function. Namely v = GF gives the unique solution to the Stokes
equations:

—Av+Vp = F in D,
divv = 0 in D,
v = 0 on 0JD.

The operator GG can be extended over to V', for we have



Lemma 5. The operator G is a bounded linear operator from V' to V and the estimate
IGF|lv < ||F|lv
holds.

Proof.
We give a proof for the self-containedness. Let F° be an arbitrary element in V’. By
Riesz’ theorem, there exists a unique element v € V such that

(V’U,V’U;)ZVI<F,’U,>V, Yu €V,
which we denote by v = GF'. The estimate follows from this formula. Q.E.D.

Let P be the orthogonal projection from L?(D) to H, and A = —PA be the Stokes
operator with domain D(A) = H?(D)NV. Then, Av = PF if F' € L*(D). We denote by

|| - |lp(a) the graph norm of A, that is, ||v||p) = ||Av||. The next lemmas is well known
(Cattabriga [3], Ladyzhenskaya [5]).

Lemma 6. The operator G : L*(D) — D(A) is a bounded linear operator, namely we
have the estimate

|GF||pay < ||F||zz ( F € L*(D)).

From the identity:

; 1
(u-Viu= -2-Vlu|2 — u X rotu,

we have the following lemma for the gradient of harmonic functions.

Lemma 7. Let ¢ € H?(D) be harmonic in D. Then, eq = Vi satisfies the Stokes
equations:

(S) —vAu+Vp = 0 in D,
divu = 0 in D,

as well as the Navier-Stokes equations (N.S) with f = 0.

Let B, € HY?(8D) be given. Consider the boundary value problem for the Stokes
equations:

—vAu+Vp = 0 in D,
(S)a divu = 0 in D,
U = [ on OD.

It is well known that for any B, € HY2(dD) satisfying (H)o, there exists a unique
solution b; € H*(D) to (S)s, such that the estimate

”blHH‘(D) < C“ﬂl”ﬂl/z(ab)



holds. Moreover, if 8; € H¥2(9D), then the unique solution b; belongs to € H?(D) and
is subject to the estimate

1b1]|z2(p) < cl|B1llzar2op)

(e.g. Cattabriga [3], Temam [10]).
Since H'(D) is continuously imbedded in L*(D), we have

Lemma 8. There exists a constant co which depends only on D, such that the inequality

|1b1]|24(py < e2llB1llm1/2(am)

holds.

Let eg, b; be as above. We define the operators Ey, B; as
FEq = L(eo), B1 = L(by).
Put K = —GEy = —GL(ep). Using Lemma 4 and Lemma 5, we have
Lemma 9. The operator K : V — V is a compact linear operator.

If the data are smooth, then we have the following lemmas.

Lemma 10. Let Let ¢ € H*(D) N HX(D). Then, the operator L(yp) is a compact linear
operator from H?(D) to L?(D) subject to: ‘

IL(@)wllz) < 2lellwpmllwllwiwy, Yw € H(D) N Hy(D).
Similarly to Lemma 9, we can show

Lemma 11. The operator K 1s a compact linear operator from D(A) to D(A) .

4. Proof of Theorems

Firstly, we prove Theorem 1. Without loss of generality, we can suppose f = 0. Let
eo and b; be chosen as above. Under our assumptions, ey and by are in H*(D). In seeking
the solution u to the equation (NS),, we put u = w+ peg+ by. Since peg satisfies (IV.S)
and b, satisfies (.5), we have the following formal equation for w

—vAw + (w - V)w + pu{(eg- VIw+ (w - V)eg} + {(by - V)w + (w - V)b }
(1) +/L{(b1 . V)EQ -+ (60 . V)bl} -+ (bl . V)bl -+ Vp =0 in D,

divw=0 in D,

w=0 on OD.

With the operator Egy, B; and (7, we can rewrite the equations, obtaining



1 1 1
2) w+ i—jGEow = —~Gw- V)w - ~CByw ~ g-GBleo ~ ~G(by - V)b,

which is a well defined equation for w € V.

Since the operator K = —GEy is a compact linear operator on V (Lemma 9), the
spectrum o(K) is a discrete countable set with a possible accumulating point {0}. Let
£ & o(K). Then the bounded inverse (I — EK)™ € L(V) exists. Applying this operator
to (2), we obtain

1
3) w=-——(I— %K)‘l{G(w V)w + GBiw + uG Breg + G(by - V)by}.
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Let us denote the right hand side of (3) by dw:

1
(4) Pw=——(I- %K)‘l{G(w V)w + GBiw + pG Breg + G(by - V)by}.

Thanks to the preceeding lemmas, we obtain the following estimates:
(5) NG (w - Vwlly < [l(w - V)wlly: < [Jwllfs < w7,
(6) IGBiwlly < ||Brwllvs < 2[ba||zsl|wllzs < 26162[|B1 || mmrzomy [[wllv,
||GBieollv < ||Bieo|lvr < 2||b1||z4lleol|zs < 2¢2B1lzr2om)lleol|zs,
G (b1 - V)bullv < [|(b1 - W)bullyr < [bulls < 311841 Enr20p),

where c¢1, ¢y are the constants in Lemma 1 and Lemma 8.
Let

Co B
co = max{c}, 2c109, 202, 3}, Yo = ;H([ - ;K) ey, m = 1Billerzan)-

It is to be noted that o does not depend on 3;. We obtain

1@wllv < yo{llwlly +nllwllv +nlplllellzs + 11}, YweV.

In order to apply the contraction mapping theorem, we first examine the quadratic equa-
tion in X:

(1) %(X®+ X + mlullleolls + 1) = X.
We fix eg and p. If 4, is sufficiently small, then v, — 5! < 0 and the discriminant

A=(n—-7%" —4dn(ulllellzs + 1)

is positive. Therefore the equation (7) has two positive roots. Let ro be the smaller one,
that is,

®) o=z —m—y/A)

Now we introduce the following closed ball in V:



Bo={weV||lwlly <}

Lemma 12. The non-linear operator ® : V — V maps By into By and is a contraction
mapping on By :

Proof.
Let w be in By. Then

1Pwlly < yo{r§ + mro + nlullleollzs + ¥} = ro.

Therefore ®w is in By.
Let w; and wy be in By. Then, we obtain

||®w; — Qwsllv

== (I = LK) G{(w1 - V)wi — (w2 - V)wy + By (wy — ws)}ly

< AT = 2K) e [IG{ (w1 - V)ws = (ws - V)ws} Iy + |G By (wy — wa)llv].
Using (5), (6), it is easy to see that the estimates:

|G{(w; - V)w; — (ws - V)ws}|ly |

= [|G{(w1 — wz) - Vwy + (wy - V) (w1 ~ wy)}|v
< llwy — wellv (|lwilv + [Jwelv)

< co(||willv + [Jwe||v)||lw1 — wallv

< 2¢qro||wy — welly,

and
IGBi(w1 — ws)llv < 2¢162B1 | g1r20p) [lw1 — welly < comllwr — wellv
hold. Therefore,
12wy — Pwallv < Yo(71 + 2ro)l|w: — wallv.
From (8), it follows that
Yol + 2rg) = 1 — 703/ A < 1.
Therefore ®w is a contraction mapping on By. Q.ED.
From what has been given, the proof of Theorem 1 is complete.

Using Lemma 6, Lemma 10 and Lemma 11, we can prove Theorem 2 similarly.
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STATIONARY CONFIURATIONS OF A VORTEX
FILAMENT EMBEDDED IN BACKGROUND FLOWS

Y. FukuMoOTO

Abstract: We present a simple recipe for calculating the three-dimensional forms of a
vortex filament in equilibrium with background flows of an inviscid incompressible fluid,
based on the localized induction approximation. An analogy is drawn between stationary
forms of a vortex filament in a steady flow and trajectories of a charged particle in a
steady magnetic field, upon which our procedure relies. To illustrate some of advantages,
we revisit the Kida class, invariant forms of a vortex filament moving through a still fluid.
As a related topic, the motion of a heavy symmetrical body is discussed.

1. Introduction.

We consider a thin curved vortex tube (vortex filament) embedded in an inviscid
incompressible fluid. In general, if the distribution of vorticity is specified at all points of
the fluid, the velocity at each point is provided by the Biot-Savart law. The dynamical
theorem of Kelvin and Helmbholtz states that a vortex tube is convected with the fluid
without change of strength (=circulation T'). Therefore, in order to determine the self-
induced velocity of a vortex filament, we have only to evaluate the Biot-Savart integral
at points in the vicinity of the vortex tube with I' taken as a constant.

The approach to retain the minimum of essence is the so called “localized induction
approximation” [2, 5, 8]; the size o of the vortex core is so thin that the self-induction at
a point X on the filament is dominated by the contribution from the neighboring segment
of length 2L. After some calculation, we obtain

X =AX, x X;;+V(X,t) , (la)
r L
A= Elog (—a—) , (1b)



where X = X (s,t) denotes the filament curve as a function of the arclength s and the
time t, and V' (z,t) denotes the externally imposed flow field. The subscript indicates the
partial differentiation. For simplicity, A is assumed to be a constant.

It is worth noting that, in the absence of the external flow, (1) is a completely integrable
equation, being reducible to a cubic nonlinear Schrédinger equation [3].

2. Stationary shapes of a vortex filament in a background flow. :

Consider the shape of a filament which is in equilibrium with a steady flow V (2). This
setting stipulates that each point on the filament be movable only along itself, namely,
X =VX; with VH being some function. Equation (1a) then reads

AX, x X.,s +V(X) =V X, . (2)
Taking the vector product with £ = X, (2) is transformed into
AX, =X, xV(X) . (3)

If we think of s as the time ¢, V(X)) as the magnetic field, and A as m/q, then (3) is
identifiable as the equation governing the motion of a charged particle, with mass m and
charge ¢, in a magnetic field V' (X). It follows that the static shape of a vortex filament in
a steady external flow is equivalent to the trajectory of a charged particle moving subject
to the Lorentz force.

By appealing to the Lagrangian formalism of classical mechanics, the fully nonlinear
form becomes easily accessible. The Lagrangian £ is

Ao
£=—2—-XS+XS-A , (4)

where A is the vector potential associated with the external field such that V =V x A.

Equation (3) is rewritten in the Hamiltonian form with three degrees of freedom.
According to Liouville-Arnol’d’s theorem, two symmetries in space, other than the kinetic
energy, are required for our system to be integrable by quadratures. Generically, if a vortex
line is continued far enough, it exhibits chaotic behavior even in the static balance. This
fact may be indicative of a complicated entanglement of vortex filaments in unsteady
flows and still more so in turbulent flows.

3. A vortex filament without change of form.

A proper example that illustrates the benefit from the use of this analogy is a vortex
filament traveling, without change of form, through a still fluid [4, 5]. Kida reasoned that
such a motion is composed of three ingredients, namely, a translation with velocity V in
a certain direction, say z-direction, a rotation about the same axis with angular velocity
{2, and a slipping motion along itself with speed cy. The resulting equation is

AX; x X5 = —cX;+Qe, x X +Ve, |, (!

(W3}
—



where e, is the unit vector in the z-direction, and ¢, 2, V are all constants. This
equation is converted into the form of (3) as

AX = X xV(X) (6a)

where
V=-0exX-Ve, , (6b)

and a dot denotes the differentiation in s. The vector potential A(z) is provided, in
cylindrical coordinates (r, ¢, z), by

V Q ,,
A=~—2~re¢—|——2—rzez . (7)

With this form, the Lagrangian £ for (6) is

v,
2
By inspection, we immediately find that z and ¢ are both cyclic, and the first integrals
are available at once:

2q'5 — —Qrzé> . (8)

ﬁ:é(f2+r2$2+é‘2>—~< 5

2

P, = 0L/03= A2+ Qr?/2 = const. (9a)
P, = dL/0d = Ar’d — Vr?/2 = const. (9b)

These integrals, augmented by |X |2 = r24+r2¢24 3% = 1, coincide with the set of equations
handled by Kida. The advantage is that, by invoking the Lagrangian formalism, our
treatment requires less ingenuity to gain the integrals.

Kida’s equation (5) is interpreted as an equation describing the motion of Lagrange’s
top, a heavy rigid body, with axial symmetry, fixed at a stationary point in a gravity field.

Let t(t) and w(t) be, respectively, the unit vector along the axis of symmetry and the
angular velocity of the body as functions of the time ¢. By definition,

t=wxt . (10)
Multiplying (10) vectorially by ¢, we have
w=txt+({t-w)t . (11)

It should be born in mind that w is the angular velocity viewed from the inertial frame.
Because of the rotational symmetry about ¢, the angular momentum m(t) relative to the
stationary point, viewed from the inertial frame, takes on the form:

m = A(t x t) + Cwst (12)

where A and C are the moments of inertia at the stationary point, and w3 = ¢ - w. The
rate of change of the angular momentum relative to some point is equal to the moment
of the external force about that point, giving

m =1t x (—mgle,) , (13)



where m is the mass of the body, —ge, is the gravity acceleration with e, being the unit
vector in the z-direction taken vertically upwards, and [ is the length of line segment
connecting the stationary point to the center of mass. Identifying as mgl = ) and
integrating (13) in ¢ with an appropriate choice of the integration constant, we regain
Kida’s equation (5) for the variable X (¢) = [*#dt.

We note that (13) is compatible with the conservation of the total energy. The total
energy F is the sum of the kinetic and potential energies, and is written as

Ezém-w—{-mglez-t . (14)

On using (10), the time-derivative of £ becomes

E = m-w+mgle, -t
= (m+mgltxe,) w . (15)

Thus (13) ensures the conservation of energy (E =0).

It deserves mention that (10) and (13), supplemented by (12), constitute the subset of
the Euler-Poisson equations (the Lie-Poisson form) written in the inertial frame [7]. The
remaining equation describes the temporal evolution of the inertia tensor.

The spinning top whose axis is permanently upright is called a sleeping top. It is
likened to a straight-line vortex. The sleeping top loses its stability if the rotation speed
becomes slower than a critical value: w? < 4Amgl/C?. In the context of a vortex filament,
the awakened top is nothing but the Hasimoto soliton [3].

Our analogy encompasses the motion of a spherical pendulum. By taking the vector
product of (13) with £, we obtain, with the aid of the subsidiary equation £ -¢ =1,

At = —mglle, — (t - e,)t] — A(t - 1)t — Cuwst x t . (16)

We observe that (16) describes the motion of a particle with mass A and charge ¢ con-
strained to the surface of a unit sphere and subjected to a magnetic as well as the gravity
fields. Here t stands for the particle position and the gravity acceleration is replaced by
mgl/A. The magnetic field B is that generated by a monopole sitting at £ = o:

(a/A)B = —(Cuws/A)t/|t]* . (17)

The first and second terms on the RHS of (16) signify that the particle is exerted by the
gravity force, the normal component of which is being projected out. The third one is
the centrifugal force. The last one is the Lorentz force due to the monopole field (17).
Interestingly, the same analogy was discovered by Berry and Robbins [1].

The configuration space for Lagrange’s top is all possible rotations, that is, the ro-
tational group SO(3) whose parameterization necessitates three variables. The standard
way is the use of the Euler angles (0, ¢, ). On the other hand, for the motion of a spher-
ical pendulum, it suffices to specify the tip of the vector ¢, that is, to specify § and .
It follows that reduction of freedom is achieved from SO(3) to the unit sphere S2. The
origin of the reduction is attributed to the rotational symmetry about the top axis ¢. The



emergence of a magnetic monopole in the reduced system (16) is not accidental, but is
well comprehensible within a general framework of the cotangent bundle reduction [6].

We regard SO(3) as a principal S*-bundle over S? with the group S* (2 SO(2)) acting
freely from the right on SO(3) by rotation about the top  axis. The Hamiltonian H is

1 [p3 | (p, —cosfpy)? | Pl
_1l|p Py I cos 0 18
H=312 AsnZo T o| Tmeteost (18)

and is invariant under the right action by S* [7]. Here (ps, p,, py) are components of the
canonically conjugate momentum. The Lie algebra G of S? is identified with the axial
component ws of the angular velocity, thus with the real number R, and its dual G* is
identified with the axial component py (= R) of the angular momentum. The mechanical
connection is coined from the formula py/C : TSO(3) — G and its role is played by ws:

ws(0: 0,15, 6,4, 9) = cosbp 4. (19)
Given p € G*, define the one-form o* = agdf + a,dp + aydip on SO(3) by
| a9d + 0y + ayth = pws . (20)
The LHS is the pairing between TS0(3) and T,50(3) at ¢ € SO(3), while the RHS is
the pairing between G* and G. It yields
(g, atpy ) = (0, ppcos O, ) . (21)

We decdmpose the momentum on the level set of py, = p into two parts, based on (21), as

(po, o, 1) = (o, pp — prcos 8,0) + (0, ucos O, 1) . (22)

This is a kind of horizontal-vertical decomposition, and the first part is orthogonal to
the second one with respect to the metric derived from the kinetic energy. In the first
part, (Pg,p,) = (pe,p, — 1) may be regarded as the momentum on S%. The symplectic
structure on 7*5? is induced from the canonical one on T*SO(3):

dps A df + dp, A d + dpy A dip = dpg A dO + dp, A dp — psin0di A dp . (23)

Since ws is the connection one-form, the two-form da* on SO(3) automatically drops to
a two-form on S?, giving the last term called the magnetic term. This causes the Lorentz
force due to the monopole field. The reduced Hamiltonian H, on T*S? is

1 (o, B u? .
~ 94 — . 24
=3 (p(,—i- >+(mglc050+20 (24)

Fu sin® @
Hamilton’s equations for H, endowed with (23) indeed give rise to (16)

As a reverse process, we are able to reconstruct the orbit on SO(3) from that of the
reduced system (16) on S? by quadrature. Here we inquire into the rotation angle of the
plane perpendicular to the top axis or the value of 1. To fix ideas, we assume a periodic



motion with period T of the top axis, though it usually executes a quasi-periodic motion.
By virtue of the axial symmetry, the axial component w3 = ¢ + ¢ cosf(= p/C) of the
angular velocity is constant. The rotation angle At of the axis after one period is then,
on using Stokes’ theorem,

At

T
wsl — / @ cosfdt
0
= wT + / / sin8df A dp — 21k . (25)

The second term stands for the solid angle swept out by the tip of axis. The number k is
some integer originating from the singularity of polar coordinates (6, ) at § = 0 and =.
In accordance with the general formula, the rotation angle is composed of a geometric and
a dynamic part. The first term of (25) is the dynamic angle. The second term, corrected
with —27k, is referred to as the geometric angle, because it depends only on the geometry
of the closed orbit and is independent of the speed with which the orbit is traversed.

As shown by Marsden [6], the geometric part included in (25) is, up to an integral
multiple of 2w, the logarithm of the holonomy, that is, minus the integration of the
mechanical connection ws along the closed solution curve C, on S*:

— Cﬂwadt:_%/fDB-dS , (26)

where the last two integrals are taken over the domain D on S? enclosed by the curve C,.
As expected, the geometric angle is naturally expressible as the magnetic flux.
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Mixed Problem for Wave Equations with
Oblique Boundary Condition

Kivoxo FURUYA

Dedicated to Professor Kenjiro Okubo on the Occasion of His 60** Birthday

abstract This paper is concerned with "well posed function spaces” for hyperbolic
equations of the simplest type. In [4] Kémura mentioned this subject without proof.
We consider the mixed problem with oblique boundary condition which is not wellposed
in L*-sence. First we introduce the space Y = D(A,) X M in which the equation is well
posed and where M is a measure space. Next we consider the infinitesimal generator

A= < AO é ) which generate a Cy-semigroup on Y.

1.Introduction

This paper is concerned with "well posed function spaces” for hyperbolic equations of
the simplest type. In [4] Komura mentioned this subject without proof.
We consider the following mixed problem:

Qfg%zg) = Au(t, x) in (0,00) x 9,
(1) (Z+BtLx)u =0 Q={x=(z1, ,25)|z1 >0} CR"
) x1=0 '
u(0,x) = f(x), u:(0,x) = g(x),
B(t,x)u(t, %) = bo(t, 30282 4 57400, 2482 4 gt xguge,x) = 0
Bt j=2 BTJ

where coefficients are C'*°-functions defined in a neighborhood of z; = 0.
We think that the case of (1) is not well posed in L?-sense(see Remark). Then first we
introduce the space Y = D(A,) X M in which (1) is well posed and where M is a measure



space. Next we consider the infinitesimal generator A = ( 0 1 ) which generates a

A, 0
Cy-semigroup on Y.
Remark.

Many authors studied about L?-well posedness for hyperbolic mixed problems of second
order.(cf [3],[7],[8],[1],[9]) In general (2) is not well-posed in L*-sense.(cf.Miyatake [7],[8]))

% = Au
(2) (-g;-l—bg%—c—(%)u =0
w(0,2,9) = f(z,9),  w(0,2,y) = g(z,v).

In fact the following three cases;

() ¢>0, b#0,
(i) e=1, [b <1,

(t1i) <0, |b] > —c,

(2) is not L*-well-posed. Therefore especially in the case that ¢ = 0 it is not well-posed if
b # 0.(Ikawa [3])

2.Functional spaces
In this section we shall explain our notations.

(M,] - ||s) denotes a measure space.
Let

M:{’{L,UEA’I}, E:{U, l&l_lﬁeM}7 62(517 ?gn)
where () = (Fu)(§); Fu means the Fourier translation of wu
(X0 lx); X = (M xE)

Let
I(;‘) (&) +leI™2(€)*) ™ (’;>6X

Ay denotes Laplacian with Neumann condition

1/2

X

=0.

-—U
8:{?1
x1=0

The domain of Ay is




A, denotes Laplacian with boundary condition (—a——l—B(t,x)> U =0

B.’lfl

_ o}
1 =0

l-le) Y= (D(As) x E)

AL (e

where S satisfies the followiong assumptions:
I-S5:D(A;) — D(Ay)

Ty =0

The domain of A\, is

D(A,) = {u e D(A); (5%’* B(t,x)) u

Let

Assumptions:

(A.1)

(A.2)
|ASu|| < Const||ul|

3.Existence of (I — A\A,)7!
To show the existence of (I — AA, )™, it sufficient to show the following Theorem.

Theorem 1.
Let R(I — AA,) be the range of (I — AA\,) then for some small A > 0, we get

R(I-\A,) =M™

Proof. Tt is sufficient to show that for any f € ML, there exist u € D(A,) such that
(I —AA)u=Ff.
More precisely see [2].

4.Systems of evolution equations
Putting u; = v, let us rewriting the problem (1) in the following form:

o B(1)-20) ()
(6)-(2)

Set

We shall formulate (3) as an abstract equation:



{ LU =AU in Y,

U(O)——-(g).

Theorem 2. A generates a Cy semigroup {U(t)} on Y.
proof. It is sufficient to show that there exist A > 0 and K’ > 0 such that;

1— AR >0
(4) (I =AU, > (1= AK)||U]ls, U €Y.
See [2].
5.Application

As an applicatin model of abstract result obtained in the previous sections, let us
consider the following mixed problem:

&y = Au in (0,00)xQ, Q=/{(z,y) € Rz >0}

) | (Ztowg)y =0
=0
u(0,,y) = f(2,9),
Where o in (5) satisfies following conditions.
(i) There exists 7 > 0 such that o(y) = 0 for any |y| > r.
(ii) There exists p > 0 such that |o(y)| < p [p is sufficiently small].
(iii) o is sufficiently smooth.
Our plan is that;
Let o be sufficiently small. Then we make S.
As is well known that (5) is not well posed in L*-sense(see Remark).

u:(0,z,y) = g(x,v).

Notations

Let X be a Banach space with norm || - || x.
Let (X, M, u) be a finite measure space.
The symbol L*°(X) stands for the space of all complex valued Bochoner integrable func-
tions defined on X that are essesntially bounded,i.e., such that

| flleo = esssup{f(z);z € X} =inf{sup{|f(z)];z € X \ N}Hu(N)=0} < o0

We denote by L“(X), the space of functions which are in L°°(X') and which are tend to
0 as * — 00, i.e., such that for any £ > 0 there exists a compact set K C X such that
| fll 2~ <€

C(X) denotes the function space of continuous functions defined on X with complex values.



Co(X) = C(X) N L*®(X) with norm L*(X).This space is also a Banach space.
Let M*(X) be a dual space of Co(X). M*(X) is a Banach space with norm ||-|| y1(x),where

s = Nillaoay = sup(l [ Fx)u(da)] : I Fllooe) < 1)

Definition of S
Let

Fu(é) = /e"i"’fy(d:c) (e M= M)

We shall define the operator S.
(I) Let w be a solution to following Dirichlet problem (6)

w = —0o(y)u,(0,y) x=0
w=0 x#£0,|yl =2r

Aw=0 in Q\{(0,y)}
o

where Q = {(z,y) € R%;|z| < ¢, |y < 2r},c> 0.
(IT) Let B € C*(R?) satisfy the followings.

B(—z,y) = ~B(z,y)
(7) B(z,y)=0 lz| >¢, |y|>2r
ﬂz(ovy):]- [U|§7‘
(IIT) S is defined as Su = fw.
Remark.
From the definitions, we get
9 (su)| =Bl
. u _ =0, )

Then it follows that
(I—S)ue D(Ay) for any u€ D(A,)
and there exists some constant Const such that

&S = [|ABw)]| < Const(|lw]] + |lwe | + [Jwy]])-

Existence of w
Theorem 3. There exists a solution w to (6).
proof. We can take w as

w(z,y) = v(z,y) 0<r<e =2r<y<?2r
w(z,y) = v(—z,y) —c<a <0, —2r<y<2rn
w(z,y) =0 c<lz|, 2r<lyl,

where v is a solution to (8).



Av=0 0<z<cec —=2r<y<r

(8) v(z,—2r) = v(z,2r) =0 O<z<c
v(0,y) = —0(y)uy(0,y) —r<y<or
v(c,y) =0 —2r <y <2
In fact the solution to (8) is that;
X, sinhnr<= y—2r
. — AT o
v(z,y) = n§_—.:1 by Sinh 22t sinh nw .
where 1 o 9
b, = 5—7:[_27« f(y)sin [7lﬂy_ r] dy,

f(y) = —a(y)uy(0, ).

Therefore, w is exists.
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WEIGHTED ESTIMATE FOR THE WAVE EQUATION

VLADIMIR GEORGIEV

Abstract

Following the approach of Strichartz, we use a complex interpolation method to derive
LP — L9 estimate for the inhomogeneous linear wave equation. Suitable adaptation of the
method of F.John enables us to obtain a refined L? — L* estimate involving the weights
T4 = 1 + |t & |z||. Together with the method of F.John we use also the Fourier repre-
sentation of the kernel of the resolution operator for the linear wave equation and obtain
L? — L*—weighted estimate. A complex interpolation gives LP — L9-weighted estimate.
An application of this estimate to the semilinear wave equation is also considered.

1.Introduction
A lot of works were devoted to the semilinear wave equation

Ou = F(u), (1)

where F(u) = O(Ju|*) near |u| = 0 and A > 1. Here and below O denotes the d’Alembertian
on R™*1, e

When the initial data for the corresponding Cauchy problem are large, the solutions
blows-up in finite time (see [18] for example). For this the focus of the works dealing with
this general semilinear wave equation was concentrated on solutions with small initial
data.

The existence of solutions with small initial data, for the case of space dimensions
n = 3 was studied by F.John in the pioneer work [7], where he established that for
1 < XA <1+ V2 the solution of (1) blows-up in finite time, while for A > 1 + /2 the
solution exists globally in time. Therefore, the value Ay = 1 + V2 is critical for the
semilinear wave equation (1).



To obtain the existence theorem in his work [7] F.John proved the following weighted
[ — estimate for the wave equation Ou = F in R*"! with zero initial data

lgrlullze < Cllrirl Flize, (2)

where 74 = 1 + |t & |z|| are the weights associated with the characteristic surfaces of the
wave equation and the parameters e, 3,7, ¢ satisfy the conditions

a=1, B=v-2<1, 6>1L (3)

For general space dimensions it was W.Strauss who proposed in [21] the conjecture
that the critical value for the nonlinearity is the positive root Ao(n) of the equation

(n—=1DN—=(n+1)A-2=0. (4)

Here below we shall make a brief review of the results concerning this conjecture.

For n = 2 a proof of the conjecture was given by R.Glassey ([5], [6]). A blow-up result
for arbitrary space dimensions when 1 < A < Ag(n) was established by T.Sideris [17].

The critical values A = Ag(n) were studied by J.Schaeffer in [16] for n = 2,3. A
simplified proof was found by H.Takamura [28].

Another interesting effect is the influence of the decay rate of the initial data on the
existence of global solutions. In this case the solution might blow-up in finite time when
the initial data decay very slowly at infinity even in the supercritical case when A > Ao(n).
For the case n = 3 this effect was established by F.Asakura [3] for the supercritical case.
The critical cases for n = 2,3 were studied by K.Kubota [14] , K.Tsutaya [29], [30], [31],
R.Agemi and H.Takamura [2]. For the case n > 4 and supercritical nonlinearity the
blow-up result for slowly decaying initial data is due to H.Takamura [27].

On the other hand, the existence part of the conjecture of W.Strauss for n > 3 is much
less elucidated. Recently, Y. Zhou [32] has found a complete answer for n = 4 by using
suitable weighted Sobolev estimates and the method developed by S.Klainerman (8], [9],
[10] for proving the existence of small amplitude solutions.

The existence of a global solution for the case A = (n 4 3)/(n — 1) was established by
W.Strauss [23] by the aid of the conformal methods and the classical Strichartz inequality.

Another partial answer was given by R.Agemi, K.Kubota, H. Takamura in [1] for
a special class of integral nonlinearities in (1). The approach in this work follows the
approach of F.John based on his estimate (2).

A complete proof of the conjecture of W.Strauss for spherically symmetric initial data
was found by H.Kubo [13] (see also [11], [12]).

By using different estimates H.Lindblad and C.Sogge [15] obtained a similar result
as well as the existence of solutions in the supercritical case, non spherically symmetric
initial data and space dimensions n < 8.

Let us make a brief conclusions of the above review of results concerning the missing
existence part in the conjecture of W.Strauss.

1.The methods based on the John estimate (2) enable one to control the L*°— norm
of the solutions. They work very well when the Riemann function is nonnegative (i.e. for
n < 3). A similar idea enables one to consider the case of spherically symmetric initial
data.



2. The application of weighted Sobolev inequality in combination with the conformal
energy estimate for the wave equation (as it was done in [32]) leads to a weaker restriction
n < 4 (or may ben < 7 as it was mentioned in [32] ) due to the singularity of the nonlinear
function F(u).

3. The application of the classical Strichartz inequality enables one to overcome the
obstruction caused by the singularity of the nonlinear function, but leads only to local
existence and uniqueness of the solution, when

n+3

n—1

1< A<

(see [17]) or the global existence for A = (n + 3)/(n — 1)( see [23]).

The main purpose of this work is twofold.

In order to overcome the above difficulties and to prove the existence of a small ampli-
tude solution for the general case of arbitrary space dimensions, non-spherically symmetric
initial data and

n-43
n—1’

/\o(n) < )\ <

we shall combine the approaches of F.John and R.Strichartz so that a more refined L? — L9-
estimate taking into account the influence of the weights 7, shall be established. There-
fore, this estimate will enable us to use the advantages of the both previous estimates
due to F.John and R.Strichartz. Actually, we shall have a precise information about the
decay rate of the solution with respect to 7+ weights and we shall be able to avoid the
loss of derivatives typical for the Sobolev estimates.

On the other hand, an application of this estimate to the semilinear wave equation
(1) gives the possibility to establish the conjecture of W.Strauss for any space dimensions
n > 2 and non-spherically symmetric initial data.

2. Statement of the results
To state the weighted estimate we consider the Cauchy problem for the linear wave

equation

Oy = F, (5)

with zero initial data. For simplicity we shall assume that the supports of u and F' lie in

the light cone, that is
suppF(t,z) C {|z| <t + R}. (6)

Our main weighted estimate has the following form

Theorem 1 Suppose 1 < p,q < oo salisfy




while the parameters a, 3,7, 6 satisfy

< n—1 n
a m— —
2 q’
n—1 n+1 8 n+l n 1 n-—-1 n
- Qg=7- - -
2p 2q 2 p ¢ 2 q
1
b§>1—-—. (8)
g
Then the solution u satisfies the estimate
”TiTEUHLq(Rg“) < C[szTiFllLP(RI'*'l)’ (9)

where Ty = 1+ [t + |z|| and R = {(¢,2) € R**' : ¢ > 0}.

Remark 1. The assumptions (8) lead to the following estimates for v, §

2 q p] ¢
6>1—L
p

It is clear that ,6 are nonnegative. In general o and § in the above theorem can be
positive or negative numbers. However, in the application to the semilinear wave equation
we shall take o, 8 > 0.

Remark 2 The assumptions (7) in the above theorem determine a triangle AABC
in the plane of 1/q,1/p—coordinates with vertices

n—3 n—3 11 n—1 n+3
A ) )B (“7 '—) ) ) .
(Q(n—-l) 2(n—1)> 2°2 C(Q(n—}-l) 2(n+1))
The point A corresponds to the John estimate, while the point C corresponds to the

Strichartz estimate.
To establish the conjecture of W.Strauss we consider the semilinear wave equation

Ou = F(u),
u(0,z) =¢ef , Owu(0,z)= ey, (10)

where f,g are compactly supported smooth functions such that
supp.f Usuppg C {|z| < R}, (11)

while ¢ is a sufficiently small positive number. For the nonlinear function F(u) we shall
assume that F'(u) € C° near u = 0 and for some A > 1 satisfies

|F(u)] < Clul*
|F(w) = F(o)l < Clu = v|(lu*™" + [o]*) (12)



near u,v =0 .

The existence and the uniqueness of the local solution in C([0,T]; L9(R™)) for ¢ =
2(n+1)/(n—1)and 1 < A < (n+3)/(n—1) is established in [17] by using the Strichartz
inequality. Therefore, it remains to examine the existence of global solution to (10) for

n+3

/\o(n)</\<n~1,

(13)

where Ag(n) is the positive root of (4) For this case we have the following

Theorem 2 Suppose the assumptions (11), (12) and (13) are fulfilled with \o(n) being
the positive root of the equation

(n=1)A=(n+1)A-2=0. (14)

Then there exists €p > 0 so that for 0 < e < gg the Cauchy problem (10) admits a global
solution

u € L 5(RYH.

Here L}, 5(R}t!) denotes the Banach space of all measurable functions with finite norm

||T$TEUHL,,(R1+'1).

We shall explain the main idea to establish the weighted estimate of Theorem 1.
The solution of the Cauchy problem (5) can be represented by the aid of a Fourier
transform

(2m)” // exp(izé) sm !f[ )lfl) F(s,&)déds, (15)

where F'(s,£) = [exp(—iy€)F(s,y)dy is the partial Fourier transform of F. It is clear
that u(t,z) = [f U(F)(t, s,z)ds, where

Sl D s, e, (16)

The Fourier integral operator U can be imbedded into analytic family of operators U,
defined for z € C and F(s,y) € C(R™!) as follows

U(F)(t,s,2) = (27) /R exp(izt)

U.(F)(¢,s,2) = c(")/R,, exp(iz€)(t — s) ¥ P T ((t ~ s)EDF (s, €)dE,  (1T)

where J,(s) is the Bessel function of order v and ¢(n) = \/—;2;(271”)””. The above family was
introduced by R.Strichartz [24] , [25] in order to obtain L? — L7 estimate for the wave
equation. Integrating over s we introduce the operator

)(t, ) /U (t,s,z)d (18)



Since Jé_(s) = :-';51—“\/(-%), we see that the solution u can be represented as
u(t,z) = W'%__;(F)(t,z). (19)
Applying the formula (see [4] )

[ exp(=ig)(t — $)FlelETpo((t = )lel)de =

)29
- %{—_—f—)—«t N (20)

with s37 = s for s > 0 and s7* = 0 for s < 0, we get

(2,IT)n/2zz ) onm
U(F)(ty5,2) = o [((t= s = o = y)TF (s, 5)dy. (21)
I'(l-2z2)
For Rez < 1 the integral in (21) is a classical one, while for Kez > 1 it is necessary to
consider (21) as the action of the distribution
. (2m)"297 —
K.(t,s,z,y) = m((t —s)? — |z —y’)x (22)
on the test function F(s,y).
The possibility to apply a complex interpolation for the strip 0 < Rez < (n + 1)/2
relies on a combined use of (17) and (21). More precisely, the well - known Strichartz
estimate uses the following L™ estimate on the line Rez =0

IU(F)(t, 5, )L < ClIE(s, )| (23)

and this is a direct consequence of (21). Making the observation that the representation
formula (21) keeps its classical sense for Rez < 1, we can use this classical representation
for the larger semiplane Rez < 1 and we can prove a weighted L® estimate for this
semiplane. Our idea to derive such an estimate is to follow the approach of F.John and
to obtain L*— estimate with weights 74 for Rez < 1.

Our next step is to derive L2— weighted estimate on the line Rez = (n + 1)/2. For
the purpose we shall use the representation (17). Then the kernel K, can be represented
by the oscillatory integral

Koltys,0,9) = e(n) [ explile = 0)e)(t =)l Hpn((t - a)lEDdE. (24)

In this case we split the space of variables (¢, s,z,y) into two complementary domains (2,
and ,. For the first domain we can apply either the estimate

(t=s)=lz—yl 2 CA+It—]|zl])
showing that (21) is a classical function, either the estimate

L+]s =yl 2 C(1 + |t = [=]])



leading directly to weighted L? estimate involving the weights 7_. The second domain Q,
is determined by

t — |zl
S 3

v Tt ls—lyll et —lzl)

t—s =z —yll <eult —Ial),

{$l§t“l ’ SZ

tﬁ_szi:f_l

where ¢; is a sufficiently small positive number. The main geometrical observation for
this domain is that the angle between y/|y| and (z — y)/|z — y| is equivalent to

D(t,s,z) = %%w)l‘):

Then we make a further partition in the ¢ coordinates and in this way we have to consider
two possibilities. If £/]€] is not close to (z —y)/|z —y|, then we can use a stationary phase
method for the oscillatory integral in (24). On the other hand, when £/|¢| is close to
(z —y)/|z — y| the angle between ¢/|€| and y/|y| is proportional to D(t,s,2) according
to our main geometrical observation. We can make change of variables

s—T=35—y|

n (24). Then the phase and the amplitude functions in the oscillatory integral (24) also
will be changed. In this way the study of L%-weighted boundedness of the operator W,
can be reduced to the study of L*— boundedness of concrete Fourier integral operators,
depending on the parameter D(t,s,z). The crucial point now is the fact that the angle
between £/|¢| and y/|y| is proportional to D(¢, s, z) will assure nondegeneracy of the phase
function. This will allow us to apply a suitable modification of a criteria due to E.Stein
(see [19], [20] ) for L*—boundedness of Fourier integral operators.

The author is grateful to Professors R.Agemi, K.Kubota, Y.Shibata, H.Takamura,
K.Tsutaya, and H. Kubo for the important discussions and the support during the prepa-
ration of the work.
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AN INTRODUCTION TO NONLINEAR
SCHRODINGER EQUATIONS

J. GINIBRE

Abstract : This introductory course is devoted to the mathematical study of the
Cauchy problem and of the theory of scattering for a class of nonlinear Schrédinger
(NLS) equations of the form

i 8 u=—(1/2)Au+ f(u) . (1)

Although the treatment is directed specifically to the NLS equation (1), it will present
methods of general relevance to other similar equations such as the Korteweg-de Vries
equation, some nonlinear wave equations and Klein Gordon equations, and others. The
Cauchy problem will be treated primarily by contraction methods applied to the integral
equation associated with (1). For that purpose, a review will be made of the space time
integrability properties (or generalized Strichartz inequalities) associated with the free
Schrodinger equation. A survey will then be given of the treatment of the Cauchy
problem in R” for L? and H' data, in the spirit of the work of Kato. The Cauchy
problem will then be considered in I™, and an introduction given to recent work by
Bourgain on that problem, based on a modified version of the contraction method
and extensive use of Fourier space estimates. Finally, the theory of scattering for the
equation (1) will be briefly sketched, centered on the two basic questions of existence
of the wave operators and of asymptotic completeness, and a review will be made of
the current status of the first question, both in the short range case and in the limiting
Coulomb-like case.

Introduction

The purpose of the present course is to provide an introduction to the theory of



the Cauchy problem and to the theory of scattering for a typical semilinear evolution
equation, namely the so-called nonlinear Schrédinger (NLS) equation

i 0 u=—(1/2)Au+ f(u) . (0.1)

Here the unknown function u is a complex function defined in space time R" x R or
T" xR, A is the Laplacian in R® or T", and f(u) is a nonlinear interaction term,
f(u) € C}{(C, ), a typical example of which is

Fu) = Muf~tu (0.2)

with A € Rand 1 < p < oo. Although the treatment will address specifically the
equation (0.1), the basic notions and methods will have a wider range of applicability,
and apply for instance to other evolution equations such as the nonlinear wave equation
(NLW)

Ou+ f(u)=0 , (0.3)

the nonlinear Klein-Gordon equation (NLKG)
Ou +m?u + flu) =0 (0.4)

where u and f are as before and 0 = 8% — A, the generalized Korteweg-de Vries equation

(GKdV)
O u+0u =8, f(u) (0.5)

where u is now a real function defined in space time R xR or T xR and f € C*(R,R),
and many others.
We shall concentrate on the following problems

(1) The Cauchy problem in R"

The problem consists in studying the existence, uniqueness and possibly additional
properties of solutions of the equation (0.1) with prescribed initial data u(t = 0) = uo.
It will be treated by the general and standard method whereby one splits it into two
steps : one first proves the existence of local solutions (in time), namely solutions defined
in a small time interval [T, T}, by a contraction method, which in addition provides
uniqueness and continuous dependence with respect to initial data. One then extends
the local solutions to global ones by exploiting a priori estimates of the solutions, derived
from exact or approximate conservation laws associated with invariance properties of
the equation.

(2) The Cauchy problem in T"
The problem is formulated as before and split into the same two steps, the second of
which is treated in very much the same way as inIR". The local resolution by contraction



however, is much more difficult than in the case of R", but an important progress in that
direction has been made recently by Bourgain [B1]. We shall give an introduction to
this important work. The contraction method has to be suitably modified, and the crux
of the matter then relies on hard estimates, performed in Fourier transformed variables.

(3) The asymptotic behaviour in time of the global solutions inIR", in the form of the
theory of scattering.

We shall first present the basic concepts and problems of that theory. We shall then
review the status of the first of those problems, namely the existence of the wave ope-
rators for the equation (0.1), first in the so-called short range case, where the situation
is fairly well understood up to a certain point, and then in the limiting Coulomb case,
where the ordinary wave operators fail to exist and have to be replaced by modified
ones, and where only preliminary results exist.

The literature on the NLS equation is enormous, and no attempt will be made at any
kind of completeness in the present notes where we shall mainly quote the references
that are directly relevant to the material covered. A good bibliography up to '89 can
be found in the monograph [C]. See also [CH] [K2]. The material covered in Part 1 and
to a lesser extent, in the bulk of Part 3 is by now fairly standard. See for instance [C]
[K2]. The present exposition largely follows [G1]. The material covered in Part 2 is
more recent and probably has not reached a final stage. The present exposition is taken
from [G2]. The end of Part 3 is taken from recent work of T. Ozawa and the author [O]
[GOJ.

Because of space and time limitation, a number of questions that would naturally fit
under the title of the present course have been completely omitted. Such is the case for
instance of the use of compactness methods in the treatment of the Cauchy problem,
of the study of smoothness of solutions beyond the level of H !_solutions (see below),
of the study of solutions blowing up in finite time, of the study of stationary solutions,
etc. Finally, nothing will be presented of the current trend in the subject, which con-
sists in studying NLS equations with more general non linearities also depending on

space derivatives of u. These topics however will be treated in other lectures at this
Conference.

1. The Cauchy problem in R"
In this section we study the Cauchy problem for the equation (0.1) with initial data
u(t = 0) = ug. We shall always assume that f satisfies the following assumption

(H1) f € C}(C,C), f(0) = 0, and for some p, 1 < p < oo, the following estimate holds
forallze C:

|f'(2)] = Max (|0f /02, |0f/0z]) < C (1 + |z]P7") . (1.1)



We define the free evolution group

U(t) = exp (z’é—A) (1.2)

which solves the free Schrodinger equation i0;u = —(1/2)Awu. This is a one parameter
unitary group in the Sobolev space H” for all p € R, where

H = {u NwH? | = (1= AP u |a< oo}

and || - || denotes the norm in L™ = L" (R"). The Cauchy problem for (0.1) is formally
equivalent to the integral equation

w(t) = UE) ug — i /0 dt' Ut — 1) F(u()
= U(t) uo + (F(w))(t) = (A(w))(2) (1.3)

where the second line defines F' and A in an obvious way.

We now comment briefly on the sense in which we want the equations (0.1) and (1.3)
to be satisfied and on their interrelation. We shall always want (0.1) to be satisfied in
the weakest reasonable sense, so as to allow for solutions as general as possible, namely
in D'(R® xR). Under the assumption (H1), a sufficient condition for (0.1) to make
sense term by term in D' is that uw € L2  (R™*!), and this will turn out to be weaker
than all the assumptions that we shall need below to make meaningful statements on
the Cauchy problem. As regards (1.3), we shall always need assumptions which imply
that v and f(u) € C(I, H~N) for some interval I CIR and some N, so that F(u) is well
defined as a Bochner integral in H~N and actually F(u) € CY(I, H~V), and all terms
in (1.3) are well defined in C(I, H~%). The equivalence of (0.1) (with initial condition)
and (1.3) then boils down to the identity :

(10 + (1/2)A) F(u) = f(u) (1.4)

where all terms are well defined in C(I, H=N)YNCY(I,H~N=%) C C(I,H~N~?) and the
formal computation leading to (1.4) is easily justified with the available regularity.

In order to study the local Cauchy problem, we first need some estimates on the free
evolution.

1.a Properties of the free evolution

We denote by F the Fourier transform in the z variable, by ¢ the variable conjugate
to z, and by %, and % the convolution in z and ¢, with the subscript omitted when
there is no risk of confusion. The free group U(¢) can be represented by

U(t) = F ' exp <—%52> F = (2mit) ™ exp (Z%z“) * ()



so that U(%) is bounded from L' to L* for all ¢ 5 0, with

1 UG) £ lleo< @rlt)™2 | £l - (1.6)

Interpolating between (1.6) and unitarity in L? by the Riesz Thorin theorem, we obtain

1TE) F Il @)= || f s (1.7)

for all , 2 < r < oo, where (r,7) denote pairs of dual (Holder conjugate) exponents,
1/r+1/F=1, and §(r) = n/2 —n/r.
Let I C R be an interval (possibly unbounded). We define the operators

)0 = [ V=) £(2) (18)

Cenf)O)= [ @ U-t) f) (1.9)

n{t' <t}
where f is defined in R™ x I and suitably regular, the subscript R stands for retarded
and reference to I is omitted for brevity. Using the Hardy-Littlewood-Sobolev inequality
([HS I] p. 117) in time, we obtain immediately the following first family of estimates.

Lemma 1.1. Let 1 < q1, ¢2 < 00 and 0 < §(r) = ~q11— + 51; < 1. Then the following
estimates hold

| U*f;L(LLY) | < C |l fL%(L,L7 | (1.10)
| U £ Z#(LL) | SO || f5L%(I, L7 | (1.11)
with a constant C independent of I.

We shall obtain a second more useful family of estimates by using general duality
arguments which are to a large extent independent of the equation at hand. Those
arguments have a long history (see [S’] [GV3] [Y] [GV4] and references therein) and
the estimates thereby obtained sometimes go under the name of generalized Strichartz
inequalities. The basic fact is that if B is an operator and B* its adjoint in a suitable
context, then it is equivalent that B or B* or B*B be bounded. The relevant context
is as follows. Let H be a Hilbert space, X a Banach space, X* the dual of X, let D be
a dense subspace of X (no topology is needed on D), and let D} be the algebraic dual
of D, so that X* C D*. Let B be a linear operator from D to H and B* its adjoint,
defined by

< B*v,f >p=<v,Bf >

for all f € D and all v € H, where < -,- >p is the pairing between D} and D and
< -, > is the scalar product in H. Let || - || denote the norm in . We then have the
following lemma, the proof of which is elementary (see [GV4]).



Lemma 1.2. The following statements are equivalent :
(1) There ezists b, 0 < b < oo such that for all f € D

| BfIl < ol ;X
(2) R(B*) C X* and there ezists b, 0 < b < oo, such that for allv € H
| B*o; X* [ < bl v
(8) R(B*B) C X* and there ezists b, 0 < b < oo, such that for all f € D
I B*BfiX*|| < b | ;X ||

The constant b is the same in all three parts, and under any of the conditions (1) (2)
(8), B and B*B extend to bounded operators from X to H and to X* respectively.

The basic example of the previous situation is the following. Let I C IR be an interval
and U(t) a unitary one parameter group in H. Define

Bf = / dt U(—t) f(2) (1.12)
I
for any f € in D, a space of suitably regular functions from I to H. Then
(B*v)(t) =U(t)v (1.13)
and
(@BNE = @ ve-t) 1) (1.14)

where duality is defined through the scalar product in L?(I,H). Then the conditions
of Lemma 1.2 are satisfied with X = L*(I,H), X* = L°°(I,H) and b = 1. In the
applications, useful estimates arise from the finding of other spaces X satisfying one of
(and therefore all) the conditions of that lemma for fixed H, D and for the previous B.
The following (obvious) corollary of Lemma 1.2 turns out to be extremely useful.

Corollary 1.1. Let any of the conditions of Lemma 1.2 hold for the same H, D and
B and two pairs (X;,b;), i =1,2. Then for all choices of i, j € {1,2} and all f € D

| B*Bf; X7 |l < bi b || £;X; ||
and B*B eztends to a bounded operator from X; to X}.

Briefly stated, the diagonal cases of the condition (3) of Lemma 1.2 imply the off
diagonal cases.



The relevance of the basic example to the Cauchy problem for the evolution equation
iiu=Lu+f

with L self-adjoint in H, and with initial data u(t = 0) = ug follows from the fact that
the associated integral equation can be written as

u = B*ug —i(B*B)g § (1.15)

where B is defined by (1.12) with U(t) = exp(—:tL) and the subscript R again means
retardation (cf. (1.3) (1.9)), thereby suggesting to look for spaces satisfying the con-
ditions of Lemma 1.2, to take ug € H and look for solutions in X™* by ensuring that
f € X. This leads to the question of extending the estimates of Part (3) of Lemma 1.2
and of Corollary 1.1 from the non retarded operators B*B to the retarded ones (B*B)g.
In many cases the diagonal estimates (from X to X*) are proved at the same time for
B*B and (B*B)gr. However the retardation breaks the factorization and Corollary 1.1
in general does not apply. A similar result applies however in special cases that we now
describe.

Definition 1.1. A Banach space X of distributions in space time is said to be stable
under time restriction if the multiplication by the characteristic function of an interval
I in time is a bounded operator in X, with norm uniformly bounded with respect to I.

Lemma 1.3. Let H, B, B* defined by (1.12) (1.18) and X satisfy any of the conditions
of Lemma 1.2 and let X be stable under time restriction. Then (B*B)g is bounded from
X to L®(I,’H) and from L*(I,H) to X*.

The (easy) proof is omitted (see [GV4]). Further off diagonal cases of boundedness
of the operator (B*B)g then follow from diagonal cases and from Lemma 1.3 by inter-
polation.

It is now a straightforward matter to apply the previous duality arguments to the
Schrodinger equation. We need the following definition

Definition 1.2. A pair of exponents (g,r) is said to be admissible if
0<2/¢g=46(r)(=n/2—n/r)<1

We then obtain [GV3] [Y] :

Lemma 1.4. The following estimates hold :
(1) For any admissible pair (g,r)

IU@u; IR, L) || < er fulla (1.16)



For any admissible pairs (g;,7;), t = 1,2, and any interval I CR
I U f;LE(LLM) | < ery ey || fL2(LL™) || (1.17)

1T *e fi LI L) || < ery ooy | £5L2(LL7) | (1.18)

Proof. Lemma 1.1 with ¢; = ¢, provides the diagonal cases of (1.17) (1.18). The
diagonal case of (1.17) with (¢ = ¢z = ¢, 11 = r2 = r) is Part (3) of Lemma 1.2 and
by that lemma implies (1.16) which is nothing but Part (2). Finally the diagonal cases
of (1.18) imply the off diagonal cases by Lemma 1.3 and interpolation, as explained
above. |

Note that (1.10) (1.11) and (1.17) (1.18) form two different families of estimates,
each one depending on two parameters. A remarkable feature of (1.17) (1.18) is that
the exponents (g;,7;) in the LHS are completely decoupled from those in the RHS. In
what follows, we shall make use almost exclusively of that second family, which allows
for a satisfactory treatment of the Cauchy problem. It is nevertheless possible to obtain

more general estimates by interpolation between the two families, thereby obtaining
more refined results on that problem [K3] [K4].

1.b Choice of spaces for the Cauchy problem

The spaces where we shall try to solve the Cauchy problem are tailored to fit into the
previous discussion (see esp. (1.15)) and to take advantage of the estimates of Lemma
1.4. Let I CR and p > 0. Corresponding to initial data ug € H‘", we define

XP(I)=A{u:ueC(I,H?), and u € LI(I,H?) for all admissible (¢,r)} (1.19)

where

a1 = {us wHE | = (1- AP, < oo)

The spaces X* ('I ) are defined by a family of seminorms parametrized by a semi-open
interval and can be made into Fréchet spaces. However, it is technically more convenient
to modify slightly the definition in order to obtain spaces that come out naturally as
Banach spaces. Let

0<2/go=06(rg)=dp <1

We define

XP(I) ={u;u € C(I,H*) and u € LY(I,HF) for 0 < 2/q = 6(r) < 6o}
=(CNL>)I,H? )N L"(I,HY) (1.20)

which are Banach spaces with obvious norms. We also define local spaces

Xl oytoel) = {u 1w € X¢,)(J) for any J cc 1}



in the standard way. In what follows, the subscript p will be omitted if p = 0. Lemma 1.4
Part (1) asserts that ug € H? = U(-) uo € X?(R), with accompanying norm estimates.

It will turn out that some values of p are better than others, at least for the global
problem. To see this, we introduce the following assumption on f, which will not be
used technically until Section (1.f).

(H2) Gauge invariance : There exists V € C}(C,R) with V(0) = 0, V(z) = V(|z|) for
all z € €, and such that f(z) = dV/0z.

Equivalently, there exists G € C'(R",R) such that f(z) = 2G'(|z|?), the relation with
(H2) being that V(z) = G([z[?).

Let < -,- > denote the scalar product in L?. Under the assumption (H2), taking the
scalar products 2Im < u,(0.1) > and 2Re < 0u,(0.1) >, we obtain respectively

O || ulli= ~Im < u,Au > +2Im < u, f(u) >=0 (1.21)
and
0= —Re < 0; u,Au > 4+2Re < 0; u, f(u) >= 0; E(u) (1.22)
where
B(w) = (1/2) | Vu | + [ do V(W) (1.23)

so that formally the L?-norm || u ||z and the energy E(u) are conserved quantities for
the evolution (0.1). Those conservation laws will play an essential role in the problem
of existence of global solutions for p = 0 (L? solutions) and p = 1 (H* solutions), two
values of p that will be therefore of special interest.

We now turn to some homogeneity arguments which will shed some light on the
subsequent results. Under a change of function u — u) where u(z,t) = u(z/\,t/A?),
the leading norms in the definition of X*, namely

V17 w; LI(LT) ||
pick up a factor A% where d is the dimension of that norm in z
d:n/r+2/q—p=n/2—p
independently of (g, r) for admissible (g, r). If we want to show that the operator F' (see
(1.3)) is bounded in X*(I) for some bounded I and for f homogeneous in u of degree

p, we shall need some estimate of the form

V1P F(u); (L L) | < C VP w LY(LLTY P 111° (1.24)

"—88‘-



with 8 > 0, where the RHS has to be homogeneous in u of degree p, and the last factor
can possibly come from an application of the Holder inequality in time. Counting the
dimension in z, taking into account the fact that F' has dimension 2 because of the time
integration, we obtain
24n/2—p=p(n/2-p)+20
so that
(p-1)(n/2-p)<2 . (1.25)

That relation is important enough to call for a definition.

Definition 1.3. p is critical (resp. subcritical, resp. supercritical) at the level of H?
(or for short at the level p) iff (p — 1)(n/2 — p) = 2 (resp. < 2, resp. > 2).

The L? and H* critical values are p = 1+4/n and p = 1+4/(n — 2) respectively and
will play an important role in what follows. The lesson to be drawn from the previous
argument (see esp. (1.25)) is that in order to treat an interaction with a power p by
contraction (perturbation) methods, at least one norm is needed for which p is at most
critical.

We now turn to the problem of uniqueness of solutions

1.c Uniqueness of solutions of the Cauchy problem

The uniqueness proof of solutions relies on the following basic argument (or variants
thereof). If X and Y are two Banach spaces with Y C X, and if the operator A from
Y to X is a contraction in the X norm on the bounded sets of Y, then the equation
u = Au has at most one solution in Y. This will be applied by choosing for X a space of
the form X,,(I) defined by (1.20). The basic uniqueness result can be stated as follows.

Proposition 1.1. Let f satisfy (H1) and let I CR be an interval containing zero. Then
the equation (0.1) with initial data u(0) = ug has at most one solution in the following
situations :

(1) If p<1+4/n and uo € L?, in the space Xpi1 10c(1).

(2) If p<1+4/(n—2) and ug € H', in the space

C(I,L>Y N L2 (I, LPTY)

loc
(8) If p>144/n, namely (p — 1)(n/2 — p) =2 with 0 < p < n/2 and uog € H?, in the
space
loc

Kro tooT) 0 Lo (1, 1)

with
p < é(s) <Min(n/2,p+1)

0<2/k<é(s)~p
8o = (n —26(s))(n—2p)""



Before sketching the proof of Proposition 1.1, we make some comments on the various
statements. Part (1) practically solves the local Cauchy problem in L?, because in that
case X =Y. Part (2) is tailored to cover the case of H! solutions at minimal cost. It
also implies the uniqueness of weak solutions, namely of solutions in L>°(H') obtained
by compactness, for H'-subcritical p. Finally Part (3) is a fairly general statement
which comes out naturally from the estimates in the proof.

Sketch of proof. We first remark that uniqueness is a local problem in time as soon
as the solutions under consideration have some continuity in time, which is required
anyway to formulate the Cauchy problem. In fact let uy and us be two solutions with
u1(0) = u2(0) and let to = Inf {¢: us(¢) # u2(t)}. Then uq(to) = ua(to) and if 4o is
inside I, it is sufficient to prove that the local Cauchy problem with initial data u;(to)
at time t; has at most one solution in the interval [tg, o + 1] for some small T' > 0 to
obtain a contradiction with the definition of ;.

The crux of the proof then consists in showing that the operator A (or equivalently F')
defined by (1.3) is a contraction in the norm of X, (I) for I = [0,T] and T sufficiently
small on bounded sets of the spaces where uniqueness is expected to hold. For that
purpose, we estimate by Lemma 1.4

| Fur) = Fuz); Xoo(D) || < C || f(ur) = f(uz); L%(L,L7) || (1.26)

for admissible (gi,71). More precisely, under (H1), one separates f as f = fi + fo with
|fi] <1 and |fi] < |u|P~! and uses different (g1,71) for f1 and fs, thereby obtaining

- S CH{T | ur —ug; DL, L?) || + || uy — ug; L(L, L™) || T°
x Maix|| w3 L¥(I, L) ||P—1} (1.27)
for admissible (g2,72), by the Holder inequality in space and time, with 6 > 0 and
(b= 1)(n/2~ 5(5) = 61 + 65 (1.28)
(p—1)2/k =2(1-96) - (61 + 62) (1.29)
where 6; = 8(rs), i = 1,2 so that
(p—1)(n/2—-6(s)+2/k)=2(1-0)<2 . (1.30)

Note in particular that by (1.30), the norm in L*(L*®) dimensionally belongs to a level
of regularity at which p is at most critical, as was expected from the discussion in
Section 1.b. The proof of the proposition then follows from the previous estimates by
making suitable choices of the parameters 71, rq, s and ry. In particular,



Part (1) is proved by choosing 2/k = §(s) = 61 = 6, = &y (= 6(p + 1))

Part (2) is proved by choosing k = oo, 6(s) = é; = 82 (= 6(p + 1)), which is possible
provided 6(p+ 1) < 1, namely (p—1)(n/2 —=1) < 2, and which yields 9 =1-6(p+1).

Part (3) is proved by a more general suitable choice. O

1.d The local Cauchy problem in L2
We first state the result in the L?-subcritical case [T3].

Proposition 1.2. Let f satisfy (H1) with p—1 < 4/n. Then for any uy € L?, there
exist T > 0 such that

(1) The equation (0.1) with initial data u(0) = ug has a unique solution

u € Xpy1,i0c((—T-, T4))

(2) If T} < oo (resp. T < 00), then || u(t) ||s— oo when t — T (resp. t — —T_).

In addition |
(8) For =T < Ty < Ty < Ty, the map ug — u is continuous from a neighborhood of
the original ug in L? to X ([T}, T3)).

Sketch of proof. One first proves that for I = [T, T|] and T sufficiently small, the map
u — A(u) is a contraction of a ball of X,1(T) into itself. This provides the existence of
a unique solution in that ball. The estimates needed for the proof are exactly the same
as those in the proof of Proposition 1.2.

One then iterates the local resolution in order to extend the solution as far as possible,
thereby obtaining a maximal solution which by uniqueness does not depend on the
successive times of local resolution. Let (—7-,T}) be the interval of existence of the
maximal solution. Part (2) then follows from the fact (which itself follows from the
estimates in the proof) that the time of local resolution can be estimated from below
in terms of the norm of the initial data

T 2 M(]| uo ll2) (1.31)

where M(-) is a strictly positive function which can always be taken non increasing,
typically
M(R)~C R

for some (possibly large) N. The argument goes by contradiction. Suppose that Part (2)
does not hold at T).. Then there exists R > 0 and an increasing sequence ty,- -+ ,,,- -
tending to T, and such that || u(t,) ||2< R < co. One can then solve the local Cauchy
problem with initial time ¢,, and initial data u(¢,) in the interval ¢, +7T where T' > M(R)
is independent of n, so that for n large enough ¢, + T > T4, in contradiction with the
definition of T\ as the upper limit of the maximal interval of existence.



Part (3) follows from the contraction property in the interval of local resolution, and
is then extended by suitable iteration. O

We now comment briefly on the L%-critical case where p = 1+ 4/n. In that case, the
contraction proof works without difficulty by using the same estimates, with however
one difference, namely one can no longer estimate the time of local resolution in terms
of the L% normof the initial data alone as in (1.31), and consequently one can no longer
prove Part (2) of the proposition. What remains thereof is the fact that, if T < oo,
then

| %5 Xp41([0,T4)) ||= o0

and the analogue at —T_.

In those situations where the statenients of Proposition 1.2 hold (with Part (2) possi-
bly modified as just explained), we shall say that the Cauchy problem for the equation
(0.1) with inital data in L? is locally well-posed in Xpq1(-).

We now turn to the second value of p of special interest, namely p = 1.

1.e The local Cauchy problem in H*
The main result can be stated as follows [K1].

Proposition 1.3. Let f satisfy (H1) withp—1<4/(n—2) (p < oo if n <2). Then
the Cauchy problem for the equation (0.1) with inital data in H' is locally well posed in
X 0.

p+1

More precisely, the statement is that of Proposition 1.2 with L? replaced by H! and
X(-) by X*(-).

Sketch of proof. We recall that
X!'={u:uand Vu e X}

The proof follows the same pattern as that of Proposition 1.2. The main technical step
consists in proving that for suitably small T' (actually depending only on || ug; H* ||)
the map A defined in (1.3) is a contraction of the norm of X,1(I) in a suitable ball B
of X}, (1), where I = [T, T]. The contraction property follows from the estimates in
the proof of Proposition 1.1 Part (2), and the only additional information that is needed
is the fact that the ball B; is mapped into itself by A. For that purpose, one estimates
in addition ‘

| VE(u); Xpo (1) || < C|| £'(w) Vs LE(I,L™) ||
-+ < C{T || Vu; LI, L%) || + || Vu, L9 (I, L) || T®
|| w; LE(I,L°) |7~} (1.32)



in exactly the same way as in (1.27), and one then continues with exactly the same
estimates as in the proof of Proposition 1.1.

The proof then proceeds by the same abstract arguments as in Proposition 1.2, except
for the fact that an additional argument is required to prove the continuity of the solution
as a function of the initial data from H' to X}, ,(:). O

1.f The global Cauchy problem. A priori estimates

Extending the local solutions of Section 1.d and 1.e to global ones, namely to solutions
defined for all times, relies on a priori estimates of solutions of the equation (0.1). Such
estimates are exploited through an abstract argument which is independent of the equa-
tion. A variant thereof has already been given as a proof of Part (2) of Proposition 1.2.
We now reformulate it in a slightly more constructive fashion. The basic assumptions
are as follows.

(1) The Cauchy problem for the equation at hand with inital data in some space K
(in practice : L? or H') is locally well-posed in some space Y(-) (in practice X,1(-) or
X24a().

(2) The time of local resolution can be estimated from below in terms of the norm of
the inital data in K :

T2 M(|| uo; K ) (1.33)

for some strictly positive (non increasing) function M.

(3) The solutions of the Cauchy problem with initial data uy € K at time ¢y are
estimated a priori in the following sense :

For any ug € K, for any tg € R, for any bounded interval I C R with ¢ty € I, there
exists a constant C(ug,%o,]) such that for any solution u defined in I (in a suitable
sense, typically u € Y(I)) and with u(ty) = uo, the following estimate holds for all
tel:

Without loss of generality, C' can be assumed to be non decreasing as a function of I.
The estimate is “a priori” in the sense that “JC” comes before “Vu”, namely C does
not depend on u (and the particular way in which it is obtained). On the other hand
C may (generally does) depend on uy and may (in many cases does) depend on I.
Under those assumptions, the Cauchy problem is globally well-posed, in the sense
that the solutions extend to all ¢ € R (in other words T} = T = +o00). In fact, one
can iterate the local resolution and solve the Cauchy problem at time t4—; (1 <k < o0)
with initial data u(tx—1) up to time tx = tx—1 + T} with a local resolution time T} >
M(|| u(tk—1); K ||) by (1.33). Now if the series ), T} converges, then on the one hand
T}, tends to zero, but on the other hand Ty > M(C(ug,to,l)) where I = [to,to + > Tk]



by (1.34), which is a contradiction. Therefore the series Y T} diverges and u can be
continued to all £ > .

In order to apply the abstract argument to the NLS equation, we are thus led to esti-
mate the L2-norm of the solutions in the L? theory and the H'-norm in the H' theory.
Under the assumption (H2) on f, the L?-norm estimate would follow immediately from
the L?-norm conservation, while the H'-norm estimate can reasonably be expected to
follow from the L?-norm and energy conservation (see (1.23)). Now the L%-norm is
well defined for the local solutions of Proposition 1.2 since Xp41(-) C C(+, L?) while the

energy is well defined for the local solutions of Proposition 1.3 since X, ,(-) C C(I,H")
and

[ae vy <c (vl + 1w igh) (1.35)

is controlled by Sobolev inequalities for H!-subcritical p < 1+4/(n—2), namely p+1 <
2n/(n — 2), so that the conservation laws make sense. On the other hand, the “proof”
given in Section 1.b was completely formal and we now face an important issue : can one
prove conservation laws at a level of smoothness of solutions where they make sense 7
In order to appreciate the difficulty of the question, we first give an example where the
answer is not known. Let n > 3 and let f be a single power (0.2) with A > 0 and
H'-supercritical p > 1+4/(n —2). In that case, by compactness methods, it is easy to
prove the existence of global solutions [GV2]

u € (L*®NCy,) (R H N L) (1.36)

for which obviously the energy is well defined and energy conservation therefore makes
sense. One can even ensure that E(u(t)) < E(uo) for all t € R. It is not known however
whether energy conservation holds in that case, nor is it known whether the solution
is unique. Uniqueness would imply energy conservation by the previous inequality and
the time reversal invariance of the equation, so that energy conservation might be a first
step in the (presumably difficult) uniqueness question.

We now show that the expected conservation laws actually do hold under the addi-
tional assumption (H2) in the situations of Proposition 1.2 and 1.3. We concentrate
on the case of the energy for H' solutions. Now for such solutions u € C(H?!) so that
Au € C(H™) and f(u) € C(LPTV/P) C C(H™1) so that 8;u € C(H™') and it does not
make sense to take the scalar product in L? of the equation with 8; u. We therefore in-
troduce a regularization. Let ¢ € CSSR™,RY) with || 1 ||1= 1 and ¢;(z) = j™p1(jz),
j € N. One can (but does not need to) take ¢; radial decreasing for definiteness. When
J — 00, ¢@; tends to a delta function in the sense that the operator ¢; x, tends to 1
strongly in L" for 1 <r < co and in H? for all p € R. Let u be an H! solution. Then
wxu € CL(HN) for all N and ¢ * u satisfies

0, %) = ~(1/2)A(ip % u) + % () (1.37)



where ¢ = ; and the subscript j is omitted for brevity. Now the formal computation
of Section (1.b) makes perfectly good sense for ¢ xu. We take 2Re < d;(¢xu),(1.37) >
and obtain

Oy E(p*u)=2Re < p*0u, flpxu)—p*fu) > (1.38)

where the RHS fails to vanish because in (1.37) ¢« is outside of f instead of being inside.
We integrate (1.38) between t; and ¢, and substitute again (1.37) in the RHS, thereby
- obtaining

E(pxu(ty)) — E(p*u(t)) = —Im/t 2 dt

{<o*Vu, f'(@xu)(@*Vu) — o+ (f'(w)Vu) >
+2 < f(u), fle*u) —px flu) >} . (1.39)

We next take the limit j — oo, namely ¢+ — 1 by applying the Lebesgue dominated
convergence theorem to the time integral in the RHS. Since u € X;_H, one has Vu €
LI(LP*1) for compatible ¢ and one verifles easily that f(u) € L?(L?) and f'(u) €
Lo(LP+1)/(P=1)), This suffices to ensure uniform boundedness with respect to ¢ of the
integrand by an integrable function and pointwise convergence to zero almost everywhere
in t, thereby completing the proof.

Note that the proof would not work if we knew only that u € C(I, H'). It is essential
here that in X ;, some superflous smoothness in time can be traded against additional
smoothness in space.

1.g The global Cauchy problem in L2

Conservation of the L%-norm for L? solutions can be proved under the assumptions
of Proposition 1.2 supplemented with (H2) by an argument similar to, but simpler than
that of the previous section. Combining that result with the abstract globalization
argument, we obtain easily

Proposition 1.4. Let f satisfy (H1) (H2) with p—1 < 4/n. Then the Cauchy problem
for the equation (0.1) with initial data in L* is globally well-posed in Xpi1 10c(R), and
the L?-norm is conserved.

Note that the solution comes out only in X,11 0. and not X,1;, because there is no
reason at this stage to expect a decay property at infinity such as u € LI(R, L") for
r > 2.

We next comment on the critical case p—1 = 4/n. In that case, L?-norm conservation
still holds, with the same proof. However this does not imply globalization because in
that case the time of local resolution is mot estimated in terms of the L? norm alone.
The global- L? problem remains open in the critical case (except of course for small

data).



1.h The global Cauchy problem in H*

Conservation of the L?2-norm and of the energy for H! solutions can be proved under
the assumptions of Proposition 1.3 supplemented with (H2), as explained in Section
1.f. It remains to ensure that those conservation laws control the H!-norm. That is
obviously the case for positive V, but clearly V should not be too negative. A sufficient
condition would be that the contribution of the negative part of V to the energy be
estimated sublinearly in terms of || Vu ||3 for fixed || u [|2. In view of the Sobolev
inequality

n 4/n
Hu e < Clully™l Vu |3 (1.40)

this suggests that the L?-critical value p = 1 + 4/n is also critical in that respect, and
motivates the following assumption

(H3) Let Vi = Max(+V,0). Then
R™C+/™y (RY -0  when R — oo

One can then prove with the use of (1.40)
Lemma 1.4. Let f satisfy (H2) and (H3) and let u € H'. Then

IV ll; < 4B(u) + M(|| u |2)

for some non decreasing positive function M.

Combining the conservation laws, the previous estimate and the abstract globalization
argument, we obtain easily

Proposition 1.5. Let f satisfy (H1) (H2) and (H3) with p—1 < 4/(n —2). Then the
Cauchy problem for the equation (0.1) with initial data in H' is globally well-posed in
X311 10c[R). Furthermore || u(t) ||lo and E(u(t)) are constant and the solutions belong
to L°(R, H').

One may wonder what happens if the assumption (H3) is not satisfied. In the limiting
case where

V_(R) < a R***/™ 1 pR?

it follows easily from (1.40) that the Cauchy problem is globally well-posed in H! for
| w ]|z small.

If V does not satisfy other lower bounds than those following from (H1) (H2), one
can still obtain by Sobolev inequalities an estimate of the form

y(t) S2B(u) +C w3 +C | ullf y(®)*=a+by(®)*  (1.41)



with @ = (p — 1)n/4, possibly with a > 1, for the quantity y(¢) =| Vu(¢) ||3. This
implies that the Cauchy problem is globally well-posed in H?! for small data in H'. In
fact for a > 1, if the curve z = a + b y® intersects the line z = y at (y1,y1) and (y2,v2)
in the (y,z) plane, then (1.41) implies that y(t) remains in the disconnected region
[0,y1] U [y2,00) so that 0 < y(t) < y; for all times if y(0) < y; since y(¢) is continuous
in t. More explicitly one obtains easily the a priori estimate

y(t) <aaf(a—1)
which provides an a priori estimate of u in H*, under the condition
ab® < (a—-1)"1 a7

which according to (1.41) is a condition of smallness of || u |z and E(u), namely a
condition of smallness of the initial data in H?.

Finally, a condition like (H3) is close to necessary for global existence of large solu-
tions. In fact if V(R) = —RP*! with p > 1 + 4/n, one can show that all solutions with
E(u) < 0 blow up in a finite time. Blowing up solutions have considerable physical
interest and are the subject of intense investigation, both mathematical and numerical.

2. The Cauchy problem in T"

In this section we study the Cauchy problem for the NLS equation in T". For con-
venience reasons, we normalize T" as [0,27]" (with suitable identification) and the
equation as

i 0y u=—Au+ f(u) (2.1)

instead of (0.1). We shall denote by F, and F; the partial Fourier transforms in z and ¢,
and by 7 the variable conjugate to t. The variable z now runs over T", and the variable
t over R or sometimes T. We use the notation L"™ = L ('I"), and in case of doubt we
indicate the variable z or £ by a subscript in the various function spaces. For instance
LI(R, L7) denotes the space of L? functions of ¢ with values in L" of z.

As mentioned already, the Cauchy problem can be split into the same two steps as
inIR"®, namely the local problem and the globalization problem. Globalization proceeds
via a priori estimates deduced from the conservation laws, which are the same in T"
as in IR", and proceeds therefore in very much the same way as in Section 1.g and
1.h. We concentrate therefore on the local problem. More precisely, we shall provide an
introduction to the recent work of Bourgain [B1], which represents an important progress
in the treatment of that problem. The method combines two types of ingredients. The
first one is a reorganization of the estimates through a suitable choice of the function
spaces in such a way as to make trivial the linear estimates of the operators B* and
(B*B)g that occur in the integral equation (see (1.15)) and to concentrate all the



difficulty on estimating the nonlinear interaction f. That part of the argument is not
restricted to the NLS equation : it has been also applied to the KdV equation and
various generalizations thereof. Nor is it restricted to the case of T : it also applies
to the case of R". It has been applied in particular to the KdV equation in IR, thereby
yielding significant improvements of previously known results [B2]. The second type
of ingredients consists of specific inequalities for the Schrodinger equation in T" which
are restrictions or variants of the Strichartz inequalities. Bourgain has conjectured and
partly proved a general family of Strichartz type inequalities in that case. We now
describe these two types of ingredients successively.

2.a General features of the method

The two essential features of the method are the following.

(1) One uses function space norms that are expressed in terms of the absolute values of
the space time Fourier transforms of the functions under consideration and one performs
the main estimates on those quantities. For that purpose, one uses primarily the L2
based Sobolev spaces

HP = {u i u; P || = ||< € >°< 7 >0 @ 1< oo} (22)

where & = Fu and < A >= (1+|A|2)*/2. One uses also more complicated spaces where
|| belongs to various combinations of (possibly weighted) L? spaces.

In order to use the Fourier transform in time in the local problem, namely with
functions that are only defined in a bounded time interval, it is appropriate to truncate
the integral equation (1.3) in time. Let ¢y € C®(R), 0 < by < 1, P1(t) =0 for Jt| < 1,
Y1(t) = 0 for |t| > 2 and define (t) = ¢1(t/T) for T > 0. We replace the equation
(1.3) by

u(t) = Yo (£) U(t)uo — inpr(t) / d' Tt — ') F(u(t')) (2.3)

with Ty > T. Clearly any solution of (2.3) solves (1.3) in [-T,T]. We therefore con-
centrate on (2.3) and try to solve it globally for suitably small 7. We take 7' < 1 from
there on. T will be the time of local resolution of (1.3). Depending on the needs, one
can take Top = T or fix Tp = 1. One can also use further truncations and replace f(u)
by ¥r f(¥mu) with Ty > T. Since U(%) is 27 periodic in ¢, one can also 27-periodise
Y so as to work entirely in space time T7*1,

(2) In the standard method (see Section 1), one uses classical (Lebesgue, Sobolev, etc.)
spaces H for the unknown function u, and one combines estimates of the linear operators
B* and (B*B)g in spaces of that type with estimates of the nonlinear interaction f. An
important point of Bourgain’s method is to use classical spaces for the function U(—t)u,
namely to use spaces X defined by

| X Nl=) U(-t)w; H || . (2.4)



(In the language of Quantum Mechanics, this consists in working in the so-called inte-
raction representation). An immediate consequence is that the free evolution disappears
from the linear estimates. In fact

141, U(Juo; X || < Clluos H ||| pryuo; H || < C || uo; H || (2.5)

l4r(U+r XIS CIAX S| KHH| < Cll £H | (2.6)

where K is the operator defined by

ENO =) [ 50 @)
Of special interest are the spaces X?? associated with the spaces H”? defined by (2.2) :
X0 = {u || XPP || = || U(=tyu; B || < 00} . (28)
The norm in X#® can be written explicitly as
lwXe = [ d dr < ¢ >%<r € 5% e, )P
and more generally, for an underlying linear equation 10;u = w(—iV)u with
U(t) = F; ' exp[—it w(§)] Fo (2.9)
| w; XPP 2= / dé dr < € > < 74+ w(€) > |a(§,r)|2 . (2.10)

In that case, the estimate (2.5) of the free term becomes trivial :

Lemma 2.1
| U (Yo X0 || = || thy; HE ||| wo; HP || < C To/* ™" | ug : H? ||

(Note in particular that in order to solve (2.3) in X#® with b > 1/2 and T small, it is
better to take Ty = 1 than Ty = T, so as to work in a ball of fixed, i.e. T-independent,
size).

A typical form of the estimate (2.6) is as follows.

Lemma 2.2 Let —1/2 <V <0<b6<V +1and T <1. Then
| Kg;HE | < © TV g 1Y |, (2.11)

| $r(U *g f); X7 || < € TG00 || £ x| (2.12)



for all p €R, and with the same constant C.

Proof. Intuitively, (2.11) expresses the fact that integrating over ¢ in an interval O(T)
produces either a factor T at fixed regularity (b = b') or a gain of one derivative in ¢
uniformly in T' (b = b' 4 1), or any convex combination thereof.

The estimate (2.12) follows immediately by integration over £ from (2.11) applied to
ge(r) = ],”\(’r, £) for fixed £. The estimate (2.11) can be proved as follows. We write

¢T/O dt' f(t') :¢T/dT(iT)_1(6itT — l)f('r)
== ﬁ (i) () — i) (T
RO [ gy e T e [ arin )

+ / dr(ir) e f(r) = I+ IT + III . (2.13)
|r|T>1

We estimate the three terms successively in H®.

[

1 _ ' Y
| LE < 2 Nbem B T | £ A | {/;Tlmd“” 2”}

E>1
<Cc T | £, HY | forallb>0, 5 <0 . (2.14)

(X

| I5; HY || <|| o HE ||| £ HY | { /] ; drir| ™ < 7 >‘2’”}

T>1

<OTO | FHY | forallb20, 6>~ . (215)
We estimate the integral J in IIT by

| E | <IHE N S 778 < S8

<Cc T || £, HY | forall b, €R, b—0 <1 , (2.16)

and similarly

| T2 C T || /;HY | foralld) >—1 (2.17)

so that

| IILHY || =[< r >* (dr* T) ||z
< (N PPe sl 7 Yl + 1 b Nl 52 1)
<CT=O) || £, HY || forallb>0, b > -1, b—b <1.(2.18)
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The estimate (2.11) then follows from (2.13) (2.14) (2.15) (2.18). O

Note that for b — ' < 1, the factor T2~®=) can be made small by taking T small
and yields the small factor needed for contraction. For b — b' = 1, one has to extract
such a small factor from the estimate of (i1 u) in terms of u.

We next show that Strichartz type inequalities of the type of (1.16) can be exploited
in the previous framework. Those inequalities take the general form

TG Y IS C il (2.19)

for all u € L2, for some suitable space Y of functions of space time, thereby yielding
estimates of solutions of the free equation in Y. We now derive therefrom estimates of
general functions of space time.

Lemma 2.3. Assume Y to be stable under multiplication by L$°, namely
[ fY < CNeLE NN HY ] VP eLy, VfeY . (2.20)

and assume that the estimate (2.19) holds for all w € L%. Then for any b > 1/2, the
following estimate holds for all f € X% :

| £Y )< CRPEb—1)72 | £X00 . (2.21)
Proof. We write .
f=U() / dr ¢t (FU(=)F) ()

and apply (2.19) and (2.20) for fixed 7 with ¢ = € and u = (FU(—")f)(r). We
obtain

| £y <C / dr | (FU(=)F)(r) L2 | (2.22)
and by the Schwarz inequality
1/2
| Y < ClFX% { [ar<s >—2”} (2.23)
which yields (2.21). O

Let now Y% 0 < 6 < 1 be a family of spaces interpolating between Y° = L2, , and
Y! =Y. From Lemma 2.3 we obtain by interpolation

Corollary 2.1. Under the assumptions of Lemma 2.8 and with Y° as above, we obtain
the following estimate for b > 6/2

/Y0 < Clisx ) . (2.24)

—101—



The method for solving the local Cauchy problem will then be a contraction method
for the equation (2.3) in function spaces of the previous type (see (2.4)), of which the
spaces X are the simplest examples. The linear estimates will be taken care of by
Lemma 2.2 or variants thereof, and the crux of the matter will be to estimate the
nonlinear interaction f in the previous norms, either directly or through the use of
Strichartz type inequalities and of Lemma 2.3 and Corollary 2.1. |

2.b Periodic Strichartz inequalities

The inequalities of interest arise as special answers to the following general problem :

Problem. Let d > 1, let S C Z* and ¢ > 2. Find the optimal constant K,(S) (or at
least an estimate thereof) such that

1>~ u(s)exp(i < @,5 >); LT |< Ky (S) || w; £(S) | (2.25)
3€S

for all u € £2(S).

The relation of that problem with the Schrédinger equation in T® X R is as follows.
Let d = n+ 1 and u € L?(T"). Then

Uthu=f = Z a(m) exp(imz — im?*t) (2.26)

where we use the notation m instead of ¢ to emphasize the fact that £ takes values in
Z" instead of R". Let

Se={(m,-m?*):m ez} cz* . (2.27)
The estimate (2.25) with S = Sy becomes (up to normalization)
£ L9 T )| < Ey(Sa) [ w l2 (2.28)

namely a Strichartz type inequality (see (1.16)). A similar situation would arise for any
equation 10; u = w(—tV)u with w : Z" — Z by taking

S = {(m,—w(m)): m e Z"}

Now with Sg an infinite set, it may happen that no such estimate as (2.28) holds. One
considers therefore also truncated inequalities of the following type. Let xn be the
characteristic function of the ball of radius N in Z"- and let

Sa,n =SaN(Supp xy XZ) . (2.29)
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One then looks for estimates of the type
£ LT )| < Eo(San) |l w2 (2.30)

for all u € L* with x,U = U, allowing for the possibility that K,(Sq n) — 0o as N — oo.
In particular, if K,(Sqn) ~ NP, then the estimate (2.30) is essentially equivalent to

I AL < CluEZ | (2.31)

In the case of the Schrodinger equation, Bourgain has proposed and partly proved a
conjecture on the values of J;(S; ), motivated by a comparison of (2.31) with (1.16).
In fact (1.16) admits a critical value ¢ =7 =rg =2+ 4/n. For ¢ > rg it follows from
a Sobolev inequality that

I U@ L@ | < C | U@w L@, HE) || < Cllw HP || (2.32)

with 8 = f(q) = n/r = n/qg =n/2 = (n+ 2)/q. Comparing (2.31) and (2.32) suggests
the first part of the following conjecture in the periodic case.

Conjecture 2.1. (2.30) holds with

<C, NF@ for g > rg
Kq(Sa,n) L N¢ forg=rg
<y for ¢ < rg

where < means that for any € > 0, there exists C¢ such that --- < C¢---. The second
part of the conjecture is weaker than the corresponding result in IR” by a small power
N¢, which is imposed by the existence of counter-examples. The third part of the
conjecture is natural because of the embeddings of the L? spaces on T,

The conjecture 2.1 has been partially proved by the use of two methods. The first
method applies to the case where ¢ = 2s is an even integer. By the Plancherel theorem,

one can write

| £ LT |17 = C || F(e) 8@ 1P (2.33)
Let (m,p) € Z" X Z and @ = ynU. Then

8 ’/\ ~
F(£)(m,p) =Y @(mq)---ii(m,) (2.34)
where the sum runs over all {mq,--+,m,} € (Z")® such that

Im{<N, 1<i<s,
m1+...+m8:m, (2.35)

mit-tmg=—p.
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Let rm p be the number of decompositions (2.35) (for fixed N). It follows from (2.34)
by the Schwarz inequality that

I FE) @ 12 =313 8ma) - - 8(m,)[?
<3ty Y [(ma) ()

< (Sup m) a2 (2.36)

m,p

and the problem is reduced to estimating rp, ,. This can be done if n and s are not too
large. For instance, for ¢ = 4, i.e. s = 2, there are only two vectors m; and my in Z",
and (2.35) determines both my + ms and |m; — my|? = —(2p + m?). The number of
solutions for (m3,my) is then at most 2" times (because of the signs of the components
(my — ma); of my — my)) the number of decompositions of the integer —2p + m? as
a sum of n squares. In particular rp p, < 2 uniformly in N if n = 1. The known
results on that problem [Gr] essentially yield a proof of the conjecture 2.1 for ¢ = 4
andn > 1. Forn = 1 and ¢ = 6, i.e. s = 3, the problem reduces to a quadratic
diophantine equation, and the known results again yield a proof of the conjecture 2.1
with Kg(Sa,n) < exp[C Log N/(Log Log N)]. The case n = 1, ¢ = 4 had been obtained
previously in [Z]. See also [KPV].

The second method used in the proof of the conjecture (2.1) is an extension to the
periodic case of a general method of proof of the Strichartz inequalities inR" and consists
in estimating the operator of convolution with the measure ¢ with Fourier transform

Fo = ‘Z 8,

8€S5q,N

The main result runs as follows ([B1], Proposition 3.82).

Proposition 2.1 Letn > 1, u € L2(T™) with || u ||]2< 1 and xnU = U and let f = U(t)u.
Then for any A > N™*, the following estimates hold

pi{(z,t) € T ¢ |f(z,t)] 2 A} < Cy N9PW@ )~ (2.37)
for all g > rg, and
p{(z,t) € T ¢ |f(z,t)]| = A} < N°ATTS (2.38)
where u denotes the Lebesgue measure on T,

The proof is difficult -and we refer to the original article [B1]. If one splits

F=fi+fa=fx(fl <N+ f x(If| = N™/*)
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then Proposition 2.1 is a weak type estimate on f,, namely f, € LE(T"*!) forall ¢ > rg,
so that fo € LI(T"*1) for all ¢ > rg by an elementary interpolation argument and with
the expected estimate. On the other hand, for all ¢ > 2, obviously

| fi; LT || < CNC=HOme | s 2T P

so that the conjecture 2.1 follows from Proposition 2.1 provided (1 — 2/¢q)n/4 < B(q),
namely for ¢ > 2+ 8/n.

Collecting the results obtained by both methods one finally obtains the following
status for the conjecture 2.1.

Proposition 2.2 The conjecture 2.1 is proved in the following cases :
Forn=1,for2<qg<4andqg>6(=rs),
Forn=2, forq>4 (=rs),
Forn =3, forg>4 (>rs=10/3),
Forn>4, forq>2+8/n (>rsg=2+4/n).

Additional results follow from the embeddings of the L? spaces on T"*1. In particular
the conjecture 2.1 fails to be proved only by a factor N® for n =1, 4 < ¢ < 6 and for
n =2, ¢ < 4, whereas a finite power of N is missing for the other cases not covered by
Proposition 2.2.

We conclude this section with an inequality for the case » = 1, which is closely
related to Corollary 2.1. For n = 1 and w(¢) = ¢* with k an integer > 2, the Strichartz
inequality (2.19) can be shown to hold in R? with Y = LI(R*) and ¢ = r5 = 6 for k = 2
(more generally ¢ = rg = 2(k + 1)) [KPV]. Interpolating as in Corollary 2.1 to obtain
Y? = L% namely with § = (k + 1)/2k = 3/4, one obtains

I FL@) | <C I FHX | (2.39)

with b > (k +1)/4k = 3/8. The argument does not apply to the periodic case, because
the initial Strichartz inequality with ¢ = 6 does not hold in that case. Nevertheless,
one can derive the periodic analogue of (2.39) by direct estimation, and one recovers in

addition the limiting case which was lost in the proof of Lemma. 1.3 (see [B1] Proposition
2.6).

Lemma 2.4 Let n = 1. Then the following estimate holds

LAZAT) | < CLAXME (2.40)

That estimate will be used in the next section.
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2.c The local Cauchy Problem in 1"

We mainly restrict our attention to a single power interaction (0.2). The results
extend to more general interactions under suitable assumptions of smoothness of f and
of power behaviour at infinity. We begin with a simple case where the results follow
easily from the estimates of Section 2.b, namely with the case n = 1, ¢ = 4 where the
conjecture 2.1 holds with no power of N in the RHS.

Proposition 2.3. Letn=1and 1 <p S 3. Then the Cauchy problem for the equation
(0.1) (0.2) with initial data in L*(T) is locally well posed in L*(T* xR) or in X% for
3/8 < b < 5/8, and globally well-posed in L®(R, L?) N L}, (R, L*).

loc

Sketch of proof. Asin Sections 1.d and 1.e, the crux of the proof consists in showing
that the RHS of (2.3) defines a contraction in suitable balls of the spaces indicated, for
sufficiently small . We take 1)1 to be 27 periodic in t (see Section 2.a). Then

1) X078 < O fu) IY¥(T®) || < C || w LY(T2) P

<O | u X0 | (2.41)

and a similar chain of inequalities holds for the difference f(u;) — f(uy). The last
inequality in (2.41) is (2.40), the first one is the dual thereof, and the middle one is
obvious. On the other hand the operator K (see (2.7)) maps X% to X? boundedly for
-1/2 <" < -3/8,3/8 < b< b +1 (< 5/8). The result follows immediately. O

We now turn to the more difficult cases where the basic estimate of Proposition 2.2
contains a positive power of IV, which by (2.31) is equivalent to a loss of derivatives.
The main result on the local Cauchy problem is the following :

Proposition 2.4. Letn > 1, p> 0 and 2 <p—1<4/(n—2p). Assume that there
ex1sts ¢ such that the conjecture 2.1 holds and that

g>Max (p+1,rs) (2.42)

p+1B@)<@-Vp . (2.43)

Then the Cauchy problem for the equation (0.1) (0.2) with initial date uy € HP(T") is
locally well-posed in XP1/2,

We comment on the assumptions on p. The upper bound on p is the expected sub-
criticality condition of p at the level of H? (see Section 1.b). That condition of course
occurs also in the treatment of the corresponding problem in R* [CW1]. The lower
bound p > 3 is a smoothness condition on f and could probably be relaxed. Further re-
strictions on p arise from the need to use of Proposition 2.2 for some ¢ satisfying (2.42)
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(2.43). Note however that (2.42) (2.43) by themselves do not introduce any further
restriction on p. In fact (2.43) reduces to p > 0 for ¢ = rg because f(rg) = 0, while for
g =p+1, (2.43) reduces to the subcriticality condition for p.

The proof of Proposition 2.4 is difficult and we refer to the original paper [B1]. A
brief sketch can be found in [G2].

Further results on the Cauchy problem for the NLS equation in T" appear in [B3]
[B4].

3. Asymptotic behaviour in time and scattering theory

We now come back to the case of the NLS equation (0.1) inIR"™ in situations where the
Cauchy problem is globally well-posed, typically in the space X} .(R) for initial data
ug € H' (see Section 1.h) and we address the question of describing and classifying
the asymptotic behaviour in time of the global solutions. A possible method to attack
this question conmsists in comparing the given dynamics with suitably chosen simpler
asymptotic dynamics. That method applies to a wide variety of dynamicai systems and
in particular to systems defined by (linear or non linear) partial differential equations,
and gives rise to the theory of scattering. We first describe the basic problems of .
scattering theory, on the specific example of the NLS equation (0.1).

3.a Generalities on scattering theory

In the case of a semilinear equation like (0.1), the first obvious candidate for an
" asymptotic dynamics is the free dynamics generated by the group U(t). The comparison
between the two dynamics gives rise to the following two questions.

(1) Let vy(t) = U(¢) u4 be a solution of the free Schrédinger equation. Does there
exist a solution u of the full equation (0.1) which behaves asymptotically as v when
t — oo, typically in the sense that for Y a suitable Banach space

| w(t) —v4(t);Y ||— 0  whent — +oo (3.1)

or rather
| U(—t) u(t) —uy;Y ||= 0  whent — 4o0 (3.1

which may be more appropriate if U(-) is not a bounded group in Y. This may occur
in favourable cases for all uy € Y, in less favourable cases only for u4 in a dense subset
of Y. If (3.1) or (3.1°) holds, one can define the map Q4 : uy — u(0). That map is
called the wave operator for positive time, in the sense of the space Y. The problem
of existence of u for given uy is referred to as the problem of existence of the wave
operator. The same problem arises at t — —oo : for given u_, one looks for a solution
u of the full evolution equation which behaves as U(t) u— as ¢t — —o0, and one defines
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the map Q_ : u_ — u(0) as the wave operator for negative time. The functions (or
vectors) uy are called asymptotic states at +co. See Fig 1.

(2) Conversely, given a solution u of the full equation (0.1), does there exist asymptotic
states uy and u_ such that v4(t) = U(t) us behaves asymptotically as u(t) when
t — o0, typically in the sense that (3.1) or (3.1") and their analogues for negative time
hold. If that is the case for any u with initial data u(0) in Y for some uy € Y, one says
that asymptotic completeness holds in Y.

Asymptotic completeness is a much harder problem than the existence of the wave
operators, except in the case of small data where it follows as an immediate by-product
of the methods used below to solve the latter problem. Asymptotic completeness for
large data in the sense described above requires strong assumptions on the interaction
term f, in particular some repulsivity condition, and proceeds through the derivation of
a priori estimates for general solutions of the full equation. Here we shall only consider
the problem of existence of the wave operators. We refer to the literature for the problem
of asymptotic completeness for large data [GV1] [GV3] [HT] [LS] [T1] [T2).

It may (and in many cases does) happen that the free dynamics is inadequate or
insufficient to describe the asymptotic behavior of the full dynamics. In particular we
shall see below examples where the wave operators fail to exist. In that case one has
to use more elaborate asymptotic dynamics. In such a case it may happen that the
comparison dynamics v(t) can be parametrized by asymptotic states u4 without having
v+(0) = ut. Actually v4(0) need not even be defined, since v1(t) matters only through
its asymptotic behaviour at ¢ — Fo0o0. See below for examples.

We now consider the problem of existence of the wave operators in more detail.
We restrict our attention to positive times and drop the subscript + on the given
comparison dynamics v(t). We do not assume for the moment that v(t) is a solution of
the free equation. We assume that the global Cauchy problem is well-posed for the full
evolution equation, and we want to construct a solution thereof which behaves as v(t)
when t — +o0o0. Now let t5 > 0 and let u, (%) be the solution of the Cauchy problem for
the full equation with initial data u(to) = v(to) at time 5. We may then expect that
when ty — 00, uz, has a limit u in some sense, and that the limit satisfies the required
property. This is translated into equations as follows. The Cauchy problem with inital
time to is formulated as the integral equation

w(t) = U(t — 1) u(to) — i / d Ut —t') flu(t)) . (3.2)

tg

On the other hand v satisfies the identity

v(t) = U(t — o) v(te) — i /t P UGE—t) (i 8+ (1/2A) o) (33)
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obtained by considering the first term in the RHS as a function of ty, say h(t), and
writing that

h(t) = h(to) + / t dt’ K'(t")

Taking the difference of (3.2) and (3.3) with u(tg) = v(%o) yields the equation

u(t) = v(t) +1 /t Cd U — 1) (Fu(®) — (G 8 + (1/2)A)(t)) (3.4)

the solution of which is u,, as defined above. If v(t) = U(t) u4, (3.4) reduces to

w(t) = U(t) uyp +3 /t U -t Fult)) . (3.5)

We obtain an equation for the solution u we are looking for by formally taking the limit
to — +o0 in (3.4) or (3.5). Restricting our attention to the case where v(t) = U(t) u.,
we finally obtain the equation

u(®) = U() ug +i /t Tt Ut —1) fult) . (3.6)

The existence problem for the wave operator {1, is thereby reformulated as the Cauchy
problem with initial time at +o0o. We shall solve that problem in two steps :

(1) Solve (3.6) by a contraction method in an interval [T, 00). The contraction will
require the presence of a small parameter. This will be ensured by taking the interval
[T, 00) to be small, namely T to be large.

(2) Continue the solution thereby obtained to all times by.using the known results
on the Cauchy problem at finite times.

A second possibility to obtain a small contraction factor at the first step consists in
taking the data (namely w4 ) small. In that case one will be able to solve the problem
globally in IR at the first step. As a consequence, the first step will yield the existence of
global solutions and asympotic completeness for small data as an immediate by-product.

In order to perform the first step above, we shall need at the very least that the
integral in (8.6) converges at infinity in some sense, and for that purpose that f(u)
exhibits some time decay. This requires two conditions :

(1) The function v itself should have some time decay, namely one should try to solve
(3.6) in a space of functions exhibiting some time decay in its definition. Clearly one
should require that at least v(t) satisfy that time decay, and for that purpose impose
suitable conditions on the space of asympotic states.

(2) The time decay of u should imply some time decay of f(u), namely f(u) should
go to zero sufficiently fast as u goes to zero. If f(u) behaves as a power p; at u =0,
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that condition appears in the form of lower bounds on p;. Clearly one expects those
bounds to be all the stronger as the assumed time decay on u is the weaker.

In what follows we shall restrict our attention to situations of well-posedness of the
H?' Cauchy problem. Combining the requirements of that situation with the preceding
remark, we shall impose on f the following condition, which is a reinforcement of (H1)

(H1) f € C!(C, ), f(0) = 0 and for some p;, p, with
1<pi<pp<1+4/(n-2)
the following estimate holds for all z € C.
()| = Max (|9f/02],10f/02]) < C (jzP*~* + |zfr*~)

We conclude that section by meﬁtioning a property of the wave operators which is
formally obvious from their definition, namely the intertwining property. Let u(-, do) be
the solution of the Cauchy problem for the given equation (namely (0.1) in the present
case) with inital data u(0,ug) = uy at time zero. Then for all s € R

u(t+s, Qx us) =u(t, Qx U(s) us) (3.7)

namely (. intertwine the free evolution with the full evolution. The actual proof of
that property will be an immediate by-product of the existence proof of the Q...

We now proceed to implement the previous program with various choices of function
spaces.

3.b Wave operators in H*

~ The first natural choice of function spaces to solve (3.6) consists in taking the spaces
X3,(+) defined in Section 1.b (see (1.19) (1.20)). By Lemma 1.4, solutions U(%) u. of

the free equation belong to such spaces provided uy € H'. One can then solve the local

Cauchy problem at infinity as follows

Proposition 3.1 Let f satisfy (1) with p; > 1 +4/n. Then

(1) For any uy € H', there exists T = T(uy) such that the equation (3.6) has a unique
solution u € X, (I) where I = [T, 00). Furthermore u € X*(I) and u is a continuous
function of uy. € H' with values in X*(I).

(2) The solution u admits uy as an asymptotic state in H', namely

| U(=t) u(t) —uqp; H' |- 0 whent— oo . (38)

Sketch of proof. Part (1) is proved by a contraction method whereby one proves that
the RHS of (3.6) defines a contraction in the norm of X,,4;(I) on the bounded sets
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of X;,.1(I). The estimates are exactly the same as in the proof of Proposition 1.3,
which in turn were the same as in the proof of Proposition 1.1, with the proviso that
one should now take 8 = 0 since the time interval is unbounded. One can choose again
ry =1y = s = p -+ 1 for each p = p;, pp and the lower bound on p; arises from (1.30)
with 6 = 0 and from the fact that the best available decay for the L°® norm is obtained
for compatible (&, s).

Part (2) follows from the estimate

t2
| U(—t2) u(ts) — U(—t1) u(ta); H || = || / dt' Uty —t') flu(®)); H |
t1
ST f3 Xppa ([t t2) |l (3.9)
for T < t; < t,, followed by the same estimates as in the proof of Part (1). O

As mentioned in Section 3.a, global existence and asymptotic completeness for small
data follow immediately from the estimates in the previous proof.

Corollary 3.1 Let f satisfy (H1) with p; > 1+4/n. Then

(1) There ezists R > 0 such that for any uy € H' with || uy; H' ||< R, the equation
(3.6) and for any ty €R, the equation (8.5) have a unique solution in X . (R). The
solution actually belongs to X1(R) and depends continuously on u .

(2) The wave operators Q1 and their inverses are defined in a meighborhood of zero in
H' and are local homeomorphisms. In particular asymptotic completeness holds in H?
for.small data. |

Before going to step (2) of the construction of the wave operators, we add the as-
sumption (H2) and extend the conservation laws to infinite time.

Proposition 3.2 Let f satisfy (H1) and (H2) with py > 1+4/n. Letuy € H!, T €RR,
I=[T,00) and let u € X, ,(I) be solution of the equation (3.6). Then

lu®) llz = llus llz and E(u(t)) = (1/2) || Vui |z (3.10)

for allt € I.

Proof. By Part (2) of Proposition 3.1, and the conservation laws at finite time, it
suffices to .show that [dt V(u(t)) — 0 when t — oco. Restricting our attention to the
typical case of a single power p; = p; = p, we only have to show that || u(t) ||p+1— 0.
Now u € L®(I,H) N Cr(I,H™ ') and therefore u is uniformly Holder continuous in
LP*! with exponent (1 —6(p+1))/2, which together with the fact that u € L(I, LP*1)
for compatible (g, p + 1) implies the result. O
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Combining the previous results with the results of Sections l.e and 1.h yields the
existence of the wave operators in H'.

Proposition 3.3 Let f satisfy (H1) (H2) and (H3), with p; > 1+ 4/n. Then
(1) For any uy € H', the equation (8.6) has a unique solution v € X .\ 1,.(R) N
X;2+1(]R+). Furthermore u € X} (R) N X (RY) and u satisfies (3.8) and (3.10).
(2) The wave operator Q. is defined in H', continuous and bounded.
The same results hold for negative time.

We only remark that boundedness of  follows from (3.10) which implies that
19w o= llug  and B(R4up)=(/2) [ Vuy B . (311)

Note also that under the assumptions made so far, the solutions u in part (1) of the
proposition have no reason whatsoever to be dispersive at —oo, namely to belong to
X1R).

The main conclusion of this section is that with the decay available from the space
X1(R), namely with asymptotic states in H?, the required lower bound on p; for the
existence of the wave operators comes out as p; > 1+4/n. The question then arises how
far down one can go by considering functions with a better time decay. Before going
into that question, we first give a negative result [S1] which tells us that one cannot do
better than p > 1 + 2n.

3.c Non existence of wave operators for p <1+ 2/n

We restrict our attention to n > 2 since n = 1 is a special case, and we state the
result in sufficient generality to cover not only the NLS equation (0.1) with a single power
interaction but also other equations such as the Hartree equation with a potential |z|™7,
0 < v < 1. We need the dilation operator D(t) defined for ¢ € R by

(DO)F)(e) =2 f(oft) . (3.12)

Proposition 3.4 Letn > 2 and 0 < (p—1)n/2 = §(r) < 1. Let f be a map from L? to
L™ with f(0) =0 such that
(1) f is uniformly Lipschitz on bounded sets, namely

| Flui) = Flu) Ir £ C(R) |ur —uz ||z for |uillo <R, i=1,2
(2) f is gauge covariant according to

flwu) =wf(u) foralluel? andw:R*—-C, |w/=1

—112—



(8) f is homogeneous of degree p according to
F(D)u) =t D(t) f(u) for allu e L? and t >0

(4{) Ker f =0, namely flu)=0=>u=0
Let T €R, I =[T,00) and let u € C(I,L?) be a solution of (0.1) such that there ezists
uy € L? such that

| U(—t) u(t) —us |2 =0 whent—oco . (3.13)

Then u =0 and uy = 0.

Sketch of proof. Let ¢ € L? N L™ and Max(T,0) < t; < t;. Then

t2
< o, U(—t2) u(ta) — U(—t1) u(ty) >= —z'/ dt < U(t)p, f(u(t)) > (3.14)
1
tends to zero by (3.13) when i1, t; — oo.
Now when t — oo, one expects asymptotic behaviours of the type

Utyp ~ (it) ™3 /t)
u(t) ~ U(E) up ~ (i) By (a/t)

so that by assumption (3)
< U)p, f(u(t)) > ~ 72 <5, f(ay) > (3.15)

thereby making the integral in (3.14) divergent at infinity for p < 1+ 2/n, in contradic-
tion with (3.13) (8.14), unless f(4@4) = 0 (since § is otherwise arbitrary) and therefore
us = 0 (by assumption (4)) and u = 0 by (3.13) and L?-norm conservation.

It turns out that the additional assumptions (1) (2) are sufficient to control the error
in (3.15), namely to show that it can be written as t~(P~1"/2o(1) when t — co. |

The negative result of Proposition 3.4 shows that for p < 1+ 2/n, one cannot expect
the existence of asymptotic states in the sense of (3.1’) even in the weakest sense con-
sidered so far, namely in L2. That result however is far from unexpected. Actually with
u € L2, one expects dimensionnally that u ~ |z|~™/? at infinity, so that [u[P™* ~ |z|~7
with p—1 = 2v/n and (0.1) with single power interaction (0.2) should be compared with
a linear Schrodinger equation with potential V(z) = |z|™7. It is well known that the
Coulomb-like case v = 1 is the limiting case where the existence of the wave operators
breaks down in linear scattering theory [RS]. We shall return to that question in Section
3.f. Before that however, we shall try to bridge or at least reduce the gap between the
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lower bound at p; = 1+ 4/n reached in Section 1.b and the Coulomb value p =1+42/n
by using functions spaces with better time decay than X*(R).

3.d Wave operators in H! n F(H?')

The time decay implied by the definition of X (R) or X!(R), namely u € LY(R, L")
for compatible (g,r), is far from optimal for solutions of the free Schrodinger equation.
In fact, the optimal time decay in L” is obtained from (1.7) as

| U#) uo || < Cl|~")

as soon as ug € L, and is seen to be optimal on the explicitly computable example
where ug is Gaussian. That time decay is dimensionally twice better than that contained
in X(R). On the other hand, the spaces L7(1 < 7 < 2) are inconvenient as spaces of
initial data because they are not preserved by the free evolution. In order to define
convenient spaces, it is useful to introduce the (vector valued) operator

J(t) =z +itV (3.16)

That operator is the infinitesimal generator of Galilel transformations. In fact one
checks easily that under the assumption (H2) on f, the NLS equation (0.1) is invariant
under the Galilei transformation

u — (Gyu)(z,t) = exp [iv -z — iv’t/2] u(z — vt,t)
for v € R”, the infinitesimal form of which is
v (Gott)|yo = (12 —tV)u =1 J(t)u

The operator J(t) is unitarily equivalent both to z and to :tV. In fact it satisfies the
commutation relations '

JA)=U@)z U(-t)=U@-t") JE) U —1) (3.17)

for all t €eR and
J(t) =it M(t) VM(-t) (3.18)

for all t €IR, t # 0, where
M(t) = exp [1z®/2t] . (3.19)

From the elementary Sobolev inequality

) §{v
lulle < Cr 1wy | Ve I3
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which holds for 0 < é(r) <1 (6(r) <1/2forn =1, 6(r) < 1 for n = 2) and from (3.18),
it follows immediately that

Fulle < Cr 172 (w5777 || T(tyu |15 (3.20)

for the same values of r, and therefore that if in addition v depends on ¢ in such a way
that v and J(t)u € L>°(R, L?), u has optimal time decay in L™-norm for the same values
of r. This suggests to define the following spaces :

S=H'nFH)Y={uec H :zue L?} (3.21)
and in analogy with (1.19) (1.20), for any interval I CR

YYI)={u:ueC(,X) and u,Vu and J(t)u € LI(I, L")
for all admissible (¢,7)} (3.22)

and for 0 < 2/qo = 6(r0) = 6o < 1

Y (I) ={u;u € C(I,%) and u, Vu and J(t)u € LI, L")
for 0<2/qg=6(r)=60} . (3.23)

The spaces Y'}(I) can be made into Fréchet spaces and the spaces Y (I) are Banach
spaces with obvious norms. We also define the corresponding local spaces

Y(%ro)loc(‘[) = {u ru € Yv(%ro)(']) for any J CC I}

One checks easily that initial data in ¥ generate solutions of the free Schrodinger
equation in Y!(R), and in particular, by (3.20), with optimal time decay in L" for
0<é(r) <1

Lemma 3.1. Let ug € Z. Then U(t) uo € Y(R).
Proof. For admissible (g,7)

I 7(2) U(2) wo; LU, L7) || = || U(F) 2 wo; LR, L7) ||
< Cllzuole (3.24)

by (3.17) and (1.16). a

Lemma 3.1 leads us to expect that ¥ is a suitable space of asymptotic states to
define the wave operators. As a preliminary step however we need to control the global
Cauchy problem at finite times in spaces of the type Y!(-). In doing so we have to
face the technical difficulty that (contrary to V) the operator J(¢) is not a derivation

—115—



because it contains z. This is taken care of by the following lemma, which states that
nevertheless J(t) behaves as a derivation when applied to gauge invariant functions.

Lemma 3.2. Let f € CY(C,C) satisfy (H2). Then

J(t) f(u) = 8= f(u) J()u — 0:f(u) J(t)u (3.25)

Proof. This follows easily from gauge invariance (H2) and from the commutation
relation (3.18). ]

One can then prove

Proposition 3.5. Let f satisfy (H1) (H2) (H3). Then the Cauchy problem for the
equation (0.1) with initial data ug € T is globally well-posed in Y. (R). The solutions
satisfy L?-norm and energy conservation.

Sketch of proof. The proof is an immediate extension of those of Propositions 1.3 and
1.5. The local Cauchy problem requires in principle one more estimate for the function
J(t)u, but in practice and with the use of Lemma 3.2 that estimate is identical with
that of Vu in (1.32). The global problem requires an additional a priori estimate for
J(t)u, but for u € X} (R), that quantity satisfies a linear inequality and is estimated
by a variant of Gronwall’s Lemma. ]

We can now begin the study of the wave operators in ¥ [CW2] [GV1] [GOV] [S2].
The final result given below comes from [CW2], with the simplified proof from [GOV].
We follow exactly the same pattern as in the H! case. We first solve the local Cauchy
problem at infinity in the form of the equation (3.6).

Proposition 3.6. Let f satisfy (H1) and (H2) with py > 1 +4/(n +2) (p1 > 3 if
n=1). Then

(1) For any uy € %, there exists T = T'(uy) such that the equation (3.6) has a unique
solution u € Y, ;(I), where I = [T,00). Furthermore w € Y'(I) and u is a continuous
function of uy € ¥ with values in Y*(I).

(2) The solution u admits uy as an asymptotic state in 3, namely

NU(=t) u(t) —up; 2 || =0 whent— oo . (3.26)

Sketch of proof. The proof is an immediate extension of that of Proposition 3.1.
Again one needs in principle an additional estimate for the function J(¢)u, which by
Lemma 3.2 is in practice identical with that of Vu. The lower bound on p; however
comes out different, actually weaker, and we now explain why. We need to control the
norm of u in L¥(L®) which occurs in the estimate for Vu (see (1.32) with § = 0) and
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in a similar estimate for J(¢t)u. But now by (3.20) the available decay information on
u is that for 0 < 6(s) < 1, u € L¥(L®) for any k with k 6(s) > 1 (instead of k 6(s) = 2
for compatible (k,s)). We now take the optimal (k, s), namely é6(s) =1 (for n > 3) and
k close to 1, which by (1.30) with 8 = 0 gives (p — 1)(n/2 + 1) > 2, namely the lower
bound in Proposition 3.6. (For n = 1, one cannot go beyond §(s) = 1/2, which gives
P> 3) ]

Note at this point that in contrast with Proposition 3.1, the assumption (H2) is
already needed at the stage of the local resolution, because one uses Lemma 3.2 to
estimate J(t)u.

As in the case of the H! theory, global existence and asymptotic completeness for

small data follow immediately from the estimates in the previous proof. We give an
abbreviated statement as a reminder.

Corollary 3.2. Let f satisfy (H1) and (H2) with py > 14+4/(n+2) (p1 >3 ifn=1).
Then the same statements as in Corollary 3.1 hold with H replaced by ¥ and X' by
YL

Combining the previous results, namely Propositions 3.3, 3.5 and 3.6, we finally obtain
the existence of wave operators in X.

Proposition 3.7. Let f satisfy (H1) (H2) and (HS) with p; > 1+4/(n+2) (p1 > 3
ifn=1). Then

(1) For any uq € %, the equation (3.6) has o unique solution u € Y, 5 1, (R) N
Yy 1 (RF). Purthermore u € Yy, (R) N YI(R") and u satisfies (3.26) and (8.10)

(2) The wave operator 4 is defined in %, continous and bounded.

The same results hold for negative time.

The main conclusion at this stage is that with the time decay available from the
space Y'1(R), namely for asymptotic states in X, the required lower bound on p; for the
existence of the wave operators comes out as p; > 3 forn =1, p; > 1+4/(n + 2) for
n > 2. In view of the negative result of Proposition 3.4, that result is optimal for n = 2
(actually also for n = 1), but not for n > 3 where there remains a gap between 1+ 2/n
and 1+ 4/(n + 2). We shall come back to that question in the next section.

We conclude this section with some remarks on the local resolution at infinity without
the assumption (H2) for u4 € £ [GV1] [S2]. In that case one can solve the local Cauchy
problem at infinity by contraction in a space of the type

Zro(I) ={u :w € X}, (I) and (14 [t)°7 || u(t) ||- € L%(1)
for 0 < 6(r) < 6o < 1}
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under the following condition on p;

pro(p+1)>1

or equivalently
np: —(n+2)py —2>0 (3.27)

namely for p; > po(n) where po(1) = (3 +V/17)/2, po(2) = 1+ V2, po(3) = 2, po(4) =
(3 + V/17)/4, etc. Under the same assumption, one also obtains global existence and
asymptotic completeness for small data in . On the other hand the assumption (H2)
(or at least some substitute thereof) is needed to control the global Cauchy problem at
finite times and therefore the existence of the wave operators for large data, so that this
theory loses its advantage for that problem.

The magic values py(n) also occur at other places : the condition p > po(n) comes
out naturally in the available proofs of asymptotic completeness for large data for re-
pulsive interactions [HT] [T1]. They also occur, shifted by one unit in dimension, in the
corresponding problems for nonlinear wave equations (see on that subject several other
lectures in this Conference).

3.e Improvement of the lower bound on p;

We have seen in the previous section that for n > 3 there remains a gap between the
optimal value 1 + 2/n and the accessible value 1 + 4/(n + 2) for the lower bound on
p1- We shall now show that this gap can be reduced (and actually closed for n = 3)
[GOV]. As explained in the proof of Proposition 3.6, the lower bound on p; comes from
the condition (1.30) with # = 0 together with the control of u in L¥(I,L®). If || u ||
has optimal time decay, then one can take any k with k §(s) > 1, thereby obtaining

p>1+4+4/(n+26s)) .

"The lower bound 1 +4/(n + 2) was obtained by taking §(s) = 1, which was allowed by
(3.20) and the definition of Y(I), and the optimal result would be obtained if we could
take 6(s) = n/2 or at least 6(s) close to n/2, namely s infinite or at least very large.
By the inequality

lulls < CIS@ || 176 |, (3.8)

for 0 < é(s) < n/2, which follows from Sobolev inequalities and from (3.18) and which
generalizes the case §(r) = 1 of (3.20), the required time decay of u would hold under
the condition |J(¢)|u € L>(I,L?) for p = n/2 or at least p close to n/2. This suggests
to try generalizing ¥ and Y*(I) by defining

%P = HP 0 F(H?) (3.29)
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YP(I)={u:u €C(I,2") and u,|V|u and |J(t)|Pu € LI(I,L")
for admissible (g,7)} (3.30)

with 1 < p < n/2, and to try solving the local Cauchy problem at infinity in Y'#(I) for
asymptotic states in 2¥. This however would require to estimate |V|?f and |J(¢)|?f in
L1(L"™), and would thus require f to be at least C?. Now for f behaving as a power p;
at u = 0, one must have p < p;. The situation is then as follows.

For n =3,1+2/n =5/3 > n/2 = 3/2, and the previous scheme can work with
p=23/2 and p; > 5/3.

For n >4, 1+2/n < n/2. Combining the previous conditions, one finds

p1 ~1>Max(p—1,4/(n -+ 2p))
namely p; > po(n) where po(n) is the solution of the equation
(p—D(n+2p)=4 . (3.31)

One finds

4 1 4\ 1/ a4 \°
, . 1 \ 1 ..
14 /?’L<p0(n)< +n+2 2<n+2) +2<n+2)

<144/(n+2)<2<n/2

One may therefore expect the previous scheme to work forn =3, p=3/2,p; >1+2/3
and for n >4, py > p = po(n). This is actually what happens, modulo some technical
difficulties. The useful range for p and p; is

1< p< Min(pg,2) . (3.32)

Restricting the attention to single power f for simplicity, one reinforces the smoothness
assumption on f by replacing (H1) by

(ff[l) f ec}(C,), f(0) =0, f'(0) =0, and for some p with 1 < p <1+4/(n —2), the
following estimate holds for all 2y, 2z, € € :

— zg|P1 fp<2
o) = Fz) < C lzl 22‘ _ .Pﬁ_
|f'(21) = f'(z2)] < {121 — | (Maximy 2 |2:P™2) i p > 2
One follows the same pattern as in Sections 3.b and 3.d. In order to cope with the fact
that p is no longer an integer, it is convenient to modify the definition of the spaces Y'#
and to define them in terms of Besov spaces of the space variable. One can then prove
the expected results, namely
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(1) The Cauchy problem for the equation (0.1) with initial data in X# is globally
well-posed in Y} (R) for 1 < p < Min(p, 2).

(2) One can solve the local Cauchy problem in the form of the equation (3.6) in
Y?([T, 00)) for asymptotic states uy € X, provided 1 < p < Min(p,2) and p—1 >
4/(n + 2p).

(3) This implies as before the existence of global solutions and asymptotic complete-
ness for small data. o

(4) Finally under the assumptions (H1),(H2) (H3) and the previous conditions on p
and p, the wave operators exist in 2°.

We refer to [GOV] for the details. The question of existence of the wave operators
forn >4 and 1+ 2/n < p; € po(n) remains open at this stage.

3.f Modified wave operators for p; =1+ 2/n

We have seen in Section 3.c that the wave operators are not defined in any reasonable
sense for p; < 14 2/n, in analogy with the case of the linear Schrodinger equation with
long range potential |z|™7 with v < 1. In the latter case however, it is well known
that one can define modified wave operators which are suitable substitutes for the non
existing ordinary ones, and it is natural to try to extend that theory to the nonlinear
case. This is the purpose of this section. There exist only preliminary results in that
case, and we restrict our attention to the case of space dimension 1 < n < 3 and to the
critical value p = 1 4+ 2/n where such results exist. We also restrict our attention to
single power interactions of the type (0.2). The treatment follows [O] [GO].

We come back to the general discussion of Section 3.a and try now to construct solu-
tions of the full equation (0.1) that behave asymptotically as some asymptotic dynamics
v(t) which we no longer assume to be the free dynamics. We start again from the integral
equation (3.4) and take the formal limit ¢, — co which we rewrite as follows

ut) =o(t) + | Tt Ut — ) (Fut)) — o)

i (8, + (1/2)A)(¢) — F(o(#))} (3.33)

The trouble comes from the fact that f(u) does not decay sufficiently fast in time for the
integral in (3.6) to converge. However if v is a sufficiently good approximation to the
asymptotic behaviour in time of solutions of (0.1), one may hope that f(u)— f(v) has
better time decay than f(u), thereby making its contribution to the integral in (3.33)
convergent. How good an approximation v really is should appear in the time decay at
infinity of the function

f(t) = (1 9+ (1/2)A) v(t) — f(v(?)) (3.34)
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which measures the failure of v to satisfy the equation (0.1). For given v, we shall now
regard (3.33) as an equation for the difference w = u — v, namely

w(t) = w®(t) + 1 /t ~ dt' U(t — Y {flv(¥') +w(t)) — Flo(t')} (3.35)

where
wO(t) = — / @t Ut —1t) f#) . (3.36)

We are now faced with the following two problems :

(1) Solve the equation (3.35) for w.

(2) Choose the asymptotic dynamics v in order to obtain a good time decay of f.

We begin with the first problem and solve it as before in two steps : we first solve the
equation (3.35) by a contraction method locally in a neighborhood of infinity in time,
and we then extend the solution to all times by using the known results on the Cauchy
problem at finite times. This will be possible under some general decay assymptions on
v and f . We shall then construct v satisfying those assumptions.

In order to solve (3.35), we use the following spaces. Let 6 > 0, let (¢,r) be an
admissible pair and let I = [T, 00) with T' > 0. We define

Zo(I)={w:weC(,L*)NLIIL") and

Il w; Zo,r(I) || = Supses ¢ (| w(t) ll2 + || w; L([t,00), L7) |) < o0} (3.37)

Note that in (3.37) one can replace || w(t) [z by || w; L°°([t, 00), L?) ||. If one does so,
then the last two norms in (3.37) would be uniformly bounded in ¢ if one had simply
w € X, (I) (see (1.20)). Here we expect w as a difference to have better time decay,
in the sense that those two norms decay at t~% instead of simply being bounded. The
existence result at infinity for (3.35) can now be stated as follows.

Proposition 3.8 Let f(u) = A|u|?/™ and let v € C([1,00), L?) N L*°([1, 00), L>) satisfy
| 0(t) lloo < coo ™7 (3.38)
for some coo sufficiently small and all t > 1, and
| f@t) lla < € 7 0F0) (3.39)

for some 8y > n/4 and all t > 1. Then for n/4 < § < 6y the equation (3.35) has a
unique solution w € Zg »([1, 00)).

The proof proceeds by a contraction method in Zg ([T, 00)) for T sufficiently large
and continuation to all ¢ > 1 by the results on the global L? theory (see Sections 1.d
and 1.g).
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We remark that the smallness condition on ¢4, can be taken independent of 6,r and
that the solution w is independent of ,r. Actually w belongs to Zgy, for all 8, r
satisfying the assumptions. Furthermore, Proposition 3.8 is not restricted in dimension.
The restriction to n < 3 comes later, from the fact that we cannot do better than 6y = 1
in satisfying (3.39).

We now turn to the construction of the asymptotic dynamics v(f) and explain the
ideas on the example of the linear Schrédinger equation

i 8 u=—(1/2) Au+Vu (3.40)

with time dependent potential V = V(¢,z) [H6 IV] [RS]. In that case, as a first choice
of modified free evolution, one can try

v1(t) = U(t) exp[—i S(t,—iV)] ut (3.41)

for some real function S(t,£) to be determined later, and a generic asymptotic state
uy € L?. In order to prove the existence of modified wave operators by the method of
Cook, one then has to prove that

'0; S(t,—iV) = V(t,z))vi(t) € L)Y, L?) . (3.42)
Asymptotically, one expects —iV to be equivalent to z/t, and this suggests to choose
0 S(t,€) =V(t,t) , (3.43)

the original choice made by Dollard in 1964. However the expected cancellation in (3.42)
cannot be verified in a simple manner. A better choice for v can be made by exploiting
the following decomposition of U(%) :

U(t) =i~ ™2 M(t) D(t) F M(¢) (3.44)

where D(t) and M(t) are the dilation operator (3.12) and the multiplication operator
(3.19). That decomposition is a simple rewriting of (1.5). Note that the commutation
relations (3.17) (3.18) imply

(z/t) U(t) M(—t) =U(t) M(-t) (—2V) . (3.45)
We take as a second choice of modified free evolution

ve(t) = U(t) M(—t) exp[—iS(t,—iV)| uyt
= exp [~ (t,2/8) U(t) M(~t)uy
=exp [i %/2t — i S(t,z /)] (it)~™? Ty (z/t) (3.46)
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where the second line follows from (3.45) and the third one from (3.44). Note in par-
ticular that |vg(t)] is computed explicitly as

foa()] = =7 [ (2/t)| = |D(t) Fusl (3.47)

and is independent' of S. Cook’s method now requires that
U(t) M(—t) {8y S(t,—iV) — V(t,—itV) + 22 /2¢2}

x exp [—i S(t,—iV)]uy € YR, L?) (3.48)

and the first two terms in the central bracket cancel exactly for the choice (3.43). Finally,
a third possible choice consists in taking '

v3(t) = exp[—1 S(t,z/t)] U(t)uy . (3.49)

It has the virtue of differing from the free evolution by a phase only. The comparison
between the various choices of v in L? is easy. In fact

[ va(t) — vs(t) |l2 = || (M(t) — Duy ||2— O when ¢ — oo
because the operator M(t) tends strongly to 1 when t — oo, while

I va() = 01(t) ll2 = || (M(t) — ) exp[~i S(t, ~iV)]us ||z

is shown to tend to zero as a by-product of the estimates that lead to (3.48).-

We now turn to the NLS equation (0.1). In that case, with f(u) = u g(Jul?), the
potential is replaced by g(|u|?), and since u is expected to be asymptotic to v, one is led
to apply the previous method with the potential V(¢,z) = g(|v(¢,z)|?). One can make
the same three choices (3.41) (3.46) (3.49) as before. The choice of v; has the advantage
that |vg| and therefore V' can be explicitly computed and is independent of the choice
of S, thereby leading to an explicit expression rather than an implicit equation for S at
a later stage.

The condition (3.42) (or (3.48)) required in Cook’s method is now replaced by an
estimate of the function f defined by (3.34) in order to ensure the assumption (3.39) of
Proposition 3.8. With the most convenient choice v = vq, one finds

F(t) = U(t) M(=t) {0, S(t,—iV) - g(Joa(t, ~itV)[?) + 2 /24*

x exp[—1 S(t, —iV)]us (3.50)

by the same computation as that leading to (3.48) in the linear case. This suggests
again, in analogy with (3.43) to choose

8 S(t,€) = g(lva(t, t€]*)
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which for the present choice of f and in view of (3.47) yields

8: S(t,€) = M~ Ha ()P (3.51)

which is solved by v
S(t,€) = A(¢n OaL (P . (3.52)

That choice turns out to be adequate for n = 1,2, but not for n = 3 where it is not
smooth enough in %y at Uy = 0, and has to be replaced by

S(t,€) = MN£n t) (t“"/?’ + \a+(§)|2)1/3 : (3.53)

We denote by 9; (: = 1,2,3) the modified free evolutions with S replaced by S,
With the previous choices of v and S, one can then perform the necessary estimates
needed in Proposition 3.8.

Proposition 3.9. For n < 2, let uy € L? with z2uy € L? and define S by (3.52).

Then

(1) va defined by (8.46) satisfies (8.88) with coo =|| Uy ||co and satisfies (3.839) for all

0y < 1.

(2) For all 0 < 1 and all T with 0 < §(r) < 1, v; —v; € Zg ([1,00)) for alli,5 =1,2,3.
For n =3, let uy € L? with z%uy € L? and Gy € L'. Define S by (3.52) and S by

(8.58). Then '

(8) Do satisfies (3.38) with coo =|| Ut ||co and satisfies (8.89) for all 6y < 7/9.

(4) For all 6 < 7/9 and all v with 0 < §(r) < 1, the differences v; — vj, v; — ¥; and

B; — 0; belong to Zg »([1,00)) for alli,j =1,2,3.

We refer to the original papers for the proof of the estimates. Combining Propositions
3.8 and 3.9, we obtain the final result

Proposition 3.10. Let n < 3, f(u) = Mul>/"u. Let uy € L? with 2%uy € L? and
| @y |loo sufficiently small. If n = 3, assume in addition that Uy € L'.

Then the equation (0.1) has a unique solution u € X(RY) N Xjoc(R) such that for
any r with 0 < 8(r) < 1 and any 6 < 1 (resp. 6§ < 7/9) for n < 2 (resp. for n = 3),
u—v € Zg,([1,00)) for v = v;, i = 1,2,3 (and in addition, if n = 3 for v = ;,
i=1,2,3).

Proof. The results for va(n < 2) and ¥3(n = 3) follow from Propositions 3.8 and
3.9 Parts (1) and (3), and from the results on the global L?-problem. The results for
other choices of v follow from the previous ones, from the uniqueness statements in
Proposition 3.8 and from Proposition 3.9, Parts (2) and (4). It is fortunate in the case
n =3 that 7/9 > 3/4=n/4.... a
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Under the assumptions of Proposition 3.10, we define the modified wave operator
(for positive time) as the map Q4 : up — u(0). Whereas there was no doubt that
the corresponding definition was adequate for the ordinary wave operators (see Section
3.a), this is less obvious in the present case, where the asymptotic v depends in a
complicated (nonlinear) way on u.. The best justification is that Q4 as defined above
again intertwines the free (unmodified !) evolution with the full evolution. In order
to make a meaningful statement, we need a set of asymptotic states which is invariant
under the free evolution. We define for R > 0

Y(R) = {u4 1 uy € L*,z%uq € L*,Aui € I* and || Uy ||oo< R}

Let again u(t,up) be the solution of (0.1) with u(0,u) = ug. Then the intertwining
property holds in the following sense

Proposition 3.11. Let n < 3, let f(u) = Mu|*/™u and let R satisfy the smallness
condition of ¢ tn Proposition §.8. Then for any uy € Y(R) and any s, t €R.

u(t + 5,04 uy) = u(t,Qy U(s)uy)

The proof follows from the uniqueness statement of Proposition 3.10 and from estimates
similar to, but significantly simpler than, those needed in the proof of Proposition 3.9.

We finally remark that the situation in Proposition 3.10 is less satisfactory than in
the previous cases (Propositions 3.3 and 3.7) in several respects. In addition to the
limitation n < 3 on the space dimension, the results of Proposition 3.10 are restricted
to small data (in the L norm of %) and the (L?-valued) wave operators are defined
only on asymptotic states with additional smoothness and/or decay. Similar results

hold for the (less singular) Hartree equation, with however no upper restriction on the
dimension (see [GO] for details).
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Fig. 1. Definition of the wave operators
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GENERALIZED STRICHARTZ INEQUALITIES FOR THE WAVE
EQUATION IN HOMOGENEOUS BESOV SPACES

J.Ginibre and G.Velo

Abstract: Strichartz inequalities for the wave equation in homogeneous Besov spaces
are presented and the most significant steps needed for their proof are illustrated. The
methods employed rely on the one side on specific estimates on the solutions of the wave
equation and on the other side on abstract duality arguments of quite general character
independent of the equation.

1. Introduction

In the first days of this conference, we heard many times the name of Strichartz in
connection with some inequalities estimating space time integral norms of the solutions of
the Cauchy problem for the wave equation

(02 —Au=f, u(t=0)=uy, Ou(t=0)=u; (1.1)

in terms of similar norms of f and of suitable norms of ug and u;.The result of Strichartz
[10] goes back to 1977 and, since then, many papers (among them [1],[3],[4],{7],(8],[9],[12])
have contributed to shape the inequalities to their actual general form. The objective of this
lecture is to present a conceptually simple proof of the generalized Strichartz inequalities
contained in a recent paper [5], to which we refer for details and for a more complete list
of references. The proof is an expanded version of that written in [3] with, in addition,
a treatment along the same lines of a limiting case derived in [7]. These estimates have
proved themselves to be often indispensable in the study of the Cauchy problem and of
scattering theory for the non linear wave equation. Particularely useful has been their

formulation in Besov spaces for a natural treatment of the non linearities present in the
equation.
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In order to formulate the inequalities it is convenient to express the solution u of (1.1),
that we consider in R™*! with n > 2, as a sum u = v + w, where v solves (1.1) with f =0
and w solves (1.1) with ug = u; = 0. Using the notation w = (—A)2, U(t) = exp(iwt),

K(t) = w™!sin(wt) and K(t) = cos(wt), v and w can be written as
v(t) = K(t)uo + K(t)u (1.2)

and

w(t) = /0 C K — (), (1.3)

For any operator L(t) of the type w U(t), w*K(t), w)‘l.{(t) with A € R, we define the
operators Lp(t) = x+(t)L(¢) and L4(t) = x—(¢t)L(¢), with x4 characteristic function of
R¥*. This allows one to rewrite (1.3) for positive time as

w(t) = (Kr* x+F)(t), (1.4)

where *; denotes the convolution in the time variable . A similar expression with Kg
replaced by K4 represents w for negative time. We restrict our attention from now on
to positive time. The norm of the space L™ = L"(R™), 1 < r < o0, is denoted by || ||»
and pair of Holder conjugate exponents are denoted r, 7 with 1/r +1/F=1,1 <r < co.
The following multiples of the basic function a(r) = (1/2 — 1/r), B(r) = (n + 1)a(r)/2,
v(r) = (n—1)a(r) and §(r) = na(r) are of special interest. The expression 2((r) represents
the loss of derivatives in the pointwise in time estimate (2.21), 4(r) is the exponent. of the
optimal decay in time of L" solutions of the wave equation and §(r) appears natufa,lly in
Holder and Sobolev inequalities. The Fourier transform in R” is denoted by ~. Convolution
in z € R™ is denoted by *,, with subscript omitted when there is no risk of confusion.
The initial data (uo,u) for the problem (1.1) are taken from the space HY @ HY ', with
p € R, where the homogeneous Sobolev spaces H¥ are defined by the expression

e = AR = {u o (lu; B = lotu]l. < oo} (1.5)

for 1 € r < co. Then the original Strichartz estimate takes the form
l[u; L™ (R™Y)]| < C{||(uo,u1); P BV + ;L7 (Rn+1)u} (1.6)

where rs = 2(n +1)/(n — 1). The extended version of this inequality consists in replacing
the space L™ (R™*1) (and L7s (R™*!)) by more general spaces such as LI(R, HP) of L1
functions of the time variable with values in the Sobolev space H? or in Besov spaces of
the space variables.
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2. Statement and proof of the inequalities

In order to make this exposition as much self-contained as possible we will give the
definition of homogeneous Besov spaces and we will recall their properties relevant to the
subsequent discussion. The definition makes use of the Paley-Littlewood dyadic decompo-
sition in which the dual space R™ is partitioned into dyadic spherical shells.Let ¢ € C$°(R™)
be a fixed function with 0 < ¢ < 1, (¢) = 1, for |¢] < 1 and 4 (¢) = 0 for [¢] > 2. Then
the functions ¢;(€) = $o(277€), where @o(€) = $(€) —1(2¢) and j € Z, have their support
contained in {¢ : 277! < |¢] < 27F1} and, for any ¢ € R™\ {0}, satisfy

> @i6) =1
JEZ
with at most two non vanishing terms in the sum. These support properties make it

convenient to define ¢; = ¢;_1 + ¢; + @41 for all j € Z, so that
P =Pj* P (2.1)

With any u € §'(R™) we can associate the sequence of C*°(R™) functions ¢; * u to be
considered as functions of the two variables j and z. For any p € R and any r and s with

1 < r,s < oo we define the homogeneous Besov spaces

Be, = B2,(R™) = {u « u; B, | = 2, + ws15(L)]| < oo} (2.2)

where one takes first the L™ norm in the variable z and then the [° norm in the variable j

([11] p.45 and p.238) and the homogeneous Triebel-Lizorkin spaces
e, = Fe R = {u : |lui B, = 1279, 5w LL(5)]) < oo} (2.3)

with the L7 and [} norms computed in the opposite order. The spaces Bf, s and Fﬁa
become Banach spaces once the quotient of S'(R™) by polynomials is taken. The Minkowski

inequality implies

B,?,SCF" forco>r>s>1

7,87

BP,ODFP, for1<r<s<oo (2.4)
and the Hilbert space version of the Mikhlin-Hormander multiplier theorem([11] p.243)

implies

HF = F,’jz (2.5)
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for all 1 < r < co. Comparison of (2.4) with (2.5) yields the inclusions B,’.’,Q C H? for
2 <r < oo, Bf,z D HP for 1 < r < 2. The Sobolev embeddings for the Besov spaces take
the form

B, D Bf2, (2.6)

with p1, p2 € R, 1 <ry <71 < 00,1 <5< 00 and py +8(r1) = p2 + 6(rz). The inclusion
(2.6) is an elementary consequence of Young inequality applied to ¢ * ¢  *u = p; * u and
of the scaling properties in the variable j of the norms of ¢; in L". We shall only need the
spaces with s = 2 and, in that case, we shall omit that index and write B,{’ = B,{’ .- With the
above notation and definition available the Strichartz inequalities can be stated in their
generalized form.

Proposition. Let p1, p2, p € R and 2 < q1, qa, 71, T2 < 00 and let the following
conditions be satisfied.

0 <2/¢; < min(y(r;),1), fori=1, 2 (2.7)
(2/qi,9(rs)) # (1,1), fori=1, 2 (2.8)
p1+68(r1) =1/ =p (2.9)

pr+6(r1) = 1/q =1~ (p2 + 8(r2) — 1/g2) (2.10)

(1) Let (ug,u1) E H* @ H*1. Then v defined by (1.2) satisfies the estimates
o5 L (R, BRI + 18003 L (R, B < Cll(wo,ua); BE @ BE7Y. (2.11)
(2) For any interval I C R, possibly unbounded, the following estimates hold
K * £; L9 (I, B2)| < ClIf; L=(1, B;)]l. (2.12)

(8) For any interval I = [0,T), 0 < T < oo, the function w = Kg * x+f defined by
(1.4) satisfies the estimates

llw; L% (1, BE)|| + |18ew; LT (1, BE ™) < C)\ f; L=(I, BR2))|- (2.13).

The constants C in (2.12) and (2.18) are independent of I.

The same results hold with B? replaced by H ? everywhere, under the additional asump-
tion that r; < co (i =1, 2) whenever r; occurs.

Before proceeding to the proof a more explicit description of the allowed region in
the space of the parameters (g1, r1; g2, r2) may be useful. This domain has a product

structure which makes it possible to express the restrictions (2.7) and (2.8) in a natural
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and simple way. For each pair of indices it is convenient to use the variables (1/¢, 1/r).
For n > 4 the allowed region is represented by a quadrilateral ABCD with A = (0, 1/2),
B =(1/2, (n-3)/2(n—1)), C =(1/2, 0) and D = (0, 0), corresponding to (¢ = oo, r = 2),
(g=2, v(r) =1), (¢ =2, r = ) and (¢ = o0, T = 00) respectively. See Fig.1. Forn =3
the quadrilateral reduces to the triangle ACD and for n = 2 it shrinks to the triangle
ACyD where Cy = (1/4, 0), corresponding to (¢ = 4, r = c0). See Fig.2. The boundary
is allowed with the exception of the point B for n > 3. The points of the segment AB
satisfy the equation 2/q = v(r). The original result of Strichartz corresponds to the case
g =r =rgand f(r) = 1/2 and its representative point is at the intersection of the diagonal
1/q = 1/r with the segment AB for n > 4, AC for n = 3 and AC; for n = 2.

Proof of the Proposition. For fixed (g, ri), ¢ = 1, 2, the parameters p;, u, —py are
determined up to a common additive term, as can be seen from (2.9) and (2.10). Therefore,

A maps isomorphically B,’.’ into Bf“"‘ for all A € R, the inequalities

since the operator w
(2.11), (2.12) and (2.13) for the general case will be a consequence of the same inequalities
for the special case i = 0. On the other hand, the definitions of v and w (see (1.2), (1.3)
and (1.4)) and of K, K and U allow to reduce (2.11), (2.12) and (2.13) to similar estimates

involving only U. The proposition will then result from the following inequalities:

U (-yu; L (R, BE)|| < Cllullz, (2.117)
|U * f; L (1, Be)|| < C|If; L%(1, B )| (2.12')

for I C R and
|URr * f; L (I, B2)|| < C|If; L%=(1, B, (2.13)

for I =[0,T), 0 < T < oo under the conditions (2.7) and (2.8) and
pi4+6(r)—1/g =0, i=1, 2. (2.14)

From the Sobolev embeddings in Besov spaces (2.6) one immediately sees that, if (2.11'),
(2.12') and (2.13') are satisfied for P, = (1/q1, 1/r1), P, = (1/g2, 1/r2), then they are
satisfied for P] = (1/q}, 1/r}), Py = (1/q;, 1/r}) where ¢ = q1, ] 2 11, ¢4 = qo,
rh > ry. Therefore, if ¢; > 2, ¢ = 1,2, it will be sufficient to prove (2.11), (2.12) and
(2.13') for P; € [A, B), 1 = 1,2, namely for 2/¢; = v(r;), which, by (2.14), corresponds to
pi = —B(ri).

After those preliminary reductions we can start the proper proof. The general strategy
consists first in writing pointwise estimates in time of norms involving space variables, then

in integrating those estimates in the time variable to obtain the fully integrated inequalities
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for special values of the parameters and, finally, in reaching the fully allowed region for
the parameters by the use of abstract duality arguments.

At this initial stage of the proof the time variable is kept fixed, while only functionc
or distributions of the space variables R™ are considered.Let f be such a function and let

@; be the previously introduced dyadic decomposition in R™. From

wi*(U@)f) =U(t)(wj * f) (2.15)

and the unitarity of U(¢) in L? one gets trivially

s * (UE)Nll2 = lles * £liz, (2.16)

while from
@i * (U@)f) = (U@)e;) * (@5 * f) (2.17)

and the Young inequality one obtains

s * (U Hlloo < NU@psllcoli®s * flla- (2.18)

9in : .
A - 991 . 10J 5
U(E)e5)(e) = gomyr [ exp (22 €+ i2til)olE)ee,
so that the L* norm of U(t)p; can be estimated for large positive j by the method of
stationary phase ([6], Sec. 7.7) and for large negative j by taking the absolute value of the

integrand. The computation leads to

llps * (UE)F)lloo < C27™min (1, (J£]27)~ 2, (2.19)

where the degeneracy of the phase is responsible for the decay exponent (n — 1)/2. In-
terpolation between (2.16) and (2.18) and use of (2.19) yield the following fundamental

pointwise estimate in time
llioj # (U@ Hlr < Cmin (2290, [t 7702280) |15 £ (2.20)
for 2 < r < oo. The corresponding estimate involving Besov spaces
lo)f; BRPON < it~ 5 BE| (221)

is obtained by taking the l? norm of (2.20) after multiplication by the factor 2-3iB(r),
Inequality (2.21) [1] [8] , which is of interest by itself,will be used in the case y(r) < 1.
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We now proceed to integrate the pointwise estimates. For this purpose it is convenient
to separate the two cases ¢ > 2 and g = 2.
The case g > 2

Let f depend on time and rewrite (2.21) as
Ut —¢)f; B < Clt =17 £(¢); BI, (2.22)

where U gy stands either for U or for Ug. Integrating over the variable t', taking the L7
norm in the variable t with 2/¢ = v(r) < 1, and applying the Hardy-Littlewood-Sobolev

inequality yield the integral estimate

|Ucry *2 £; L9, B PO < €IV f5 (2, BED)). (2.23)

Inequality (2.23) is a particular case of (2.12') and (2.13') in which ¢ = g2, r1 = 2 and
2/q; = y(ri). In this situation the domain and the range of the operator U g)*; are spaces
in duality.

A simple way to eliminate this restriction for the unretarded estimates and to prove
(2.11) is based on an abstract duality argument. That argument has a long history in
the subject [3][4][9][10][12]. It has been applied to the present case in [3][5]. Since this
argument can be found in another contribution to this volume by one of us [2], it will
not be repeated in detail and free use of it will be made. Broadly speaking the duality
afgument states that if B is an operator from a dense subset D of a Banach space X
to a Hilbert space H and B* is its adjoint from H to the algebraic dual D, of D, then
boundedness of B from X to H (after extension to all of X ) is equivalent to boundedness
of B* from #H to X*, which is equivalent to boundedness of B*B from X to X*. In the
situation of interest H = L? = BY, X can be any of the Banach spaces X, = LI(I, B? (r))
with 0 < 2/g = ~(r) < 1 (so that X} = L(I, Br_ﬂ(r))), and the relevant operators are

Bf = / dtU(—t) f(¢) (2.24)

I
(B*v)(t) = U(t)v (2.25)
(B*Bf)(t) = /I Ut — ) f(t). (2.26)

Inequality (2.23) states that B*B is bounded from X, to X} so that, by the duality
argument, B is bounded from X, to L? and B* is bounded from L% to X}. This proves
(2.11") for (1/q1, 1/r1) € [A, B). Moreover boundedness of B from X,, to L? and of
B* from L? to X}, yields boundedness of B*B from X, to X}, which proves (2.12')for
(1/qi, 1/m;) € [A,B),1=1,2.
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In the study of the corresponding estimates for the retarded operator the following
notation

((B*B)rf)(t) = /I Q' UR(t — t)£(t). (2.27)

will be useful. This operator does not enjoy the remarkable factorisation property of the
unretarded one (see (2.27) versus (2.26)), so that its study requires additional arguments.

The following chain of inequalities leads to boundedness of (B*B)g from X, to X3 :

|(B*B)f; X3 =sup|| / d'U(—)x+ (¢ — ¥ F(£); B |
tel
< Osup st = )f () X[ < CIf Xl (2.28)

where we have used in the first equality the unitarity of U(t), in the second inequality the
boundedness of B and in the last one the fact that y+ is a uniformly bounded function
of time.Interpolation of (2.23), which expresses boundedness of (B*B)g from X, to X,
with (2.28) yields boundedness of (B*B)g from X, to X} with rp < ri. Obviously
the same result holds also for the advanced operator, which allows to remove restriction
r2 < 71 the retarded operator being the adjoint of the advanced one.Thus (2.13') is proved
for (1/gi, 1/r;) € [A, B) and, by the Sobolev inequalities, for all ¢; > 2, ¢ = 1,2. This
completes the proof in the case g > 2.

The case g =2 forn > 4

Let f depend on time and rewrite (2.20) as

llpi * (Uemy (8 = )£ (@) [l < Cmin (2200, |t — /| 722D |G« fllo. (2.29)

This inequality will be used in the case v(r) > 1. For fixed j, integrating over the variable

t', taking the L? norm in the variable ¢ and applying the Young inequality yield the integral
estimate

llps *a (Ucry *¢ £); LI LT)|| < C2POD|13; 5, f; L1, LT)]]. (2.30)
Taking the l? norm of (2.30) after moltiplication by the factor 2-3(8(")~3) yields
1w * £ L1, BT O™ D) < €)1 12(1, B 7)) (2.31)

which is a particular case of (2.12’) and (2.13'), where 1 = g2 = 2 and v(r1) = y(r2) > 1.
‘The general unretarded estimates (2.12') and (2.13') can now be obtained by exactly the
same abstract duality argument as in the case ¢ > 2. Similarly, the retarded estimates can
be established in all situations except when ((1/q1, 1/r1), (1/g2, 1/r2)) € (A, B)x(B,ClU
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(B,C] x (A, B). In this case a more delicate argument involving a dyadic decomposition
in time has to be used. 1
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ON THE INITIAL VALUE PROBLEM FOR
THE DAVEY-STEWARTSON
AND THE ISHIMORI SYSTEMS

NAKAO HAYASHI

Abstract. We consider the initial value problem for the Davey-Stewatson and the
Ishimori systems. Our purpose is to investigate the minimal regularity assumptions
necessary on the data which yield the local existence in time of small solutions to the

systems.

1. Introduction We consider the Davey-Stewartson system

i10u + cod2u + 02u = cr|ulPu + coudzp, (t,2,y) € R3,
(DS) B2 + c302¢ = Oz |ul?,
U(l,’y,O) = UO(fE,y),CQ,Cg € R, c,e2 €C

and the Ishimori system

10yu + c402u + 02u = F(u, Vu, V), (t,z,y) € R,
@) Ozp + e = G (u, Vu),

’U,(CL', Y, 0) = ’U/O(m; y))

F= cs-i—fb-l—ql—lg((ﬁzu)z + ¢6(8yu)?) + c7(8:udyp + 8,ud.¢p),

(0zu)(0yT) — (821)(0yu) ca,cs € R, cs5, 6,1, 09 € C

= T+ @z

The (D-S) system was first derived by Davey-Stewartson [8], Benney-Roskes [5] and
Djordjevic-Redekopp [9] and model the evolution of weakly nonlinear water waves that
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travel predominantly in one direction, but in which the wave amplitude is modulated
slowly in horizontal directions. Independently Ablowitz and Haberman [2] and Cornille
[7] obtained a particular form of (1.1) as an example of a completely integrable model
which generalizes the one-dimensional Schrédinger equation. In [9] it was shown that
the parameter c3 can become negative when capillary effects are important.

When (co,c1,¢2,¢3) = (1,-1,2,~-1), (=1,-2,1,1) or (—1,2,—1,1) the system in
(1.1) is referred to the inverse scattering literature as the DSI , DSII defocusing and
DSII focusing respectively. In these cases several results concerning the existence of
solitons or lump solutions have been established ([1],(3-4],{7],[11-13],[25]) by the inverse
scattering techniques. As a matter of fact, cases where (1.1) is of inverse scatter-
ing type are exceptional. By Ghidaglia and Saut [14] the IVP (initial value prob-
lem) (1.1) was studied and classified as elliptic-elliptic (E-E), elliptic-hyperbolic (E-H),
hyperbolic-elliptic (H-E) and hyperbolic-hyperbolic (H-H) according to the respective
sign of (¢g,¢c3) : (+,+), (+, =), (—, +) and (=, —). For the elliptic-elliptic and hyperbolic-
elliptic cases, local and global properties of solutions were studied in the usual Sobolev
spaces L?, H', H? in [14].

We turn now to the Ishimori system (I). Ishimori [19] proposed the following system

0iS = S A (825 + co028) + 1 (9490, S + 8,00, S)
(I1) B2+ 2020 = ¢35 - (8,5 A 8,5)
5(z,y,0) = So(z,y),

where (co,c1,¢2,¢3) = (—1,¢1,1,2) or (1,¢1,~1,-2), S(-,t) : R? — R3, |S]? =1
S — (0,0,1) as v/22+ 3?2 — oo and A denotes the wedge product in R3. The IVP
(I1) is COHSldel‘ed as a two-dimensional genelahzcxtlon of the Heisenberg equation in
ferromagnetism. We put

8 = (51,52,8) = (u+ @, —i(u = %), 1 — Jul?),

1
1+ |ul?
where u : R*> — C. Then it is clear that S(-,t) : R? — R3 |S?P = 1, u = (S +
iS2)/(1 4+ S83) and S — (0,0,1) as \/22+ 42 — co if u — 0 as /22 + 32 — co. When

co= 1,e; = 0 (I1) is reduced to the two dimensional Heisenberg equation. When
c1 = 1, (I1) was studied formally by Konopelchenko and Matkarimov [21,22] by using
the inverse scattering transform. By using the new variable u the Ishimori equations
(I1) can be written as

i0pu + 02u + codZu

21775 ((02u)? + co(Byu)?) + ict (Budyp + By udsp)

. (Bpu) (8, 1) — (Do) (Byu
820 + (2253@ = 2163( ) (H)(ufzp )(0y)

(12)

Iu’(m)y) O) = ’Ulo(.'L', y)

which is a special case of (I).
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Following the classification of the Davey-Stewartson systems used in [14], we classify
(I) as elliptic-elliptic, elliptic-hyperbolic, hyperbolic-elliptic and hyperbolic-hyperbolic
according to the respective sign of (cq,c8) : (+,+), (+, =), (—,+) and (—, ).

In [24] Soyeur studied the case (c4, cs, s, cs, Co) = (=1, 2,—1,1,44) for (I) which cor-
responds to a hyperbolic-elliptic case and obtained local well-posedness results and a
global existence of small solutions. His method is also useful to the elliptic-elliptic case
of (I).

We now give a table which says works on local existence in time of solutions to (DS)
and (I) systems

y\z L I I3 Iy Is  Is
(EE) (DS) [14] (14 14  [14  [15] [15]
(BE) (1) [24 [24] [24f [24]  [15] [15]
(BH) (DS) x (6 x [23,028,f6] [15] [15]
(E-H) (I) X X X [17] X [15]
(B-B) (DS) [14] [14] 14  [14  [15] [15]
(B-E) () [24] [24) 24  [24)  [15] [15]
(H-H) (DS) «x X X (23], (18]  [15] [1§]
(H-H) () X X X X X [15]

where I1,--- , Is imply the conditions on the data as follows :

Il o Ug € Hm,O)

‘]2 I Ug € Hm’o, ”'LLQ,

Hro is sufficiently small,
13 : Uy € Hl’s
Io: uo € H® |uollges is sufficiently small,
Is : ug is in some analytic function space,

Is : ug is small in some analytic function space,

where
HYS = {f c LQ; “(1 +$2 +y2)s/2(1 _— 8§ — a‘.yz)l/zj-“ < 00,l,8 > O},

We next give a table which says works on global in time of solutions to (DS) and (I)
systems.
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y\ZE Il IQ I3 I4 Is Ia
(E-E) (DS) [14] [14] [14] [14] x  [1§)]
EE)I x x x [24 x [15,16]
(E-H) (DS) x x x [6] x  [1§]
(E-H)(I) x x x x x [15,16]
(H-E) (DS) [14] [14] [14] [14] x  [15]
H-E)(I) x x x [24 x [15,16]
(H-H) (DS) x X X X x  [15]
(H-H) (I) x x X X x [15,16]

In this paper we concentrate our attention to the elliptic-hyperbolic (E-H) and
hyperbolic-hyperbolic (H-H) cases. Without loss of generality we may take (co,c3) =
(£1,-1) in (DS),and (cq,cs) = (£1,—1) in (I). In these cases one has to assume that
(-) satisfies the radiation condition.

(1.1) A o(z,y,t) = ei(z,t),  lm o(2,9,1) = pa(y, 1),

where ¢, and o are given functions. Under the radiation conditions (1.1) (DS) and (I)
are written as after a rotation in the zy-plane and rescaling,

10:u + Hu
12 = diful®u+ dau [° O:|ul?(z, ¥, t)dy’
' +dgu [ 0ylul (2, y, t)da’ + daubyipr + dsud,eps,
’lL(fB,y,O) = uo(:c,y),
(1 3) { ic’?tu+Hu=F1(u)+F2(u),
' u(z,y,0) = uo(z,y),
where i
Fi(u) = W(dﬁ(&uu)g + dr(8,u)? + dg(8.1)(8yu))
Fy(u) = dg(0,udy 2 — 0zudsp1
——6yu/ G(u, 0zu, ayu)dm’+8mu/ G(u, 0 u, 0,u)dy’),
z Y
_ o (@:u)(0,8) - (3.0)(0,v)
G(u, 0zu, Oyu) = dio (L Tup)? .
where di,--- ,djo are arbitrary constants, H = 0,0, when cp,cq = —1 and H =

82 + 82 when cq,cq = 1.
We state the results concerning (E-H) and (H-H) cases. Linares and Ponce [23] and
Chihara [6] obtained the following results.
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Theorem A [23]. We assume that ug € H° N H32 =Y,,5 > 6, p; = @3 =0 and
lluollmrs.o + |uoll g2 is sufficiently small. Then there ewists a positive constant T > 0
and a unique solution u of (1.2) with H = 8,0, such that u € C([0,T); Ys).

Theorem B [23]. We assume that ug € H¥° N H®S = W,,5 > 12, ¢; = @3 = 0 and
lluoll grazio + |luol| es is sufficiently small. Then there exists a positive constant T > 0
and a unigque solution u of (1.2) with H = 82 4 82 such that w € C([0, T]; W).

Theorem 1.1 [6]. We assume that ug € H*°,where s is a sufficiently large integer,
01 = 3 =0 and |Juollzz < 1/ (2,/MaX(q, 437 €). Then there ewists a positive constant
T > 0 and o unique solution u of (1.2) with H = 82+82 such thatu € Gy, ([0, T); H*°)N
c([o,T]; Hs—19).

Theorem 1.2 [6]. We assume that ug € NI_oH*"77 where s is o sufficiently large
integer, p1 = 2 =0 and }:j —o w0l re-s-35 is sufficiently small. Then there exists o
unique global solution v of (1.2) with H = 82+32 such thatu € M2_oCy([0, 00); H*~99)N
C([0, 00); He~1=3:7),

To state the results obtained in [15] we prepare notation and some function spaces.
Let X be a Banach space with norm |- | x and B = (Bi,--- B;) be a vector field of
derivations. The generalized Sobolev space B™ is defined by

={f € L*|fllz= = >_ IIB*fll12 < oo},

o] <m

where B* = B .. B,?, |a| Zlékgj ak,ar € NU{0}.
Let A > 0. We deﬁne generalized analytic function space as follows :

AlB
GHBX)={f € Xilflermxy= D, ar A2 187 < o0}.
pe(Nu{0})J
We introduce the first order differential operators J, = x + 2itd,, J, = y + 2itd,, J; =
Y+it0s, Jo = T +itdy, Qpy = 20, — Y0, and Oy, = 28, —yd,. By using these operators

we define
0= (0;,0y), R=1(8,J1,J2), ['=(R,O3)

=(8,Js,Jy) and T = (R, Q).

These operators together with the identity form a Lie algebra.
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Theorem 1 [15]. We assume that
Uy € GA(a; Hm’o),

where A > 0 and m > 3.* Then there exists a unique local solution u of (1.2) and a
positive constant T such that

u(t,z) € C([0,T]; G (8; H™P)),
where A1 < A.

Theorem 2 [15]. We assume that

1
Uy € GA(B; Hm’O)a HU'O“G’A(B;H'""O) < 9

where A > 0 and m > 4. Then the same result as in Theorem 1 [15] holds for the IVP
(1.3).
Theorem 3 [15]. We assume that

ug € GH(R(0); R™(0)), lluollga (r(oy;rm(0)) < €

where A > 0 m > 3 and € is a sufficiently small positive constant. Then there exists a
unique global solution u of (1.2) with H = 02 + 5.3 such that

u(t, z) € G4 (R(t); R™(t)) forany te€RT,
where A1 < A.

Theorem 3°’[15]. The result of Theorem 8 [15] holds true for the IVP (1.2) with H =
0:0y under the hypotheses of Theorem 3 with R replaced by R .

Theorem 4 [15]. The result of Theorem 8 [15] holds true with m > 5 for the IVP (1.3)
with H = 8%+ 87 (resp. (1.8) with H = 8,0,), provided we replace in the hypotheses,
RbyT (resp. RbyT). ’

Remark 1. Theorem 3,3’ and 4 require the exponental decay on the data. In [16] that
condition on the data was removed for the Ishimori system (1.3).

In order to state next results obtained in [17,18] we introduce the weighted Sobolev
space H;"® defined by

H* ={f € L*(Ry); Iz = | <3 >°< Dy >™ fllz < 00}, j = 2,9,
where

<j>=1+5)%<D; >=(1-0?)"?D; = ~id;, and u-ui.j =/|-|dj.
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Theorem 1 [18]. We assume that uo € H®° N H%® = Z5,6 > 1 ,0,¢1 € HSO,
Byp2 € HE® and |uoll gs.o + luoll gros is sufficiently small. Then there exists a positive
constant T > 0 and a unique solution u of (1.2) such that u € C([0,T); Zs).

Theorem 1 [17]. We assume that ug € Za, Ozp1 € HEXONHSS | 8,0, € HX° NH)®
6> 1 and |uol grao + l|voll mro.a + |0z || yros + [|5y<p2||HZ,,s is sufficiently small for anyt.
Then there exists a positive constant T and a unique solution w of (1.3) with H = 834—8’5
such that u € C([-T,T]; Z4).

We now state the main result in this paper which is an improvement of [17, Theorem
1].

Theorem 1. We assume that uo € Z14s, Oxtp1 € HXPOONHES | 8,0, € HITPONH]S
§ > 1 and |uollgr+so + l[uoll mroa+s + 10201l yos + 10y 2l gs.s is sufficiently small for

any t. Then there exists a positive constant T and a unique solution w of (1.3) with
H = 82+ 02 such that u € C([-T, T}; Z1+s)-

To prove Theorem 1 we use the following function space

X(T) = {f € ([0, T}; L*); Il f Iy

T \
sup 7 ()%, + / 1F ()%, dt < oo},
t€[0,T] 0

where
Ifllx, =1l <D > fll+ 1l <z > fll, IfI=lflz,

Ifllx, = | <@ >77< Dy >¥2% fll+ || <y >77< D, >¥° f].

In the following three sections, we give the outline of the proof of Theorem 1.

§2 Linear Schrodinger Equations. In this section we consider the inhomoge-
neous Schrodinger equations ’

{ ibu+Au=f, (t,z,9) €R3,

(21> ’U,(fﬂ,y, 0) == ’U,O(x,y),

where A = 82 + 82.

In the same way as in the proof of [18, Lemma 3.6 (3.20)] we have
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Lemma 2.1. Let u be the solution of (2.1) with H = 82+ 82. Then we have

1
(2.1) lul ) < Clluollk, +/D ()%, + 1L () lLros () llx, dr

1=y

t
+ 3 / |(]; < Dy >0 £(r), K; < Dj >0 u(r)

+|(< D; > f(1), < D; >Y u(r))|dr  for te€0,T),

where

7 D,
j = =6 J d = gax .
K =enl([ <r>tar—Fo) (fo)= [ foddy

Remark 2. The operators K. ; were used by Doi [10] first to prove the L? well posedness
of linear Schrédinger equations.

Lemma 2.1 follows from the classical energy estimates and the smoothing property of
solutions to (2.1) which is written as

i
(1< Dy >™ u@l + [ <5 >7< Dy 57 u(r)|Pdr)

=%,y

=T,y

<C Y (Il < Dy >™ uol?+ / | <> u(r)|Pdr
+ [ 10 < Dy > 1), K; < Dy > u(r)a),

(see [18, Lemma 3.2] for details).

§3 Nonlinear Estimates. In this section we present the estimates of nonlinear
terms. We let

_ v
1+ |ul?
Fa(u) = do(0yudypa — 0:ud: 1

Fy(u) = (de(0z1)* + dr(0yu)? + ds (0:u) (8,1)),

—ayu/ G(u, Bxu,ayu)d:v’+8mu/ G(u, 0,1, 0yu)dy’),

(0z1)(8yt) — (0:1)(0yu)
(1+ |ul?)? ‘

G(u, Ozu, Oyu) = dig

In the same way as in the proofs of [18, Lemma 2.3-2.5, Lemmma 2.10, Lemmas 2.13,
2.14] we have by making use of the commutator estimates in the fractional order Sobolev
space obtained in [20, Appendix]
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Lemma 3.1. We have for 6 > 1

T
3 [ 1 < Dy > R(u(), K < Dy > ulo)

j=z,y
+|(< Dj > B (u(7)), < D; >4 (1)) |dr

< Cvlk ey + Dllvlxylullxzy,

and
T
S [0 <Dy 51 (Bl (r) - Fsa(r),
Kj < Dj > (ui(r) — uz(7)))]
+|(< Dy >0 (Fi(wi(7) = Fi(va(7)), < Dj > (ua(7) — ua(7)))ldr
< Clvlk ey + lv2llk ey + Allvr = vallx @y lur = w2l x 2y,
where

A= sup “amwl”ngﬁ + sup - HaySOzHHﬁ»&-
te[~T,T] te[-T,T) Y

§4 Proof of Theorem 1. We prove Theorem 1 by the classical contraction map-
ping principle. We define the operator ® by u = dv, where u is the solution of

(4.1) { iBgu + 02u + 02u = Fy(v) + Fa(v),

’LL(IE, Y, O) = ’LLO(CE,’]/),

where F; and Fy are the same as those defined in (1.3), and
vE Xt ={f€XT)Iflxy £0}, p<<1.
Applying Lemma 3.1 to Lemma 2.1 with f = Fj(v) + F»(v), we obtain by (4.1)
[2vlxry < glollxcy, and [@v— Suallxcry < 5 lor — vallxeny

under the conditions given in Theorem 1. This shows that @ is a contraction mapping
from X, into itself. Hence we have the result.
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NON-LOCAL CONSERVATION LAWS
IN RELATIVISTIC THEORIES OF EXTENDED OBJECTS

JENS HOoPPE*

Abstract. The dynamics of an M-dimensional extended object whose M-+1 dimensional
world volume in M+2 dimensional space-time has vanishing mean curvature is formulated
in term of geometrical variables (the first and second fundamental form of the time-
dependent surface }"ps). It is shown that the non-linear equations of motion for Y .(¢)
can be viewed as consistency conditions of associated linear systems that give rise to the
existence of non-local conserved quantities. For M=2, an explicit solution in terms of
elliptic functions is exhibited, which is neither rotationally nor axially symmetric, and
also yields 3-fold-periodic spacelike maximal hypersurfaces in R+,

1. Introduction

Consider the motion of an M-dimensional extended object 3"3,(%) in RM*!. Any such
motion gives rise to a (M +1)-dimensional manifold M in (M +2)-dimensional space-time
RYM+1 whose boundaries (if 35/ is compact) are 3", (initial time ¢;) and Y57 (final time
ts). Relativistically invariant dynamics for 3"ps can be formulated by subjecting M to
a variational principle, like the extremization of the volume-functional (generalizing [6]).
The volume of M may be given by introducing coordinates (¢*)q=o,...;r on M, describing
M C R¥M+! by the M + 2 coordinate-functions z#(¢?,---,oM), calculating the metric
Gop induced by the flat Minkowski-metric (7, )u=0,-m+1 = diag(l,—1,---,—1) and
integrating,

S = Vol(M) = / dgM /G (1)

Oz* Oz

_ M _ur oT
G = (_) det(GOfﬁ) ’ Gaﬁ_ acpa awﬁn#u
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Taking (1) as a starting point (with signature (M) = (1,-1,---,— — 1)) one may
ask: what does extremality of S (considered as a functional of the z*) imply for Y p(2),
the shape of the extended object? Choosing ¢° = z° = ¢, and the time dependence
of the spatial parameters ¢ = (¢")r=1,...nr such that the motion of Y 5, (described by

Z(t, ) = (z1,---,zM*1)) is always normal, i.e.
1-%  0---0
Gap)=| @)
“ P —0,d-03
0
the extremality condition(s)
—Laax/éaaﬂaﬁw“ =0 (3)

VG

read: .
?a% (‘/5 1 1552) =0 4)
p-F= 0295703 (5)
p
p=p(@,- M) = V1 _gé.z
where - = %, and g and g™ are the determinant and invérse, respectively, of the (positive

definite) metric g, := 0,Z0,% on ¥ 57(t). The conservation law (4), “large area(densitie)s
have to slow down, while small area(densitie)s speed up” (anticipating singularities as
well as periodicity), encodes almost the complete dynamical information. To see this, one
first notes that on a fixed compact surface Y 5 (¢t = t;) parameters (¢7)=1,...;s may be
chosen such that the conserved (energy-)density is actually independent of ¢, i.e.

E24g/AM =1 (6)
A = const.

— as noted already in [2], (4) then ensures that (6) will hold for all . Furthermore, as (5)
and the orthogonality conditions (cp. (2))

20,2=0 , r=1,.M (7)

are invariant under

#(t,2) = X(5,9) (8)

(corresponding to z* — Az* in (3)), one could put A = 1 in (6), with the understanding,
that each motion with A £ 1 can be obtained from a A = 1 motion via (8). In any case,
one can show that, since (6) and (7), i.e.

Z=/1—g/)\Mi | (9)
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fi= surface normal, holds (cp. [1]; for a Hamiltonian formulation of (9) see [3], and for
general dependence of the normal velocity on /g, [4]), the equations of motion (5) are
automatically satisfied — apart from points where Z = 0. It is convenient to write (9) in

the form )
= —sinfd 7 (10)

0 = 0(t7 ‘1017 e SOM) € ('—7‘-/27 —{-7('/2)

One should note that choosing the conserved energy density p to be constant on ¥ (i.e.
independent of ¢) is a matter of convenience, not necessity; eq. (5) is a consequence of
(4) and (7), resp. (10), for any p, and in the considerations that will follow one could
equally think of sin®§ as being given by 1 — g/p?(¢), rather than 1 — g/A\?™. Leaving the
density p unspecified one would keep full Diff " invariance of the equations.

2. Formulation of the Dynamics of Y, in Terms of Geometrical Variables

The simple first-order form of the dynamics, (10) (resp. (9)), allow one to easily derive
the basic equations,

Grs = —2sinf h,, (11)
hys = (Ve Vs — hrag®™hey) sin 6 (12)

for the components of the metric tensor, and the second fundamental form

Bps := —02,7 71 ; (13)

rs

(V) are the covariant derivatives (with respect to ¢") on 3, i.e.

VoVof = 00f — v20cf (14)

1
Yap = ‘Q‘QCd(aagbd + O59ad — Oafab)

for any function f: 3>, — R. Note that the gauge-fixing (cp.(6)) has left one with a
residual SDiff },-invariance, i.e. invariance of the equations under reparametrisations

a5
G = (15)

o = @ (@t M), J=det

and that § (remember that cos?§ = g/A*™) is an ‘observable’. Also note that (5), with
p = M = const, implies

F-R=—cos’0-H H: = ¢"h, (16)

= mean curvature

(as well as £0,% = —18,(g/A*M) = sinf cos 9,0 - — which is zero at the turning points,
Z(t,$) = 0); taking the time-derivative of sin § := 7% one obtains

0 =cosd H (17)
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(for 6 # 0, this could have been obtained directly from (11), —2sin 8 cos 99X?M = § =

997°grs = —2gsin 8 H). Calculating —Z*n,,n* being normal to M in RMM+1,
—tand
n* = il (18)
cos

one can check that =% is indeed the curvature of any ¢ = const curve (worldline) in M

(as it should, according to (17), to add up to zero, with the spatial principal curvatures).
In any case, (11) and (12) imply

Gys = cot Bg,sé + %gmg“”gbs —2sin 0V, V,sin b (19)

(where 8, (cp) (17), could be replaced by —1 cot 89*°§.;). Modulo the gauge-fixing, (19)
is equivalent to the original minimal hypersurface equations, while the Weingarten map
T : T = g°°he = hi, whose eigenvalues are the principal curvatures .. satisfies

T=(T?+V'V.)sinf . (20)

Note that the rate of change of the volume enclosed by 3", respectively its total area,
are given by

V= —/sin@costMcp, A= —/sin@cosHHndp (21)

3. Zero Curvature Condition and Non-Local Conserved Quantities.

The fact that the dynamical equations (5) are automatically satisfied as a consequence
of gauge-fixing conditions, (7), and a conservation law, (4), ~ which too can be stated
as a condition on the metric of M — may also be used in the following way: Consider
hypersurfaces 3;,>; , and motions in between such that for t; < ¢ < #; all points of
the surface have non-vanishing velocity. The projection of M onto RM*! will then be a
euclidean domain My C RM*! (with ¥, and 3, , as boundary), parametrized by ¢ and
(¢")r=1,m, and with the euclidean metric

grs = (p - cos 9)’%;}3 0
(Gg)ij=1,---,M+1 = . (22)

22 .
0---0 Z =sin?0

Again one may choose p(p) = AM = const, for simplicity. As (22) contains the entire
g 4 P

information about M, the minimal hypersurface equations should be equivalent to the
flatness of M, i.e. the vanishing of the curvature-tensor

1
ngz = E(aﬁGﬁ + ag?ng - 3;2kGﬁ — aﬁaﬁ) (23)
+ (GEY™ (Tt Tnjt — Dk Tnjt)
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One major advantage of this formulation is that the minimal hyper-surface equations (due
to the definition of the curvature tensor, (V;V;— V,V;)2? = —RE,7z*) are therefore the
compatibility conditions ([8; 4 Ty, & + 1]z’ = 0) of the linear system of equations

(8{ -+ P,)i/) =0 1=1.M+1 , (24)

with (M+1)x(M+1) matrices (T;)} := I'};. Explicitely, one finds

a 1 ad °
Veb ‘2”9 Jdc
I'.= _ (25)
gac
—_ £60.0
2 Siﬂ2 7 €0 ab,c,=1--M
1 aa. . b
“2'9 Gay  — sin 8 cos 60°0
Iy = (26)
cotf0,0 fcotd
Considering
¢(T)(901 ’ Sant) = ¢(‘P17' o 790r +wr’.-_ 'Sont)zib“l((pla' T (Prv' Ty SDMvt) r=1---M )
(27)

(1 the matrix of fundamental solutions of (24) and, for definiteness, taking Y 3s to be an
M-torus, with ¢"€[0,w"]), satisfying

O =[¢ 1] (28)

non-local conserved charges

Qrm = Tr(¢")" (29)
can be deduced from (24) — expressable in terms of the Christoffel-symbols I, of Mg via
solving (28);~, as a pathordered exponential,

¢(T)(901 P (PM7 t) = pe._ f:,- i Fr(wl---ng...(pM’t)d@r (30)

It is extremely tempting to speculate that the hidden Lorentz-invariance together with
the (S)Diff ) invariance should allow one to introduce a spectral parameter into (24).
This would imply an infinity of conserved quantities by expanding (29) in terms of this
parameter (note that the scale-parameter A, cp (8), on which the T'; at first sight seem
to depend non-trivially, eventually just leads to a conjugation of ¢{”) by a A-dependent
matrix).

Finally note that the transformation (9; + I';) — S(8; + ) S™! = (8; + ), with
S being the square-root of the (M+1)x(M+1) matrix (GZ), will yield antisymmetric
matrices Iy = —I% = aipLik, with (Ljt)mn = 8jmkn — 8jn6km, which allows one to
formulate an infinite family of equivalent zero-curvature conditions [8; + I, 0; + f‘,] =0,
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i = aijrlj (the Lj forming SO(M+1) representations of arbitrary (!) dimension),
with corresponding non-local conserved quantities Qyp,.

4. Some Explicit Hypersurface Solutions

As derived in [5], the following hypersurfaces
MT = {(t,7) € R™®| p()p(y)p(2) = p(2)} (31)
M®) = {(t,7) € R*®| p(z)p(v)p(t) = p(2)} , (32)
with p? = 4p(p? — 1), i.e. p > 1 being an elliptic Weierstraff function of period
2w = (F (%))2 /V/87, have vanishing mean curvature. Viewed as time-dependent sur-

faces moving in R3, M(T) gives melting (and forming) “ice-cubes” (at speeds > 1) while
M) corresponds to “stalactites” growing (and “melting”) with velocities < 1.
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Singular limit of solutions of some degenerate parabolic equation

Kin MiNGg Hul

Abstract. We will discuss the singular limit of the solutions of some degenerate
parabolic equations including the case p — oo for the equation u; = Au™ — Au® and the
case g — oo for the equation uz = Au™ — A - V(u?/q) in R™ x (0,T). We will show the
appearence of mesa pattern when p and g are very large.

In this talk I will report my recent result on the asymptotic behaviour of non-negative
solutions u = u(P) of the equation [3]

{ut = Au™ — Au?, (z,t) € R™ x (0,T) 0

u(z,0) = f(z) >0,  feCYR")NL®(R")

where ) is a positive constant and T' > 0, m > 1 as p — oo and the asymptotic behaviour
of non-negative solutions u = u(? of the equation [4]

{ ur = Au™ — A-V(u?/q), (#,t) € R™ x (O’T) (2)

u(z,0) = f(z) =20, f € LY R*)n L*(R")
where 0 # A = (a1,0as,...,an) € R" is a constant vector, T' > 0, m > 1, as ¢ = oo. We
find that as p — oo in (1), the absorption term in (1) disappears. In fact we find that the

solution u = u(®) of (1) will converge uniformly on every compact subset of R™ x (0,T)
as p — oo. and the limit u(*®) = limp_c0 u(?) satisfies the porous medium equation

vy = Av™ (z,t) € R" x (0,T)
v(-,t) \y g as t = 0 in D'(R™) where
g(z) = f(z) for f(z) <land =1for f(z) > 1

We also find that as ¢ — oo in (2), the convection term in (2) disappears. More
precisely, we find that for fixed m > 1 the solutions u = u(® of (2) converges weakly
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in (L*°(G))* for any compact subset G of R™ x (0,1) as ¢ — co. Moreover the limit
u(®) = limg oo u(® satisfies the porous medium equation

ve = Av™ (z,t) € R® x (0,T)
v(,t) \yg ast— 0in D'(R")

where g € L'(R"), 0 < g < 1, satisfies
9(z) + (9(2))e, = f(z) in D'(R")

for some function g(z) > 0, g(z) € L*(R™) and g(z) = f(z), §(z) = 0 whenever g(z) < 1
a.e. z € R".

Similiar result was obtained by Caffarelli and A.Friedman [2], P.E.Sacks [5], M.Herrero
etc. [1], in the case A = 0 and m — oo, and X.Xu[6] in the case of hyperbolic equations.
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THE GLOBAL BEHAVIOR OF WEAK SOLUTIONS TO
SOME NONLINEAR WAVE EQUATIONS

Ryo IKEHATA

Abstract. By constructing so called stable set, the global behavior of weak solutions are

discussed to some semilinear wave equations with nonlinear damping and source terms.

1. Introduction. Let @ C RY be a bounded domain with smooth boundary 8. We
are concerned with the following mixed problems:

(1.1) Ug — Du+ 8w " u=pulpt oy, z€Q, t>0,
(1.2) u(0,2) = up(z), u(0,2) = uy(z), z €Q,
(1.3) ult, a:)laﬂ =0 fort>0.

Here p>1,m>1,6 >0, u € R and A is the Laplacian in RY.
First, for the problems (1.1) — (1.3) Georgiev et al. [1] have shown the following two
theorems:

Theorem 1.1. Suppose u =6 =1 and either 1 < p < 55 ( >3)orp>1(N<2).
Ifp < m and uy € HY(Q) and uy € L*(Q), then the problem (1.1) — (1.3) admits a unique
global solution u(t,z) such that for any T > 0

u(t,-) € C([0,TT; Hy (2)),
w(t, ) € C([0,TT; L3(Q)) N L™((0,T) x Q).
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Theorem 1.2. Suppose p =6 =1 and either 1 <p < 75 (N >3) orp>1 (N £ 2)
and let 1 < m < p. Then the solution of (1.1) — (1.3) blows up for finite time in the L™
norm for suitable large initial data uo € H3(2) and u; € L*(Q).

In Theorem 1.1 the damping term dominates over the source and the global solution
exists for “any” initial data and in Theorem 1.2 the influence of the source is much
stronger for sufficiently “large” initial data. So we can ask some questions as follows:

When 1 < m < p, does the problem (1.1)—(1.3) admit a global solution for sufficiently
“small” initial data ?

To answer the question as above, we shall prepare some propositions and notations,
where ||u||, means the usual L¢(©2)-norm. The following Proposition is due to Haraux [2]:

Proposition 1.3. Suppose § > 0, m > 1, 4 € R and either 1 < p (N = 1,2) or
1< p< 5 (N >3). For any initial data uy € H}(Q) and u; € L*(Q), there esists a
real numberT > 0 such that the problem (1.1)—(1.3) admits a unique local weak solution

u(t,+) € C([0, T); Hy (@) N C([0, Tn); L*(R))

with u(t,z) € L™M((0,T) x Q) for any 0<T < T, and if T, < 00, then
lime,, [[[Vu(t, lla + llus(E, 2] =

Let
_ H
J(u) = 3 ||v 15 — pa At

B(u,v) = II'U||2+J( )

and
— 1
I(u) = | Vull} - wllulfis-
Furthermore, let

d = inf{sup J(\u);u € Hy(Q), u # 0}.

A>0
It is well known (see e.g. Tsutsumi [10]) that the “potential depth” d satisfies either
d>0(u>0)ord=-+oco (u<0).
Now let us define a stable set introduced by Sattinger [9] as follows:

W = {u e HY(Q);J(u) < d, I(u) > 0} U{0}.
Note that W* = H() if u < 0. Then our results read as follows:

Theorem 1.4. Suppose 6 >0, m > 1, u >0 and either 1 <p (N =1,2) or1<p < 75
(N > 3). Let u(t,z) be a local solution to the problem (1.1) — (1.3) on [0,T:) as in
Proposition 1.3. If there exists a real number ¢ty € [0,T,,) such that u(ty,-) € W* and
E(u(to, -), us(to, ) < d, then T, = +0c0.

Furthermore, if we impose the following conditions:

N +2

(1.4) either 1<m (N=12) or 1§m§N 5
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then we get the following main

Theorem 1.5. Suppose § >0, u > 0, (1.4) and either 1 <p (N =1,2) or 1 <p < 5
(N > 3). Let u(t,z) be a local solution to the problem (1.1) — (1.3) on [0,T,,) as
in Proposition 1.3. Then there ezists a real number tq € [0,T,,) such that u(to,-)
W* and E(u(to, ), uto,-)) < d if and only if T,, = +oo and lim;,o ||Vu(t, )| =

limgoo [|ue(t, ) [l2 = 0.

m

l

Remark 1.6. When m = 1 and g = 1, this result coincides with that of Ikehata et
al. [5]. So Theorem 1.5 will become a kind of extension of [5]. Furthermore, there is no
any relation between p and m in comparison with the conditions of Georgiev et al. [1].
Although Theorem 1.4 holds good also when the case of § = 0 (conservative case), we can
not take § = 0 in Theorem 1.5. Finally, after our work has been completed, I was pointed
out kindly by Professor M. Nakao that in Nakao et al. [8] similar results have already
studied to the problem (1.1) — (1.3) with a little restricted m (i.e., 1 < m < ). They
have obtained the exact decay rate of weak solutions. So our work will become a kind of
another proof with respect to the decay property of solutions.

Corollary 1.7. Let §, m and p be as in Theorem1.5. Suppose y < 0. Then for any initial
data [ug, u;] € H(€2) x L3(£2), the problem (1.1)—(1.3) has a unique global solution u(t, z)
satisfying [u(¢,), w(¢, )] — [0, 0] in H3 (D) x L3(Q) as t — +oo.

Remark 1.8. Although the result of Corollary 1.7 is not so new, its proof is new because
the arguments are based on the potential well W* = H}(Q).

2. Preliminaries. Throughout this paper the functions considered are all real valued
and the notations for their norms are adopted as usual ones (e.g.,Lions [7]). Furthermore,
0 C RY is a bounded domain with smooth boundary 6.

We shall describe some lemmas which will be used later without proof (see ITkehata [4]).

2N
Lemma 2.1 (Sobolev-Poincaré). If 2 < ¢ < Y then

[ullg < C (8, 9l Vulla
for u € H} ().
The next lemma is due to Haraux [2].

Lemma 2.2. Let u(t, z) be a local solution to (1.1)—(1.3) on [0,T,,) as in Proposition 1.3.
Then the function t — E(u(t, ), u:(t,-)) is absolutely continuous and

Bla(t, Yyunlt, )+ [ [, e < Blu(s, ), (s, )
for 0< s <t < Ty

Lemma 2.3. If 4 > 0, then W* is a bounded neighbourhood of 0 in HZ(2).
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For the proof of Lemma 2.3 we refer to Lions [7].

Lemma 2.4. Let u(t, z) be a local solution to (1.1)—(1.3) on [0,T},) as in Proposition 1.3.
If there is u real number ty € [0, T,n) such that u(to,-) € W* and E(u(to, ), us(to, ")) < d,
then u(t,-) € W* and E(u(t,-), u(t,-)) < d for allt € [to, Trm)-

When the case p > 0, the next lemma plays an essential role in deriving the decay
estimate of the total energy E(u(t,-),u:(t,-)) as t — oo. For the proof we refer to
Tkehata [4].

Lemma 2.5. Let u(t, z) be alocal solution to (1.1)—(1.3) on [0, T;,) as in Proposition 1.3.
If there exists a real number ¢y € [0,T},) such that u(to, ) € W* and E(u(to, -), ui(to,*)) <
d, then

llu(t, M3 < A= DIVulE, N on  [to, Tn),

where

E(u(to, -), usto,-)) T > 0.

‘2;—1
751—0(9,P+1)p+1{‘——“2(p+1)} =

3. Proof of Corollary 1.7. We shall give only the proof of Corollary 1.7 because the
proof of Theorems 1.4 and 1.5 will be appeared in Tkehata [4]. Since the global existence of
solutions is easy, we shall devote the final calculations to the decay property of solutions.

Lemma 3.1. Let u(t, z) be a global solution of (1.1) — (1.3) with u < 0. Then there exists
a real number € > 0 such that

llu(t, )i < EllVut, i3

for allt €]0,400).
Proor. It follows from Lemma 2.1 that

(3.1) lullpis < C(Q,p+ PGBVl for ue Hy(9).
On the other hand, since J(u) > 7||Vul|; when the case 4 < 0, by (3.1) we obtain
73 < C(9,p+ )P {27 ()} T | Vull3

So, since u(t, z) is a global solution of (1.1) — (1.3), then from Lemma 2.2 with s = 0 we
get

lult, B < C(Q,p+ )P0 (u, )} 5 | Vult, )l
< C(9,p+ D)PH2E(uo, w)} T ||Vt )|I2

which implies the desired inequality. O

Proor oF COROLLARY 1.7. First, by the same argument as in Ikehata [4, Lemma 3.5]
we get

(3.2) (1+0B() < BO)+ 5 [ 1(s)1Bds + [ I
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where E(t) = E(u(t,-), u(t, ), u(t) = u(t,-) and v'(t) = w(t,). So, from (3.2) and
Lemma 3.1 it follows that

(33) (OB <BO)+3 [ [ 6)Eds+ {5 o } [ 1veuts)|ids.

Since I(u(t)) > ||Vu(t)||2 when the case x < 0, from (3.3) we obtain

(3.4) (1+1)E() < E(0) 2/ /(s ||2ds+1// I(u(s))ds,

with some v > 0. Noting that

[ o) iztas < 220

because of Lemma 2.2 with s = 0, from the same arguments as in Tkehata [4, Lemmas 3.3
3.4] and (3.4) it follows that

(1+8)E(t) < Cy + Cat mit + Cytir

which implies the desired statement, where C; (1 = 1, 2, 3) are positive constants. O
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A NEW CONSTRUCTION OF A FUNDAMENTAL SOLUTION
FOR THE FREE WEYL EQUATION
~AN EXAMPLE OF SUPERANALYSIS

ATsusHI INOUE (ATLOM)

ABsTrAacT. We propose, through an example, a new treatise of a system of partial differential equations, by
which we may consider that system as if that is a “scalar one” on the superspace.

§1. INTRODUCTION AND RESULT

Let (¢, q) : R x R® — C? satisfy

., 0 ' o 5
@) {maw(t,qumq), = —icror L

1/)(07 Q) = __'lé(q} .

Here, ¥(t,q) = *(¥1(¢, q), ¥2(t,q)) and the Pauli matrices {o;} are, for example, represented by

(01 _(0 =) L. _(1 0
1—'10,0'2""7:0) 3—'0_1’

which satisfy the following relations (I, stands for the m x m identity matrix):

00 +0oro; = 2051y for 5, k=1,2,3,
0'10'2=’£0'3, 0‘203='i01, 0'30'1=’i0'2.

Applying formally the Fourier transformation w.r.t. ¢ € R3 to (1.1), we get

(1.2) z'hgt—zz(t,p) = Hy(t,p)

where
; D3 D1 —ipa . Ao 2y 12
H=co;p;=c . with H* = I,
iPi <P1 +ips  —ps3 ) [pl"T

Therefore, we have

Typeset by ApS-TEX
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WEYL EQUATION

Proposition. For anyt € R and ¢ € L*(R3 : C?),

(13) e~ MMy (q) = (2mh) S/ / dp i et (),
v . ¥

Moreover, for 1 € S(R? : C?), we have

(1.4 ) =B pltia) = [ do'Elha - )9(0)

with

isin(ch"ltlp[)

H] e S/(R3 : C?).

(1.5) E(t,q) = (2rh)~3 /le dp eir‘"lqp[cos(ch‘ltlpl)llz -

Pauli claimed one day that there exist no classical counter-part for a quantum spinning particle. In
spite of this saying, we claim another representation which exhibit the underlying “Classical Mechanics”:

Theorem (Path-integral representation of a solution for the Weyl equation).

(L6)  wltq) =b((2rh)n / /m . AT DY2(0,3,8,6, W)™ S AOED F (i) (€, m))

Za=q
Here, S(t, %, 0, §,m) and D(t, 7, g, £, x) are solutions of Hamilton-Jacobi and continuity equations, respec-

tively. F is the Fourier transformation of functions on R312.

Remark. Unfamiliar notations, such as #, b, 8, m, zg, R>2, will be explained in §3.

§2. GENERAL BACKGROUND

(i) Derivation of the Weyl equation.

The Einstein’s relation
(2.1) E*=c*pf* +m?c*, |p® =p}+pf+08

is well known as the energy for a free particle with mass m moving with momentum p = (p1, pe, p3).
The rest energy E = mc? gives the theoretical foundation of Atomic Energy.

By formal substitution

., 0 ho
B il 2= 50

we have the Klein-Gordon equation

(2.2) hz(-@-z-— 2A)u(t )+ m2ctu(t,q) =0
. 52 'q ,q) = 0.

But to apply the Copenhagen interpretation for Quantum Mechanics, we should quantize the Einstein

relation so as to obtain a local operator having the first order derivative in time; so explained by many
physicists.

To do this, Dirac introduced his matrices to have

(2.3) E = ca;p; +me®f
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A. INOUE

and by the substitution above, he derives the Dirac equation
(2.4 in2ap(t, ) = oy 2p(t,q) + mBib(t, )
. 6t b q - ¥} aqj b q 1 q

Here, ¥(t,q) = t(¥1(t, 9), ¥2(t, @), ¥3(t, @), ¥a(t, q)), the summation w.r.t. j = 1,2,3 is abbrebiated, and
matrices {ay, 8} satisfy the Clifford relation:

Q0 + Rty = 25jk]I4, 5 k=1,2,3,
aiB+Par =0, k=1,2,3, =L

In the following, we use the Dirac representation of matrices

ﬂz(é —91)’ °"°=<a?k og)k)'

On the other hand, when m == 0, Weyl proposed the relation

(2.5) E = cojp;
with
, ., 0 _ 0
(2.6) o h(t,q) = cojg qu(t, )

where (t,q) = *(1(t,q),¥2(t,q)). But this equation doesn’t recognized meaningful until 1956 when
Lee-Yang demonstrated the non-conservation of parity under “weak-interaction”. Today, “neutrino” is
considered to be governed by the above equation, called Weyl equation.

(ii) Feynman’s notorious measure.

It is believed to be a nice approximation to use Schrédinger equations for describing the kinematics
of non-relativistic “quantum particles”. Therefore, one has the desire to solve the following initial value
problem:

2.7) {mgt“( )"Q@%AU(@QHV(Q)U(t,q),
u(0, q) = ¢(q)-

Here, the Hamiltonian is given formally as

62
Bq]

=-h—A+V()—Ho+V(), A= Z

and m =the mass of the particle.

Assuming suitable conditions on the potential V', H above defines a selfadjoint operator in L*R™: C)
and the solution of (2.7) is written by

u(t,q) = ("% ¢)(g).
On the other hand, by applying formally the Lie-Kato-Trotter formula, we have

. . ) k

—d . PR 3 it

e nltH=s—--khm (e 7EVe nkH") .
—00
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WEYL EQUATION

If the initial data ¢ belongs to S(R™ : C), we get

; ht\ ™2 o oaV2 /2R
2.8) Hmg)g) = (il ) [ ag e,

Therefore, (abusing {qj};’;& as g; € R™)

—km/2
i VAt 3
(¥ 9)(q) = 5= lm <2WZH> /"'/eﬁst(q"""’q°)¢(t10)d% “+ dg—1

(2.9)
= / dq' F(t,q,q')o(q).

Here, we put g = g, g0 = ¢,
Si( )=§k: @ = 01)’ ]
t\Gks-++,40 =~ 9 (t/k)2 J k’

and
—km/2 . ,
(2—10) F(t, q’ ql) = 8- lim (27{@—) f ses /dql e qu—l e'ﬁst(‘bq}c—-lr":qlpq ).
k—oo m

Feynman interpreted this as follows: Consider a path space defined by

Chraq ={7() € AC([0,#] : R™) |4(0) = ¢',(t) = g}

Here AC stands for absolutely continuous. For any path v € Cy q,¢, putting v(7;) = g; with 7; = jt/k,
he regarded S¢(gx,...,qo) as the Riemann sum for the classical action S;(y) for v € Ciq,¢, i€

5:1) = [ dr L) A7) = lim Sl 0),

where

LivA) = 54 ~ V(y) € C=(TR™ - C)

When k — co, the ‘limit’ of the measure dg; - - - dgx—1 in (2.10) is denoted by

dpy = H dry(t)

0<T<t

and considred as the ‘measure’ on the path space C; 4 .. Using these, he concluded that we may represent
(2.10) as

(2.11) Flt,q,d) = / dpy e 18 LA

t,q,9’

On the other hand, it is proved unfortunately that there exists no non-trivial ‘Feynman measure’ on
oo-dimensional spaces. Therefore, one of our main concern is how to ‘justify’ the results obtained by
using such a notorious measure.

Why it is necessary to do so? Because, even if the usage of the Feynman measure is prohibited in
mathematics, we get new insights in “quantum area” by ‘using’ it, for example, works done by E. Witten
and other physicists.
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A. INOUE

(iii) Fujiwara’s procedure.

Fujiwara [7] proposed to construct a fundamental solution of the Schrédinger equation by using the
quantities obtained from the corresponding classical mechanics. In some sense, the meaning of (2.11) is
given when L(v,%) is defined as before with m = 1, V € C®(R™) satisfying

sup |[D*V(z)| < C, for any |a| > 2.
zER™

Then, there exists a unique path «yp in Cj g, such that

(2.12) inf  Si(v) = Si(v) = ¢t 0, 4).
'YECt,q,ql

From this, he put

1
2
i

i
(2.13) pur(t,q,q') = (2m)~™/? (det (83;,- By; ('ﬁ(ﬁL(ta’Q: q’))))
and he gave the meaning of the integral transformation

(2.14) - (Ru)(g) = / dq’ pr(t, ¢, )er?= B9y ('),
Rm.

Theorem (Fujiwara). Let T < co be arbitrary fixed.

(1) The operator F; defines a bounded linear operator in L?(R™ : C), i.e. there exists a constant C
depending on T such that

|Full < Clu|l forany weL*®™:C) and te[-T,T).
(2) It satisfies

lim ||Feu—u| =0 for any ueL*®™:C),

in 2 (Fu)(g)

h2
= = H(g, D)u(g) where H(q,D)=5-A+V(a),

t=0
|Fops — FFo|| S C(t +s%) for t,s,t+s€e[-T,T)

(3) Moreover, limy_,qo (Fy /k)k = E; exists as the uniform limit of bounded operators in L?(R™ : C)
and it defines the fundamental solution of

{ m%@u)(q) = H(g, D)(Bw)(q),
(Bow)(q) = u(q).

Remark. Above procedure of Fujiwara was used also by Inoue-Maeda [15] to explain mathematically
the origin of the term (1/12)R, R =the scalar curvature of the configuration manifold, which appeared
when one wants to “quantize” the Lagrangian on a curved manifold.

Problem. In (2.11), a Lagrangian is used. How should one formulate the above procedure when a
Hamiltonian is given?
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WEYL EQUATION

(iv) Feynman’s problem for spin.

Feynman claimed a problem in p.355 of Feynman & Hibbs [6]:

...... path integrals suffer grievously from a serious defect. They do not permit a discussion of
spin operators or other such operators in a simple and lucid way. They find their greatest use in
systems for which coordinates and their conjugate momenta are adequate. Nevertheless, spin
is a simple and vital part of real quantum-mechanical systems. It is a serious limitation that
the half-integral spin of the electron does not find a simple and ready representation. It can
be handled if the amplitudes and quantities are considered as quaternions instead of ordinary
complex numbers, but the lack of commutativity of such numbers is a serious complication.

(v) The method of characteristics and Hamiltonian path-integral.

Let 2 be a domain of R™t1. We consider the following initial value problem:

%wm+2ﬁwm£?w¢=wmwmnvwm

(2.15) et
u(t, 9) = u(g)-
We solve
d
216) {E%w=%m«m,
g;(t) =g, for §=1,---,m.

We denote a solution of above by
qt) =q(t,t;9) = (a1 (t), -+ ,gm(t)) € R™.
The following theorem is well-known:

Theorem. Let a; € C'(Q: R) and b, f € C(Q : R). For any fixed point (t,q) € 2, we assume u is C*
near g. Then, there exists uniquely a solution u(t,q) near (¢,q). Moreover, we put

. t ,,
(2.17) Ult,q) = o't 4T B(ra) { / dse” 't B ps, q) +u(g)}
t

where B(t,q) = b(t,q(t,t;9)) and F(t,q) = f(t,q(t,t;q)). Then, the solution of (2.15) is given by
u(t,q) = U(t,=(t, 7))
where ¢ = x(t,1;q) is the inverse function of § = q(t,t;q).

Remark. U(t) = U(t,q) = u(t, q(t)) satisfies

= B()U(t) + F(t) where B(t) = B(t,q) and F(t) = F(t,q)

au(t)
t
near t ={t.
In order to consider more concretely, we take an

Ezample. )
.0 h
{ ’Lﬁ,“—atu(ta Q) - 0,;:- aqu(t7 Q) + bqu(t’ q)’
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From the right-hand side of above, we have a symbol

H(g,p) =e o (“h% + bq) e P = gp + bg.

)
fa0" = (10)-(2)

q(s)=gq+as, p(s)=p—bs with ¢==z(t,0;9) ==z(t,q) =7—at

Therefore,
which are solved as

From (2.17), we have
Ult,q) = y(q)e—iﬁ“l(bit+2‘labt2).

Therefore, _ _ _ih~1(b.qt_2—1abt2)
u(t,q) = u(@ — at)e -

On the other hand, we put

So(t:gp) = /0 t ds[d(s)p(s) — H(a(s), p(s))] = —bgt — 27 abt?.

Defining
$(,7,2) = g0+ S0(: )| imoe

we have
S(t,q,p) = gp — apt — bgt + 2™ abt”.

As 825(t,q,p)/970p = 1, we have
u(t,3) = (2r) /2 [ dpet TRy p)

= (27rh)‘1 // dzdgeinﬂ(S(t,E,g)—gg)g(g_) — g(ﬁ - at)ein’l(_bﬂt+2“1abt2).

Remark. Above procedure answers the problem posed in (iii) of §2.

Problem. Can we extend the procedure above to systems of PDE (see, Problem 8 of Gelfand [8])?

§3. FUNDAMENTALS OF SUPERANALYSIS
For symbols {0;}72, satisfying the Grassmann relation
oo +orpo; =0, 5 k=12---,
we put

C:{X:ZXIO’I l XI EC}
IeT

where
T={I=(ix) €{0,1}N | |I| =Dk < o0},
k

ol =oigl .., I=(igig, ), o0=1, 0=(0,0,---)€T.
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Besides trivially defined linear operations of sums and scalar multiplications, we have a product oper-

ation in ¢: For
X=>Y X0, Y= Ygo¥,
JeJ KeT

we put
XY =) (XY)ro! with (XY)r= Y (-1)"FH0X;Yk.
IeT I=J+K

Here, 7(I; J, K) is an integer defined by

070K = (-1 TPl = J 4+ K.

Proposition. € forms a oo-dimensional Fréchet-Grassmann algebra over C, that is, an associative,
distributive and non-commutative ring with degree, which is endowed with the Fréchet topology.

Remark. (1) Degree in € is defined by introducing subspaces

¢y ={X= > X'} for j=0,1,--
IeZ,|I|=5

which satisfy
C=8520C € gy C Cjpn-

(2) Define
proj;(X)=X; for X = ZX[O’I ec.
Iel
The topology in € is given by; X — 0 in € iff for any I € Z, proj;(X) — 0in C.

This topology is equivalent to the one introduced by the metric dist(X,Y") = dist(X —Y") where dist(X)
is defined by

; _ 1 |proj;(X)| . I Ty
dlst(X)—ézr(I)1+tprojr(x)| with r(I)—1+2kz=:12 ix for Iel.

(3) We introduce parity in € by setting

0 if X =3 1ez 1jmeo Xrol,
p(X)=4q1 if X =Y 1ez,11=0a X107

undefined if otherwise.

We put

Coa = ®72oCp2j+1) = {X € €| p(X) =1},
CE ey @ Cog & Cey X Coyq.

Analogous to €, we define
R={X € ¢|mpX € R}, Ry;; = RNy,
Rev =RNCeyy, Roa =RNE&oq = Coy,
R = R, B Rog & Rey X Rog-

We introduced the body (projection) map 7g by

X = proja(X) =Xg=Xg forany X edC.
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We define the (real) superépace Rmin by
R — R x R’
The metric between X,Y € R™!" is defined by,
distyp|n (X, Y) = distpn (X —Y)

with

) rojr(z4) = r0j; (0k)
distppn (X) = Z <Z 5O +p1 ;ﬂfm’mi)ﬁ + Z} (Z 5@ 1 +pi ;i;,@)l)

IeT IeZ

‘We use the following notations:

= (X4)THP = (,0) € R™™  with
z = (XA = (zj)j=1 eR™, 0= (Xa)iin 1 = (Ok)fes € RO

‘We generalize the body map np from RKmin or MU0 to R™ by putting,
X = (z,0) e A" — 13X = Xp = (zp,0) & zp = npT = (TBT1, -+ ,BTm) € R™.

We call z; € Re, and by € Roqg as even and odd (alias bosonic and ferminionic) variable, respectively.
Supersmooth functions: For u,(g) € C*°(R™ : C), we put,

oo
1 ‘
Ug(z) = Z Jag‘ua(xg)mg for z =B + g
la=0 "

which is called the Grassmann continuation of u,(g). We define a function u € ¢ o4(%™") by

w(X) =u(z,0) = Z uq(z)0%,
lal<n
called a supersmooth function on ™I,

Derivations: For a given supersmooth function u(X) on R, we define its denvatwes as follows: For
j=1,2,---,mand s=1,2,-.- ,n, we put

U;(X) = Z Oz, ua(z)0%,
lalgn
Usym(X) = Z (_1)l3(a)ua(m)9cln v '933—1 RN s

laj<n

where [;(a) = }:;;i a; and 671 = 0. U.(X) are called the partial derivatives of u with respect to X, at
X = (z,6) and are denoted by

Ui(X) = z u(z,0) = Oy;u(z,0) for j=1,2,---,m
; )
Unto(X) = 9-0(5,0) = Ou(z,0) for s=1,2+
or simply by v ‘
Ue(X) =0x u(X) for k=1, ,m+n.
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For
a=(a,a), a= (a1, ,om) € N®, a = (a1, - ,an) € {0,1}",
o = ZO‘J” la] = Zak’ la = |e + lal,
G=1 k=1
we put

0y = 0283 with 8% =82 ...8%m, O = o5 .- 8.

Ezample. 8p,616205 = —0,03, 891093019293 =6y, ete.
Integration: We define

/mmln dzdfu(z,8) = /mm]glm{ mo‘fclw u(z, 0)}
- /m:ilXBwen + 0,u)(Xs)  (mp(R™) =R™)

- / do{ d:z:u(z‘,&)}: / dbdz u(z, 6).
$ROIn mmio sgmin

Especially for odd integration, we have the following curious looking but well-known relations

dfp---d618;---6,=1 and dby,---dh;1=0 (Berezin integral).
$ROIn Moin
Remarks for the need of co number of Grassmann generators.

(i) Though, € doesn’t form a field because X? = 0 for any X € €y, but if X,Y € € satisfy XY =0
for any Y € €4, then, X = 0. This property holds only when the number of generators is infinite. By
this, we may determine the derivative 0% u(X) uniquely.

(ii) If the number of Grassmann generators is finite, then the effect of odd variables may vanish after
countable operations.

Scalar products and norms:

(u,v) =/mmln dzdf dbe’®19) y(z, 6)u(z, 6) = Z /mm!o dz ug ()0, (z),

lalgn
(uwv)r = z (0% u, O0%v) = Z (05%a, 05 va),
laj<k jal+lal<k
(woDe= D ((1+|Xs|)?0%u, (1 +|Xs[*)/28%v)
[a]-+i<k
with
el = (ww),  ulE = (wuds, el = ().

Fourier transformations (of second kind):

(Fov)(€) = (2rh)~™/? / dz &= o1y (),
» Rm|0
(Fow)(z) = 2nh)™/> / de 7 @)y g,
|mm|o
(Fov)() = B/, f dh e~ 61y (g),
fROin

(Fow)(8) = A2, / e 01 g ()
MOln
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where .
(nly) = Zmy], (Plw) =" prwn,  tn ="/,
We put
(Fu)(€:7) = empn /m L AX T = 3 [(Feua) ©1[(Fo0%) ()
(Fo)(@.6) = emp [ a5 CB0(E) = (P @) (For)0)
where

(X|E) = (z[€) + (B|7) € Rew, Cmpn = (20FH)"™ 252y,

Remark. Though the differential calculus on Fréchet spaces has some difficulties in general, such a
calculus on Fréchet-Grassmann algebra holds safely in our case. For example, the implicit and inverse
function theorem, and the chain rule of differentials are established as similar as the standard case.

§4. OUTLINE OF OUR PROCEDURE (1)—(6)

(1) We identify a “spinor” w(t,q) = *(¥1(t,q),%2(¢,q)) : R x R® — C? with an even supersmooth
function u(t,,0) = ug(t,z) + uy(t,£)0102 : R x R32 — &,. Here, W2 is the superspace and uo(t, ),
uy(t,z) are the Grassmann continuation of 91 (t,q), ¥2(t, ¢), respectively.

(2) We define operators as

2
61(9, -é%) = 0105 — 6_0?3-9;’
(41) o2 0, 5%) (0205 + 391202)
ag(e, %) =1 “01?5% —02-5%2-.

Then, actions of those on u(t, z,6) are identified with those {o;} on vectors ¥(t,q) = *(¥1(t, ), ¥2(t, q))-

Ezample.

52
m) (uo + ©16102) = vy + upb1 6z,

Ug Uy} _ 0 1 Uop
()= ()= o) ()
(3) Therefore, we may correspond the differential operator given by

H(E—a-o ‘9) (9192 A )ﬁ g +zc(0102+ & )h 4

(0102 -

which maps

(4’ 2) i oz’ 00 90,00,/ i By 00,005/ i 9z,
. +c(1 0 4,0 )ﬁ—‘?—
150, ~ 7%50,) % 5z3’

which yields the superspace version of the Weyl equation

., 0
(4.3) { zh-é-t-u(t, z,0) =
u(0,z,0) = u(z, ).

(3 g 3.0
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Moreover, the “complete Weyl symbol” of (4.2) (see, Appendix B of Inoue [13]) is given by
H(tf, o, 71‘) = 6(9192 -+ 5—271'171'2){1 + ic(0102 — h”27r17r2)52 — ich_l(ﬁﬂrl +027r2)§3

(4.4) _ . 9 ) 1
= c(€1 +1€2)0102 + ch™*(€& — t€a)myimg — ich™ €3(01m1 + Oarg).

(4) We consider the classical mechanics corresponding to H(§,6, ) given by

d  OH(E6m) d,  BHE6,m) _ L
(4 5) dt Tj= 66.7 3 dt&k - azk =0 for 1 k= 1,2,3,
' d, _OHEbGT) d _ OH(E6 _
dtol = o 7 Tm = B0, for I,m=12,3.

Proposition (existence). There emsts a unique global solution (z(t), f(t) 0(t), n(t)) of (4.5) with any
initial data (z(0), £(0),0(0),7(0)) = (z,&,0,x) € RO = T*R312,

Remark. We also denote the above solution z(t) by z(t,z,, 8, ), etc., if necessary.
Moreover, we have
Proposition (inverse). For any fixed (t,{,n), the map defined by
(@0 - @ =a(t,2,6,0,r),0 = 6(t,2,£,6,1))
gives a supersmooth diffeomorphism from 312 — M312, Therefore, there exists the inverse map given by
(%,0) — (z = y(t, z,§, 0,m),8 = w(t, z,¢, 0,m)),

which satisfies

(4 6) T = (t y(t .’1: f, Zr_) é (t T §_ 0-,1[),1[), §= e(t,y(t,a‘:,g_,§,z),§,w(t,1‘:,§,5,_7g),£),
' z =yt z(t,z,§,0,%),€,0(t,2,€,0,n), 1), 8=uw(tz(tz,E,0,x),¢0(t 2, 0,x), ).
We put

(4.7) So(t,z,&,8,m) = /0 {{@()IE(s)) + (B(s)|m(s)) — H(x(s), £(5),0(s),7(s))}ds,

and

(4.8) 8(t,2,€,0,m) = (zl§) + {@lm) + So(t,2.£,0, 1) |3y 13,6, 0.m)-

9=w(t,3,E, 8,x)

Proposition (Hamilton-Jacobi equation). S(t,%,£, 6,T) is given by

S(t,5,£,0,m) = (&1€) + [€] cos(chH]g]) — i€, sin(ch™ t|¢])] ™" [1€](8z)
- isin(c:ffltlgl)(g_1 + i§2)§1§2 + isin(ch"lt]g_[)(gl - i_§_2)_7£1£2].
Moreover, it satisfles the following Hamilton-Jacobi equation:

{ 252,60, w)+H(g‘? 3 ‘;‘g) 0,

8(0,2,¢,0,m) = (zl€) + (O|z).

(4.9)

(4.10)

Now, we put

8%s
86O dfox

8%s 8%s
_ .= 2z0f Dzor
(4.11) D(t,z,§,0,m) = sdet ( 528 ) .

Then, we get
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Proposition (continuity equation).

D(t, 2,£,8,) = €] [|€] cos(ch™tlg]) — i€, sin(ch~tlg])] .

It satisfies the following continuity equation:

{Zm 5 (05¢) + 53(P55) =0
(O,w,g,e,zr_)-l.

(4.12)

689

bz 39 , respectively.

In the above, the argument of D is (t,%,¢,0,x), those of %7; and & are (§2

From here, we change the order of variables Z, £, 0, to z,0, &, (this change corresponds to the process
from classical to quantum).

We define an operator

W"\-
v

(4.13) UR)(E,0) = (2nh) ™32k / / dedn DY2(t,2,0,¢,m)em SCEOED Fu(e, 1

The function u(t, Z,0) = (U(t)u)(Z, 0) will be shown as a desired solution for (4.3).

(5) On the other hand, using Fourier transformation, we have readily that

(50 35) =™

where H is a (Weyl type) pseudo-differential operator with symbol H(¢,0, ), that is,

(Hu)(z,0) = (2nh) ~3K? // dédmdydw eih*l(’”"y‘s)ﬁh“l("““"“)?i( ) btw

,w) u(y, w).

Theorem. (1) For t € R, U(t) is well defined unitary operator in L2g(R312).
(2) () Rt — U®E) € B(L25(53312), £25(:%12)) is continuous.

(i) U(t)U(s) = U(t + s) for any t,s € R. ~

(iii) For u € g5 o(R%12), we put u(t, 7,0) = (U(t)w)(Z,0). Then, it satisfies

0 e =
{ zhé—zu(t z,0) = Hu(t, z,0),

(6) We interprete the above theorem using the identification maps
#: L2(R3: C?) — £%(9%?) and b:f5,(:%%) — L2(R3: C?).
That is, remarking bH#y = Hep and putting U(t)y = bl (t)#v, we have

Theorem. (1) Fort € R, U(t) is well defined unitary operator in L*(R® : C?).
(2) (i) R >t — U(t) € B(L*(R3: C?), L*(R3 : C?)) is continuous.
(i) U(t)U(s) = U(t + s) for any t,s € R.

(iii) Put fi = i. For y € C§°(R® : C?), we put 9(t,q) = b(U)#Y)|, Then, it satisfies

Zp=q’

{ mg—tw(t,q) = He(t, ),
1%(0,9) = ¥(q)-
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On KdV Equation and Bore-like Data

R. IoriO AND F'. LINARES

Abstract

We studied the global well-posedness of the initial value problem associated to the
Korteweg-de Vries (KdV) equation with bore-like initial data g (see [1, 2] and (1.2)
below). Supposing ¢' € H*(R) N L?(R; (1 + z?)dz) we show the existence of a unique
solution, says u, for the initial value problem such that u — g belongs to this weighted

Sobolev space for any time.

1. Introduction.

In [2] local and global well-posedness was established for the initial value problem

(IVP)

{Btu—{—@gu—{—u@zu:O, zeR,t>0 (11)

u(z,0) = g(z)
with ¢ satisfying

i) g(z) = Cy as z — oo,
i) ¢g' € H, (1.2)
ii6) (g — C4) € I3([0,00)) and (g — C-) € L*((—o0,0])
where s > 0. More precisely, it was shown that there exists a unique local solution u
satisfying that u(z,t) — g(z) € C([0,T] : H*), s > 3/2. Moreover, this solution remains
bounded for any T > 0 provided s > 2. In this note we are interested in the study of
the IVP (1.1) in the weighted Sobolev space H%(R) N L?(R; (14 «?) dx).
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Following the scheme used in [2] we can find a function yp € C* with ¢' € H*®
satisfying (1.2) and such that g — ¢ € H**!, s > 0 (see Lemma 2.1 below). Then we
define u(z,t) = v(z,t) + () and study the (IVP) associated to v(z,t), namely,

{ 010 4 820 + v0,v + Oz (vih) + (V' + ) =0,
v(z,0) = g(z) — ¥(z) = ¢(2).
where ¢ is a function in H", r > 1.

To study the IVP (1.3) in H2(R) N L%(R;(1 + 2)dz) we shall also assume that
g' € H*(R)N L*(R; (1 +z%) dz). This assumption combined with the construction of
gives us a function ¢ in the required space, i.e., H?(R)N L%(R; (1 + z?) dz) (see Remark
2.1). At this point, we have the IVP (1.3) in the desired setting. In Theorem 3.1 below

we will show the global existence of solutions of the IVP (1.3). From this we can deduce

(1.3)

our main result concerning the IVP (1.1), that is,

Theorem 1.1. Let ¢' € H?(R)N L?(R; (1 + z?)dz). Then for any T' > 0 there exists a
unique bounded solution u of the IVP (1.2) such that

u(z,t) — g(z) € C([0,T); H*(R) N L*(R; (1 + 2?) dz)).

This note is organized as follows. In Section 2, we present some preliminary results
used in the proof of global existence of solutions for the IVP (1.3) which will be given
in Section 3.

Notation

- We will write L2(R) to refer the space L(R; (1 + z2) dz).

- We denote by (-,-)s the inner product in H®, s > 0 and the inner product in H*NL3?
will we denoted by ()ot = (7)s + () p(uan) With (Yo = (5 z(14en)-

- The norm in H*® will be denoted by || -|[s, || - [lo and || - ||zr,r = || - ll2r+ (1 +22)7/% - ||o

will denote the L?-norm and H?" N L2-norm, r > 1, respectively.

2. Preliminaries.

In this section we give the statements of some results needed in the proof of global
existence of solutions for the IVP (1.3). We begin by giving the construction of the

function ¥ commented in the introduction.

Lemma 2.1. Let g satisfy conditions (i) and (ii) in (1.2). Then for each 8 € (0, 00)
there exists a 1y € C™ such that 1) € H*®, and ¢g = g —1pg € H**1, s > 0. Moreover,

{ lg = llo < V=172 |1l
1blls < Cllg'llo, € = C(s,0)
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Finally, if g satisfies (iii) in (1.2) then <y also has this property and 1iI:LI_1 e = Cy.

Proof. Define ¢g(z) = \/21171-_9 exp(—| - [2/40) % g(z) for 8 € (0,00). O

Remark. Using Fourier transform and the decay properties of the heat kernel it is easy
to see that ¢(z) = g(z) — ¥e(z) € H* N L? provided ¢' € H2 N L2.

Next result concerns properties of solutions of the linear problem

Ou+ 03u —pdiu=0, p>0,z€R, t>0
{ ‘ K g (2.1)

uw(z,0) = f(z).

Lemma 2.2. Let p > 0,A > 0 and r = 0,1,2,... and define W,(t) = exp {(—und2 —
102)t}.
Then

1

1/2
Wu)larinr < B (14 () Il

for all t,p € (0,00), A > 0 and f € H** N L2 The map t € (0,00) — W,(¢)f is
continuous with respect to the topology of H*™+* N L2. Moreover, W,(t) defines a C°-
semigroup in H®, s € R, which can be extended to an unitary group if g = 0 and the
map t € (0,00) — W,(¢)f, u > 0 is the unique solution of (2.1).

Proof. See [3]. O
In the H® theory for the IVP (1.3), it was established the following global estimate.

Lemma 2.3.
If v satisfies (3.1) with ¢ € H?, then

o) < { I8+ [ GOlels 5.0 ds}.
exp{C(8 + [l )18 =)t} = Ft; 612, )

where G is a continuous and nondecreasing function in ||¢||2.

Proof. See Lemma 4.3 in [2]. O

3. Proof of main result

As we mentioned in the introduction in order to establish our main result we first
show the following theorem concerning the global existence of solutions for IVP (1.3 ),
that is,
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Theorem 3.1. Let ¢ € H*(R)N L?(R;(1 + z%)dz). Then for any T > 0 there exists a
unique solution of the IVP (1.3) such that

v € C([0,T); H*(R) N L*(R; (1 4 z*)dz)).

Sketch of the Proof. We first notice that uniqueness follows from the H* theory since
H? N L} C H% To show the existence of solution for the IVP (1.3) we use parabolic

regularization, that is, we consider for y > 0 the problem
o 620 + 00,0 + By(v) + (3 + ¥ ) — blv =,
v(z,0) = g(z) — ¢(z) = ¢.

and establish the existence and uniqueness of solutions for this IVP.

(3.1)

Using Lemma 2.2 it is easy to check that IVP (3.1) is equivalent to the integral

equation
vu(t) = Wyu(t)¢ - /O Wt —t)(00:0(t') + 8:(o(t")) + (¥ + ) dt'.

So combining Lemma 2.2, the construction of % and the fact that H2N L2 is a Banach

algebra allow us to conclude that the map

B(v)(t) = Wyu(t)¢ — /0 W (t — ) (0050(t') + Ba(o(t')) + (¥’ + )} at!
is a contraction in the complete metric space
Z ={ve C([0,T]: H* N L})/||v(t) = Wy (t)¢ll21 < lIgll2,1, t € [0, T}

if T' > 0 is small enough. So this gives us local existence and uniqueness in H2 N L%,
with p > 0.

Next we consider v = v, the local solution constructed above and look for a global
estimate for the H? N L2-norm of v. Since we know from the H® theory that ||v(t)||2 is
globally estimated in terms of ||¢||2, it only remains to estimate ||v(t)||o,1.

Let p(z) = (1 +12)!/2, Then using integration by parts, the boundedness of p{?), j =
1,2,3 and the construction of ¥ we obtain

Ol = 2(v, Yo, = 208u o) o + 2uol3 — 2pv, pvso)y
—2(pv, 85 (pv))o — (pv, [p, BJv)o
— 2(v, 85 (Yv)o,1 — 2pv, pipip")o — 2(pv, p1p®)g
<Iloll5,1118zvllo + () l[vllo,1llvllz + ell% | == [[v]lo,1]lv]l0

+ 119" llo,1 10113 1 l1vllo + 10115 1llollo + 1% N0, [v]lo,1
(3.2)
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An application of Sobolev embedding and Lemma 2.3 in (3.2) imply

Ocllvlls,1 < cFuts s 16ll2) 05,1 + cF (& s lIgll2)l[v]lo,1-
Therefore the generalized Gronwall inequality gives us the desired global estimate. [

REFERENCES

1. J. L. Bona, S. V. Rajopadhye, and M. E. Schonbek, Models for propagation of Bores I. Two
dimensional Theory., Diff. Int. Eqns 7 (1994), 699-734.
. R. Iorio, F. Linares, and M. Scialom, KdV and BO equations with bore-like data, preprint (1995).
. R. Iorio, KdV, BO and friends in weighted Sobolev Spaces, Functional-Analytic Methods for PDE,
Lectures Notes in Math. 1450 (1990), 104-121.
4. T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Studies In
Appl. Math., Adv. in Math. Suppl. Studies 8 (1983), 93-128.

w N

Rafael Iorio

Instituto de Matematica Pura e Aplicada
Estrada Dona Castorina 110

22460-320 Rio de Janeiro RJ, Bragzil
email: rafael@impa.br

and

Instituto Politécnico

Universidade Estadual do Rio de Janeiro
Parque da Cascata s/n°

28630-050 Nova Friburgo RJ, Brazil

Felipe Linares

Instituto de Matematica Pura e Aplicada
Estrada Dona Castorina 110

22460-320 Rio de Janeiro RJ, Brazil
email: linares@impa.br

—181—



A Note on Uniqueness for the Classical Solution of the MHD
Equations in R?

NAOYUKI ISHIMURA AND MaASAAXKI NAKAMURA

Abstract. The uniqueness for unbounded classical solutions of the magnetohydro-
dynamic (MHD) equations in the whole space is studied. Under certain growth assump-
tions, 1t is shown that the solution to the initial value problem is unique.

1. Introduction and result
We deal with the magnetohydrodynamic (MHD) equations in R? :

. Ou 1 1 1
— 4 (u-Vu— —(B-V)B+ —V(B|*>)+ =Vp = vAu -+
e (V)= (B V)B4 5V(BP) + LV s
OB 1
divu =0

\ divB =0,

where the variables u, B and p denote the velocity vector, the magnetic field and the
pressure, respectively. The constants p, u, 0 and v represent the unit mass density,
the magnetic permeability, the electric conductivity and the kinematic viscosity, re-
spectively. f is the given external volume force to the fluid. For the derivation and
other properties of the MHD equations, we refer to, for instance, M.A.Nakamura [5],
Z.Yoshida [7].

Our interest is in the uniqueness for classical solutions of the initial value problem
to (1). Examples show that no uniqueness property can be expected unless certain
restrictions to the solutions are imposed. We want to prove the uniqueness in a class of
solutions satisfying

Vau(e, ), [VaB(o,t)| < A
@) {mwMSAu+mrw,

where A is a constant. Our main theorem is formulated as follows:

Typeset by Ap4S-TEX
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Theorem. Let (uy,B1,p1) and (ug, B2, p2) be two classical solutions of (1) in R3® x
[0, T, both satisfying the growth condition (2). If ui(z,0) = us(z,0) and Bi(z,0) =
By(z,0) in R3, then we have ui(z,t) = us(z,t) and Bi(z,t) = By(z,t) in R® x [0,T).

This work is motivated by a recent paper by H.Okamoto [6]. He discussed the Navier-
Stokes equations (i.e., B = 01in (1)), and established a uniqueness theorem for solutions
with

u(z,t)] < A1+ [e])%, |Vou(z,t)| < A
lp(z, 1)) < AL+ |2])71/2,

where 0 < o < 1 and A are constants. Shortly later, N.Kim and D.Chae [3] extended
Okamoto’s theorem so that it only suffices to assume that

Vou(e, ) < 4, |p(z,t)] < A1+ |z])~2/2.

Moreover, they showed that the growth of the pressure p(z,t) plays an important role in
these uniqueness theorems. To be precise, if we admit the linear growth |p(z,t)| = O(|z])
as |z| — oo, then the nonuniqueness occurs even in the case that both u(z,t) and
V.u(z,t) are bounded. See Remarks at the end of [3].

The same situation applies to the MHD equations. The linear growth of the pressure
leads to nonuniqueness examples of (1). Several formula of exact solutions are already
known. See C.C.Lin [4], A.D.D.Craik [1] and the references therein. Some of them can
be used to constract nonuniqueness examples. On the other hand, if the pressure decays
relatively fast, then the uniquéness follows. Even under these settings, our result seems
to be new, though it is rather elementary. To our knowledge, however, it is still an open
problem to determine the optimal growth of p(z,t) in order that the uniqueness holds
true.

The method of proof is based on the argument originally due to D.Graffi [2], which
is also employed in [6] and [3] with generalizations. Computing technically well, we can
proceed similary as in the Navier-Stokes equations.

2. Skétch of proof
We define

v(z,t) = ui(z,t) — ua(z, t)

D(z,t) = By(z,t) — Ba(z,t)

Q(xat) = pl(xat) - p2($7t)'
Then (v, D, ¢) fulfils

dv 1 1
1 1
'I'?)'“‘V(lBllz — |Ba|*) + =Vgq = vAv

2pp p
— +(u1-V)D+(v-V)By —(By - Vv — (D -V)ug = —AD
ot Uo
divv=20
divD = 0.
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Let B = B(R) be a ball centered at the origin with radius R > R;, and let 9B be its
boundary. We write |[ul|}.5 = [5 [u|* dz.

Multiplying v and (pp) ™! D with the first and the second equations of (3), respectively,
integrating by parts and adding term by term, we obtain

G0l + (o) 1D s) 4 5 [ (e m)(oP + (o)D) ds

N =

—k/((v-v)m-v)--(pﬂ)"l((D'V)uz-D)dfc
B

1
-—;;L((D-V)Bz-v)—((v-V)Bz-D)dw

1 -1 -n . S ~1— v-n)as
+;—/;,BB(B1-n)(D-U)+2 (v-n)(D-(By+ Bs))d +P/6BQ( )d

[ v (Geo) + i (52 D) ds = Aol — (o) VDI 5,

where n represents the unit outer normal to 0B.
Taking into account the growth condition, we further compute

%(HU“%;B + (pp) M IDII3,8) + (I Voll3, 5 + (pu®a) " |VDI3.5)
< Cy R+ 1)(Ivll3.08 + (p) M IDN3,08) + (W V03,05 + (pp*e) IV D3.05)

+4Ci(llollz;s + (e) I DI3,8) + 207 /aB lq(v - )| ds.

We fix a positive constant 2~ < T to be determined later, and integrate the above
inequality twice with respect to t. We derive for all sufficiently large R,

(4) G(R) < (2C3Rh + 1)G'(R) + 4C,hG(R)

w2 [ " / K |l i dsar,

where we have defined

h
G(R) = / (Iol2.5 + (o) DI, 5)
h t
T / d / WVl + (or20) [ VD2 55) dr,

and used the property: & Jglvl?de = [, |v]* ds.
The last term of the right hand side of (4) is estimated by as follows:
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2p~1 /Oh dt/ot(/w lg(v - n)| ds) dr
B ¢ [af [ dm\/ [af [ weasa

< 2v2rp~ h%/%C1/RG'(R).

Now we choose h = min{(64C;)™*, T'} to discover

15G(R) < (—;—R + 16) G'(R) + Cy+/RG/(R)
< RG'(R) + Csr/RG(R),

where we further take larger R.

Since G(R) < C3R® for all large R, the next lemma ensures that G(R) = 0. h is
independent of R and ¢. An iteration argument makes sense and we have proved our
uniqueness theorem. Note that our argument works also in the case v = 0.

Lemma. Let G(R) be a nondecreasing nonnegative function defined on R > 0 and
satisfy

(5) G(R) < C3R®
(6) 15G(R) < RG'(R) + Cov/RG'(R),

for all sufficiently large R. Then we have G(R) = 0 for all R > 0.
Proof. Let R; be large and G(R;) > 0. If there exists no such Ry, then we are finished.

From the equation, we see
15G(R;) < 15G(R) < RG'(R) + Cov/RG'(R)
for R > R; and hence

RG(R) > -;-( Cy +1/C3 + 60G(Ry)) = Ca(Ry) > 0
1 15C,

G(R) < —RG'(R)| 14+ ———=—| < C5RG'(R),

(7)< 35 (>( RG,(R)>__ RG'(R)

where Cs = (Cy + 15C3)/(15Cy) > 0. This implies

) G(R) > G(R) (—;3)/0

for R > R;.
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Back to (6), we estimate

15G(R) < RG (R) + 22—

(8) 10(G(R) — C¢) < R(G(R) = ) )

where Cs = C2/30. By virtue of (7), there is Ry large enough that G(Ry) > Cs + 1.
We obtain from (7)
R\
G(R) = (O(R) - Co) (7] +Co

for B > Ry, which contradicts with the growth condition (5). Thus we conclude that
G(R) =0 for all R > 0. This completes the proof. O

Remark. In the two-dimensional case, we merely have to impose that
[Veu(z,t)|, [VeB(z,t)], |p(z,t)] <A

for the uniqueness theorem.
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A Numerical Study of Blow-up Solutions to u; = u*(Au + pu)

TETSUYA ISHIWATA AND MASAYOSHI TSUTSUMI

Abstract. Numerical experiments of the initial boundary value problem for a nonlinear
degenerate parabolic equation of non-divergent form are presented, under zero Dirichlet
boundary condition in the case of dimension N = 2. The emphasis is stressed on detailed
study of behavior of numerical solutions near the blow-up time. The numerical results
indicate that the blow-up set and blow-up rate correspond to those conjuctured by several

authors.

1 Introduction

Let Q be a bounded domain in RY. We consider the following initial boundary value

problem :
uy = w(Au+pu), z€Q,t>0, (1.1)
(P1) u(z,t) =0, z € 00,t >0, (1.2)
u(z,0) = ug(z), T €, (1.3)

here 6, u are positive constants and ug(z) is a nonnegative bounded continuous function

on .

Several authors have studied problem (P1) from a theoretical point of view. The prob-
lem arises in a model for the resistive diffusion of a force-free magnetic field in a plasma
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confined between two walls in one dimension [4], when § = 2. Equation (1.1) also de-
scribes the evolution of the curvature of a locally convex plane curve, and it has been
studied in [2], [6] under periodic boundary condition.

A. Friedman and B. Mcleod [4] considered (P1) in the case N = 1 and § = 2. They
showed that the behaviors of solution depend on the first eigenvalue A;(2) of the Dirichlet
problem for the Laplacian on the domain . If A;(f2) > 1, then there exists a unique
global solution which tends to zero as ¢ — oo. If A;(2) < 1, then there exists a positive
constant T" such that we have a unique solution in 0 < ¢t < T, which blows up as ¢t T T.
They also showed that the blow-up set has positive Lebegue measure. Qi[8] discussed
the Cauchy problem for (1.1) and (1.3) with 0 < 6 < 2. For the case § > 1, M. Wiegner
[11] stated the existence and uniqueness of smooth positive solutions and gave the upper
bound of the blow-up time for the positive initial data. When N = 1 and § > 0, K.
Anada, I. Fukuda and M. Tsutsumi [1] got more precise information on the blow-up set
and an asymptotic behavior near the blow-up time.

In this paper we solve the problem (P1) numerically in the case of N = 2 and 2 =
(—a,a) X (—a,a). Known theoretical results are summarized in “Appendix.”

We show the efficiency for our numerical experiments by confirming the behavior of the
numerical solutions which agree with those suggested by the theoretical results. We also
show the positivity our scheme held. In addition, we estimate the blow-up rate of numer-
ical solutions both theoretically and numerically. Although we do not have the detailed
theoretical results about the asymptotic behavior of solutions for a rectangle domain, our
numerical results may present useful suggestions to unclear theoretical anticipations.

2 Numerical Scheme

We use the following scheme based on the Alternating Direction Implicit Method:
1 pt+1 P P § 1 p+1 9,,p+1 p+1
At (um,n - um,n) = (um,n) (A$2 (um-{—l,n - “um,n + um—l,n)
P
1
+z§5(ufn,n+l - 2ug@,n + ’u’z’r)n,n—l) + /‘ufn_*:'/ll)y
(2.1)

1
p+2 p+1 - p+1NE p+1 . p+1 ,  ptl
(um,n - um,n) - (um,n) (sz Upa1,n 2um,n T um—l,n)

- Atppy

1
g (W = 200w+ ).
(2.2)

where m, n are integers, p is a positive number, uf,  is an approximate value of u(mAz, nAy,1,)
and t, = S™P~> At;. In order to get the numerical blow-up solutions, it is important that
the larger the solution becomes, the smaller the time interval At, should be chosen such
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as

At, = ( -—-——-””O“L°°)6At (2.3)
—_— O. L4
’ [P ]| oo

We note that this method can extensively decrease a computational quantity in compar-
ison with the implicit method. Assume that

Ato Ato

A-T%Ay 5 ”u HL‘”? (2'4)

then we have the two following lemma.

Lemma 2.1 If 1 — Atp(u%,n)ﬁ,u > 0 and the initial condition v, . is nonnegative, then

ub, . 18 nonnegative for any p.

proof. Eq.(2.1) may be written as

2AL =
(1+ a:p (u, ,)° — Aty (uf, ,)°u) ulhl — (Uff_lm Ui
2At At 5 +
(1 Ayzp (ufn n)a) ugv.,n + Wﬁﬁ:yg(ufn,n)(s (ufn,n)a (ugm,n—l uz:n,n—!-l)' (25)

Let u?, , > 0. Since

0 §
28t . » ¥ o= , _ 284 (]]u ”Looup,n)

1- m,n m
Ay? Ay? \||uP||pe
240ty
1 - 2200
0,

we have

208, | ; At
(1 + _A—ZL'-;. (u'r’;b,n)a - At? (u:—a,n)b ) up*l-; ACEZ; (ufn, ) ( fn+11n + fn'*:&l,n) = 0. (26)

Take g, no such that uff! = takes its minimum. We can rewrite (2.6) as

At 5
(1= Ayt )’ 1) Wibing = 15 (W)’ (Wil = wlibhng) + (Whihs mg = vitn,)) -

Hence we get
(1= Aty o)1) 0y 2 0,

that is, uZf} is nonnegative for any m and n. B
In the next lemma, we give an upper bound of blow-up rate of the numerical solution.

We define the sequence {M,},50 by M, = max uf,
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Lemma 2.2 If Aty < 1/p||ul||$e, then M, satisfies the inequality

1
b <
T Atou[ul) e

M, M, (2.7)

proof.  From (2.5), we have

2AtL ; At
(I 57 () = Al (u]n) ) il = 5 () (W20 + uil )
2At At
< (1= A—y; (uF,,0)°) M, + Kjg ()" (M + M)
= M,
Take mg,ng such that wft! = M, then
2At At
Mp 2 (1 + T&;}R (ug’m,no)s - ﬂAtP (ufng,no)s) ‘ZVIP'I"l - —A——:—U%(uﬁ'l-o,no)s (“]V’[P+1 + ‘[V[P"i‘l)
= (1 - /'L‘Atp(ug‘to,no)(s) IWP+1
5
[z
= (l - [J,Ato (Wu%mno Mp+1
Z (]_ - /I,AtoH'U,O“%ao) jV[p+1. (28)
Hence, we get
Myps < (1= u|a® ) M. (29)
]
In the sequel we always assume (2.4) and
1
Aty < m (2.10)

Next, we give a lower bound of the numerical blow-up time 7" and an upper bound of
M.

From lemma 2.2, we have

M, < (1 — pto||u’]|fe) ™ Mo. (2.11)
Since
T = f: At, = i (%)6&0 = Mg At f: A—}g (2.12)
p=0 p=0 p p=0 ""'p
we have
T > M{™* Aty = (2.13)

1= (1= u&dof[u]|fe )
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By making use of this inequality, we get

1
ME AL\ ?
1 — pAtol[ul]fe < <1 — _O_T_.Q) . (2.14)
Hence, we obtain
M3 Aty
M, < (1 - -2—-—9) (2.15)
T
3 Numerical Results
We have done numerical expriments for a initial value:
T 7
Ug = €OS T COS 5y (3.1)

on domain 2 = (—2.0,2.0) X (—2.0,2.0) (¢ = 2.0). Theoretical prospect shows that if
a> =, then the solution for problem (P1) blows up. Therefore, we take p = 2.0. In
fact, if a < —\/7;——;, then our numerical solutions decay to zero, and if a = \/’—";=“, then our
numerical solutions grow up. (In this paper, we don’t show these results.)

We take Az, Ay = 4.0/30-and Aty = 0.005 which satisfy the two condition (2.4) and
(2.10). We computed for § = 1.0, 1.5, 2.0, 2.5.

Fig. 1, 2 and 3 show the time evolution of numerical solutions for each time step
N = 0,10000,40000 when 6 = 1. We see that the solution blows up with keeping its
shape and symmetry in whole domain. We plot the graph of L* norm of the solutions
in Fig. 4. Table 1, 2, 3 and 4 show t,, L* norm of the solutions and At, for time step
N = 0,10000, 20000, 30000,40000, respectively.

Fig. 5, 6 and 7 show the time evolution of the solutions in case § = 1.5. We see that the
solution changes its shape and the blow up set of the solution becomes regionally. Fig. 8
shows the graph of L* norm of the solutions.

Fig. 9, 10 and 11 show the time evolution of the solutions in case 6 = 2. It is seen that
the solution blows up regionally and it seems that its blow up set converges to a radially
symmetric domain. Fig. 12 yields the graph of L* norm of the solutions.

Fig. 13, 14 and 15 show the time evolution of the solutions when 6 = 2.5. Fig. 16
shows the graph of L* norm of the solutions.

In Fig 9-11, 13-15 the blow up sets look like the support of the solutions.

In the case 6 > 2, Theorem 7.5 below yields that if the domain is radially symmetric,
then the shape of u™/||u™||L= near the blow-up time will be the first eigenfunction of the

following eigenvalue problem:

—~Av=Xx , vlgu,=0. (3.2)
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Here R = ro/v/2, Ug = {(z,y) | 2% + y?> < R?} where rq is the first positive zero of the
Bessel function of order 0. We plot the first eigenfunction in Fig. 19. In Fig. 17 and 18,
we plot the graph of u"/||u"||p~ for time step n = 40000 in the case of § = 2 and 2.5.
We can see the shape and the blow up set of the numerical solution are similar to the
eigenfunction and the domain Ug in Fig. 19 though the domain is rectangular. Fig. 20

is the graph of the projection to x-z plane of that in Fig. 18.

Table 1. § = 1.0 : t,,||u"||z~ and At, for each step.

n tn lu™|| Lo At,
10000 | 2.018381689186295 2893877097.685297 1.731521527814143 x10~12
20000 | 2.018381689986517 | 6.952215328402329 x10'% | 7.207501859846734 %1022
30000 | 2.018381689986517 1.670190659031886 %102 | 3.000142806363422 %x10~3!
40000 | 2.018381689986517 | 4.012443091241728 x10%7 | 1.248817834173743 x10~40
Table 2. § =1.5: t,,]||u"||z~ and At, for each step.
n tn lu™|| Leo At,
10000 | 1.719148010680321 177380.1169453133 6.703926089865509 x10~11
20000 | 1.719148051356698 9572160818.839734 5.347643203042103 x10~18
30000 | 1.719148051356698 497252343580906.3 4.516603155897372 x10~28
40000 | 1.719148051356698 | 2.580561156641957 x10'° | 3.820374588123436 x10732
Table 3. § =2.0: t,,]||u"||L~ and At, for each step.
n tn l|u™|| Lo At,
10000 1.625380387548987 346.5623343033312 4.166315338588180 x10~%
20000 1.625434352585319 13095.19650627358 2.917708575688688 %1011
30000 1.625434395875942 345924.9327773206 4.181002702386943 x10~4
40000 1.625434395942738 7317251.144430679 9.343969670642357 x10~17
Table 4. § =2.5: t,, ||u"||r~ and At, for each step.
n tn lu™ || zeo At,
16000 1.615436390094144 29.943886948927126 1.019487443064002 %10~
20000 1.618048922071174 119.45743335856288 3.206754591569421 %1078
30000 1.618155837077613 351.79547840655403 2.154531125435835 x10~°
40000 1.618163939168007 906.07403710799724 2.023759410516244 x10~10
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4 Estimates of the blow-up time

Theorem 7.1, and 7.2 say that if § < 2, the solutions blow up like ||u||ze = C(T —1)~/,
where T' is blow-up time. Let {N,} be the sequence defined by N, = |Ju(-,t.)||z~ ,
NO = H'U,(, O)HLOQ7 then

T1/5 NO
Nn = W. (4:.1)
Hence we get
No'
T = —-2 . 4.2
N~ NG (42)

For the case 6 = 2, A. Friedman and B. McLeod conjectured in [4] that if the dimension
N =1, then
1

N 1
lullzee ~ 77— loglog 7. (4.3)
Therefore, we guess that if § > 2, then
~1/8(] L s
llullzee ~ (7'~ )7 (log log 7-—)*/". (4.4)

Using this formula, we estimate the blow-up time T'.
Table 5 shows the blow-up time for each é, which are calculated with these method.

Here T means the numerical blow up time corresponding 7.

Table 5. Blow-up Time for each 6.
§ T

1.0 | 2.018381689986517
1.5 | 1.719148051356698
2.0 | 1.625434395943160
2.5 1.618166119030117

5 Blow-up Rate

In order to clear the blow-up rate for each §, we plot the graph of log,q ||u||L~ and
log,o(T — t) for each 6 in Fig. 21, 22, 23 and 24.

In Fig. 21, 22, the graph in case § = 1,1.5 are plotted, where a solid line means the
blow-up rate of the numerical solution and a dotted line means theoretical blow-up rate
which are calculated by the following method:

Let N be a function defined by N(t) = ||u(-,t)||r~. When § < 2.0, then

N(t) = (71”7;7)1/ * N(0). (5.1)
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Therefore, we have the following formula.
:
)

We can see that the numerical results give good agreement with the values that had

1
log N(t) = 5 log T — —log(T —t) + log N(0). (5.2)

been obtained by theoretical calculation. This shows that, our numerical scheme has the
appropriate property which the theory suggests, in particular, concerning the blow-up
rate. So we can consider that our method is suitable.

The graphs of log ||u]|ze and log,o(7 —t) in the case § = 2,2.5 are plotted in Fig. 23
and 24. A solid line means the blow-up rate of numerical solution. The straight dotted
line means the theoretical blow-up rate by formula (5.2). The curved dotted line means
the blow-up rate based on formula (4.4). These two graphs show that if § > 2, then the
solution blows up faster than (T —t)'/°. These results agree with the assertion of Lemma
7.7. Comparing the slope of solid line with that of dotted line when 1" — ¢ is small, we
can see the blow-up rate of the numerical solution is as same as a rate shown by formula
(4.4). These results show that the blow-up rate of numerical solutions in case § > 2 are

different from those of numerical solution in case § < 2.

6 Conclusions

In this paper, we show the detailed numerical experiments of the initial boundary value
problem for a nonlinear degenerate parabolic equation in dimension N = 2. We also
estimate the blow-up time and asymptotic behavior near blow-up time. These results will

give information to the theoretical study.

7 Appendix : Summary of theoretical results

The following theoretical results for problem (P1) are discussed in [9]. In this section,
we consider only the case p = 1, but these results stand up for any p > 0 by changing of

variable.
When 0 < 6 < 2, we can get upper and lower bounds of blow-up rate.

Theorem 7.1 Suppose that 0 < 6 < 2. Then
w(z,t) <C(T -1, VzeQ,0<t<T. (7.1)

Here and in the sequel by C we denote various positive constants changeable form line to

line.
tli%ww—u(x’ )t
n/ I;]Eagcu(r, n)

exists a closed set ' C Q with meas (B) — k < meas (BN F) such that
wz,t) > C(T—t)"Y, VeeBNF,0<t<T. (7.2)

> a}. For any & > 0 there

Theorem 7.2 Leta >0 and B={z € O
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Next, we consider the radially symmetric case. Let R > 0,andQ) = Ur = {z € R? | |z| <
R}. We assume that
(A1)  wuo(z) is nonnegative, radially symmetric, non-increasing about |z| (uo(z) =
ug(z)for |z] < |z| ) and Aug + up = 0 on .

Since the solution u(z,t) of (P1) is radially symmetric, the Cauchy problem can be
reduced to a problem in one spatial dimension. Let Qr = {(r,%) |0 <r < R,0 <t < T}.
If r = |z|, then v(r,t) = u(z,t)is well-defined on Qr and satisfies

vy = 'U‘S(Urr + .1_1)7_ + fu) , r e (O,R) , >0, (7.3)

7
(PR1) 0(0,t) =0, v(R,t)=0, t>0, (7.4)
v(r,0) = vo(r) , re[0,R) . (7.5)

We define blow-up set S and monotone blow-up set S. by the following:
S={z€Q|I(zn,ts) €AX[0,8) s.t. Tn — 2,8, — ¢ and u(Ts,tn) - oo}
S,={zeQ |3, st t,—1 and u(w,tn) — 00}

Let ro be the first positive zero of the Bessel function of order 0.
Theorem 7.3 Suppose that 0 < § < 2. We have
[0,70] C S.. (7.6)
Theo‘rem 7.4 Let 6 > 2. Then, we have
[0,70] = S. (7.7)

Under the assumptions (A1) we can investigate the behavior of the solutions near the

blow-up time.

Theorem 7.5 Suppose that § > 2 and ug satisfies (Al). Let v(r,t) = u(z,t) blow up at
t=T. Then,

v(r,t)

2(0.2) — Jo(7) for r € [0,70) (7.8)
uniformly as t — T.Moreover, if ro <r < R, then

v(r,1)

v(O,t)_—%O forrg<r<R. (7.9)

Theorem 7.6 suppose that 1 < § < 2, and ug satisfies (Al). Let v blow up att = T.
Then,

z(r) for r €S,

T — )Y5(r, t {
( ) t) — 0 for re 5¢

(7.10)
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uniformly as t — T, where z(r) is the unique positive solution of the boundary value

problem

1 1
Zpp + —2p — = 0, resS, (7.11)
z(r) = 0, reds . (7.12)

Lemma 7.7 Under the same assumption as in Theorem 7.5, we have

(T — t)Y5(0,1) — oo as t— T . (7.13)
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GLOBAL EXISTENCE FOR NONLINEAR WAVE
EQUATIONS IN TWO SPACE DIMENSIONS

SOICHIRO KATAYAMA

Abstract. We study the Cauchy problem for nonlinear wave equations in two space
dimensions with cubic nonlinear terms which depend on both the unknown and its gradi-
ents. Global existence of classical solutions with small data will be proved under the null
condition on the cubic part of the nonlinear term.

1. Introduction We consider the Cauchy problem for nonlinear wave equations

(1.1). { Ou (= (8 — A,)u) = F(u, Du, D;Du) in (0,00) x R?,

u(0,2) = e¢(a), (9) (0,2) = e¥(z) in R,

where Du = (Bau) , Dy Du = (8i8,1u> 1<i<n s 8y =0; and §; = 9, (1 <1< n). We

Osasn 0Za<n
suppose that the nonlinear term F' is a smooth function in its arguments and

(1.2) F(u,v,w) = O(Ju]* + [o|* + |w|*) near (u,v,w) =0

with some integer A > 2. We also suppose that ¢ and t are Cg°—functions and that &

is a small positive parameter. For any positive integer s and any smooth function G, we
define

(L3) G = 3 —0.5F(2)

|ar|=s

where z = (21, *,2m) € R™, 0% = 0% - 0gm, 2% = 27" -+ 2™,
Here we want to mention some known results briefly, restricting our attention to the
cases n = 3 and 2. First we consider the case n = 3. When F(u,v,w) = F(v,w)

with some function F, Klainerman ([8]) introduced the method of invariant norms to

z%,
z==0
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Global existence for nonlinear wave equations in two space dimensions

get uniform decay estimates, and combining them with the classical energy estimate, he
proved global existence of small solutions when A > 3 and almost global existence when
)\ = 2. Here we note that we cannot get the global existence in general when A = 2,
because it is known that every non-trivial classical solution to du = u? must blow up in
finite time (see John [5]).

When F depends both on u and derivatives of u, the problem becomes more com-
plicated, because the classical energy inequality for linear wave equations provides the
estimate of L2-norms of gradients of u, but not a good estimate for L*-norms of u it-
self. Klainerman ([9]) and Christodoulou ([1]) proved independently that when n = 3
and )\ > 3, there exists a global classical solution for any small data. Klainerman used
a certain conformal energy combined with the method of invariant norms. In addition,
concerning the case A = 2, they introduced a sufficient condition (the null condition)
for global existence of small solutions. We say a smooth function G = G(u,v,w) with
u € R, v = (Va)o<a<n € R™! and w = (Wja)1<j<n0<a<n € R™"*1) gatisfies the null
condition when G(p, (¢Xa)o<agn, (rX;jXa)1<j<no<acn) = 0 holds for any p, ¢, 7 € R and
any (Xo, X1, -+, Xn) € R*? satisfying X§ — X2 —---X;? = 0. In [9] and [1], it was
proved that if F(? (defined by (1.3) with z = (u,v,w)) satisfies the null condition, then
global existence of solutions with small data is assured.

Now we turn our attention to the case n = 2. Applying the method in [8], we can see
that solutions with small data exist globally when F(u,v,w) = F(v,w) with some F and
X > 4. This result was extended to general F(u,v,w) with A > 4 by Li - Zhou ([11]). In
[10], they also proved the almost global existence for F* with A = 3 under the condition
that F(u,0,0) = O(|ul®) near u = 0. Since it is known that we are not able to get the
global existence for (1.1). with general cubic nonlinearity, we need some restriction on
the cubic part of F' for that purpose. According to the works of Godin ([2]) and Hoshiga
([4]), we can show that when n = 2 and A > 3, if we assume

(H1) F®(u,v,w) (defined by (1.3) with z = (u, v, w)) satisfles the null condition,

and if F does not depend on u, then there exists a global solution to the problem (1.1).
for any small data. Their proof is based on the a priori estimate of the classical energy
and some decay estimates for the solution. When F' depends also on u, the author ([6])
proved the global existence of small solutions under the assumptions (H1) and

(H2) F(u,0,0) = O(|ul’) near u =0,

by developing the estimate for L?-norms of u itself similar to Klainerman’s energy in
[9]. The difficulty in two space-dimensional cases which does not appear in higher space
dimensions is that the L?—norm of the solution even for linear wave equations with
C¢° —data does not stay bounded in general (of course, L?>—norms of its gradients stay
bounded). Hence the term u* prevents us to get a suitable a priori estimate for L?-norms
of u, and this is the reason why we needed (H2) in [6]. But (H2) seems removable, if
we compare the result of [6] with Klainerman’s global existence result for n = 3, or Li -
Zhou’s result for n = 2. Our aim is to show that this observation is true.
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Theorem 1.1. Let n =2 and A = 3 in (1.2). Assume (H1) is fulfilled. Then for any ¢,
Y € C(R?), there exists a positive constant g such that (1.1). admits a unique solution

u € C™ ([O, 00) X R2) for any € < &.

We will get a priori estimates of Ll_z—“7— norms of u with some v > 0 instead of L?—norms.
The decay of the solution with respect to 1+ l t— |a:|} plays an important role in our proof.
Remark. Concerning the semi-linear wave equations of the form Ou = F(u,Du) in
(0,00) x R? with F'(u,v) = O(|u|* + |v|?), we can prove the global existence of small
solutions, provided that both F'® and F®) satisfy the null condition. In fact, it is known
that when F? satisfies the null condition, we can eliminate the quadratic term of F' by a
certain transformation in this case (see [2]), and then Theorem 1.1 implies the assertion.

Concerning the almost global existence result in [10], we conjecture that the condition
F(u,0,0) = O(|ul?) is also relaxed to F'(u,0,0) = O(|u[*), but this seems to remain open.
For the equations with nonlinear terms which may contain u*, we have:

2

Theorem 1.2. Let n = 2 and F(u,Du,D,Du) = > 8,G,(u, Dv) + H(u, Du, D,Du),
a=0

where Go(u,v) = O(Ju* + |[v?) (a =0,1,2), H(u,v,w) = O([u]® + |v|° + |w|?) and H®

satisfies the null condition. Then for any ¢, ¥ € C(R?), there exist positive constants

g0 and A such that (1.1), admits a classical solution for 0 <t < T, provided € < &g, where

T. > exp(Ae™?).

2. Outlines of the proof  We sketch the proof of Theorem 1.1 here. See [7] for
full details of the proof. Following Klainerman [8], we introduce 'y = t8; + Y2, 2:6;,
'y =101 + 210, 'y = 103 + 220y, I's = 210y — 2201, I's = 8;, T's = 9 and T'g = &s.
We write ['* = I'g° - - - T'¢® for any multi-index @ = (apg,-++,0g). With these operators,
Klainerman’s decomposition of the null forms (see [9]) as well as Hormander’s L' — L*®
estimate (see [3]) is available. For any non-negative integer s, we define

)l = > [M(, )],

0<]a|<s
@y = ol oy = | 1005
We also write || - ||, for || - ||ze(r2)-
Now let u(t, z) be a smooth solution of (1.1). for 0 < ¢ < T with some T > 0. We note
that supp u(t, ) C {az e R%|z| <t+ R} for t > 0 with some R > 0, because initial data
are compactly supported. We want to get an a priori estimate of

E(T) = sup {11Wﬂ<t, Yl Mesa |, + (07 (e M, 2+ 1Dult, laeerz) },

0<t<T

il

Lo(R?) for 1 < p < oo.
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where k is a sufficiently large integer, W (t,z) = (1 +i+ [:v{)l/z (1 + lt - |z| I)(l—h)/g and
K is a constant with 0 < x < 1/3, while x> 0 and v € (0,1) are constants small enough.
Here we note that ||Du(t,-)||2k+1,2 cannot be replaced by [|[Du(t, )|k + || D*u(t, ) ||2x.2
in our proof, because we use the decomposition of the null forms in the estimates of the
first and second terms of E(T). From the definition of E(T'), direct calculations yield

1
(2.1) H u(ts )iy ”LF(RZ) < (L+8)TFE(T) for0<t<T

if gp(1 — &) > 2. This is one of the essential estimates in our proof.

Since we are only concerned with small solutions, we may assume E(T') < 1. Define
Fi(u,v,w) = F(u,v,w)— F(u,0,0) and F5(u) = F(u,0,0). Clearly we have F' = F; + F},
and Fi(u,0,0) = 0. From the assumption (H1), it follows that Fl(B) satisfies the null
condition and Fy(u,0,0) = O(|u|*) near u = 0. Now we prepare some lemmas.

Lemma 2.1. Let v(t,z) be a smooth function satisfying suppv(t,-) C {lw} <t+ R} with
some R > 0. Then we have

v(t,)

(2.2) ]

S C’R‘HD’U(t, ')“L2(Rn).
L2(R7)

Lemma 2.2. For any smooth function v(t, z) vanishing sufficiently fast at spatial infinity,
we have

(2.3) (1 4]t =I2l]) lo(t, 2)] < Clo(t, 2)l for (t,5) € [0,00) x R™

For the proof of Lemmas 2.1 and 2.2, see Lindblad [12].

Since the cubic part of Fj satisfies the null condition, using the decomposition of the
null forms (see [9]), and then by Hélder’s inequality with the help of Lemmas 2.1 and 2.2
we get

(24) 1Fy(w, D, DeDu)(D)llsp < O+ 07| fult, )IE ppaa] DU o1
+0| lut, ) ma |, (ID2@ o2 + 1 D*u()]e),
where 1 <p<2and1/g=1/p—1/2. For F,, it is easy to see that

(2.5) 1) @)llsp < O lult, iy | I, 2,

8,1_7

where 1 <p<2/(1—~)and 1/g=1/p— (1 —7)/2.

Now we are going to estimate E(T). In the following, C} represents various constants
which may change line by line, but are independent of T'. Applying Hormander’s L — L*°
estimate ([3]) to (1.1)., we have

(2.6) Walt, 2t lssa < Co (o [ (47 FIF(r, Yssadr)
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When k is large enough, by (2.4) and (2.5) we get
@) IFE ks < G {0+ REER + (B

O+ TP HEE(T) < Cu(1+ )P EE(T).

Here we used (2.1) which is applicable for small 7. Observing that p—~1+7/2—« /2 < -1
for sufficiently small x and «, from (2.6) and (2.7) we obtain

(2.8) Wt )ut, Merelle < Ci(e + E(T)) for0<t< T
According to Li — Zhou [11], we have
(29) [t Mo < G (4 [ NPT, Vgt

where p > 2 and 1/¢q = 1/p + 1/2. Since (2.4), (2.5) and (2.1) imply [|[F(7)|l2k2/2~v) <
Cie(1+t)*LE(T)? as in (2.7), from (2.9) we obtain

(2.10) lut, Mgy, 2 < Cell+ ty*(e+ E(T)?) for0<t<T.
1y
Finally let |a| < 2k + 1. Then we have from (1.1).
OF OF, -
0(0%u) — Z o L9;0,(T%u) (raﬂ E " 19 )) +TeFyu) = I + I,
.7’1 _70.

where T'* = (Tg + 2)%°T'{* - - - Tg¢. With the help of Lemmas 2.1 and 2.2, we have
(2.11) IL(Olls < Cullu(®)l1 200 (|1 D6 26412 + 1 D*u(t) otr1,0)
< Cp(1+ )P TE(T).

Note that the decomposition of the null forms is not used here. Since I~‘°‘F2(u) <
|lu(t, 2)|3|u(t, z)|2k41, Holder’s inequality implies

D E s ‘3 [u(t, )|k
(T4t =11])® futt: )l N e |
< 1+ 1) BT Du() oz < Ch(1 + 1) BT

Here we have used Lemma 2.1 to estimate the last factor in the right-hand side of the
first line. Now from the classical energy estimate for hyperbolic equations, we obtain

(2.13) 1Du(t, Ilzkt1,2 < Cr(l + t)“(s + E(T)3> for0 <t <T.

(2.12) L@ < Ck

Summing up, we have proved E(T") < Cy (5+ E(T)3) provided E(T') < 1. By the local
existence theorem and the standard arguments, this implies Theorem 1.1 immediately.
The proof of Theorem 1.2 can be done by getting an a priori estimate of

sup ([Wot Muttuse]  + 10(E oo

In the estimate, the systematic usage of (2.1) and Lemma 2.1 is essential.
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INTERACTION OF ANALYTIC SINGULARITIES FOR
SEMILINEAR WAVE EQUATIONS

KEI1icHr KAaTo

Abstract. In this article, we study the interaction of analytic singularities for nonlinear
wave equations in the interior. We show that if three analytic conormal singularities hit
at a single point, then new singularities may occur at that point.

1. Introduction.
In this article, we study the interaction of analytic singularities of solutions to semilinear
wave equations in the interior. We consider the semilinear wave equations,

(1) Ou = f(u,Du) in Q C R; x R,

where u is a real valued function, 00 = §%/9t*— A with A = ¥°2_, 8%/8z%, Du = (8u, Vu),
(1 is a bounded domain which contains the origin and f(u,v) is an real analytic function
of u and v.

We assume that all solutions u considered here are in H*(Q) with s > 5/2 where H*()
denotes a Sobolev space of order s in Q. In 1982, J. Rauch and M. Reed [4] have made an
example in which three singularities produce new singularities. In 1984, J. M. Bony [2]
and R. Melrose and N. Ritter [3] have had a general result of this phenomenon for
C*>singularity independently. We denote X; = {(t,z) € R%t = w; -z} (j = 1,2,3)
with w; € S*. Their result for the equation (1) is as follows.

Theorem 1 (J. M. Bony [2], R. Melrose and N. Ritter [3]). Ifu € H5(Q) with s >
5/2, u satisfies (1) and u is conormal with respect to %1 U Xy U X3 in Q- = QU {¢t < 0},
then the solution u is C*® in K\(X, U Xy U X3 U {t? = |z|*}) where K is a domain of
determine with respect to )_.

In this paper, we shall show the analytic singularity version of this result.

To state our results precisely, we introduce some notation and some function spaces.
For m € R and for and open set w € R™, we denote the usual Sobolev space of order m
on Q by H™(Q). We denote S = inf(; zeqt, T = sup( et and Q(t) = {z € R*(t,2) €
Q). C((S,T); H(24(2))) (or CH(S,T); H™(2(t)))) denotes a set of H™(£2(t)) valued

continuous functions (or a set of H™(Q(t)) valued continuously differentiable function )
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in (S,T) respectively. Let & be a analytic submanifolds with codimension 1 in € or a
union of two analytic submanifolds with codimension 1 which intersect transversally.

Definition 1 (Analytic conormal distribution). For s € R, we call that u € H*(%,w; Q)
if for any compact set K C § and for any analytic vector fields V4, ..., V; which are tan-
gent to ¥ with any integer [, there exist constants C, A > 0 such that

(2) sup [|7VEr - Vil o () < CARal!
te[S,T}
71=1,2
for any non negative integers y,... ,qq with |a| = a3 + -+ + a;, where K(t) = {z €

R% (t,z) € K}.
Assumption 1. The nonlinear term f € C*™(R x R®) satisfies that for any positive
number M > 0, there exist positive constants C; and A, such that

(3) sup 0802 F(u,v)| < CLAFPI R QL.
Juj<M,|v|<M

Theorem 2. Suppose that the nonlinear term f satisfies the assumption 1, u is in C((S,T); H™(Q
CH((S,T); H™ 1 ((t))) with some integer m > 3, u satisfies the equation (1) and u €
H™(y,w;Q_). Then the solution u satisfies that

(4) u € H™(E,w; K),

where S = inftg)eatl, T = suppayent, - = QN {(t,2);t < 0} and K is a domain of
determine with respect to §)_.

Theorem 3. Suppose that the nonlinear term f satisfies the assumption 1, u is in C((S, T); H™(Q
CH(S,T); H™ 1 (Q(t))) with some ‘integer m > 3, u satisfies the equation (1) and u €
H™(¥1 U Zg,w;Q_). Then the solution u is real analytic in K\¥X; U 5, where S =
infzyent, T = SUP(men ty - = QN {(¢,2);t < 0} and K is a domain of determine with

respect to §)_.

Theorem 4 (Main result). Suppose that the nonlinear term f satisfies the assumption
1, u is i C((S,T); H™(Q(¢))) N C((S,T); H**(Q(t))) with some integer m > 3, u

satisfies the equation (1) and
(5) U EHm(E;lUEQUEg,w;Q_).

Then u is real analytic in K\%; UX, U X3 ULy, where I'y = {¢% = |z]%,¢ > 0}, Q_ =
QN{t <0} and K is a domain of determine with respect to Q_.

In what follows, C' and C; denote constants. They may be changed from line to line.
2. Preliminaries.

Let S and T be real numbers with S < T and let K be a compact set in R® = R; x R?
such that each subset K N {(¢,z);s < t < T} is a domain of determine with respect
to K N{(t,z);t < s}for S < s <T. Form > 1 and f € C([S,T]; H™(K(t))) N
CY([S,T); H™*(K(t))), we denote

(6) En()1f] = VI O acqeyy + 106 Ol ms i

with K(s) = K N{(¢,z);t = s}. We recall the energy estimate for the operator, Ov + g -
Dv + hv.
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Proposition 1 (Energy estimate). Let g and h be C* functions in K. Forv € C([S,T]; H™(K
CY([S,T); H™(K(t))), we have

() En(ta)lv] < C(T, llglize, 1hllze) (Em(t) o]+

) .
\/‘/tl “Df + g . _D'U + hv”%{’"“‘l(,{{(«r))d’r>

for S <ty <ty <T.

For ; and X, we write &; = (1, —w;), & = (1, w), V = (01, 0x,, 0s,) and write

8) X1 = w0, + 8,

9) Xy = M8, + 85,

(10) Xs=1t0,+z-V,

(11) Xs = (@1 X @) - V.
Proposition 2. We have

(12) [X;,X3) =X; for j=1,2,4,
(13) [0, X5] = 20,

(14) OX,=(Xs+2)0 forleN
(15) X0, = 0,(Xs— 1) forle N

3. Lemmas.
In this section, we prepare several lemmas which are used to prove the theorems.
For T',t, € R with to < T and for zo € R?, we write

S ={(t,z) € R x B3|z —wo| < T —t,to <t <T < T},
and
I'(t)={z € R%|z —wo| < T —t} for o <t <T.

Lemma 1. Suppose that u € H™(Z) with a integer m.2> 3, that u satisfies the equation
(1) in =, that the nonlinear term f satisfies the assumption 1 and that there exist positive
constants Cg and Ag such that

(16) E[X21 X2 X2u)(to) < CeA|a|! for Vou,Vag,Vos € N,

with || = a1 + a2 + as. Then there exist positive constants Cr; and Ay such that

(17) sup E[X& X2 X&u)(t) < Cr Aol for VYau,Ves,Yas € N.
te[tCh:F]

Lemma 2. Suppose that u € H™(Z) with a integer m > 3, that u satisfies the equation
(1) in Z, that the nonlinear term f satisfies the assumption 1 and that there exist positive
constants Cs and Ag such that

(18) E[X2 X2 (to) < CsAR|a|l  for Vas,Vay € N,

with || = as + as. Then there exist positive constants Co and Ag such that

(19) sup E[XPXtu)(t) < CQAlgaliC\fl! for Vas,Vay € N.
telto,T]
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Lemma 3. Suppose that u € H™(Z) with a integer m > 3, u satisfies the equation (1) in
E, the nonlinear term f satisfies the assumption 1 and there exist positive constants Cio
and Aio such that

(20) E[X!u](to) < CgALll  for VI € N.

Then there exist positive constants Cyy and Agy such that

(21) sup E[Xéu](t) < CuAlnl! for Yl € N.
t€[to, T

Lemma 4. Suppose that

(22) E@)[X%u] < CAPI Y (Ja| - 2)4!  for Yo >0,

and that u satisfies the equation (1). Then there exists a positive constant C such that
(23) | X %ulgm-1(ry < CAY(la| = 2)4! for Vo> 0.

4. Regularity in the interior of the cone

In this section, we show that the solution u is analytic in the forward light cone from
the origin if u is "analytic ” with respect to X5. We denote P = t0; + = - 0, = X3 and
Iy = {(t,z) € B3t > |z[*,t > 0}. The following method which uses the operator P is
due to M. Beals [1]. Let Bgr be a ball in I'y with radius R and the center (to, zo).

Proposition 3. If we take R sufficiently small, we have for a integer s > 0

(24) | fllzes2(8m) < Ors (I0F sz + 1P Fllreom)

for f € H{t*(Bg) where H)(BgR) is a completion of C°(Br) with the norm of H'(Bg).
The following is the key lemma to prove the theorem 3 and 4.

Lemma 5. Suppose that uw € H™(K), u satisfies (1) and that

(25) | P ullamz) < CroAilt for Vi€ NU{0},

for some Cig > 0 and Ajg > 0. Then u is real analytic in 'y N K.

5. Proof of the theorem 3.

In this section, we give a proof of the theorem 3. We divide K'\(X;UX;) into two parts
O, and O,:

Oy ={(t,z) € K\(Z1 U D2);t <wy -z ort <ws-z},
O, ={(t,z) € K\(Z1 U X2);t > wy -, t > wy - x}.

First, we show that u is analytic in O;. Let (to, o) be a point in Oy. We write Zfy .y =
{(t,2); |z — 20| < to—t+e,—€ <t < lo+e}. Since (fo, o) is under Xy or X in space-time,
we can take € > 0 so small that =, ) C O; and Zf, ;) has no intersection with ¥; or
¥,. Hence the theorem 2 yields that u is analytic in Efto’mo)\(zl U X,).

Next, we show that u is analytic in O;. We denote S = ¥; N3, N K. For a while,
we fix (to,z0) € S. We denote P, z0) = (t — t0)0: + (z — 2o) - 0, and F&,m) = {(t,z) €
R3; |t — to]* > |z — @o|?, t > to}. Since £0 + zo - 0, = kX, with a real number &,
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Plty.z0) = X3 — kX4. We fix a cone shaped domain = C K. From the lemma 2 and the
lemma 4, there exist positive constants C' and A such that

[ X5 Xl gz < CARTR(L + 1),
for Vly, VI, € N{0}. Until the end of the proof, we write ||- || zm-1(z) = ||-|| for abbreviation.

”P(lto,a:o)u“ = ||(Xs — kX4) ull
< > K Xaq) - Xl

2'terms
where i(j) = 3o0r4(1 < j <1).

1 Xiq) - - Xagyu <II(X3 + L)' XPu| (with =1 +1,)

< Z ( )lll—l’ IXI’ lgu”

I'=0

<3 (3) G CA (1 4 1))

=0
[ .
<Ay 1)A (a-1)
SC’A’Z!(I + Afl)'1
<C(1+ A)'1L.
Hence we have
(26) [ Pley woytell < C(2k(1 + A))1L.

From the lemma 5 and (26), u is analytic in I‘z;o,mo) N Z. Since

U U (rg;m)mz) = O,

(to,0)€S ECK

u is analytic in Os.
6. Proof of the theorem 4.

In this section, we complete the proof of the theorem 4. We divide K'\(X;UZ,US;UT.,)
into two parts O; and Os:

01 ={(t,a:) € I(\(El U 22 U 53 U P+),t2 < lez ort < O},

02 Z{(t,.’ﬂ) S I{\(El U 22 U 53 U P+);t2 > |£II[2, t> 0}
Let (%o, zo) be a point in O;. We write Ef, ) = {(t z); |z—zo| < to—t+e, —e <t < tote}.
We can take € > 0 so small that =f, ., C O, and 5 Eltoo o) y has intersection with only two sets

between ¥, ¥ and X3. The theorem 3 yields that v is analytic in Zf, ,\\(%1 UX, UXs).
Combining the lemma 3 and the lemma 5, u is analytic in O,.
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ON THE SMOOTHING PROPERTIES OF SOME
DISPERSIVE HYPERBOLIC SYSTEMS

Carros E. KENIG, GUSTAVO PONCE AND LUIS VEGA

Abstract. We prove that dispersive hyperbolic systems have in general worse regu-
larizing properties than dispersive elliptic systems.

1. Imtroduction and statement of the results.
Consider the initial value problem

10 + Q(0z)u = P(u, Vgu,, V1) z € R", teR,
u(a:,O) = 'U'O(m) z € R",

(1.1)

where Q(8;) denotes any real non degenerate quadratic form (i.e. Q(9:) = Z};l +03.)
and P is any polynomial of degree at least two.

In [6] a local well possedness result in, possibly weighted, Sobolev spaces is proved
for small initial data. Existence and uniqueness of the solution is established using the
contraction principle on a suitable function space. The main difficulty comes from the
nonlinear terms which involved derivatives of u. These can be handled thanks to the
following inequality which plays a crucial role in the whole argument.

1 oo
a2 swpz [ [ (Veule,t)Pdadt < Clluoliyean, + IIFIL

.‘l:o,R
B(zo,R) —o0
where u is a solution of the free lineal equation
10 + Q(0;)u = F(z,t) z € R", teR,
(1.3) n
u(z,0) =uo(z) 2z cR",
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DISPERSIVE HYPERBOLIC SYSTEMS

@) = {u [la@Plel <400},
and

co 1/2
||1F|H=Z||F|1L2(Q:Lg)=Z( /Q / IF(m,t)}zdtda;) |
Q Q —o0

where the sum is made over all the unit cubes @) of disjoint interiors of a grid of R™.
Above ~ denotes the Fourier transform. For the homogeneous equation (i.e. F = 0)
inequality (1.2) was already known in the elliptic case. See [2], [9], and [10].

Shortly afterwards the size restriction on the data was removed by Hayashi and Ozawa
[5], in the case of one space variable. They used a simple change of variable to eliminate
the term in u;. Hence, an equation with just terms in %, and of zero order is obtained
and can be treated by the energy method.

More recently H. Chihara [1] has been able to avoid the smallness condition in the
data in any dimension in the elliptic case (i.e. Q(9;) = A;). He also transforms
the equation using a pseudo-differential operator K of order zero in such way (see
[4]) that the conmutator [K;iA] basically eliminates the term in Vyu (see also [3]).
Unfortunately the new terms obtained in V,u do not have the simmetry property
Ku # Ku to be treated by the energy method. Chihara overcomes this difficulty by
first diagonalizing the corresponding system in (u,%), so that the first order terms in
V.U disappear.

It is in this diagonalization where the argument brakes down when the laplacian is
changed by more general quadratic forms. The interest in these quadratic forms comes
from the possibility to extend the method to more complicated situations as Davey—
Stewartson, Zakharov and Zakharov—Schulman systems.

In a forthcoming paper the authors are able to bypass the diagonalization procedure
and hence to avoid the size restriction for general quadratic forms. They combine with
some modifications the ideas in [1], [4], and [6] already mentioned, together with a
freezing argument in the temporal variable of the coefficients in Vyu and V w. This
freezing reduces the question to prove the inequality (1.2) for finite time T to the variable
coefficient equation

(1.4) { 0w + Q(Op)u + bi(2)  Vou+ bpz) Vou=f  (z,t) €R™,

u(z,0) =uo(z) = €R",

whereby, by are, say, functions in the Schwartz class. Once (1.2) is established the
arguments in [6] can be applied. Our purpose in this paper is to illustrate that the
regularizing properties of (1.4) for general (b, by) are quite better in the elliptic case
(i.e. Q(8;) = A;) than in the positive signature setting. To fix the ideas we reduce
the problem to the simpler case by = 0 and to the homogeneous equation F' = 0. In
fact, in [8] a pseudo—differential operator K is used to eliminate the term b; -V u with
the extra, and fundamental, property K% = Ku + error terms. Hence b; = 0 can be
considered as a model problem for our interests.
We have the following results.
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DISPERSIVE HYPERBOLIC SYSTEMS

Theorem 1. Let b € C™ with |b| = 1, O, = 82, — Az for z = (z1,Z) € R™, and u the
solution of the I.V.P.

10w +u+6-V,u=0 z € R", t R,
(1.5)

u(z,0) = ug(z) z € R™

Then if D3 = (—A,)*/? and 0 < s < 1/4,
T
(1.6) sup / / |Du(z,t)’dzdt < CRT||ug||%2-
" B(zo,R) ~T
Moreover (1.6) does not hold if s > 1/4.
However the results in the elliptic case are much stronger.

Theorem 2. Given ug € L2(R™) and b(z) = (bj(w))j::l,,_.,
|a| < 2, there exists a unique solution to

such that |D%b;| < C if

n

| B+ Agu+ b(z) - Voau=0 xR, |t <T,
(1.7

u(z,0) = uo(z),

such that u € C ([-T,T] : L*(R™)).
Moreover

1

T
(1.8) su% = / / | DL 2u(z, t)|%dtdz < C(T)||uoll:.

B(“’O)R) -T

2. Proof of theorem 1.

Define
O, b-Vg
- am (e T,
with w = (;) and wy = (;0) . Then the LV.P. (1.5) can be written as:
0
(2.2)
w(z,0) = we(z).
Now observe that
A2 = 02 — |6 V|2 0
0 Di - lb ) vx|2
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DISPERSIVE HYPERBOLIC SYSTEMS

where [b- V> = |30 8;]* = b;650;0k. Hence from (2.2) and applying the operator
J 3,k
—i0; + A we obtain that w also solves

Oiu+ A%w =0
(23) w(z,0) = wo(z)
wi(z,0) =i Aw(z).
Therefore we are reduced to study the scalar I.V.P.
8 + (T2 — b Va[2) v = 0
(2.4) v(z,0)=f
ve(z,0) = g.

Notice that the solution of (2.4) is written as

(2.5) v(z,t) = costB(f) +sintB(B™1g),
where

(26) (costB(f)) (€) = cost (QX(¢) + [b- €)% F(e),
(2.7) (sintB(g)) (6) = sint (Q*(¢) + [b- £12)"/* 4(&),

and Q(¢) = n? — |€]? with £ = (n, £).

In particular the theorem follows from the inequality

T
(2.8) sup / / | DL/ 4By |2 dtdz < CRT“'UO”%z(Rn),
e B(zq,R) ~T
since
| Q) +1b-¢]
2.9 <
(29) (Q(&) + 1b- €)'/
We write
(2.10) e Bug(z) = / 12O +im g (£) e
Rn
where ®(£) = (Q*(¢) + [b- ¢[2)"/%.
Hence
1
(2.11) V. @(§) = 3@ (Q(€)q +1b-£[0),
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DISPERSIVE HYPERBOLIC SYSTEMS

where Q(£)ég = IVQE(8).
Next we consider two different regions. Write € = (7, £),
Ty = {€ < gl = il < 16177},
Py = {& < IEl = Inll = 16177},

and Ug; @8 60\](6) = XT; (6) '8'0(6)'; .7 = 17 2.
Now notice that

@@EF _ (6
(2:12) G

Thus (1.6) for ugy follows from theorem 4.1 in [7].
Let us just consider the inequality for ug;. First notice that if (n, £)=¢ €Ty then

(2.13) Inl ~ €] = I€].

Now we have

ez‘tBu(n(m) :/eit(Qz(E)Hb-El?)l/zeix-e,&m(g)dﬁ

:Aeﬁ:‘z (/ eit@(s)—}-iazlnﬂa(n,Z) dﬂ) dE
n

Using Plancherel’s theorem in Z we have

T
/B( R)/T‘D1/46itBUQ1($)l2 dtdml dz

<2Rsup/ / |DY/4etB g ()] cl"dt
Rn—-1

“CRS“P/ / / (1RO +ioun g1/ 4q0, (n F) dn|® dE dt

= CTR/ (e (5 D12 / €172 o, B i) dE
< CTR“U()“Lz(Rn

as desired.
Let us now prove the sharpness of the inequality (1.6). Consider the LV.P.

1Bu+ 0%y u— 8, T =0 (z,y) eR% teR
(2.14)

u(z,0) = ug(z) (z,y) € R?.
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Hence u also solves the I.V.P.
u+ (82,)u — Oiu =0
(2.15) u(z,0) = uo(z)
ug(z,0) = i(82,u0 — OsTo).
Write

w= [ con (HeTTR) e Hmag (e, de
R?

~|~/ sin t]f}\/l +77) wsﬂyn(l‘f]\/fl%?_z o (€, m)

——————T—-—,~ d¢ dn.
+|€lmuo( £, —n))d€ dn

Now choose for a given N > 1

ug(z,y) = (1 - )¥n(2,y)

with QZN({,n) = (£ — N)p(N'/?n) and ¢ an even, real, C* function supported in
[-1,—1/4] U [1/4,1]. Then straightforward computations give

u(:c,y,t) — /1;2 eit5\/1+n2+iz5+iy77,&0(€,n)d€ dn + O(N—l)
- / (LT ) Histtivng e ovag dn + OV
R2

=(1—-1)e ’tN/ NIty (w +¢(1+ ——)) @(NY2n)dn + O(N7Y).
Using the stationary phase lemma we trivially have that if |t —1/2] <1/100

|u($, Y, t)l > CN_I/ZX[—l/lO,l/lO](w)X[—N1/2/2,N1/2/2](y)7

and therefore for large N,

</_11 /_11 /_11 (u(z,y,t)]Pdz dy clt)l/2 > CN-/2,

On the other hand ||D™*ug||z2 < CN™*"1/%, Hence s < 1/4.

3. Proof of theorem 2.
As in the proof of Theorem 1 we write the L.V.P.

{ 10u + Agu + b(z) - Vu =0 zeR™ |t <T,

(3.1) (2,0) = uo(e),
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as _

10w + Aw =0
3.3
(3:3) w(z,0) = wo(z),
where in this case we have w = (E), w = (7,{0) and

U Ug

Ay b-V,

(3.4) A-(_-g.vz —Az>.

Now observe that

A2 _4.V.5.V [Auib- V]
. 2 _ z T z ) T
(35) 4 _( B Vai Al Aﬁ—b-be-Vz>’

where [C; D] = CD — DC. Assume that u is a solution of (3.1) such that

(3.6) sup lu(-t)|z2@n) < C(T) |luollz2@n)-

Then w is a solution of
(07 + A%)w =0
(3.7) w(z,0) = wo(z)
we(z,0) =i Aw(z).

We shall prove that solutions of (3.7) verify (1.8) and, therefore so does w.
Write '

(3.8) *
= Ai 4+ Bw
Then
(3.9) w(t) = cost Agwg + sint Ay (A7 Owo)

i

/sin(t ~ )AL (AT Bw(.,r))dr.

0

Notice that B is a differential matrix operator with bounded coefficients. On the
other hand we trivially have that

(3.10) | costAzwollLz < |lwollz2,
(3.11) | sintAL(AZ F)|[z2 < || F)| g2

—218—



DISPERSIVE HYPERBOLIC SYSTEMS

Hence

(3.12) sup [lw(t)l[z2 < Cllwollz2 + CT? sup [w(t)| Lo,
[t|<T lt|<T

which allows us to solve (3.9) for T' small enough depending just on the size of b. By
repeating the argument we solve (3.9) for arbitrary large T.
Moreover :

(3.13) sup |lw(t)l|z2 < C(T)||wol|zz.
1<T

Now use (3.9) and theorem 4.1 in [7] to obtain

1
sup

T
L / / IDL/2 w(8)[2dt da
z0,B B JB(z0,R) /=T

_ T
< Cllwollzz +T / | BioCey )| gl
~T

< C(T)|wol| 2.
Finally we must establish the solvability of (3.1).
Define
_— 0 b-Vo+3Vs-b
(3.14) 13’3,,.(_77._‘73_%%‘5 . )
0 —3Vs b
(3.15) By = (%Vz 3 e ) ,
A, 0
(3.16) H-(O _A:z:>.

Now notice By is a simmetric operator with H? C D(B,). Moreover
[Bswllz> < Jlwllmr < 1/2]jw]lgz + Cllwl| 2.
By Kato-Rellich’s theorem H + By is a self adjoint operator and therefore
(3.17) le*EFB g 2 = [feo[ -

Now consider the integral equation

¢
(3.18) w(t) = e H+B) 0 4 z/ !N EHAB) By o (r)dr.
0

Then
sup ||w||z2 < |lwollz2 + CT sup ||w|z2.
[t|<T . [t|<T

Taking T small enough depending just on the size of b we can find an inverse for
(3.18) written as a Neuman series. Hence the solvability of

(3.1) is established.
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Vortex filament equation and semilinear Schrodinger equation

NorigiTo KOISO

Abstract: We consider an initial value problem of the vortex filament equation:
Ve =Yz X Yzz (V| = 1) (x is the exterior product).

In this paper, we will prove the existence and the uniqueness of a classical solution for
the initial value problem, and generalize it to the case of curves in 3-dimensional space
forms. We also consider related semilinear Schrodinger equations for curves in Kahler
manifolds. It is remarkable that we need symmetric spaces as manifolds for infinite time
existence of solutions.

0. Introduction
Let y(z,t) be a solution of the vortex filament equation. If we introduce a complex
valued function u(z,t) by

u(z, t) = meXp(\/:I/wa),

where & (resp. T) is the curvature (resp. torsion) of vy, then u satisfies u; = V—T1(ugsz +
(1/2)|u/?u). This is called Hasimoto’s transformation. However, we should note that
this transformation is not defined when & vanishes at some point. In fact, even [ 7dz
may be discontinuous.

In section 1, we will give another transformation using not Frenet-Serret’s formula but
‘development of curve’. Qur transformation is well defined even when « vanishes at some
point, and it gives same result when « does not vanish (Proposition 1.3, Theorem 1.4).
As a result, we have a unique global existence result for the vortex filament equation
(Theorem 1.6).

More precisely, we will show that the following 3 PDEs are equivalent.

(0'1) Y£ = Yz X Yz (I'le = 1) in R37
(0.2) & = I Vs in SZ,
(0.3) us = V—1(Uge + (1/2)|u?v) in C.
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Equation (0.1) has a natural generalization to a 3-dimensional riemannian manifold.
We will give a unique global existence result in a 3-dimensional space form (Theorem
2.2). We will consider equation (0.2) in a Kéhler manifold, and will get a unique short-
time existence result (Theorem 3.1).

We will find that equation (0.2) in a hermitian symmetric space has very similar
property with that in §2. In fact, equations (0.1), (0.2) and (0.3) are generalized and
each has a unique global solution for any initial data (Theorem 4.2, Proposition 4.3,
Proposition 4.4).

We use following notations: On a riemannian manifold, we denote by V the covariant
derivation and by R the curvature tensor. The partial derivation is denoted by & or the
subscript, e.g., 8z, 7z We denote by (x,*) the pointwise inner product, by (x,*) the
Ly inner product for z-direction, by || * || the Lo-norm for z-direction.

We mainly consider closed curves defined on S' = R/Z and quasi-periodic curves
defined on R. When curves are not closed, we should set some appropriate boundedness
condition or boundary condition. We only treat C'°°-objects.

After this work was done, the author received a preprint [7] by T. Nishiyama and
A. Tani. They prove the existence and uniqueness of a vortex filament equation con-
taining zz., which is more general than equation (0.1). However, their method can be
applied only on the case of R3. (Compare with Theorem 2.2).

1. Vortex filament equation in the euclidean space
If we set & = +y;, then £ becomes a family of curves in S2. We rewrite the equation
by means of £ and get an equation:

&= (’Ym X ')’a::z:):z: =& X &z

Using the covariant derivation V and the complex structure J on $2, this equation is
expressed as

(1-1) gt = JVa;é‘w,
and locally as

2%
(12) A Y —1(2’:1;3; - mzm)

Remark 1.1. We will see that initial value problem (1.1) has a unique all-time
solution for any initial data. However, a solution of equation (1.2) may diverge at finite
time, because z may cross the point co.

We transform solutions of equation (1.1) by means of ‘development of curve’.

Definition 1.2. Let c be a curve in a riemannian manifold M and F = {e;} a
parallel orthonormal frame field along c. We call such a pair a curve ¢ with frame field
F. For a curve with frame field, we represent its velocity vector as

d(z) = ui(zx)e;(x).

The integral [u’(z)dz is called the development of c to the euclidean space. In this
paper, we do not use the development itself, but the differential u of the development.
If ¢ is closed, u is quasi-periodic. ’
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Let & be a solution of (1.1). We attach to it a frame field {e;}, and seek conditions for
the differential u of its development. We fix the orientation of the frame by Je; = e,.
From V_e; = 0, we see

1
am(eZ,vtel) = _'2' wlulz

Thus we can choose the frame field {e;} so that Vie; = —(1/2)|u|?e2, hence Ve; =
—(1/2)|éx|?Je;. Then, we can check that

1.3 ule; = J(ube; + 1 ul?ule;).
™1 T 2

We can reverse this procedure.

Proposition 1.3. The above transformation { < wu gives one-to-one correspondence
between the solutions of initial value problem (1.1) and the solutions of initial value
problem:

(1.4) e = It + 3 ).

If we regard the R2-valued function u as a complex valued function u! +/=1u2, then
u satisfies a so-called non-linear Schrédinger equation:

1
(1.5) U = vV —1(Ugy + §[u|2u)
This transformation of solutions coincides with a transformation found by Hasimoto

([3]). We can restate Proposition 1.3 as follows.

Theorem 1.4. Hasimoto’s transformation 1s well defined, even when the curvature
vanishes at some point.

Since equation (1.5) is well understood ([1]), we have

Theorem 1.5. The initial value problem of the semilinear Schrédinger equation
(1.1) & = JVip&, for closed curves in S? has a unique solution on —oco < t < oo for any
initial data.

Theorem 1.6. The initial value problem 7y, = g X Yz (|7z| = 1) for closed curves
in the euclidean space has a unique solution on —oco < t < oo.

2. Vortex filament equation in 3-dimensional space forms
In this section, we generalize results in section 1 to oriented 3-dimensional riemannian
manifolds (M, g) with constant curvature c. We consider initial value problem:

(2.1) Ve=Ye X Ve¥e (=l =1).

Let v be a solution of equation (2.1). By a similar way to the case on 52, we find
that the differential v of its development to R? satisfies

(2.2) Vg = U X Ugg.

This equation has just same expression with the case of euclideah space.
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Proposition 2.1. Let M be an oriented 3-dimensional riemannian manifold with
constant curvature c¢. The above transformation -y < v gives one-to-one correspondence
between the solutions of initial value problem (2.1) and the solutions of initial value
problem (2.2).

Theorem 2.2. Let M be an oriented 3-dimensional riemannian manifold with
constant curvature c. Initial value problem (2.1) vi = Yz X Vz¥z (|7z| = 1) for closed
curves in M has a unique solution on —oo < t < oo for any initial data.

3. A semilinear Schrédinger equation in a Kéhler manifold
In section 1, we introduced a semilinear Schrodinger equation (1.1) in S2. This
equation can be defined in general Kéhler manifolds (M, g). We consider a PDE:

3.1) & = JVala,

which has just same expression as in S2. Here, V is the riemannian connection and J
is the complex structure, both defined on M. This equation is locally expressed as

(3-2) & = V-1(€2, + TF4()EEED),

using a complex coordinate system.
By perturbing this equation to a parabolic equation

(3.3) & = (J +€)Vla,

we get

Theorem 3.1. Let M be a Kéhler manifold. Initial value problem (3.1) & = JVi&;
for closed curves in M has a unique short time solution for any initial data.

4. A semilinear Schrédinger equation in a hermitian symmetric space

In a hermitian symmetric space, we can show the all-time existence of a solution of
equation (3.1). We can prove it by a way similar to the case of 52, but we give here a
proof which uses results in the previous section. Therefore, we will give another proof
for results in section 1. By direct computation, we have

Lemma 4.1. Let M be a locally hermitian symmetric space and § a solution of
equation (3.1) for closed curves. Then the quantity

(41) Vol + 7 (R(Eer TEa)ors TEo)

is preserved.

Let £ be a maximal solution of initial problem (3.1). From the above equality, we
see that ||Vz£&;| is time-independently bounded. This implies, by induction, that £ is
uniformly C®-ly bounded in any finite time interval. Therefore, we get
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Theorem 4.2. Let M be a complete locally hermitian symmetric space. Equation
(3.1) & = JV,&; for closed curves has a unique all time solution (—oo < t < oo) for any
initial value.

Now, we compare this with the case of S%. We can generalize the transformation
defined in Proposition 1.3 as follows.

Proposition 4.3. Let M be a locally hermitian symmetric space. The above
transformation £ < u gives one-to-one correspondence between the solutions of initial
value problem (3.1) and the solutions of initial value problem:

(4.2) Uy = Jiigg — %R(u, Ju)u.

We also can construct a vortex filament type equation. This generalization is based
on the identification (R3, * x *) = (s0(3), [*, *]). Let M be a hermitian symmetric space
G/K, where G is the isometry group of M and K is the isotropy group. We use standard
decomposition g = ¢+ m, where g (resp. &) is the Lie algebra of G (resp. K), and the
vector space m is canonically identified with the tangent space of M at the origin.

There is an element Z of the center of ¢ such that adz |, & J, and M is locally
isomorphic to the orbit Adg Z C g. We assume that M and the orbit are isomorphic,
and identify them. Then, a curve £ in M is regarded as a curve in g, and we have
IVl = [€,€xz]- Thus we have the following

Proposition 4.4. Consider a PDE for a curve v in g

(4.3) Tt = [’Ym7'Ymm] (7= € M).

There is a one-to-one correspondence between solutions of (4.3) and solutions of (3.1)
by putting { = 7. '

Remark 4.5. Irreducible hermitian symmetric spaces are classified into four classi-
cal types and two exceptional types. Classical types are (AIIL) SU(p + q)/S(Up x Uy),
(DIII) SO(2n)/U(n), (BDI) SO(n + 2)/S0(n) x SO(2) and (CI) Sp(n)/U(n). Their
corresponding nonlinear Schrodinger equations are expressed as follows. (c is a real
number.)

Type| m Equation

AIIl | {(p,q) matrix} 1z = V—1(Ugs + cutiu)

DIII | so(n,C) Uy = V—1(ugz + cuttiu)

BDI | C™ e = V=1 (Ugz + (2l — tuui))
CI {symmetric n-matrix} u; = vV—1(tgs + cutiu)
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1. Introduction.

In this note, we show that if the incompressible fluid in unbounded domains is
governed by the periodic external force, the Navier-Stokes equations have a periodic
strong solution with the same period as the external force. Let 2 be a domain in
R™(n > 3), not necessarily bounded, with smooth boundary 9. Consider the follow-

ing Navier-Stokes equations in

%—Au%—u-Vu—%Vp:f zeteR,
(N-5) divu=0 x e NteR,
u]BQ:‘Oa

where v = u(z,t) = (u'(=z,t),---,u"(z,t)) and p = p(z,t) denote the unknown
velocity vector and pressure of the fluid at point (z,t) € Q X R, respectively; while
f=f(z,t) = (fi(z,t), -, f*(z,t)) is the given periodic external force.

Under some restrictive conditions, Serrin [20] gave a criterion for the existence of
periodic solutions of (N-S) when 2 is a three-dimensional bounded domain whose
boundary moves periodically in time. Kaniel-Shinbrot [11] considered a simpler case
such as bounded domains whose boundary is fixed in time and realized the criterion
of Serrin. Having introduced the notion of reproductive property, they showed the
existence of periodic strong solutions with periodic small forces f. In two-dimensional
bounded domains, Takeshita [23] obtained the same result as Kaniel-Shinbrot [11]

without assuming the smallness of f. The original problem posed by Serrin had been
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treated by Morimoto [19] and Miyakawa-Teramoto [18] who showed the existence of
periodic weak solutions. Later on, Teramoto [25] constructed periodic strong solutions

in a situation such that the boundary moves slowly in time.

All of these results are obtained in two- or three-dimensional bounded domains. On
the other hand, few results are known in unbounded domains. Recently, Maremonti
[15], [16] showed the existence of periodic strong solutions in the three-dimensional
whole space R3 and the half space R?jr, respectively. However, the result corresponding
to exterior domains has not been obtained up to the present. The main difficulty in
unbounded domains stems from the lack of exponential decay in time for solutions to
the initial value problem of (N-S). Indeed, Serrin [20] and Kaniel-Shinbrot [11] made
full use of the fact that ||u(t)||2 and ||Vu(t)||2 decay exponentially in ¢ provided the
initial data at t = 0 are prescribed. Such a decay property is due to the Poincaré
inequality in bounded domains, and invertibility of the Stokes operator in L? makes

it easy to obtain better asymptotic behaviour of solutions as ¢ — co.

To overcome this difficulty, Maremonti [15], [16] first showed the algebraic decay
rates in time of strong solutions for initial value problem of (N-S) in R® and in R3.
As a by-product, he constructed periodic strong solutions for periodic small external
forces. His method is based on the skillful energy estimates in L? for higher derivatives
of solutions. Although our results are not altogether new, our approach is different
and gives more results than those by Maremonti [15], [16]. We do not employ the
energy estimates in L? but the LP-theory of the Stokes operator. Making use of LP-
L" estimates for the semigroup generated by the Stokes operator, we shall show the
existence and uniqueness of periodic strong solutions more directly than Maremonti
[15], [16]. Compared with the energy estimates in L?, our LP method can cover also
the higher dimensional cases. Unfortunately, we cannot obtain the same result in
three-dimensional exterior domains because the corresponding LP-L" estimate is still

an open problem.

We shall first reduce our problem to an integral equation, the solution of which
is necessarily periodic with the same period as the external force. The solution will
be constructed in the class of functions defined on the whole interval R with values
in L™(2). Then by a regularity criterion similar to Serrin’s [21], we shall show that
our solution is actually a strong solution. For that purpose, we shall estimate a
time-interval of the existence of local strong solutions for the initial-boundary value
problem to (N-S) in terms of the given data. Our estimate extends the result obtained
by Giga [7, Theorem 4].
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2. Results.
Before stating our results, we need to impose the following assumption on the

domain :

Assumption 1.

(Case I) €2 is the whole space R™ and the half-space R}, where n > 3.
(Case II) { is an exterior domain in R” with C**#-boundary 82, where n > 4.

The reason why we exclude three-dimensional exterior domains in (Case II) is due
to the restriction on gradient bounds for the Stokes semigroup in LP (see Lemma 2.1
(2) below).

We shall next introduce some notation and function spaces. Let C§S, denote the
set of all real vector C*®-functions ¢ = (¢!, -+, ¢") with compact support in £ such
that div ¢ = 0. L7 is the closure of Cg%, with respect to the L™-norm || |; (-,-)
denotes the duality pairing between L™ and LT', where 1/r+1/r" = 1. L" stands for
the usual (vector-valued) L™-space over 2, 1 < r < co. When X is a Banach space,
its norm is denoted by || - ||x. Then C™([t1,t2); X) is the usual Banach space, where
m =0,1,2,--- and t; and ¢y are real numbers such that t; < t3. BC™([t1,t2); X) is
the set of all functions u € C™([t1,t2); X) such that sup;, «;¢, [|[d™u(t)/dt™||x < oo.

Let us recall the Helmholtz decomposition:

L™ = L] & G"(direct sum), 1<7r < o0,

where G™ = {Vp € L™;p € L. (Q)}. For the proof, see Fujiwara-Morimoto [4],
Miyakawa, [17] and Simader-Sohr [22]. P, denotes the projection operator from L”
onto L7, along G". The Stokes operator A, on L7 is then defined by A, = ~P.A
with domain D(A;) = {u € H>"(Q);u|aq = 0} N LT. It is known that the dual space

(LT)* of LT and the adjoint operator A% of A, are respectively
Ly =Ly, A7=An,
where 1/r 4+ 1/r" = 1. Moreover, we have:

Proposition 1. (Giga [5], Giga-Sohr [9]) Let 1 < r < co. Then —A, generates a

uniformly bounded holomorphic semigroup {e *Ar};>0 of class C° in LT.

Applying the projection operator P, to both sides of the first equation of (N-S),

we have

(E) %+ATU+PT(U’VU) =P f onlL;teR.
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The above (E) can be further transformed to the following integral equation:
¢ ¢
(LE.) u(t) = / e~ =4 p f£(s)ds — / e~ (=34 P (1 - Vu)(s)ds.

Concerning the external force f, we impose the following assumption:

Assumption 2. Let the exponents r and g be according to the (Case I) and (Case
IT) of Assumption 1 as

(Casel) 2<r<n, n/2<qg<mn;
(CaseIl) 2n/(n—1)<r<n, n/2<qg<n.

For such r and ¢, we assume that f belongs to the class
(1.1) f € BC(R;LP N LY

for 1 < p,l <oowith 1/r+2/n<1/p, 1/¢ <1/l <1/q+1/n provided n > 4 in
both (Case I) and (Case II).

If n = 3 in (Case I), assume moreover that
(1.2) Ppf(s) = Agg(s)(s € R) with some g € BC(R;D(AZ)) and f € BC(R; L})
for 1 < p < min{r, ¢} and § > 0 satisfying 3/2p + 6 > 1 + max{1 + 3/2r,1/2 + 3/2¢}
and for 1/g <1/l <1/q+1/3.

Our result now reads:

Theorem 1. Let Q) and f satisfy Assumption 1 and Assumption 2, respectively.
Suppose that f(t) = f(t +w) for all t € R with some w > 0. Then there is a constant
n=mn(n,r,q,p,1,6) > 0 such that if

sup || Pp f(s)|lp +sup ||Pif(s)lli <n forn >4 in (Case I) and (Case II),

seR seR

sup ||g(s)llp +sup | Pf(s)lli <m  for n=3 in (CaseI),

s€R seR
we have a periodic solution u of (ILE.) with the same period w as f in the class
u € BC(R; LT) with Vu € BC(R; L9).

Such a solution w is wunique within this class provided supgep ||u(s)llr +

sup,cp ||Vu(s)llq s sufficiently small.

Concerning the existence of solutions to (E), we have:
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Theorem 2. In addition to the hypotheses of Theorem 1, let us assume furthermore
that f is a Holder continuous function on R with values in L™. Then the periodic

solution u given by Theorem 1 has the following additional properties:
(i) uw e BO(R; Lg) N CH(R; Ly);
(ii) u(t) € D(A,) for allt € R and Anu € C(R; L%);
(i) u satisfies (E) in L2 for allt € R.

Remarks. (1) Taking n = 3,2 <7 < 3 and ¢ = 2 in (Case I), our theorems include
Maremonti [15, Theorem 1] and [16, Theorem 2].

(2) The first condition of (1.2) seems to be artificial, but it may be replaced by
f(s) = div F(s) with some F' = {F;;}ij=12:3 € BC(R; H"?(Q)) for 1 < p < o©
satisfying 1/r +1/3 < 1/p.

(3) When {2 is a bounded domain in R™(n > 2), the above results also hold and
we can relax the assumption on the external force. Indeed, it suffices to assume that
f € BC(R; L") with sup,cp ||Pf(s)||- small for r > n/2. Under such a hypothesis,
there is a periodic solution u of (I.E.) in the class u € BC(R; D(Ai/ ).
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THE CAUCHY PROBLEM IN THE LORENTZ SPACE
FOR THE NAVIER-STOKES EQUATION
IN EXTERIOR DOMAINS

HipEo KOZONO AND MASAO YAMAZAKI

Abstract: The Cauchy problem is considered for the Navier-Stokes equation in exterior
domains with initial data in the space L™ or L™ + LY for some g > n. Given are
some conditions on initial data for the local solvability and the global solvability of the
above Cauchy problem. The results are generalizations of well-known results for initial
data in the L™ space, but the asymptotic behavior of some solutions are different from
that of the solutions with initial data in the L™ space.

1. Introduction.
Let §2 be an exterior domain in R" with smooth boundary 92, where n > 2. We con-
sider the following initial-boundary value problem for the n-dimensional nonstationary

Navier-Stokes equation in :

ou

(1) E_Axu+(u.vx)u+v,,p=o in (0,00) x R,
(2) Vy-u=0 in (0,00) X 9,
(3) u=0 on(0,00)x 9N

with the initial condition
(4) u(0,z) = a(z) in Q.

Here we assume that the initial data a(z) satisfy the conditions V- a(z) = 0 in  and
v - a(z) = 0 on 82, where v denotes the unit normal vector of 9.
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For the above Cauchy problem, there are a large amount of references, mainly with
initial data in the space L™(2). For example, see Borchers and Sohr [5], Giga and Sohr
[11], Iwashita [13], Borchers and Miyakawa [2], [3], Borchers and Varnhorn [6], Kozono
and Ogawa [17], [18] and the references cited therein.

On the other hand, there are a number of recent works on the Navier-Stokes equations
in spaces larger than the space L™(Q2). See Cottet 7], Giga, Miyakawa and Osada [10],
Giga and Miyakawa [9], Grubb [12], Kobayashi and Muramatu [16], Miyakawa and
Yamada [25], Taylor [26], Kato [14], [15], Federbush [8], Michaux and Rakotoson [24]
and Kozono and Yamazaki [20]. In particular, Borchers and Miyakawa [4] and Kozono
and Yamazaki [23] showed that the space L™°°({2) is the most suitable one for the
Navier-Stokes exterior problem, particularly for the uniqueness and the stability of the
stationary solutions.

The first result of this paper on the problem (1)-(4) is the unique existence
of a time-local strong solution with a bound near ¢ = 0 for the initial data
a(z) € (L™°(Q) + L1(N))" with some ¢ € (n,o0), provided that the local singular-
ity of a(z) in L™*°(Q) is sufficiently small. We also show that, in the case n = 2,
the above solution exists globally in time for initial data a(z) € L?°°(f) satisfying the
above condition on the local singularity. In particular, we can construct 2-dimensional
smooth global solutions for initial data in a class strictly larger than L%(), which covers
the Leray-Hopf weak solutions.

The second result on (1)—(4) is the unique existence of a time-global strong solution
with a bound near ¢t = 0 for initial data sufficiently small in the space L™*°(Q). We
also obtain the asymptotic behavior of this solution as t — co.

Part of the results are announced in [21], and the proof is given in [22].

2. Local solutions.

We first recall that the space L™*°(f) is defined to be the set of measurable functions
u(z) on Q such that supgpso Re({z € Q| |u(z)| > R})I/T < oo for r € (1, 00), where
p(X) denotes the Lebesgue measure of the set X. Then there exists a norm on L™*°(Q)
with which the space L™°°({2) becomes a Banach space. Furthermore, the space L™>°(£2)
coincides with the real interpolation space (L™ (), L™(9)), ., , Where rq, r1 € [1, 0],
ro # 11, 8 € (0,1) and 1/r = (1 — 8)/rg + 0/r1. In the sequel we abbreviate L™({2),
L™*°(Q2) and C§°(R) to L™, L™ and C§° respectively.

We next recall that there exists a projection P in (21 <r<oo L’")n such that Pu =0
holds if u can be written as u = Vf with some scalar function f € Li . (Q) with
Vf € (ZKKOO Lr)n, and that Pu = wu holds if u satisfies V-4 = 0 in @ and
v-u =0 on 00 Putting L, = P(L")" and L7>® = P (L™>)" respectively, we have
(LT, Lf,l)o’ o = Ly, where rg, 1, 8 and r be the same as above. (See Miyakawa and
Yamada [25]). In the sequel let || - ||, and || - ||r,c0 the norms of (L™)" and (L™>)"
respectively.

Then the results on time-local solutions are as follows.

Theorem 1. Suppose that n < q¢ < oo. Then there exists a positive constant
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M = M(n,q) such that, for every a(z) € L} + LI and every T € (0,00], there exists
at most one strong solution u(t,z) of (1)-(3) on (0,T) x Q satisfying the conditions

(5) 021(})’1" ta=™729) 1y (¢, )|, < oo for every T' € (0,T);
(6) s Jut nomsre < o0 for cvery T' € (0,7),
(7) lim sup ¢4~ Ju(t, )|y < M

and the initial condition (4) in the following sense:

(8) u(t,) — a in the weak-* topology of L' + L% as t — +0.

Theorem 2. Let q be the same as in Theorem 1. Then there exists a positive constant
e = e(n, q) such that, for every a(z) € L}*™ + LI satisfying

(9) limsup Ry ({z € Q| |a(z)| > RHY™ <,
R—co

there exist T € (0,00] and a smooth solution u(t,z) of (1)~(3) on (0,T) x Q satisfying
(5)-(8) with g = 2n.

Remark 1. The condition (9) asserts that a(z) can be written as the sum of a function
in L2 and a function in L™ which is sufficiently near the closure of the set LN (L*>)"
in the space L™*. Hence this condition implies that the local singularity of a(z) in the
space (L™>)" is sufficiently small. In particular, since L7 C L% and since L2N(L*)"
is dense in L%, all functions in L? enjoy the condition (9) for arbitrary e > 0.

3. Global solutions.

Theorem 3. There exists a positive constant § = 6(n) such that, if a(z) € LP'™
satisfies ||alln,co < 6, there exists a smooth solution u(t,z) of (1)~(3) on (0,00) X Q
satisfying (5)—(8) with T = co and ¢ = 2n. Moreover, we have sup;~g |[u(t, -)|/n,00 < 00
and sup,sq t0~™/24|u(t,-)||, < oo for every q € (n,o0).

Remark 2. Contrary to the case a € L?, the norm |[u(t,)||n,c0 does not decay in
general as t — oo. In fact, in the case n = 2, we construct in Example 3 an example of
global solution whose L?° norm is bounded from below by a positive constant. This
example implies that our theory can be used to show the time-global existence and the
regularity of some solutions which essentially differ from the Leray-Hopf solutions.

In the case n = 2, the smallness of the initial data can be replaced by the smallness
of the distance between the initial data and the closure of the set L% N (L°°)2 in the
space L2, In fact, we have the following theorem.

Theorem 4. Suppose that n = 2 and that a(z) € L2* satisfies (9) with n = 2 and
g = 4. Then there exists a smooth solution u(t,z) of (1)—(3) on (0,00) x Q satisfying
(5)—(8) with T'= oo and q = 4.
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Remark 3. As is remarked in Remark 1, the condition (9) is fulfilled for every
a(z) € L?. Hence, in the case n = 2, our class of the initial data with global smooth
solutions is larger than that of Leray-Hopf. So far we can tell nothing about the asymp-
totic behavior of the above time-global solutions as ¢ — oo with large initial data.

Remark 4. The Cauchy problem with finite Radon measures as initial vorticity is a
special case of the above problem. This fact is verified as follows: Since the space of
finite Radon measures are contained in the homogeneous Besov space ng oo » (See Bergh
and Lofstrém [1] or Triebel [27],) the condition that V X a is a finite Radon measure

. 2
and the Biot-Savard law imply that a € (Bll oo) . On the other hand, by taking the

real interpolation of the Sobolev type imbeddings B2 2lp Bg,l C L?, we conclude

that Blz’og/‘” C LP** for every p € (1,00). Choosing p = 2 we have a € L%,

For this case, Cottet [7], Giga, Miyakawa and Osada [10] and Kato [15] obtained the
existence of time-global solutions of the Navier-Stokes equation on R? with no smallness
conditions on the initial data. (For the uniqueness some smallness of the atomic part
is necessary.) On the other hand, our theorems require no extra assumption on V x a,
and hence is applicable to more general situations, as we shall see in Example 2.

Miyakawa and Yamada [25] and Michaux and Rakotoson [24] considered the Cauchy
problem with finite Radon measures as initial vorticity in bounded domains under
boundary conditions different from ours.

4. Examples.

Example 1. Suppose that 0 € €, and put v(y) = (=y2,y1) for n = 2 and
o(y) = ((y),--,oa(y)) for n > 3, where vi(y) = yz — yn, v;(y) = Yj41 — Yj-1
for j =2,--- ,n—1 and v,(y) = y1 — Yn—1. Then v(y) is a homogeneous linear vector
such that V-v(y) =0, y-v(y) = 0 and Vxv(y) # 0. Next, let x(¢) be a smooth function
on R satisfying 0 < x(t) < 1 for every t € R, x(t) = 1 near t = 0 and x(t) = 0 for
t > dist(0,80)/2. Then the function a¢(z) = x(|z|)v(z)|z|[* ™™ satisfies V-ao(z) = 0 on
2, and the support of ag(z) is compact in Q. It follows that ao(z) € L} \ L}. Hence
we can take a(z) = cpag(z)+ b(z) in Theorem 2 for every b(z) € LY} and a(z) = coao(z)
in Theorem 3, provided that |cp] is sufficiently small.

Example 2. Suppose that n = 2 and 0 € . Suppose moreover that p(z) € C§°(Q2)
satisfies go(a:) = 1 on a neighborhood U of 0, and put

o}
bola) = 2= glal, $(o) = elan(e) aud ao(e) = (- g (@) gr(e) ).

Then we have t(z) € L* (R%) N C> (R?\ {0}) P(z) € L°°(Q) n Cc>=(2\{0}),
suppag C suppy C  and ag(z) € L2*®(Q) \ LZ(Q). It follows that we can take
a(z) = cpao(z) + b(z) in Theorem 4 for every b(z) € L2(R), provided that |co| is
sufficiently small. On the other hand, we have the following equality

(vw X a’O)(m) x¢($) — a. :cl I ail Iil
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on U. It follows that the equality (V, X ao)(z) = —z;/|z|* holds on U \ {0}, and
—z1/|z[* ¢ LL _(U). This implies that the initial vorticity (V; x a)(z) is not a Radon
measure on ) in the case b(z) = 0.

Example 3. We construct an example of solution of (1)—(3) on (0, 00) X Q whose L?*°
norm is bounded from below by a positive constant, where = {z € R? | |z| > 1}. Let
(r,6) denote the polar coordinate of R%, and seek the solution of (1)—(4) of the form
u(t,z) = f(¢,r)(—sinb,cosb) and p(t,z) = w(t,r). Then this u(¢,z) and p(t, z) solve
(1)~(3) if and only if f(¢,r) enjoys the equation

82
m =T+ 1 wm - S
in (0,00) X (1,00), and the boundary condition f(¢,1) = 0 on r = 1. Here we as-
sume that the initial data f(0,r) is a C'-function on [1,00) such that f(0,7) = 0 on
[1,2], —1/r < f(0,7) < 0 on [2,3] and f(0,7) = —1/r on [3,00). Since the func-
tion (—z3,21)/ (z? + 22) does not belong to the closure of the set L2 N (L*=)* in
the space L2, the required property of the solution u(t,z) will follow if the function

g(t,r) =/rf(t,r) + 1/+/7 enjoys the inequality

(“‘«”32,3«"1)
z? + 22

L2(R2)

= [lg(t, ) L2(0,00)) < 0
L£2([0,00))

V2T

for every ¢+ > 0. But this inequality follows from the maximum principle, since the
function ¢(t,r) enjoys the equation

u(t,z) +

Vrf(t,r)+ %

8%g

3
‘573(75,7') - Zﬁg(tﬂ‘)

9

“Z(t.r) =

a7
in (0, 00) x (1,00) and the boundary condition ¢(¢,7) = 1 on r = 1, and since the initial
data ¢(0,r) is nonnegative and compactly supported.
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Asymptotic behaviors of radially symmetric solutions of Ou = |u|?
for super critical values p in high dimensions

HipEO KUBO AND KOJ1 KUBOTA

Abstract: In this note we shall consider wave equations with power nonlinearity, for
example, |u[” or |u|P7'u with p > 1. In particular, we shall derive the asymptotic
behaviors of radially syminetric solutions of it, which guarantee the existence of the
scattering operator, for p > py(n) and n 2 4. -Here py(n) is a so-called critical exponent.
This work essentially depends on space-time decay estimate for a fundamental solution
concerning L*-norm.

1. Introduction
We study asymptotic behaviors as t — +oo of radially symmetric solutions of the
nonlinear wave equation

(1.1) Uy — Au=F(u) in z€R"teR,

where F(u) = |u|? or F(u) = |u|?"'u with p> 1 and n 2 2.
Let pg(n) be the positive root of the quadratic equation in p:
. n—1 1
(1.2) ®(n,p) = ”_7 p? — n;{_ p—1=0.

Z

Note that po(n) is strictly decreasing with respect to n and po(4) = 2. If 1 < p < pg(n),
it is known that the Cauchy problem for (1.1) with initial data prescribed on ¢t = 0 does
not admit global (in time) solutions, provided the initial data are chosen appropriately,
even if they are sufficiently small. (See [6], [8] and [19]). The same is true for p = py(n)
if n=2or n=3. (See [18]).

On the other hand, the case where p > pg(n) seems to be more complicated. When
2 S n £4,it is known that the problem admits a global solution for small initial data.
(See [7], [8] and [24]). When n 2 5, for p 2 (n+3)/(n—1) a global weak solution of the
problem obtained by [13] and [20]. (See also [3], [4], [11] and [12]). Recentely, the case
where p is between po(n) and (n + 3)/(n — 1) is treated by [5] and [14], independently.
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Moreover, when p > py(n) and either n = 2 or n = 3, it has been shown that the
scattering operator for (1.1) exists on a dense set of a neighborhood of 0 in the energy
space. (See [10], [17] and [23]). Namely, let u_(x,t) be the solution of the homogeneous
wave equation

(1.3) Uy —Au=0 in zeR",teR,
with small initial data
u(z,0) = f(x), wuz,0)=g(z) for z € R™

Then there exists a solution u(x,t) of (1.1) such that ||u(t) — u—_(¢)|lc — 0 as t — —o0,
where

, 1/2
(1.4) fo(t)|le = { /Pn ('v}Vv(:w,t')iz + Ivt(;zf,t)]z)d;r} ;

and there exists another solution uy(z,t) of (1.3) such that ||u(t) — uy(t)||le — O as
t — oco. The analogous results have been obtained also for the high dimensional case,
provided p > pi(n), where p;(n) is the largest root of the quadratic equation in p:

(n? —n)p?> —(n* +3n—-2)p+2=0.

(See [13], [15], [16], and [20]).

The purpose of this note is to search the asymptotic behaviors of radially symmetric
solutions of (1.1), which guarantee the existence of the scattering operator, for any
p > pe(n) in high dimensions n 2 5.

2. Statements of main results
Throughout this section, we assume n 2 5 (unless stated otherwise). First we shall
consider the Cauchy problem for the homogeneous wave equation:

n—1

(2.1)o Ugt — Ugp — ur,=0 in £,

(2.1)4 u(r,0) = f(r), uy(r,0) =g(r) for r >0,

where Q = {(r,t) € R?; r > 0} and u(r,t) a real valued function. Then we have
Theorem 1. Assume f € C*([0,00)) and g € C'([0, 00)) satisfy

(22) AT D (I 4 gD ()]) S () T2 for >,

1
i=0

J
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where ¢ and x are positive numbers and (r) = /14 r?. Here if n is even number, we
further assume r < (n — 1)/2. Then (2.1) admits uniquely a weak solution u(r,t) €
CY() such that for (r,t) € Q and |a| =1 we have
(2.3) |DE julr, )] S Certmlel gy =1+l g ),
where we have set m = [(n — 2)/2] and

U(r.t) = {r 4+ )X~ 1) 7"

with
1/2 if n is even,
x(n) = o
1 if n is odd,

and C' is a constant depending only on m and k.
Next we shall consider the nonlinear wave equation
n—1

r

(2.4) Uy — Upp — ur = F(u) in

where F(u) = |u[? or F(u) = |[u[?" u. Here we assume
(2.5) po(n) <p<(n+3)/(n—1).

We shall introduce a function space X, in which we will look for solutions of (2.4),

defined by
X = {u(r,t) € C°(Q) : Dyu(r,t) € C°(Q), |lull < oo},

and

lull = sup {(fu(r,)r™ " r) + [Dru(r, )lr™) = (r, [t)}
(r,)EQ

where U is the same function as in (2.3). As for the parameter x, we assume

1 1 1
(2.6) §<h‘ and ifl—n; <k <q,
where we have set ) +1
n — n
g=(1+2(np))/p=—7F"P— —

with ®(n,p) in (1.2). Note that there exist really numbers satisfying (2.6) for p >
pu(n), because
p+1 n+l

®(n,p) = (p—1){g—( ———)} >0 for p>po(n)
p—1 2

We are now in a position to state the main theorem in this note. Let u_( r,t) be the
solution of (2.1) which is obtained in Theorem 1. Note that u_ € X and

lu—|| £ Ce for any &> 0.

Then we have
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Theorem 2. (Main theorem). Assume conditions (2.2), (2.5) and (2.6) hold. Then
there is positive constant ¢, (depending only on p. n and x) such that, if 0 < ¢ < &g,
there exists uniquely a weak solution u(r,t) of the nonlinear wave equation (2.4) such

that v € CY(Q)NX,

(2.7) Jull < 2[|u—]]

and for (r,t) € @ and |o| £ 1 we have

(2.8) |DZ (u(r,t) —u_(rt))| = C’]|u]|7’r1'"’"“"l(-r')_]ﬂ""’\lf(r,t)
and

(2.9) lu(t) = u_(t)|e S CllulP(t)~® if ¢<0,

where || - || is defined by (1.4) and we have set

6 = min{q, x(n)p + px — 1},
and C is a constant depending only on p, n and k.

Moreover there exists uniquely a weak solution w4 (r,t) of (2.1)y which belongs to
CY(Q) N X, such that for (r,t) € Q and |o| £ 1 we have (2.8) and (2.9) with u_(r,t),
U(r,t) and “if t £ 07 by uy(r,t). U(r,—t) and “if t 2 07, respectively.
Remarks. 1) If n is odd, in Theorems 1 and 2, one can replace u € C*({2) by
u € C*(Q). Moreover in (2.6) we can replace x > 1/2 by & > 0. In this case, we
interpret (2.9) as follows. When ~ > 1/2p, (2.9) is still valid. When 0 < x £ 1/2p, it
holds with § = . (See [9]).

2) For n 2 2, consider the following Cauchy problem

n-—1
(2.10) { Uee = Urr = B—;——u =F(u) in r>0,t>0,
u(r,0) =0, uy(r,0)=g(r) for r>0.

It is known that, if g(r) =2 Mr~* for r 2 1 with some positive constants M,y and
p<(p+1)/(p—1), then (2.10) does not admit global solutions. (See [1], [2], [21] and
[22]). Therefore condition (2.6) is partially necessary to obtain Theorem 2.

3) Onme can also show that the Cauchy problem for the nonlinear wave equation
(2.4) admits a unique global solution, provided the hypotheses of Theorems 1 and 2 are
fulfilled. '

In the proof of Theorem 1, it ia very important to represent a weak solutions u(-,t) €
C°(R; L (R™)) of the Cauchy problem

wyy — Au=0 in R" x(0,00),
{ u(z,0) =0, w(x,0)=cupg(|x]) for € R"
where .
2 I‘(Z‘—-;—l—) if nis odd,

o { VT I(251)  if nis even.
The representaion is given in the folloeing lemma with u(z,t) = ©(g)(]z|,t). Moreover
Theorem 2 is obtained by considering the assosiated integral equation with the differntial
equation (2.4). So the lemma below is very essential in our work.
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Lemma 3. Let g€ CY((0,00)) and g(r)=0(r"™"") asr | 0. Forr>0andt =0
we define a function O(g) as follows.
(1) nisodd:n=2m+3 (m=1,2,---).

t—+r
Og)(r.t) = / g(NE (A, 1),
It

-7 ’ '

where we have set

K(Art)=r* "N H (A, 1),
9 -1

Hm(‘/\, 'I",'t) o (_é—/-\—f)_/\

)m(r2‘ B (/\ . t)2)(1z——3)/2.

(2) niseven:n=2m+2(m=12,---).

b1 max{t—r,0)
Ol = [ EO D+ [ GO (1),
| 0

t—r|
where we have set

t4r ,
| ' ' m(p, 7.t
EyOur) =2yt [ Hmlearnt) )

Ny

tr Hy(p,r,t)

. ““—‘_“‘/————-—-———pz = P,

IKo(\, rt) =2 np2mtl

and 9 1
Hrn 1w$t - —'"::_—
(p,7,1) (ap 2

And we extend ©(g)(r,t) as an odd function with respect to t. Then ©(g) € C°(2) and
for each bounded subset B C §! we have

)" (% = (p = t)2) O,

O(g)r, )| <Cpr™™ for (rt)€ B.
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The phase function of the wave-front of coherent optical
radiation determination: modern methods and means

KUSIMOV SALAVAT, TAGIROV VADIM, MAKHMUTOVA MARINA

Introduction

In calculating the wave fields presented in the form of Guegens-Kirgoff integral in its
EF)=A] D e?M dF linear approximation any attempt to solve a inverse problem of
optics analytically appears to be of no success due to its incorrectness. It is connected
with the fact that the optical wave field values fixation is possible only in the form
of |E(7)|?, that is intensity determined by the photometric technics in contrast to the
radio-range of the electromagnetic field, where the tension of the field can be measured.

As for as the optical systems are concerned, particularly the adaptive optical systems
of laser radiation, for the wave front phase function determination two widespread
methods are usually used : the phase conjugation and the aperture sounding.

The former is based on the phase front inclination determination within the subaper-
ture limits by the difraction spot shift with the further local inclinations joining along
all the aperture, for example by applying the least square method.

The latter is based on widely used in the radio-range modulation with the following
detection of the intensity values, in the result of which the average phase value in the
subaperture limits is found out.

Both of the methods are characterized by the insufficient accuracy of the phase wave
determination in the aperture limits through the necessity of sectioning into the sub-
apertures of the forming optical elements.

The growing demand to the optical systems quality cause the research necessity of the
coherent optical radiation wave front functions determinations new high-effective meth-
ods based on the non-traditional ways of measuring and the light field phase functions
calculating,.

1. The problem statement
Let the laser beam with the wave function in Fraungoffer approximation

(1.1) (g, yn) = A / e K (zz1+yy) /L g, dy
JD
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where

A - an amplitude multiplier from the point of view of a wave function in its linear
approximation;

D - beam aperture in a radiation plane;

I =2r /) - a wave number () - wave length);

r(z,y) - plane of a laser beam radiation;

ri{xry,y;) - beam measurement plane;

L - a distance of a measurement plane location, scatter through the distorting medium.

The amplitude multiplier A is a constant, that is why further it could be not taken into
consideration since this A multiplier doesn’t contain the information about a phase func-
tion distribution along the aperture D, and influences only on the intensity level. Here
and further, if it 1s not pointed out otherwise, the expressions written for i-subapertures
are also true for j-subapertures.

A radiation plane is conventionally divided into n number of the square configurated
subapertures D;, having a square form with a side length a, (z;,y;) - the coordinates of
these squares centers, the sides of the squares are parallel to the coordinates axes, the
tip of the coordinates coincides with a center of a central square.

No pestrictions are put on the subaperture quantity n, that allows to increase con-
siderably the accuracy of measuring.

The radiation and registration (of measurement) planes are parallel in the space and
at the projection to each other the tips of the coordinates of both planes coincide, the
appropriate axes are colinear as minimum.

Let’s examine a case of laser radiation interferention in parallel beams :

(1.2) Inty(z1,41) Z‘ZRe{/ Piler, yndxdy/

Yilz1, 11 _)d;vdy} cos(pi—@;)
i=1 j=1 D;j

where

Inti(zq1,y1) - intensity in a measurement plane within photoreceiving cell Dy;

D; -i-subaperture of a radiation plane;

©; - wave phase in the appropriate subaperture D;.

In the limits of subaperture D; wave phase ¢; is considered to be a constant, i.d. that
1s function’s piecewise-step approximation is considered.

The task is to find out the wave function’s phase distribution ¥ (z,y) along the radi-
ating aperture D using the intensity values Inti(z1,y1).

2. The determination of laser beam wave function distribution along the
radiated aperture

According to (1.1) the intensity of the electromagnetic field in the radiation plane of
i-subaperture could be presented as an integral :

yit g Ti+%
(2.1) Ez :/ dy/ 6“21{(x$1+?]?[1)/Ldm
] o

aps -2
v dr 3 ? P

Its solution is the function of the electromagnetic field intensity in a measurement
plane ry(ay,y;) from the radiating subaperture D; , the coordinates of which are
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2 -
(2.2) E; = (7%—) ! sin (—]3%111) sin ({;zyl) i (mrityyn)/ L
L1Y1

In the investigated case of a laser radiation interferention in parallel beams the inten-
sity of k photoreceiving matrix cell is to be determined as the intensity sum of radiating
subapertures pairs

(23)  Int(ariyn) ZZ// (B + B;)(Ti ¥ By) ds dys - cos(ps — p5)

=1 g=1
where
(2.4) (Ei + E;)(Ei + Ej) = 2C% 4 2C7 cos[K ((z; — z;)x1 + (i — y;)y1)/ L]
| L\ 1 Ka Ka
5 _ (oL . (Ka . (H&a
(2.5) C ( K) o sin (ZL x1> sin (.‘ZL y1>

In the connection with the fact that the first item of the expression (2.4) is the
magnitude influencing only on the average value of the intensity in a measurement
plane, it could be excluded from the further computations.

For the next numerical integrating we'll write the formula (2.4) as

(2.6) (E; + E;)(E; + Ej) = aza; + Bif;
where

(2.7) o; = Ccos{K (221 +yiy1)/L]
(2.8) Bi = Csin[K(x;21 + yiy1)/ L]

Then the expression (2.3) is to be

n n

(2.9) Intg(x1,y1) ZZBU’" cos(p; — @;)
=1 j=1
where
(2.10) Biji = / / (ai; + fiB;) day dys
JJp,

Extending the equahon (2.9) to m photoreceiving cells the matrix equation is obtained

(211) [I‘nt]m - [B]me. [C‘OS(SOZ' - @J)]m
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Matrix B is composed of the constant coefficients B;j.

The number of the photoreceiving cells m, where intensity Intg(wx1,y:) is measured,
determines the matrices dimensions and is to be equal to n? in accordance with the so-
lution singularity. However, taking into account as it has shown above the constituences
B;; and Bj; being equal [(2.4).(2.6)-(2.11)], the number of the photoreceiving cells could
be reduced to n(n+1)/2), where n - subapertures number in radiation plane. It’s enough
to take the double values of the constant coefficients B;j, ¢ < j, without the coefficients
by ¢ > j. From the matrix equation (2.11) the values cos(y; — ¢;) can be obtained but,
though it’s impossible to determine the values of the proper phases ¢ in every of the
radiation plane n-subapertures. This uncertainity might be eliminated with the help of
some excessive information. Such an excessiveness is obtained by forming two pictures
in a measurement plane, but under the condition that any of the apertures phase would
be shifted to —7/2 by a phase-shifter plate. Then, subtracting the distribution with a
phase shift in one of the subapertures from the initial intensity distribution the required
for the determination of the average phase front values in which results in the matrix
equation (2.11) dimensions reduction to m =n — 1.

In this case, having assumed to be equal to zero the phase value in the aperture,
where a shift to — / 2 in a measurement plane takes place, the phase values in the other
subapertures by using their differences to it are possible.

The choice of —x /2 shift value caused by the necessity to ensure a sign sensivity to
the phase values in the subapertures that could be fulfilled by means of a substitution
of the related to the phase difference trigonometric function for a co-function Sin. This
substitution is produced by argument shifting,

3. The results of the numerical experiment
Let the number of subapertures in a radiation plane be equal to 9 (n = 9). And let’s
assume the central subaperture numbered 5 as a "shifting” one.

A Radiation plane A measurement plane
Y Y,
a b h
b OO0 Dd—éjh
ik Co0oE
X Hinln b,
e 000000 >
Oodioado
T8 7 000|000

In the measurcment plane there is the matrix with the photoreceiving square-shaped
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cells with their side length b; forming a square grid 32 x 32 with a measured pace h;
(%, yr) - coordinates of cell’s centers, cell sides are parallel to the coordinates’ axes, the
tip of the coordinates coincides with photomatrix center. According to (2.9) the initial
intensity distribution in a measurement plane, when a central ("shifting”) subaperture
isn't shifted but is assumed to be a zero, can be presented as follows

(3.1)

Intk(v;lfl,yl ) =2 Z Bs i cos(—¢;) +ZBM+Z Z Bijx cos(@; — @;)

05=0 J=1,5#5 i=1 j=1,i7#j#5

The next expression is for the formed intensity distribution in a measurement plane,
when a "shifting” subaperture is shifted to —n/2

(3.2)
Intk(e1,y1) =2 Z Byji cos( 5~ +ZBwk+Z Z Bijk cos(ipi— ;)
wp=—m/2 J=1.7#5 ' i=1 j=1,i#j#5

After simple transformations the unknown average phase front values in the limits of
the radiation plane subapertures which are defined from the matrix equation

m

, . T Int =0 — Int,, —_ )
(33)  [sinle;+7)| = [Bsilnxm [ 5 o 2} _i#5
where

§ - subaperture number (except the fifth, where on the way of beam distribution a
phase—shifter plate is placed);

[Bs J] —wm - inverted coefficent’s matrix;

Bsjr,j=1n,j#5 k=T,n—L

Basing on the values p; we could determine the intensity distribution along an aper-
ture in a focal plane, and, vice a versa, its possible to calculate the phase function
values distribution in each subaperture using the intensity values in the focal plane,
corresponding to the definite phase function (a solution of a direct and reversed matrix
equation (3.3)).

The conducted numerical experiments demonstrated the following results : the error
of a phase determination by every square subapertures (j = 1,9) appeared to be only
2.2%. Even a small subapertures number increasing results in an essential increase of a
phase determination accuracy. The form of the subapertures, the analized aperture is
divided into, could be arbitrary, this will influence only on the type of the expression’s
subintegral function (2.3).

Conclusion 4

The effectiveness of a wave front sensor using based on the described method is in
its high space resolution, and the application of chips-multipliers permits to develop a
high-resolution sensor for the adaptive optical systems operatng in real time.

A compound retro-reflector mirror on a corner reflector as an adaptive system mirror
allows to obtain a greater effect. Here in both phase and amplitude (of an odd row) dis-
tortions compensation takes place. Japanese scientists Takuso Sato, Yochihide Nagura,
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Osamu lkeda and Takeshi Hatsuzawa published their reports on such systems in the
Applied Optics v. 10, 1982 .

On the base of one of the research-production assosiations the production of high
(uality corner reflectors was organized and the experimental stand for the realisation of
the adaptive optical systems of different versions with using the retro-reflector mirrors
made of corner reflectors was set up in the university laboratory.
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THE STABILITY OF ROLL SOLUTIONS OF THE
2-D SWIFT-HOHENBERG EQUATION AND

THE PHASE DIFFUSION EQUATION

M. KUWAMURA

Abstract: A stability criterion of roll solutions of the 2-D Swift-Hohenberg equation is
presented. It clarifies the effect of the system size on the primary instabilty of rolls. An
interpretation of the phase diffusion equation is also given from the view point of the
spectral analysis. The key to carry out the spectral analysis is that the infinite dimen-
sional system of linear equations naturally induced by the Fourier decomposition for the
linearized eigenvalue problem of the roll solution can be reduced to the three dimensional
one.

1. Introduction.

Let us consider a fluid contained in a rectangular cell whose aspect ratio of the depth
of the fluid to the horizontal width is sufficiently small. For a critical temperature gradient
between the upper and lower plates, buoyancy forces overcome the dissipative effects of
viscous shear and thermal conduction, and the motionless fluid spontaneously breaks up
into convective rolls of upward- and downward- moving regions of fluid. In order to study
this phenomena, the following simple model equation is proposed, which was first derived
by Swift and Hohenberg [10]:

(1.1) up = (@ — (14 02+ 82)*)u — v,

where u(z,y,t) represents the rescaled fluid field in a given horizontal plane, e.g., the
vertical velocity component in the midplane of the convective rolls, and « is the ( reduced
) Rayleigh number. The reader should consult Cross and Hohenberg [2], Greenside and
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Coughran,Jr. 3] and Newell [8] for the physical background of the Swift-Hohenberg equa-
tion. (1.1) describes the onset of thermal convection which forms roll patterns. In fact,
Collet and Eckmann [1] proved the existence of roll solutions of (1.1):

Suppose that w satisfies

2/5 < w? < 2.

Then, there exists a positive constant ¢ independent of w such that for 0 < € < &, the
equation

(a—(1+2+2) ) )u—v*=0

has a unique solution of the form

(1.2) a =3’ + (1 -w?)?,
and
(1.3) U (wz) = €2 cos(wz) + O(?).

In this article, we study the stability of roll solutions and the dynamics near the roll
solutions.

2. Mathematical formulation and main results.
We consider (1.1) on the rectangle domain

Q= (-L/2,L[2) x (-M/2,M]2), 0<L<oo, 0<M< o0

with the periodic boundary conditions. Here, we assume L = (2N)A, where A = 27 /w is
the wavelength of % (wz), and N is a positive integer which corresponds to the number
of rolls. In other words, the length of the side in the z-direction is a integer multiple of
the basic wavelength of roll pattern. Notice that M is the length of the axis of rolls. We
know that (1.1) generates a semi-flow on H25.(Q) for 0'< f < 1, which denotes the scale
of the usual Sobolev spaces with the periodic boundary conditions. For more details, see

Henry [4] and Temam [11].

Notice that @ (wz) is also a stationary solution of (1.1) on the rectangle domain (.
By (1.2) and (1.3), U.(wz) is determined by two parameters £ and w which represent the
amplitude and wavenumber, respectively. Therefore, the stability of @, (wz) is determined
by these parameters. However, we use a new parameter W instead of w to investigate the
stability of the equilibrium %.(wz), which is defined by

w?—1

W =

—252—



In what follows, we regard € and W as independent parameters. w is determined by
¢ and W in terms of w? = 1 + +/3eW. The linear stability criterion of roll solutions is as
follows:

Theorem 2.1. Let A : L2, () — L2..(Q) be the linearized operator of the right-hand
side of (1.1) at U.(wz) defined by

(2.1) Av = (o — (14 82 + 82)*)v — 3T (wz)®v, v € H:..(Q)

Then, we have

(VIf0 < W < 1/+/2, then for sufficiently small e > 0, the spectrum of A lies in the closed
left half-plane in C. This is independent of L and M.

(2)If —=1/V/2 < W < 0, then for sufficiently small € > 0,

(i) the spectrum of A lies in the closed left half-plane in C provided

2
V3|W| M2’
(ii) the spectrum of A intersects the right half-plane in C provided

O<e<

V3|W|M?’
where eM? = O(1) ase | 0 and M — oo.

(3) If [W| > 1/+/2, then for sufficiently small € > 0 and large L, the spectrum of A
intersects the right half-plane in C.

When the rectangle domain § is sufficiently large and the roll pattern is stable, we
can give an accurate characterization of the critical eigenvalues and the associated eigen-
functions.

Theorem 2.2. When L and M are sufficiently large, for 0 < W < 1/4/2 and sufficiently
small ¢ > 0, there exist § > 0 which depend only on & and W ( independent of L and
M ) such that

(i) limeod(e, W) =10
(ii) The eigenvalues of A which belong to the interval [—6,0] are given by
pimn = =D 1 vm — v — Dy + O((Kn + vm)?)
for 0<vm <V3ep and |k,| < V3ep/2,
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where D) and D, are given

Dy=4- SW? + O(e), D= 2\/?—)61/1/,
and

2 2
U = (22)2 g = 2T

M
and p > 0 is a constant independent of e, W, L and M. The associated eigenfunctions are

given by
Vmn = Ozle(wz) exp(2mimy /M) exp(2minz /L) + O(k,) + O(vr,).
(ili) The other eigenvalues belong to the interval (—oco, —6).
The above theorem says that there are many eigenvalues near zero when the system
size is sufficiently large. However, these eigenvalues are discrete because L and M are

finite. Therefore, we can take an eigenspace whose dimension is finite but sufficiently
large as follows:

Theorem 2.3. When 0 < W < 1/v/2 and € is sufficiently small, for sufficiently large L
and M, one can choose f > 0 and v > 0 which depend on ¢, W, L and M such that

(i) B and v satisfy

0<fB<ny
lij,M_,oo ,B(E,VV,L,M) == ()
ﬁmL,Mqoo('Y(EavaM) - ﬁ(57W7L7M)) =0

(ii) The eigenvalues of A which belong to the interval [—f, O] are given by

2rm 2mn 1 1
pmn = =D (=55 )? ~ D//(“]j“)2 +o((37 + ‘L“)2)

for |m| < p1(M) and |n| < pa(L), where py(M) and py(L) are integers such that

. . M
W, (M) = oo, A}ﬁnw%“) =0,
p2(L) 0,

Jim 1) =, 240 =
and the associated eigenfunctions aré given by

VYmn = Oplle(wz) exp(2mimy /M) exp(2minz /L) + O(1/M) + O(1/L).
(iii) The eigenvalues p which belong to the interval (—co, —fB) satisfy u < —~.
The choice of the eigenspace in the last theorem is not unique because it depends on

the choice of § and 4. Using an argument in the same spirit as the one in the inertial
manifold theory, the dynamics near the roll solutions can be well approximated by the
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dynamics projected on this space [6].

When the domain is square (i.e. L = M), we determine a scaling parameter v by

Ao

(2.2) v=2(=77)

where ) is the basic wavelength of roll patterns. The dynamics on the above eigenspace
are described by the following system of the ordinary differential equations:

damn

dT

(2.3) = —(Dy(mw)? + D//(nw)z)a,,,Lm

where a,,, is the coefficient of the eigenfunction

Ymn = Opls(wz) exp(tmwY’) exp(inwX) + O(1/M) + O(1/ L),

and X = vz, Y = vy and T = v*t. Recalling the Taylor formula and the Fourier series
expansion of the solutions of the diffusion equation, we find that under the scaling (2.2),
the dynamics near the roll solutions can be well approximated by

(2.4) { w(wz + ¢(X,Y,T))

¢r = Dyydpxx + Didyy.

The diffusion equation in (2.4) is called the phase diffusion equation which describes the
dynamics near the roll solutions through the modulation in the phase of W. The phase
diffusion equation is obtained by the formal perturbation method from the view point of
physics ( Kuramoto [5], Pomeau and Manneville [9] ). Thus, we know that the dynamics
near the roll solutions are described by the solutions of the diffusion equation for the
phase modulation with respect to the rescaled spatio-temporal variables.

3. The strategy for the proof of Theorems 2.1 and 2.2.

We apply the separation of the variables to the eigenvalue problem corresponding to
(2.1). The y-component of the eigenvalue problem is easily solved. In order to solve
the z-component, we apply the Bloch transformation which was introduced by Collet-
Eckmann [1] to study the 1-dimensional case. This technique convert the eigenvalue
problem in L%(—L/2,L/2) into the one in L%(0,)). Next, we deal with the system of lin-
ear equations naturally induced by the Fourier decomposition of the eigenvalue problem
in the same line of arguments as given in [1]. At first glance, it seems to be difficult to
solve our problem since the dimension of the system is infinite. Our system, however,
can be reduced to three dimensional one which consists of the Fourier components with
the wavenumbers +w and 0. This is the most outstanding property of our system which
enables us to carry out the spectral analysis precisely. For more details, see [7]
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