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A Resolution of Normal Surfaces of Triple Section Type

TADASHI ASHIKAGA

Introduction. In this note, ”a surface” means an algebraic sur-
face defined over the complex number field. In [5, §2], Horikawa intro-
duced a method for resolving singularities on normal surfaces of double
section type in the completion of the total space of a line bundle over a
surface. This method is sometimes useful not only for studying surfaces
globally ( [6], [13], [14] etc.) but also for studying isolated singularities
locally ([17] etc.).

In fact, let (V, P) be a normal 2-dimentional double point. Since
the embedded dimension of (V, P) is 3 by [1], an analytic equation of -
P is given by &2+ f(z,y) = 0 from a suitable change of the coordinate.
Then one can obtain a resolution of P from a resolution of the plane
curve singularity f(z,y) = 0 by this method. The origin of this idea is
classical ([4], [7], [10],etc.), but the essential point of [5, §2] is to obtain
a Tormula for analytic invariants of P at the same time as resolving P
([5, p-50)).

Now in this note, we extend this method to normal surfaces of triple
section type. ( A special form of this is already seen in [2, §3].) The
local version of our method is the following : Let (V, P) be a normal
2-dimentional hypersurface triple point. By a suitable change of the
coordinate, the equation of P is given by & + g(z,y)¢ + h(z,y) =
0. Then, from the pair of the resolution of plane curve singularities
g(z,y) = 0 and h(x,y) = 0, one can descend the multiplicity of any
infinitely near point of £ ; that is, one can reduce this triple point to
some isolated double points and simple codimension 1 double points.
(We call them compound nodes and compound cusps.)

In §1, we produce the above process by twisting the line bundles
similar as in [5, §2], and obtain a certain formula. In §2, we give some
examples. In §3, we show the following : Let (V, P) be an isolated
singularity defined by & + f(z,y) = 0. Let p be the Milnor number



of P, and let p, be the geometric genus of . Then we have u > 6p,.
Durfee’s conjecture [3, p.97] is true in this case. (Compare [20] and
[19].)

Acknowledgemént I express my hearty thanks to Prof.Kazuhiro
Konno for many helpful comments during the seminars we held, to
Prof:-Masataka Tomari for very useful advices.

1 Process of resolution.

1.1 Let Y be a nonsingular surface, and let L be a line bundle
onY. Let 7 : X = P(Oy(L)®Oy) — Y be a P'-bundle, and set
T = Ox(1) the 0-section of 7 and set 1, the oco-section of m. Ti,
is linearly equivalent to 1" — n*L. Let S be a normal surface on X
which is linearly equivalent to 37. We choose X, € |T| (the complete
linear system of 1) and X, € |T,| such that (X,, X;) gives a system
of homogeneous fiber coordinate of w. Then the equation of S is given
by 2, ip Xo 7' X! = 0 where <1, is an element of H°(Y,O(:L)). By
setting Yy = Xo + (1/3)vr Xy € |T|,Y: = X1,9 = oy, — (1/3)9% €
HOY,02L)) and h = 135, — (1/3)haribr, + (2/27)03 € HO(Y,O(3L)),
the equation of S is given by Y3’ + ¢YpY? + Y = 0. The surface S
does not intersect with T,. So for convenience, setting & = Y5/Y; the
inhomogeneous fiber coordinate of 7, we write the equation of S by

(1) J=+gt+h=0.

We call the divisors G = (g) and H = (h) on Y the first and the second
assistant curve for S respectively.

Let P be a singular point on S. Set P = w(P). Let mp be the
maximal ideal at P, and let A = 4¢° + 27h* ~ 61 be the discriminant
divisor for f. (~ is the linear equivalence.) By [12, Lemma 5.1], P
satisfies one of the following two conditions ;

(a) g € mp and h € m3 or,

(b) g ¢ mp,h & mp and A € mb,



When (b) is the case, set P = (& z,y) = (&, To, o) for & # 0 where
(z,y) is a local coordinate at . Then by putting n = £ — &, we have

F=n0%436n" + (g+ 300 4+ (€ + g&o + h),

where g(z9,0) + 3¢ :N07g$($07y0)§0 + ho(20,90) = 0 and g, (20, yo) +
hy(zo,y0) = 0. Hence P is a double point. We call it an inner double
point . When (a) is the case, P is on the 0-section ¢ = 0. We call it
a targel singularity. From now on, we consider to reduce the target
singularities of multiplicity 3 on S to some isolated double points and
simple codimension one double points.

1.2 Let P be a target triple point on S. Assume P = {(¢,z,y) =
(0,0,0)} and the equation at P is of the form (1). Set m; = multpG >
2 and n, = multpH > 3 where multpG is the multiplicity of G at P.
Let 74 : Y1 — Y be the blow up at P, and set I, = 77'(P). Let
G4, H, be the proper transform of G and H by 7, respectively. Then
we have 717G = G|+ mF, and T H = H, + n,E,. Now we set

I, = min([m1/2],[n1/3]),

where [m,/2] is the greatest integer not exceeding m,/2. Put L, =
L — 1L F. Let m : Xy = P(Oy, (Lh) ® Oy,) — Y; be the P! -bundle,
and set T) = Ox,(1). Put Gy = 7°G — 2L, B\, = G+ (my —20,) E, ~ 21,
and H, = 7fH — 31", = Hi + (ny — 30 B, ~ 3L;. We have either
0<my;—2<1or0<n;—3l <2. Now we set,

fi= ff + @€+ hy,

where & is the inhomogeneous fiber coordinate of 7, (¢;) = G and
(hy) = Hj. The surface Sy on X; defined by (f1) is linearly equivalent to
37;. Let X; — X be the morphism associated with the composition
of sheaf homomorphisms

Oy (L) 5 Oy, (r7L) — Oy,(Ly),

where the last map is obtained by tensoring Oy, (—{; [;). Let 77 : S ——
S be the restriction of this morphism to .5;. We complete the first step
of the following commutative diagram ;



X X X,

U U U
(2) § S8 e,

|7 | |,

Y &V, .Y

We continue this process. Then :

Lemma 1.3  After a finite step of this process (say r-times), the
obtained surface S, has no singularity of multiplicity 3.

In the diagram (2), we assume that 7, : Y; — Y.y is the blow
up at P,y € Y;1, and set m; = multp_ G, 1,n;, = multp_ H; | and
l; = min([m;/2],[ni/3]). Let wg, be the dualizing sheaf on 9;.

Lemma 1.4

x(Os,) — x(Os) = —(1/2) =, L:(5L; — 3),
wh —wh = —3%7_ (2 — 1)?.

1.5  We study the assistant curves of S,. We may assume that
the reduced part of GG, and H, is normal crossing. Let EE = Zf-“:]_ F; be
the decomposition to the irreducible components of the total transform
of the curve GUH by 7 = 1, 0---o7. Assume that E' = /_, F; is the
exceptional curve for 7. For each Iv; € B, we give a double Z-weighting
(a; : b;) such that F; is the component of G, (resp. H,) of multiplicity
a; (resp. b;). By this way, the components of I are classified into the
following six types ;

) (,2),a>2 (N) (1 ,ﬁ)
) (v,1),y>1 (1) (6,0),
(II1) (0,¢),¢>1 (¢) (0,0).

Moreover, continue our process (2) if necessary. Then we can classify
the type of points of intersection of the components of E in the following

?



p(CnIl), P(N*nII), PNNIII), PUINII),
P(INIITY, PIPnILD), PUINIT), PIINIIT),
PITNIITY), PUI'NIIT), P(ITINIIT), P($N any type),

where P(C'N 1) is the point of intersection of the components of types
(C) and (II), P(N?N IT) is that of types (V) with f = 2 and (/[1),
etc.

1.6 We proceed our resolution process.

1) Let C; (1 < 7 < n(C)) be the component of E' of type (C).
Set C; = m-1(C;). The singularity of S, is &3 + 2%6 + 2> = 0 at a
general point of C., and is €3 4 22y%¢ + 2% = 0 at the point of type
T L (P(C; N 1I)). We call it a compound cusp.

Let 7,41 : X,y1 — X, be the blow up with the center Z?g) a
Let S,41 be the strict transform of S, by 7,11. Set T,41 = T41]s,,, be
the restriction of 7,; to S,41. The surface S,y is nonsingular along
(Tr41)"H(CY), 1 < i < n(C). Let C! be the reduced part of (7,4,) " (C).
C! is naturally isomorphic to P'. And we have

X(Os..) = x(0s,) = n(C) — =1 (C1?,

wg  —wi = 8n(C).

2) Let N;(1 < 1 < n(N)) be the component of E' of type (N).
Assume that N; has Z-weighting (1,2) (resp. (1,8) with g > 3) for
1 << n(N?) (resp. n(N?)+1 <17 <n(N)). Set 7/, = Try1 07, and
N; = (7!,,)""(N;). The singularity along N; is the following ;

£+ 2¢& + 2f =0 at a general point of N,

Gt zé+ 2y =0 at (7)) (P(N;NIIT)) for 1 <i<n(N),

E+ay’t+a? =0 at (1) W (P(N; N I1)) for 1 <i < n(N?).

We call it a compound node.
Let 749 1 X,y9 — X,y be the blow up with the center Z?:(jlv) N;.
Let 5,19 be the strict transform of S,1 by 7,49. We set 7,40 = 7,495, ,,

and 7,5 = Ty49 0 Tpyy. The pull back (7,42)*(V;) is a union with two



nonsingular rational curves N; and N;'. The surface S, 5 is nonsingular
along N! and N!. Moreover, for n(N?) < i < n(N), N! and N! does

not intersect each other. For 1 <i <n(N?), welet I1;,---, I L,y be
the components of E of type (1) which intersect N;. Assume that the

Z-weighting of I1; is (¢;,0) for 1 < j < n(N;II). Then the curves N/

1

and N intersect each other at (7/,,) "t (P(N; N 11;)) with intersection
multiplicity 6;. And we have

2(Os.) — x(Os,,,) = n(N) — S0 Sn0il) s
Wi, —wh = 8n(N)+ z“““((N) + (V)
_9 En(N I 2n(NII) (S

3) At the point of (7],.,)"'(P(I" N III?)), the surface S,1, has a
rational double point (a RDP for short) of type As..,. Put 7,45 :
Sri3 — S;19 the minimal resolution of these singularities. We have

X(Osr+3) = X(OS++2)7 w§,+3 = w:%,_;.g'

4) At the point of (Fry3 0 7/ o) *(P(II° N I11?)), the surface S,y3
has a singularity € + 2°¢ + 4> = 0. Let 7,44 : S;4a — Sy43 be the
minimal resolution. If § < 3, then this 1s a RDP. If § > 4, then the
dual graph of the exceptional curve of this singularity is the following

(a) o o--- o o
(b) o o--- o o o
o
(¢) o o o 0 o
, 0
(d) O QO = (o] (&) O O O [@] O

O

In the above graph, the symbol o (resp. ©¢) is a nonsingular ratio-
nal curve with self-intersection number —2 (resp. —3). The symbol



o is an elliptic curve with self-intersection number —3. The graphs
(@), (b),(c),(d) correspond to § = 0,1,2,3 (mod 4), respectively. The
number of (- 2)-curves of the head part o — — o -0 in (a) ~ (d) is
[6/4] — 1. Moreover we have

) w(I11217)
X(0s,,.) = x(0s,,,) =ws_, —we = > [6/4],

1=1
where the summation moves all the points of type P(I117 N 11%).

Weset 7 =7,540---071: 5% = 5,4 — 5, and call it the canonical
resolution of 5.

Let ¢; be a component of E’ of type (¢). Let E,---, Ey; be the
components of B which intersect to ¢;. Assume that £; has Z-weighting
(a;,0;) for 1 < j < {(¢). Then we have 325@ = 221() b;. Let A\, be
the strict transform of the discriminant diviso1 A by 7. If /\, intersect
¢; at a point such that A, € m3%, there is a possibility that S* is
singular at (Trpq 0 -+ 0 7ppq o ) H(P). We call it an infinitely near
inner double point.

Proposition 1.7 The surface S* has only inner double and in-
Jinitely near inner double points as its singularities (if they ewxists).
Moreover we have

X(0s:) - x(os) (1/2) (i - 3) () 4 ()
W — wS = 32: 1( lZ — 1) + 8n(C) + 8n(N)
N+ (V7)) = 2885 6 - T s ).

2 FExamples.

Let (V,P) be a 2-dimensional hypersurface singularity of multiplic-
ity 3. By the Weierstrass preparation theorem and the Tschirnhauss-
transformation, the equation of (V, P) is given by &°+¢(z, y){+h(z,y) =



0. Let o : V — V be the minimal resolution of (V, P). We fix a natu-
ral compactification o : V — V of . There exists an effective divisor
Zp supported on ¢ 1(P) such that wy = ¢*wy ® Op(—Zp). Then we
have
X(0p) = x(Op) = py(P), wh —wy=—Zp,

where p,(P) is the geometric genus of (V, P). We call (p,(P) : —Z3)
the type of singularity (V, P). For constructing a resolution process
and for calculatiing the type of singularity (V, P), the method in §1 is
useful. (Compare [15] and [18, §2].)

In this section, we give three examples. In the figures below, a
broken line (resp. a usual line) means a component of the first (resp.
the second) assistant curve at each step from S to 5,. For instance,
the curve E5 on Yy in Example 2.2 has Z-weighting (1, 3). A dotted
line is a curve of type (¢). A brack spot is the point for blow up in the
next step. The number beside a line is the self-intersection number of
the curve. |

For all these examples, the type of the singularity is (1 : 3) by
Proposition 1.6 .(See also [8].)

Frample 2.1 £ 4+ zyé + 2° + >, |
This is a simple elliptic singularity of type Fe.([16]) Since the degree
of /Ay 1s 6, F is an elliptic curve.

—
_— E
&— A < -3
1
:
Y Y s

Frample 2.2 & + zyé + 2° + y°.

All the components of exceptional curves are rational. Over the
curves Iy and F4 on Yy, S; has compound nodes. The calculation
for the self-intersection number is, for example, the following ; Since



—3=F} = (7.0)E, = Ey(7*Ey) = Fo(Fy + 2E,) = E;2 + 2, we have
2
E2 = —).

Ezample 2.3 £ + 13¢ + zv°.
Since the equation over R is & + z€ + ¢z = 2(€ + y°) + & =
z2C+(C—v?)P =C(z+---) —¢° this is a RDP of type As.

9 Ag
T ' A
\R}QQ\\\ A
? 2




3 An inequality for a singularity & + h(z,y).

Let (V,P) be an isolated triple point. Assume that the equation of
(V, P) is given by £’ + h(z,y) = 0 after a suitable change of the coordi-
nate. Let pu(P) be the Milnor number of (V, P).([11]) The aim in this
section is to calculate the number u(P) — 6p,(P). (For the motivation,
see Durfee [3, p.97].)

We prepare the following definition : In general, let () be a point
on a nonsingular surface. Let Iy, .-, F; be irreducible reduced curves
passing through @. For s; < s, we consider a divisor

D=SF+2 Y F.
1=1 j=s51+1
Let ¢ be the number of tangent line at ) of the reduced part D, 4 of D.
We have automatically t < s. We set m = multp(D) and [ = [m/3].

Definition 3.1  We define the Durfee’s number dgo(D) of D at Q
by the following ;
1) Ifm =0 (mod3 ) , then put do(D) = 3l(l 4 1) — 35+ 25, — 2 + 3.
2)If m =1 or 2 (mod 3), then put do(D) =3I(l +1) —3s + 25, — 1.

Now setting G = ¢ (empty) and H = (h(z,y)), we consider the
diagram (2) in §1 of cyclic type at P. (See [2, §3].) The second assistant
curve H; coincides with the branch curve of m; : .5, — Y;, 1 <1 < r.
Let b be the number of irreducible components of . Set Fy = P and
Hy=H.

Proposition 3.2 u(P) —6p,(P) = /=g dp(H;)+b— 1.

For the proof of this proposition, we use Laufer’s formula [9].

For the Durfee’s number dp (H;), we have the following :

Lemma 3.3 1) If m; = multp(H;) > 6 or m; =3, then we have
dpi(Hi) > 0.

2) If m; = 4 or 3, then we have dp,(H;) > —2. Moreover, if P; is the
point with dp.(H;) = —1 (resp. = —2), then we have Ti_,, dp (H;) > 1
(resp. > 2).



Combining this with Tomari’s result [19], we obtain the following :

Corollary 3.4  Let (V, P) be an isolated singularity defined by
&+ h(z,y) = 0. Then we have p(P) > 6p,(P).

Problems 1) Show the analogous argument as in §3 for any 2-
dimensional hypersurface triple point.

2) Construct the process of canonical resolution for surfaces of n-
section type.

The detail will be published in our forthcoming paper.
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A Remark on the Geography of Surfaces with
Birational Canonical Morphisms

TADASHI ASHIKAGA

Introduction. Let S be a minimal algebraic surface of general
type defined over the field of complex numbers C. Then by the in-
equalities of Noether and Bogomolov-Miyaoka-Yau, we have

2(Os) — 6 < A(S) < 9x(Os), x(Os) > 0, (S) > 0.

Thus a natural problem is to construct a surface S such that x(Og) = =
and ¢(S) = y for any integers (z,y) in the above region. For this
problem, Persson [15] proved that all the invariants (), ¢?) with 2y —6 <
¢? < 8x — 20 occur for some surface carrying a pencil of curves of
genus 2. Recently Xiao extended Persson’s method and constructed
many surfaces carrying pencils of hyperelliptic curves ([22],[24],[7]).
We remark that the canonical maps of these surfaces are not birational
because the relative canonical maps are already generically 2 : 1.

In this paper, we are interested in surfaces whose canonical maps
are birational onto their images, because we believe that the ”general”
surface of general type has this property in view of the theory of curves.
(For this motivation, see also [6], [23]). Since the lower bound of such
surfaces is ¢ = 3y — 10 by Castelnuovo’s second inequality ([3]), our
problem is ;

” Construct surfaces with birational canonical map in the region 3x—
10 < ¢ < 9y naturally from the geographical point of view.”

Many works are related to this problem. For instance, see [10],[5],[14],
125],[19], [8] etc.(Consult [16] for other references.)

Now our approach is in some sence a nonhyperelliptic version of
Persson’s original one. His way was natural in the following sence: For
any surface S on the Noether line ¢? = 2y — 6(x > 7), Horikawa [12,
1] proved that S has a genus 2 fibration such that the ”degenerate”
genus 2 fibers come from.the resolution of rational double points in



some sence. So it seems that the simplest way to have many surfaces
beyond the Noether line is to construct on S degenerate genus 2 fibers
which come from the simple Gorenstein singularities not equal to RDP.
Persson used the simple elliptic singularities of type Fg .

Thus for our purpose, we first observe the surface on the Castelnuovo
line ¢ = 3x — 10. By the classical idea of Castelnuovo [4], such a
surface with birational canonical map( x > 9) always has a fibration
of nonhyperelliptic curves of genus 3 and the "degenerate” genus 3
fibers come from the resolution of RDP. Therefore it is natural for our
purpose to construct many simple degenerate genus 3 fibers which do
not come from RDP. We use simple elliptic singularities of type .
Quzr result is the following :

Theorem Let x,y be any integers with 3x — 10 < y < 8x — T78.
Then there exists a minimal surface S such that (1) x(Og) =z, (5) =
y, (2) the canonical map of S is a birational holomorphic map onto its
image and (3) S has a fibration of nonhyperelliptic curves of genus 3.

One can also find such surfaces in a subregion of 8y — 77 < ¢ <
8x — 35(see §3). The key step of the proof is to study the resolution
process of singularities arising from certain cyclic quadruple coverings.
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1 Construction.

1.1 Let m,n be nonnegative integers satisfying

(1) m+n>2 n<3.

Let C' be a nonsingular curve of genus ¢, and let D,,, D, be divisors of
degree m,n on C' respectively. We let

§:W =P(Oc@Ou(Dy)) — C

be the geometrically ruled surface, and denote by Cy, C,, and f the
0-section (C¢ = m), the oo-section and a fiber on W respectively. We
set, |

e X = P(Ow@ Ow(co)) — W
the P*-bundle, and set T' = Ox(1).

Let S be an irreducible divisor on X which is linearly equivalent
to 4T 4+ 7*6*D,,. We denote by wg the dualizing sheaf on S, and set
p,(S) = h%(S,ws) and ¢q(S) = (S, Og).

Lemma 1.2
p,(S) =4m+3n+3(g—1), ¢(5) =0, wi=12m+8n+16(g—1).

Proof. Denoting by K x the canonical bundle on X, we have Kx +
S~ 2T+ 7% (Kw + 9)+4T + 76D, ~ 2T+ (—Co+ 6" (Ko + D, +
D,)) where ”~" is the linear equivalence. Thus we have R°( X, Kx +
S) =i, RO(W, (i — 1)Cy + 6* (Ko + Dy, + D)) = 20°(C, K¢ + D, +
D,) + R(C, Ko + 2D,, + D,) = 4m + 3n + 3(g — 1) by (1). Since



RPm,O(Kx +5) =0 for p > 1, we have similarly H?(X,Kx +5) =0

for p = 0,1. Hence by the long exact sequence associated with
0— O(Kyxy) — O(Kx +5) — O(wg) — 0,

we have p,(S) = h°(X,Kx + 5) and ¢(S) = h*(X, Kx) = h'(C,O¢) =
qg.

Since w? = (Kx + 5)%5 and T? = ¢1(Ow ® Ow (Cy))T', we also have
the desired formula for w% by an easy calculation. g.e.d.

1.3 From now on, we fix a fiber coordinate (Yp,Y;) of w: X —
W. Denote by T, the section defined by Y, = 0. T, is linearly
equivalent to T'— 7*Cy. If we choose D, general, then the divisor S|y
(the restriction of S to T,) is n distinct fibers on Ty, ~ W —— C.
On the other hand, the self-intersection number of the divisor Ti,|s
on S is —n. Thus S contains n exceptional curves of first kind. ILet
v: 5 — 5 be the contraction of these curves. We remark that v is
induced by the contraction of the ambient space

Py X — X' :=POc@ Oc P Oc(Dy)),

where ® is the morphism defined by the linear system |7'|. Then we
have p,(5") = py(5), q(5") = q(9) and wi = w§ +n = 3x(Os)+10(g —
1) by Lemma 1.2. ,

Now assume that (1) S has k simple elliptic singularities of type
I (see [18]), (2) other singularities of S are at most rational double
points (RDP for short) and (3) S is smooth along Ti|s. Let S be the
minimal resolution of singularities of S’. Then by [17] or [1] we have

X(Og) =4m+3n+2g—1)—k, wi=12m+9n+ 16(g — 1) — 2k.

In order to realize the above assumption, we set up the following
situation. |

Considering that any ¢ € H°(X,4T + 7*6*D,) can be written as
¢ =i bicorsp, Yo Y] where dig,rsop, € HO(W,iCy+ 6*D,), we set

AT + 78" Dl = {(#) € AT + 7%6* D, |5 50, Yy + bacousen, Yi'}



~where (¢) is the divisor defined by ¢. We call it the cyclic subsystem
of |41 + ©*¢*D,|. For any member (¢) € AT + 7*¢* D, |c, we call the
divisor By = (¢scyrs+n,) and By = (¢s+p, ) the branch and the assistant
bracch locus of (@), respectively. With this notation, we define the good
cyclic subsystem 4T + 7*6* D, |ac by the following two properties:

1) By is reduced and B} is nonsingular.
2) B} passes through no singular points of By, and they meet transver-
sally. ‘

Lemma 1.4  Let S = (¢) be a member of |4T + 7%6*D,|gc and
set mg = wlg : S — W. Then we have

(a) S is irreducible and normal,

(b) Sing(S) = 75! (Sing(Bs)) N Support(T),

(c) the general fiber of wg is a nonhyperelliptic curve of genus 3,
where Sing(9) is the singular locus of S, etc.

Proof  On w5 (W\By N B}), ms is a finite morphism and the as-
sertion (b) is clear. For any P> € By N B, denote by (z,y) a local
(analytic) parameter at P on W. Then w5 is defined by the equation
YY"+ yY)" = 0 in X. Thus S is nonsingular along 75! (B, N By). (
75" (P) is a nonsingular (-4) curve.) Hence (b) holds. Especially S is
normal.

Let 7 : § — S be the resolution of S and § = U;S® be the
decomposition to its connected components. Since By N B, is a set of
points, m57(S®) coincides with W for any i. On the other hand, for a
general point @ of By, 5" (Q) consists of one point and nonsingular in
S. Hence 1 = 1, i.e. § is irreducible.

The assertion (c) is clear. g.e.d.

Definition 1.5 A curve singularity P is called an infinitely close
double point iff it consists of two tangent branches no longer simulta-
neously tangent after one blow up. (See the point P; in Fig. 1).



1.6 Let S be a surface defined by (¢) € |41 + 7*6*D,|gc. If
Pc Bg\ By, is an infinitely close double point (resp. an ordinaly double
point) of By, then Q@ = wg'(P) is an Er-singularity (resp. a RDP
of type Aj). Therefore we try to construct a member B := By €
|4Cy + 6*D,,| such that B has k infinitely close double points and other
singularities of B are at most ordinary double points. The following
method is essentially due to Persson [15].

Let Dg be a divisor of degree # > 0 on €. Assume that there is a
divisor D, > 0 (effective or zero) on C such that

(2) D, ~ D, —2Dg.
Let P, - -, P be points on Cj such that

where P: = 6(F;). Let B® and B® be general members of Persson’s
subsystem |2C, + 6*Dg|p ([1]) passing through P, -- -, Py. Assume that

(4) 0* D, does not pass through the singular points
of the reducible curve BY 4 B2,

We set, v
B:=BY+ B 4§D,
Then B is linearly equivalent to 4Cy + 6*D,,, B has infinitrely close
double points at P;(1 <i < k) and other singularities of B are at most
ordinaly singular points (see the argument in [1]). From the above
argument :

Proposition 1.7 Let m,n be as in (1). Assume that

(a) 0 <k <2m+ [n/2] — 1 when g = 0,

()0 <k <2m+ [n/2] —2 when g > 1,
where [n/2] is the greatest integer not exceeding nf2. Then there exists
a nonsingular surface S such that
1) x(03) =4m+3n+2(g—1)—k,c?(5) =12m+ 9n+16(g— 1) — 2k,
2) S has a (base point free) pencil of nonhyperelliptic curves of genus
3 over a curve of genus ¢.



Proof When C = P': By (a), we can choose Ds and D, such
that the conditions (2), (3) and (4) are satisfied.

When g(C') > 1: Let C be a hyperelliptic curve of genus ¢ > 1 and
let ¢ : C — P! be the hyperelliptic involution. We choose divisors D,,
such that ; o '

(¢) When m is even, D,, := ¢*Op1(m/2) ,

(d) When m is odd, D,, := ¢*Op1([m/2])+Q for a ramification point
Qecl.

We choose divisors D, Dg, D, and P+ - 4 P in a similar way
carefully. Then the conditions (2), (3) and (4) are satisfied by (b).
q.e.d.

Remark 1.8 In the proof of Proposition 1.7, if C' is a general
curve of genus ¢ > 1 and D,,, D, are general divisors on (', then the
invariants (x,¢’) of the resulting surfaces S do not cover wider area
than the above ones in the surface geography.

2 Process of resolution.

In this section, first we resolve singularities of S explicitely. This
method is analogous to that in [11, §2] and [2, §3]. Second we cal-
culate the invariants of surfaces in each process of the resolution.

2.1  We go back to the situation in 1.6. Our way of resolving
singularities of S consists of the following six steps :

1) Let fi,- - -, fr be the fibers of W — ' containing Py, - -, B
respectively. Let 7, : Wi, — W be the composition of blow ups at
Py(1 <14 < k) and set g¢ = 7, '(P;). Denote by f! the strict transform
of f; and by Q! the point on intersection of f; and g.

2) Let 75 : Wy — W be the composition of blow ups at ()}, 1 <1 <
k. Set h!' = 77 1(Q}) and denote by f! and g the strict transform of f!



and g! by 7 respectively. Put 7 = 7 0 7y. We set

k
Ly = 170w (Co) Q Ow,(— 3 hi),
. n=1
k L 2
By = 7By =430 =By +2% g, By=1"DBy,
1=1 - 1=1 .

where B, is the strict transform of By by 7. Put
7o 1 Xo= P(Ow, B Ow,(Ls)) — Wy

and set Ty = Ok, (1). We define a member 9 of the cyclic subsystem
4T, + 7w57*6* D, | such that the branch and the assistant branch locus
are By and Bj respectively. Then by the same argument as in [2, §3],
there is a natural morphism g : Xy — X such that g = plg, : Sy —
S is a birational morphism. The singular locus of 9 (except RDP)
coincides with U, (m9|s,) 7 (¢7). The local analytic equation of this is
of the form &* +z? = 0. We set G; = (mals,) ' (¢7)rea the reduced curve
of (mals,) ™ (g1).

3) Let ps : X3 — X3 be the composition of blow ups at g;,1 <1 <
k. Denote by S5 the strict transform of Sy by s, and set E; = 13" (G),
Gi = (95N Ei)peq and fiz = psg,.

4) Let pg @ X4 — X3 be the composition of blow ups at g;,1 <
i < k. Denote by Sy and F; the strict transforms of S5 and F; by
74 respectively. Set F; = p7'(g;) and fiz = puls,. Si contains 2k
exceptional curves of first kind (fiz) *(g;),1 <1 < k.

5) Let ps : 94 — S5 be the composition of contraction maps of
(@) *g;) for 1 < ¢ < k and of n exceptional curves Ty|s. Let A
be the image by ps of the strict transform of A by [y o 3. A" is a
nonsingular elliptic curve of self-intersection number (—2). (see Fig.
1) | |

6) Let pg : S —— S be the minimal resolution of all RDP on S5. S
is nonsingular.

By the above process, we obtain the following diagram :



X 1 X2 3 X3 Ha X4

U U U U
g Ly B B g e
| s | ms,
W Wy
(Fig. 1)
(Fig. 2)

Next for calculating p,(S;) and ¢(S;) for 2 < 5 < 4, we prepare the
following two lemmas.

Lemma 2.2  We set
O :=k—h"(C,Kg+2D,+D,)+hYC, Ke+2D,,+ D, — P, -+ —P).

Then we have
(a) hP(Wy, 7(=Co+ 6" (K¢ + Dy -+ D)) + 25, (g + 1Y) = 0,(Vp),

(b) h*(Wy, 76" (K¢ + Do + Dy) 4+ 5 )
(m+ntg—1 (p=0)

=< k- (p=1)
| 0 (p=2)
(¢) hP(Way, 7*(Co+ 6*(Kc + Dy + D)) + 55 (g — b))
3m4+2n+2g—1)—k+0 (p=0)
—{ 9% 10 (p=1)
0 (p=2)

Proof. We write g; = g/, h; = h!’ and 3> = =¥ | for simplicity.
(a): Put Dy = 7*(—Co+ 6" (Ko + Dy + D,,)), and consider the exact

sequences

0 — Ow,(D1) — Ow,(Dy+ > (gi + hy))
= Oygan)(D1 + > (gi + hi)) — 0,



0 — Oxn(Di+ 3 hi) — Ox(gan)(Dr+ X (g + b))
- Ozgi(Dl + Z(gz + hl)) - 07

i1 | i
0 —_— 02{2—11 h,-(Dl + 222:1 }72) —> OZ{:1 /l;(Dl + E:l hz)
J
— Op, (D1 + > hy) — 0,
1=1

for 2 < j <k. By using

(Dv+ 3 hi)hy = (Do + (g + hi))g; = —1

inductively, we have

HP(Wa, Dy 4+ 2(gi + hy)) HP(Wy, Dy)
~ HPY(W,~Cy + ¢*(K¢ + Dy, + D)) =0,

for any p.
(b) : Since

we obtain (b) similarly.
(c) : Set Dy = 7*(Cy + 6*(K¢ + D,, + D,)) and consider the exact

sequences

0 — Ow,(Ds— 2 hi) — Ow,(Dy + 3 (¢; — b))
— Oy (Dy+32(9; — hy)) — 0,

0 — Ow,(Dy — > hi) — Ow,(Dy) — Osp, — 0.
Since (Dy + (g; — hi))g; = —3 and Dyly; ~ Oy, , we have

HP(Way, Dy =3 hy) o2 HY(Wy, Dy + 3 (g5 — ),

0 — H'(Wy, Dy — T hi) — H' (Wa, Dy + 5(gi — hy))
— C* — 0 (ezact),

(5)



0 — HO(Wl,DQ — th) E— HO(Wl,DQ) L) Ck
— H'(W', Dy — > h;) — HY Wy, Dy) — 0 (ezact).

We denote by 0’ the dimension of the cokernel of the map r. Then by
(5), we have

hO(Wa, Dy + S(g; — hy))
(©) =h'(W,Co+ 6*(Kc + Do+ D)) —k + 0/,
hl(W2,D2 + 2(g; — hy))
= h'(W,Cy + §*(K¢ + D, + D)) + 2k + ©".

Now we consider the map r.
Any element o' € H°(Wsy, Dy) is written as %' = 7% for some
v e HY(W,Co+ 6" (Ko + D,, + D,)). Then we have

I‘(Q/)’) - (¢I|7b17 T 7w,|hk) — (¢(P1)7 T 71/)(PL)) c Ck

where ¢'|h; € H°(h;, Dy|s,) ~ C and ¢(P;) is the value of ¢ at P;.
We set M = H°(W,Cy + 6*(K¢ + Dy, + D,)) and denote by M* the
vector subspace of M consisting of the elements which pass through
Py, -+, P;. We have a descending filtration |

(7) M=M>M" > ---> M

We have dim M* = dim M*~! or dim M’ = dim (M*~') — 1 according
as P; is a base point of M*~! or not. Then the number O is equal to
the cardinality of ¢ such that dim M* = dim M* !, :

Let (Zy : Z1) be a fiber coordinate of 7 : W — (' such that
Co = {Zy = 0}. Then any v € H(W,Cy + (K¢ + D, + D)) is
written by

Y = VK. 4D, +D, 20 + VK, 12D, +D, 71

where Yg_4ip, +p, € HO(C, Koe+1D, + Dn) for y =1,2. Since R(l <
i < k) is on Cy, (P;) = 0 is equivalent to ¢¥x,49p. +p. (FP;) = 0. We
set N = HY(C, K¢ + 2D,, + D,) and denote by N* the subspace of N

consisting of the elements which pass through P;,---, P, We have a
filtration
(8) N=N">5N'>...5N*



By the above argument, the number 0 is equal to the cardinality of :
such that dim N* = dim N*~'. Hence ©' coincides with ©. Thus by
(6), we obtain (c). g.e.d.

Lemma 2.3  For anyj (1 <j <k), we have
(a) (Kx,+9)7;=-3,
(b) (Kx,+ 53)g; = —2 .

Proof. Denote by 15° the co-section of 7y : Xy — W,. Then we
have

k
(9) 1295 = (17 A (77 Co = 22 h)G; = —hjgf = —1.

Since

Kx, + Sy ~ =21y + 3 (Kw, + Ly) + 4T, + m37*6* D,
~ 2T + w3(77(=Co + 6" (K¢ + D+ Do) + Z(g!' + i),

we obtain (a).

For 1 < i < k, let Ty, G;, H; and I be the proper transforms of
Ty, Gy = w3 (g!), H; = () 7' (h}) and F; = w3 '(fI') by pig respectively
(see Fig. 2). Then by (10), we have |

(Kx, + 523 = (15(Kx, + S2) — TE, B)g;
1) =@+ E)+ (G B+ ) - © g,
=2F;5; + G;g; + 1.

(10)

Now we consider the exact sequence
0 — Nz, — Niyx, — (Noyxo)lg; — 0,

where Nz, is the normal bundle of g; in 75, etc. We have Ng/x, =
Op1(—2) and (Nry/x,)|5 ~ Opi(—1) by(9). Since Ext'(O(—1),0(-2))
vanishes, we have Nz x, ~ Opi(—1) ® Op:(—2). Thus E; is isomorphic
to the Hirzebruch surface of degree 1, and g; is the co-section of F;.
Hence we have G;7; = (@;|E])2 = —1.

On the other hand, the divisor E; -+ G + 21, + F is a singular fiber
of the degeneration X3 — (. Thus we have

0=(E; +G; +2H; + F})g; = E;g; + 1.



Hence by (11), we obtain (b). g.e.d.

Proposition 2.4  For 2 <3 <4, we have ;

1) I‘IO(LUSJ.) ~ HO(Xj,]{Xj + Sj),
W ws ) = h'(X;, Kx, + 8;) — B(X;, Ky, + S;) + g (¥)),
2) h(ws,) = h'(ws) —k+ 0O, hl(ws,) =g+3k+0,
3) H(ws,) = H'ws,), hi(ws,) = h'(ws,) — 2k,
4) M(ws,) = H(ws,), h'(ws,) = h'(ws,) — k.

Proof. Since H?(Kx,)-= 0(p = 0,1),h*(Kx,) = g and H*(wg,) ~
H*(Kx,) ~ C, the long exact sequence associated with

0 — O(Kyx,) — O(Kyx, + S;) — Ows,) — 0,

implies 1).
By (10), we have RP(7m4).O(Kx, +55) = 0 for p > 1. Thus we have

H?( Xy, Kx, + Sy) o~ HP(W,y, (79),O0(Kx, + S))

~ HP(Wy, 7" (—=Co + §* (K¢ + Dy + Dy)) + 2i(gi + hi))
® HP(Wy, 76" (K¢ + Dy + Dy) + ¥4 95)
® H?(Wo, 7(Co + 6* (Ko + Doy + D)) + Si(gi — hy))-

Hence by Lemma 2.2 , we obtain 2).
Since Ky, ~ p3Kyx, + 3 L and S3 ~ plSy — 2%, [, we have the
exact sequence

0 — O(Kx, +53) —— O(us(Kx, + S9))

12
(12) s Oy (4 x, + Sl ) — 0.

By Lemma 2.3 (a), we have

(B, (K, + $2)|p) = HY(P',0(-3)) = { e oy

Thus by the long exact sequence associated with (12) and by 1), we
obtain 3).
By Lemma 2.3 (b), we obtain 4) similarly. qg.e.d.



Corollary 2.5 p,(S) = p,(S) —k, ¢(5)=g.
Proof. By Proposition 2.4, we have p,(5) = p,(S4) = p,(S) —k+06

and ¢(S) = ¢(Ss) = g + 0. On the other hand, © equals to zero by
Proposition 1.7. | q.e.d.

3 Canonical mapping.

In this section, we study the canonical mapping of the surface S con-
structed in the previous section, and prove our theorem.

Proposition 3.1  Assume that

(a) m+n>3 and2m+n+29—-2>k, or

(b) C=P'm+n=2andm—1>k.
Then S is relatively minimal and the canonical map (I)I"E of S is a
birational holomorphic map onto its image.

Proof. Since H°(K3) is naturally isomorphic to H°( X, Kx, + S5)
by Proposition 2.4, we consider this space. The divisor Kx, + .5 is
linearly equivalent to 15° + Ty + m(7*6* (Ko + D, + Dy) + 55 g),
and T5° is a part of the fixed component of this system by the proof of
Lemma 2.2(a). We set '

D =Ty +m(1"0" (Kg + Dy + D,) + Zqz)
If we fix a fiber coordinate (570 : 571) of my : Xy — W,, then any
¢ € H°(X,, D) is written as
(13) b= OV, + (b(l)ﬁ,

where ¢ ¢ HY(Wo, 7*6*(Ko+ D+ D)+ g;) and M) e H(W,, 7*(Cy
+ 0" (Kc+Dp+D,))+3(g:—h;)). By the proof of Lemma 2.2, we have
HO (W, 78" (Ko + Dy + Dy) + £ gi) ~ HY (W, 78" (K + Dy 4 D)) =
HY(W,6*(Kg + Dy, + D,)). Moreover ¢! is written as

(14) V=79, =02 + 402,



where ¢ € M* ¢ H(W,Cy+ 6*(K¢ + Dy + Dy)), v € HY(C, K¢ +
D+ D) and () € N* (see (7) and (8)).

Hence by the expression (13) and (14), the curve A = 22F_ (g¥ + hY)
1s a part of the base locus of D).

Set X§°) = X,\ A the Zariski open set of Xy. We prove that the linear
system | D| separates points on X§°) :1.e., For any points R, Ry € Xéo),
one can find ¢ € H°(Xy, D) such that ¢(R;) = 0 and ¢(Ry) # 0. Put
R! = my(R;) and R! = §7(R}) for ¢ = 1,2.

1) When R # R} : If the condition (a) holds, then K¢+ D,, + D, is
a very ample divisor on C'. Thus |7*6*( K¢ + Do, + D,) + X g;| separates
R} and R). Hence |D| separates Ry and Rs. If the condition (b) holds,
then the system N* separates R! and Rj. Hence |D]| also separates R,
and R,.

2) When R} # R, and R} = RY : Since K¢ + D,,, + D, > 0 and
Ko+2D,,+ D, — P, —---— P, > 0, the system |7*(Co + 6 (Ko + D+
Dy) + 52(g; — hi))| separates Ry and R5. Hence |D| separates R; and
R,.

3) When R} = R} : We consider the restriction map

A H(X, D) — H°(m3 ' (Ry), Do) ~ G
By (13), the map A is given by

¢ +— (p(RY), gV (RY)).

Thus by the same argument as above, X is surjective. Hence |D| sepa-
rates R, and R,.

By 1),2) and 3), | D| separates points on Xéo). Therefore |Kx, + S5
induce a birational map on X,, and this map is holomorphic on ngo)‘
Since the generic point of 95 is contained in X{", lwg,| also induces a
birational map on Sj. Hence ® K is a birational map.

Next we prove that the base locus Bs|wg,| is empty. By the above
argument, we have Bslwg,| C Uh!. Since wg, = (ps)«(fia o i3 o
1) ws®Og (— i h!"), the divisor ¥; b is not a fixed component of
lws,|- For 1 <@ <k, let P/, P/ be the points on A" which are the im-
age of two exceptional curves (1) '(g;) by ps. For a general member



o € M, let Cy be the curve on W ~ T' C X defined by . Then the
strict transform of Cy by fu4 0 13 0 1 does not intersect with (mz)™'(g;).
Therefore the points P and P (1 < ¢ < k) are not the base points of
lws,|. Thus Bs|wg,| is empty. Hence Bs|Kg| is empty.
Especially S is relatively minimal, and @ K5 18 a holomorphic map.
g.e.d.

From Propositions 1.7 and 3.1, we have the following by an easy
computation :

Theorem 3.2  Let x,y be any integers with the following :
(a) If g =0, then one of (a.1) ~ (a.4) is satisfied ;
(a.1) 3z — 10 < y < 4z — 16,
(a.2) y =4z — 15, x >5 and:z:_l(mon)
(a.3) y =4z — 14 and z > 5,
(a.f)y=4z—1i, 1 =13 or12, 2> 6 and:l:_O(modZ)
(b) If g > 1, then one of (b.1) ~ (b.5) is satisfied ;
(b.1) 3z + 10g — 10 <y < 4z + 8¢ — 18, -
(0.2) y=4x +8g — 17, © > 29+ 8 andm_O(mon)
(b.8) y =4z + 89 — 16,
(b.4) y=4z+8g—1i, i=15 or 14, z > 29+ 7 and z = 0 (mod 2),
(b.5) y =4z +8g—~12, z > 29+ 6 and x = 0 (mod 2).
Then there exists a minimal algebraic surface S such that
1) x(0s) ==, c{(F) =y and ¢(5) =g,
2) the canonical map Pg, is a birational holomorphic mayp,

3) S has a fibration of nonhyperelliptic curves of genus 3 over a
curve of genus g.

From Theorem 3.2, we have the following by an easy computation :
Theorem 3.3  Let x,y be any integers with ;
(a) 3z — 10 <y < 8z — T8, or

(b) y =8x—1 (35 <1 < 77,1 #.39,41,47) and x satisfies the
condition in the following table ;



i e5 1361 371381400421 431441 45 [46148]49]50] 51
| 5| E|6|6|E|D|D|A|[7,8]8|E|E|A|D

521 53 | 64 |55|56]57]58|569[60] 61 62 |63
Al9 10| D, 10| DI E|E|A|A|A1L, 12| D, 12| D

611 6516667168] 69 |70] 717273 74| 75] 76| 77
A|A|A|A[A|E 13|A| D] A|A|A|A|A|E 15

where "A” (resp. "E”, resp. "D” ) means any (resp. any even, resp.
any odd) integer with > (1/5) — 2. ( For instance, if y = 8x — b4, then
z is any odd integer with > 9 or x = 10.)

Then there exists a minimal algebraic surface S such that

1) x(0s) =z, &) =y,

2) O, is a birational holomorphic map,

3) S has a fibration of nonhyperelliptic curves of genus 3.

Remark 3.4  There exists a minimal algebraic surface S of gen-
eral type such that

1) ¢1(S) = 4p, () — 6, q(5) =0, py(S5) >4 and py(5) =1 (mod 2),

2) b, is generically 4 : 1 map, |

3) S has a fibration n : 5 — P! of nonhyperelliptic curves such
that ® . is induced by a relativation of the generic projection of the
plane quartic curve which is the general fiber of h.

In fact, in Proposition 1.7, we set m > 3, n =0 and k£ = 2m — 1.
Then the assertion is verified by the similar argument as in the proof
of Proposition 3.1.

Remark 3.5 There exists a degenerationp : § — A = {|t| < 1}
of surfaces of general type such that the main component SO of the
degenerate fiber Sy = p~1(0) satisfies

py(S) = py(81) = 1, l(8Y) = }(S) — 2, a(5) = (),



where S; = p71(t) (t # 0) is a smooth fiber of p.  This degeneration is
observed in the same region as in Theorem 3.2. The construction is
similar to [2, §4].

Other examples of "tame” degenerations can be seen in [9], [20],

[21], [2], etc.
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Appendix to T. Ashikaga’s paper

KAZUHIRO KONNO

Introduction.

The purpose of this appendix is to give another construction of
surfaces of general type with pencils of nonhyperelliptic curves of genus
3, whose canonical map is a birational morphism onto its image. We
restricts ourselves to regular surfaces here, whereas our method can be
applied to irregular ones as well (with some more effort).

Let S be a smooth surface with a morphism f : S — C onto a
smooth curve C. Recall that, if a general fiber is a nonhyperelliptic
curve of genus three, there is a canonical birational map of 5 into a
P2 -bundle W on C (see, [H, §1]). We let X be its image, and consider
the fibration ¢ : X — C induced by the projection of W. Then the
differece of the invariants (x(Ox)— x(Os), wk% —w?) can be considered
as the contribution of the singular fibers of g. Though we do not
have a complete list of possible singular fibers, we at least can expect
that they are quite similar to those in [K]. However, the singular fiber
arising from a simple elliptic singularity of type 4, which Ashikaga has
constructed, seems to be a “special” one ([K, §9]). What this means
may be garanteed by the fact that the canonical bundle of .S cannot be
ample in this case. Thus there should be a way to construct “general”
ones. This is the motivation of the present note.

Construction.

We let W denote the total space of the P*bundle
m:P(O(a) ® OB) ® O(c)) — P,

where a, b, ¢ are integers satisfying 0 < a < b < c¢. We let T" and [
denote the relatively ample tautological divisor and a fiber of 7, respec-
tively. Then the Picard group of W is a free abelian group generated



by them. Further, we have 1% = (a + b + ¢)T?F in the Chow ring of
W. We put
p=a+b+c+3 (1.1)

and assume that p > 4. Let s be an integer; and let ) be a general
member of the linear system |27 +sF|. We remark that ) is irreducible
and has only rational double points of type A; if

atc+s>0, 2b+s>0. (1.2)
Choose general k fibers F',---, F; of m. We assume that ) and
F; meet transversally, and that the intersection }; = @ N F; is an

irreducible conic (in I ~ P?) for each 1.

We let v : W — W be the blowing-up along UQ;, and put & =
v~1Q;). Since the normal sheaf of @; ~ P! in W is isomorphic to
O @ O(4), each &; is isomorphic to ¥, the Hirzebruch surface of degree
4. On W, we consider the linear system |L|, where

k
L=v{4l—(p=-5—-k)F)—=2> €&, (1.3)
=1
If we denote by Q and I; the proper transforms of ¢ and I3, respec-

tively, then we get

L ~ AT — (p=5+ k) + 25k F,
~ 20+ (k+5—p— 25U F,
where the symbol ~ means the linear equivalence of divisors. Since

ONFE, =0, we have

Lemma 1:  Bs|L| =0 if the following conditions are satisfied.
1) k>2stp—5.
2) @ does not meet Bs|41T — (p— 5+ k).

Lemma 2: The condition 2) of Lemma 1 is satisfied if one of the

following conditions is satisfied:



1) k<4a—-—p+5=3a—b—c+2.
2) s=-2a, k<4b—-p+5=3b—a—c+ 2.

Proof. If 1) holds, then Bs|4T — (p — 5+ k)F| = . We assume
that 2) holds. We let X;, X; and X, be sections on W of O(1T' — al'),
O(T—bF) and O(T —cI"), respectively, such that they form a system of
homogeneous coordinates on each fiber of w : W — P'. If 4b > p—5+k,
then [47 — (p — 5 + k) F| has no base point outside the rational curve
B defined by X; = X9 = 0. On the other hand, the equation of () can
be written as

GooXg + q10Xo X1 + g1 XoXs + g0 X7 + g1 X1 Xy + g X5 = 0,

where ¢;; is a homogeneous form on P' of degree (2—i—j)a-+ib+ jc+s.

Thus, if s = —2a, then we can assume that goo 1s a nonzero constant.
Then () does not meet B. Thus 2) is also sufficient to imply 2) of
Lemma 1. g.e.d.

Lemma 3: Suppose that |L| contains an irreducible nonsingular
member S. Then S is a minimal surface satisfying:

1) The canonical map of S is a birational morphism.

2) py(S) =p,q(S) =0 and c(S) = 3p,(S)—T+k, where p,, ¢ and
¢ denote the geometric genus, the irregularity and the Chern number
of S, respectively.

Proof. For any complex manifold M, we denote by K s the canon-
ical line bundle of M. Then, by the adjunction formula, we have

ko
g~ (Iﬁrw + S)IS ~ (U*T+ Z Fz)‘s
1=1

Since Iy, 1 < i < k, does not meet S, we have O(Kg) — Os(v*T). We
next consider the cohomology exact sequences derived from

LA
0— O(Ky)— O0WT+> F)— 0O(Kg) — 0, (1.4)
1=1 '



/\7 A~
0— OW'T)— OWT+ Y F) — &_,04 (1) — 0. (1.5)

i=1

Since W is rational, we have HY(W,O(Ky)) = 0 for ¢ < 3. Thus
we get HU(S,O(Kg)) ~ H(W,0W*T + ¥ F;)) for ¢ < 2 from (1.4).
Then, by (1.5), we get H1(Kg) ~ HY(W,O(T")) for ¢ < 2. This shows
the formulae for p,(S) and ¢(5). Note that we in particular have
shown that |v*T is restricted to |Kg| isomorphically. Thus Bs|Kg| =
Bs|v*T| = 0. This implies that S is minimal and we get 1). Finally,
we calculate ¢? to get:

E(S) = (WTYL=T*AT —(p—5—k)F)=3p— T+ k.

g.e.d.

Now, varying a, b, ¢, s and k under the conditions as above, we
obtain a series of surfaces to show the following:

Proposition: Let x and y be positive integers satisfying

dr — 8 if x is odd,

> — 7 <y<
x >4, 3z 7—9—{41-—10 if = is even.

Then there exists a minimal, regular surtace of general type S with the
following properties:

1) p(S) =z, ¢(9) =vy.

2) The canonical linear system of S has neither fixed components

nor base points, and the canonical map Is a birational morphism onto
1ts image.

3) S has a pencil of nonhyperelliptic curves of genus three.

4) The canonical image of S is contained in a threefold of minimal
degree.

Sketch of Proof. Put (a, b, ¢) = (a, a, a), (a, a, a+ 1), (a, a +
1, a4+ 1) according to z = 0, 1, 2 modulo 3, respectively. Then, by 1)



of Lemma 2, we can cover the region

10 6, if z=0,
3z —T<y< ?:c — 232, if x =1, (mod.3) (1.6)

26 . —
) 1f r = 27

for a suitably chosen s satisfying (1.2).

We next put s = —2a and consider 2) of Lemma 2. Putting a =
0, b = ¢, we can cover the region 4z — 12 < y < 42 — 8 with x odd.
Similarly, putting @ = 1, b = ¢, we can cover the region 4z — 16 < y <
4z — 10 with x even. In this way, by increasing a and putting b = ¢, we
can cover the region outside (1.6) as well. The other statements follow
from Lemma 1.3 and the construction. g.e.d.

Remark: The inverse image of (J; on S is a hyperelliptic curve of
genus 3 (see, [K, §9]). Further, it can be checked that most surfaces
we have constructed have ample canonical bundle.
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Smooth projective varieties dominated by homogeneous rational
projective variety.

By Koji Cho and Eiichil Satc

In this paper we consider the following problem due to Remmert
, Van de Ven [R,V] aﬁd Lazarsfeld [L].

Problem Let X be a smooth projective variety defined over
the complex number field €. Let f :G / P —— X be a surjective
morphism where G 1s a simple classical group and P a maximal
parabolic subgroup of G. Then. unless f is an isomorphism, X 1s
isomorphilic to a projective space.

Here we study the property of such & variety X and have

Main Theorem Let X be a smooth projective variety, @ a smooth
quadric hypersurface of dim = 3 and f a surjective morphism
defined over an algebrailcally closed field of any charactristic

{char kK = 2). Assume that f 1is separable. Then unless [ 1is an

A,

i1somorphism, ¥ i1s isocomorphic to a projective space.

Mori showed in [M] that a smooth projective variety with
ample tangént bundle 1s isomorphic to a projective space.
As an important application Lazarsfeld in [L] proved that if
G/ P 1s a projective space, the above problem 1s valid (even in

any characteristic. Use Proposition 1.1 in his proof [L])

In our case a key for the proof of Main Thecrem 1is tec apply
Mori’s Theorem and to study the behavior of a extremal rational

curve on X and the property about the tangent bundle T, of a

Q



guadric hypersurface @.
Precisely speaking, in 81, we chserve a general nature of the
* .
variety X dominated by G / P and see that v TK >~ 0 l(2)(:)
X p

o
p

C (= a gen=ral

l(l)@r @ 0,1©S for the normalization Pl
P

extremal rational curve in X)) (Proposition 1.13)

In § 2, we study the property of the tangent bundle TQ {Theorem

2.1), by which we cbtain a result {(Theorem 2.7} about the vector
bundle '¥ on @ which is a non-trivial extention of an ample line

bundlie on a hyperplans section of Q by TQ.
Namely theorem 2.7 says that there is a line L onr @ such that FII

is ample.

In 83, for an extremal rational curve C on X, we observe the

o *
possibility of a vector bundle + TY with the normalization v: Pl

——— (. Thus the case with the conditions below 1s left to us as an

complicated one:

(1)the morphism ©f: Q ———+ X has the ramification locus RQ which
is a hyperplane secticn of @ with f_lf(RQ) = RQ,
{2) for any line L on @ the restricted map fIL L ——— (L) is

contained in one ccmponent H (D [v]) in Hom(Pl,X)

*
(3) the restriction of f T, to any line in @ is not ample and

X
finally
* . . . o .
(4) £ TX iz obtained as an extention of the line bundle OR {2) on
. Q
R by T
Q i Q
But = the condition (2) (1) contradicts Theorem 2.7 and this case
does not occur, which asserts Maln Theorem.



After finishinz the present paper we found that K.H.Paranjape and
V.Srinivas got the same result (= Proposition 8) in the following
paper:

Self maps of homogeneous aspcas.

Invent.math.98. 425-444(1989).

Cur method of the procf is essencialy same as the one by them
except for the last part of the proof. The last part seems to be

most ccomplicated one. That is why we have the argument in any

characteristic (= 2). We must study the property of the homomorphism
* . .
TQ — f TY on the branched locus RQ in details.
Notation. Basically we use custumary terminologies of

algebraic geometry. A variety means a separated, reduced irreducible
algebraic k-scheme where k 1s an algebraically closed field of any

characteristic. 0 D(l) denotes the line bundle corresponding to the
ph

hyperplanes in pl and in case of n=1 it is abbriviated simply as
0({1) very often. When a vector bundle E on a variety 1is generated
by its glcebal sections, for the simplicity we say that E is GS.

For a variety X and a closed subscheme ¥ which is locally complete

intersection in X, ‘NY /X means the normal bundle of Y 1in X.



w3
=

General properties of a smooth target of G / P.

In this section we study the property of the smooth projective

variety which is a target of homogeneous complete variety G / P.

Let us begin with easy propositions about vector bundle on a curve

For the proof we use several facts in [H].

Proposition 1.1, ( Lemma 4.3 in [L]) Let ‘E, F be vector bundles
on a smooth projective curve C with the same rank and j: E —— F an
injective homomorphism. If ¥ 1s an ample vector bunale, so is F.

Precof. Take an integer m such that S (E} 1is ample, GS
(= 1s generated by its global sections) and its first
cohomology group wvanishes. {see Proposition 2.4 and Propositicn 3.3
[H]) Moreover consider the homomorphism

3. s™E) — s™(F) induced by

j: E — F , which 1s also an injective
homomerphism. Set T = Cokernel of 3._Since T is GSW 50 1s Sm(F).
Now assume Sm(F) is neot ample, namely there 1s a section C’ (with
respect to the projection P(Sm(F)) — ()} in P(Sm(F)) which maps to

a polint via the morphism induced by the tautological line bundle of

P(Sm(F)). Thus we infer that there is a surjective homomorphism
Sm(H) _— OC’ which gives riss to the non-trivial homomocrphism
Sm(E) _ OC,. But since Sm(E) is ample, we have a contradiction.

Hence Sm(F) is ample and therefore F 1is ample.

q.e.d.



Moreover we have

Proposition 1.2. Let E and F be vector bundles on P1

and j:E
—— [ a generically surjective homomorphism. Then we have
1y If E 1is GS 3o is F
2) If E 1is ample, so is F.
3) Particularly let E = 0(2) C>0(1)®n—2 ® 0 and rank F n.
Suppose that F is the pull bac%f% vector bundle G on Pl via a
finite morphism f: Pl _— Pl and deg G <« n + 1. Then G is one of
the following:
«) 0(2) @ o)t
3) 0(3) @ 0l 7 @0,
v o 02)® %2 @019 @ 0.
5) 02y @o® @0,
Proof. Noting that any vector bundle on P1 is a direct sum of line
bundlies, this propositicn 1is trivial,

Now let us consider a separable, surjective morphism f: ¥ — X
betiweem smooth projective varieties X,Y and lat RV be the
ramification diviscer of ¥ via f. Then w= have

Proposition 1.3. Under the above condition let Y be a Faﬁo
variety {i.e. - KY is ample). Then we have
1) If £ is finite and RY is nummerically effective 1.e. the
intersection number RY C 1s non-negative for any integral curve C
on Y, then X 1s a Fano variety.

2) Assume that Pic Y =~ Z. Then the asssumptions in 1; hcld good.



*
Preoof. We have the eguality: KY = f Kk, + Ry' Since the

product of an ample line‘bundle and a nummerically effective line

bundle is ample, —K{ is © ample by the finiteness of f. For 2) note

that any effective divisor is ample. Unless f is finite thers is a
curve C in Y such that f(C) is a point. Take a divisor D in X which

does not centain f{C). vSince f_l(D) is ample, it intersects with

the curve C which induces a contradiction.

From now on let us consider

{(1.4) a finite, Separablé and surjective morphism: f: G / P (= W)

X where RW i3 the branched locus on W with respect to the

morphism f and R. = f(RW)'
PN

Then it is well-known that - W is a Fano variety and any effective
divisor on W is nummerically effective. Hence by Proposition 1.3.1

X 1s a Fano variety,

Hereaftar the propsrty of the varietvy X 13 studied.
First let us treat the case that RK = 9. For the purpose we

state this case in more zZeneral form.

Proposition 1.5. Let Z and U be smooth projective wvarieties
and f: U —— 7Z an édtale finite morphism. Assume that X(U,OU) = 1.
Then, f 1s an isomcrphism.

Proof. The assumption says that f*T = T

Z [

Thus, Hirzebruch Atiyah-Singer Riemann-Roch theorem implies that

deg £ X x(7Z, OZ) = x(U,OC) = 1. Hence f is a iscmorphism.



g.e.d.

Corollary 1.5.1. Any smooth projective Fano variety Z defined
over the complex number field is algebraically simply connected.

Proof., Let f: U —— Z be a finite etale morphism from a

algebraic scheme. Then we see that U is a smooth projective variety

Since f*KZ = KU, U 1s a Fano varilety. Hence by virtue of

Kodaira's vanishing Theorem, we get Hi(Z,Uz) =0 for i < i < dim Z

-1.  Thus, Proposition 1.5 asserts that f is an isomorphism.
g.e.d.

Now let us recall a characterization of of a uniruled variety.

Proposition 1.6. Let M be a smooth projective variety. Then,
the following two conditions are equivalent to each other:
(1) M is separably uniruled namely, there is a separable
surjective rational map from some projective space to M.
(2) there 1s a rational curve C in M such that for the

. . . = * ; . .
normalisation ¢ :C — C, ¢ Tv’C is generated by its global sections.

For the proof, for example, see Lemma 1.2 in [S].

Proposition 1.7. Under the notation and the condition in 1.4,

let Z be an integral curve on X. Assume Z is not in RX' Then
- * .

for the normarization g: 2 — Z, g TX is generically generated by

its global sections. Particularly assume that 7Z is a rational curve.

*
Then g T is GS.

X

Proof. Let f—l(Z) = Zl U .. U Zr be the irreducible



decomposition by the finiteness of . Tix Z and take the

1
normalizaticn h:fl‘——ﬁ Zl' Then there is a natural morphism
T Zl —— Z. . Now the morphism f induces the homomorphism:
ok
T —_— 7T ‘hich i g rica T 1ve . i t
TG /P T Ty which is generically surjective on ZL Since he

tangent bundle of homogeneous space 1s generated by its z2lobal

sections, so 1is h*TG / p Thus we get the former. The latter is
trivial.
g.e.d.

Combining Precposition 1.6 and Proposition 1.7, we get

Corollary 1.7.1. The variety X in 1.4 i1s separably uniruled,
{1.8) Thus 1let S be .a set: {a rational curve C in X| C # RX}
and ¢ = min {(C. —KX}I C € S}. Now take a curve ¢ in $ with ¢ =
C. -KX and the normalisation of C: ¢: C — C. Then by
Propesition 1.7, @*TX is  GS.

Let H be the irreducible component of tre Hilbert scheme

Hom(Pl,X) containing the point [¢]. {(Note the Hl(Pl, @*TX) = 0,
therefore Hom(Pl,X) is smooth at [¢])
Then we have an important

Lemma 1.8. Let H and RX be as above. Then, for =ach
element v in 'H with v(Pl) ¢ RX’ v Pl —_— V{Pl) is birational.

Proof. Assume that there is an element v in H such that v:
Pl —_— V(Pl) is nct birational. Then the morphism v factors to a
finite morfhism h:'Pl —_— Pl {deg h = 2) and a birational
morphism K Pl——ﬁ X, Then
deg V*T- = deg h X deg V*T- > deg V*T" = - V.(Pl).K;

= X = = 717K = 17X 1 X



This contradicts the minimality of c.

q.e.d
(1.9) Now let P be a smooth point of the image w(Pl) (= C)
(1. B8) and let : o —— P{ € X) a map with a point o in Pl.
Then, 1t is known that Hom(P1 y X 1) is a closed subscheme in
Hom(P1 ,.X) by Proposition 1 in {Mo].
Hence, letting HP = {veH | vio) = P}, we must remark that He =
H n Hom (Pl, X50) as a set.

Now we have
(1.9.1) Remark. 1) Let v be an element in H with V(Pl) ¢ Ry .

*
Then, v TK is GS and hence H 1is smooth at ([v] because of the

*
fact Hl(Pl,V T

X X0 1(—l)_) = 0 by Proposition 1.7.
B P

Hence 1f P is not in R, then Hp 1s smooth. In this case HP

may consist of finitely manv components.

Hereafter till the end of this paper, we use the notations ¢,H,P

and HP just above very often.

Now we shall state a sufficient condition for a rational
curve in a projective variety to defcorm to a union of rational curves
(which mav not be distinct) which is implicitely shown
in Theorem 4 in [Mo].
{1.10) Proposition {(Thecrem 4 in [Mo]) Let M be a non-singular
projective varlety, U a variety and g: P1 XU —— M a morbhism

satisfying the following properties:

1) for each point u in U, g(P ,u) {= Cu) is a curve in M and for



2
H
]

each pair (ul,uﬁ) in U XU (ul = U,

°) dim (Pl X Ulz dim U (= 2.

Lo
m
ct
S

}) for each point u in U, there iz a point m in M s3uch th

rasses throusgsh a2 poinTt m and is smcoth at m,.

Then deforms to 2 c¢cvecle which 1s a sum of rational curves
{which may not be distinct). - Precisely =peaking, there 1s an cpen
subs=t Z in g{P” X U){this is a constructible subs=t in M)

satisfying the following:
1} Z does not contain the point m.

2} for every point =z 1in Z, there exists a cycle ¢ as below to

3

which some suonfamily of {C |} derforms

u
I :
letting € = wu aiCi where . ig an irreducible component of C
- £
i=1
we have two cases:
) there are two componants Ci, C. of ¢ with m = <, anrd  z € Ci
2} there is a ccmponent . containing two polints m, =z witn

Procft. The properties 1) 2) say that for a general point 1n in
I . . . - . -
g{P” X U) there is a closed curve V(c U} so that everv curve a0 {u
U
V) passes through the point n. Thus the proof of Theorem 4 in [Mo]

implies the desired fact.

LaLd,

fin}
v

{1.11) Let M bhe a smeoth projective varietv and ¢ a rational
curve in M. Let p: C C be the ncermalisation of C. Assume
that ¢ Ty = C)ODl\aii with a; 2 a, 2 ...z a_ = 0. Morecver

. . A . . S~ o
let ¢ 0 — m be a map from a point o in T to a point m
{e C) in M where (¢ is smooth at the point m and let us

— 48—



. . . : : . 1 .
consider an irreducible component N of Hom{ P ,M;:) containing

X

the morphism #. For a point v in H, let =« T.,‘1 = C)O(az) with a¥
> A% A%
a, 2z ...z a;

Then Proposition 1.10 provides us with a

Proposition 1.12 Let the notation and condition be as in
.11, Assume that
there 1s an open subset NO in N enjoying three conditions 1)y 2)

3) or 1) 2) 37}

1) ¢ 1s contailned in NO
For every point v 1in NO,

\ 3 "
2) a_ =20

n

. v v
3) aq toa; =z €,

’ v 5 N _ ~
37 a; =z 3 and a, = 0.

) . . . : Vv
{note that for everv point v 1in N , a; = 2.

Finally suppose that the characteristic of the base field 1s zero.

Then C deforms to a cycle which is a sum of rational curves.
Proof. Set as r 4+ 1 min {ila; = 0 for any v € NO}.
By the semi-continuity of coherent sheaf, there is an open subset N’
. . A vV _
h > : = - - N ?
of NO such that a. > A 0 for any v € N7,
. 1 B} . . .
Let W { ¢« M x P7 x N'’) be the universal scheme of N’ with the

first projection p: W —— M and the third projection q:W — N’,
Now take a general point P 1in M and let D be an component of
-1 . .
gp “{P) in N'.
Since the characteristic of the base field 1s zero, the closure of

pq—l(D) is of r dimension by virtue of Proposition 1.11 in [S}.

—49—



(1 *
N, dim HO(pT, T

On the other hand for such a point v € \ X 0(-1))
Tooov o 1 1

= ‘ai > r + 2 and Aut (P, o) (= {¢ € Aut P joilo) = o} is- of
i=1

2-dimension, Thuz we can construct a subscheme U in D and a

. I - . . . . .
morphism ¢g: P7 X U —— X enjoying the three properties 1in

Proposition 1.10. Hence we are done.

q.e.d.

Thus we get
Proposition 1.13. Let the notations R{, H and Hp be as in

1.4 1.8 and 1.9. Assume that the characteristic of the ground field

is zero. Then there is a Zariskili cpen subset HQ of H =<such that

for each point u 1in X - RX' and every point v in HO N Hu
V*TX is isomorphic to 0(2) C)O(l)@ r (D] U@ s,

Proof. The above corollary asserts that there is a point P
outsides the subset RX enjoyving the following condition:
there is a birational morphism ¢ :Pl -_— C ¢ X so that
P € C  and V*TX is isomorphic to 0(2) C)O(l)&)r(:)OQ =,

Let W { ¢ X x H X Pl) be the universal scheme of H with the
first projection p: W —— X |, the second projection q:W — H and
r:w Pl the third projecticn,

Then since q 1s proper and p_lRK is a closed subset in Wy qp‘lRK
is a properly closed set in H. Now set A = {v € H] q—l(v) c
p_lﬁx}. Then we infer that A is closed in H. Letthﬁ F%:H - A, for
any . v in HO’ V*TX i1s GS.
Remark that the projection q:W — H 1is Pl—bundle, therefore

ES ® |
,flat and p QXIq*l(v} ~ v QX'



3 . .0, 1 * 0
Now let s be max{h (P ,v QK)l v € HO} and H = {v € HOi

hO(Pl,QK) = s}. Then we infer that HO is open in HO' Next doing
" )
the same procedure for the vector bundle p Q. @ r*0 l(l) on the
- P

Pl—bundle q_l(HO) _— HO , we complete the proof.

Finally we finish this section to state a proposition
which is implicitely shown in [Mo].

{(1.14) Let H be an irreducible component of the above H

P P’

Herefter we follow the notations written in §3 of [Mo].

Let G = {g & Aut Pl] g{o) = o}. Since the natural action of

on Homk(Pl,X; 1) induces the action o of G on the connected

component HP:
g : G X ﬁp —_ ﬁp , clg,v)x =v{g "x), g € G, ve V, xe Pl,
G also acts on ﬁp X Pl:
1

T: G X Hy £ P —— H, X P, <lg,v,x) = (o(g,v),gx).

Let Chode be the Chow variety parameterising l-dimensional

1

G

effective cyecles C of X with C. KY_ = d. Then by Lemma 1.8, we

= m.- 1 -1

have a morphism «: HP —— Chow X with v(P7). K =m {v € ﬁp}.

X

Then = Mori proved in [M o]

Proposition 1.14. {Lemma 9 [Mol])

1) o 1s free action. 2) (Y,[) is the geometric quotient of HP
by in the sense of [Mu]l where Y 1is the normalization of the

closure of F(Y) in Chow™X.



3.2 The property of the tangent bundle of an n-dimensional smooth

guadric hypersurface @ (n = 3).

In this section we study the property of the tangent bundle T

Q
of a non—singular quadric hypersurface in Pn+l (= P).
What we want to state here is
Theorem 2.1. 1) TQ is GS. For each line L in @, the
restriction TQ to L is isomorphic tec 0(2) C)O(l)® n-=2 @ 0.
2; Let € be an integral curve in Q. If TQIC ig not ample, then

C 1s a line in Q.

To show the above theorem, we make several reviews about

Grassmann variety and Flag variety (see [0SS])

n+1l

For an {n+l)-dimensicnal projective space P {= P}, let G be a
Grassmann variety parameterising lines in P and a flag variety
I {(x,y) e P X G| x € L. }  where L, is the line corresponding
to a point ¥ in G . Then we have canonical PpProjections
. n
p:F —P q: F — G where p 1is a P -bundle and q a
1
P -bundle.

Now the following is known.
Proposition 2.2. Foox P(QP(2)). The morphism ¢q 1is a morphism

induced naturally by the complete linear svstem of the tautolozical

line bundle of QP(Q)).(Of course, QP(E) is GS). Moreover the
restriction of the morphism q on each fiber of p (=~ p™y is an’

embedding.



Then we can show an important proposition which seems to be known.

Here for a vector bundle E on @, E(m) denotes EQ@ (OP(m)IQ).
Proposition 2.3. TQ ~ QQ(Z).
Proof. First a smooth quadric hypersurface @ can be described
as G .o / Pa in Pn+1 where G0 = {M € SL(n+2,k)| tMM = E } is the
orthogonal group and Pa is a maximal Parabolic subgroup of Gn+2'

Then V(TQ(—l) ) is isomorphic to Gn+2 X k7 modulo the following

relation:

iet R be the radical part of Pa and ¢ :Pa — GLin,k)

be the homomorphism where ¢ 1s trivial on R and the induced
homomorphism & vields the irreducible representation (Pa / R (=~

n

Gn) yk7) which is a cancnical injective homomorphism Gn — GL{n,k)

Then the relation {c,v) ~ (d,w) means that ¢ d—l € Pa and v =

@{p)w with some point p in Pa.

On the other hand V(QQ(l)) 1s isomorphic to
Gn+? X k" modulo the relation obtained by replacing the
homomorphism t@ -1 for the homomorphism ¢ defined as above.

Remark that the property of the orthogonal group gives rise to the

fact that t@ -1 = ¢ {(defined as above). Thus we complete our
proof.
qg.e.d
. . + .
Thus an embedding i: Q@ — p® 1 (= P} naturally induces an

important exact sequence:

o —_— ) 2
(2.4) 0 —— UQ an(a)l



Hence weée have a diagram:

G

where G(Q) denotes the set of lines in @  and F(®,1,0) denotes

the set {({x,v) € @ X G(g)| x € LV {= the line corresponding to a

point x)} | c : F'). Then, a cancnical projections p:
canonically

F(@,1,0) —— @ is a Qn_B (= (n-3)- dimensional smooth quadric

hypersurface) -bundle and the other canonical projecticn q:

F{Q,1,0)—— G(&) is a Pl—bundle.

Proof of Theorem 2.1.

The former of 1) is obkvious since Q is a
homogenous space. Next a line L of a smooth quadric surface G,
induces an exact sequence:

—_ T (= 2)) —— T — N

Thus we see T o 0 ® 0 ,(2)), Letting Q a smooth
Q2|L Pl

hyperplane section of Q, we get an exact sequence:

g .
N}

Hence, the induction on the dimension of & gives the latter of 1).

Now assume there is a curve (€ such that T is not ample.

Qfc

Then by the exact sequence 2.4,



QP(Z)IF is not ample. On the other
a sy (1), -1 o g

P(QP(_)) Ip (C) P(QP(2)‘C)
Note that if a linear system of an
point, its induced morphism is finit

the assumption 1s not ample

Talc

a section D (with respect to the p)

Thus the diagram s

S

is a point in G.

and therefore p(D) is a line in P

Let us consider an exact seguence

smooth guadric hypersurface Q which

5 h

L

(2.3) O TQ

F

F G

—~

where is a torsion free sheaf on

bundle on an irreducible hyperplane

possibly singular).

Remark 2.5.1 if dim Q@ = 4 or
then Pic R = Z.

Remark.2.6.1. ‘Assume G 1is GS.
F is GS.

Remark 2.6.2. Let b; @ —— p"
covering with the branched locus B.
section of @ and there is the follow

0 — T, —— b Ton 0,02)

Q P Q |

we have

hand,

(1).

ample line bundle has no base

e, Thus

and Proposition 2.2 give rise to

in P(QP(z))lC such that q(D)
how that D 1s scme fiber of g
( in Q).

q.e.d.

of coherent sheaves on the

is used in the final part in §3.
0

Q (dim Q@ = 3) and G 1s a line
section of @ (= R

dim @ = 3 and R 1s singular,
Then since H {q, TQ) = 0,

be a separable double

Then B 1is a smooth hyperplane

ing exact sequence:

B 0.



n

Remark 2.6.3. - Under the exact sequence 2.3 and G = ¢

! : - 0 . _
Ext (OQ(a)lR’ TQ) ~ H (Q,TQ) {a = 1)
~ k {a = 2)
= 0 {a = 3)
Proof. There is an exact sequence on Q:
0 — OQ(a—l) —_ OQ(a)———* UQ(a)‘R g,
which induces the long exact sequence of cohomclogies
— FO(Q T (-a+1)) Extl(O (a) T )———m'Hl(O T (-a)) —
T \ 3 Q a A Q IR’ Q s g Q a -
Hl(Q,TQ(—a+l))

On the other hand there are two exact seguences:

2 . _— — —_— 2 —_—
{2.6.1) 0 TA(0) TP(b)lQ OQ(b+_) 0,

Q
P

where @ 1s a smeoth quadric hypersurface in the projective space FP.

(2.6.9) 0 — T,{b-2) — TP(b) —_— Tp(b)lQ 0

If dim P = 4, iHl(P,TP(b)) = 0 for any integer b and 1 = 1,2 and
therefore Hl(Q,TP(b)IQ) = 0. Thus, weé get
O, . . 0 n 1 : N
H (QTTP(b)lQ) —H (Q,OQ(b+;)) —— H (Q,TQ(b)) O
Noting that Hl(Q,TQ(—l)) = 0 for 1 = 0,1, HO(Q,TQ(—Z)E = 0 and
dim Hl(Q,TQ(—Z)) = 1, we ¢et the conclusion.

Next we show a theorem which iz impertant for the proof of Main

Thecremn.
Theorem 2.7 Under the condition 2.5, let wus assume that
F 1is locally free and the line bundle G 1s ample.

Then there is a line L on Q where F is ample.

L

Proof. Assume that the conclusion is not true.

o

L7010 for each line L on @, F has a trivial line bundle as a

| L



direct summand. (see Remark 2.6.1)
Note that for every line L on Q, there is a unigue surjective

» 0 b

homomorphism tL: TQIL »

A

L 7 Theorem 2.1.1 and Ker tL

is an ample vector bundle.

Now we have a

Claim 2.7.2. For every line L on &, FIL has a unique trivial
line bundle as a direct summand. Letting fL :FIL —_— OL — 0 a
unigue surjective homomorphism, ker fL is an ample vector bundle

and there is the following diagram with an isomorphism g5, of OL:

RCTR A Tl
fo b
o =%
Proof. In case of L & R, the restriction of the exact sequence

2.5 to the line L vields a generically surjective homomorphism

- T F M R . , - . . - -
hIL’ TQIL — 5y Since TQIL has one trivial line bundle as a
direct summand by Theorem 2.1.1, F}L has one trivial line bundle as
a direct summand by assumptilon 2.7.1. Hence since Ker fL is
ample, fL hlL(Ker tL) = 0. Consequently h]L vields the isomorphism
St of OL as disired.

Next consider the case that L ¢ R.

Restricting the above exact s=2quence 2.5 on R, we get two exact

seguences:

(2.7.3) 0 H o

(2.7.4) 0 E ' F




where H 1is a linebundle . on R and E a vector bundle of rank n-1 on
R.
Note that EIL is GS and has at most one trivial line bundle as
a direct summand by Theorem 2.1.1. Since the extension of ample

vector bundle by an ample vector bundle 1is ample, E has one

| L
trivial line bundie as a direct summand by 2.6.1 and its quotient
‘bundle is ample,which yields the desired result.

G.e.d.

Hereafter we use the notations in the diagram 2.4.1.

Now there 1s a canonical exact sequences of vector bundle on

P{T
{ Q)
(2.7.5) 0 —— EKer u (= K.) ¥ L S
2l : i Pty q ’
where IQ is the tautological line bundle of TQ'
Now we have a natural homomorphism:
e = N —k v : -
(2.7.6) @ qup F —— p F ., Then claim 2.7.2 and the base change
thecorem say that-
- =k T
q,P F is a line bundle on G{&) and J in (2.7.8)
is an injective homomorphism as a vector bundie.
Here dualizing the sequence (2.7.6), we get
-k 7 —~% - -k ro
(2.7.7) 0 Ker w(= K, ) P F —— q (aup F )'(= Iz) — 0
on F(®,1,0).
(2.7.8). Note that fQ and IF are trivial on each fiber (=~ PL) of
q: F(Q,1,0) — G{Q) in the diazram (2.4}
and Kl and K2 are ample vector bundles on it.
Moreover restrict the exact sequenace 2.7.5 to F{(QR,1,0) and
-k — % —k
consider the homomorphism p {(h): p TQ —— p F induced by the



homomorphism h: TQ —— F. Now let us study the fecllowing diagram on

each fiber ¢ of q:

0 —— K L Bt SR — 0
1] P liqle Qle ’
—%
p (h)
. w’ - % W
0 — hzlﬂ P F]{ _ IFI{ — 0
where Kl and EQ are the restriction of two vector bundles
Kl and IQ on P(TQ) to F(Q,1,0) respectively.
. s . .. -
Then (2.7.8) implies that the composition u’ p {(h) w of
—k
homomorphisms 1= zero map. Consequently the homomorphism p (h)

vields the homomorphism Kl — K, and TQ —E—+ IF canconically.

Thus we see that k 1s an isomorphism by claim 2.7.2.

Now note that

0 F(@,1,0)) ~ 1.9 *u

where M 1is a line bundle on &.
The divisor F(Q,1,0) in P(TQ) vields an exact sequence:

— 0

0 — 0

)(— F(Q,1,0))

P(T Ip(ry) T O%(Q,1,0)

Q

Tensoring the tautolozgical line bundle I to the above exact

Q
sequence and talking the direct image Rlp;, we see that
TQ o p*IQ.
N ino o ~ <] 1 .
Moreover remarking that p*OF(Q,l,O) o OQ and taking the direct
image 5* of the isomorphism k: iQ o IF’
we infer that T, ~ F. This is absurd.

Y

Hence we could prove Theorem 2.7.

In case that R 1s singular and G = OQ(a)IR with a < 2, the

author do not know whether a non-trivial extension class F in the



exact sequence 2.5 is locally free or not.
Put we can show
Corollary 2.8. Under the condition 2.5, assume that R is

smooth and G = OQ(Q)IR. Then, there is a separable double covering
' *
h; Q —— P" with the branched locus R and F =~ h Tpn.

Proof. Remark 2.6.2 and 2.6.3 assert this corollary.

A460;



3.3. The proof of Main Theorem.

In this section we show Main Theorem. {dim X = 3)
{(3.1) Let f: @ — X be a finite, separable surjective morphism

from a smooth quadric hypersurface & to a smooth projective variety

X and RQ’ RX as in 1.4. Moreover 1let C be a rational curve

( & RX) in X which has the minimal degree with respect to - KX as
was stated in 1.8 (see Corcllary 1.7.1). We maintain th= notations
o, P, H, HP in 1.8 and 1.9.1 wunder the case of W = Q.

Now we have an important

Proposition 3.1. Let R H be as above. Then we have

‘.\—!
*

1) deg v TK is independent of a choice of a peint in H and the

value is n or n+l.

2) Let v be an element in H such that V(Pl) ¢ Ry

* X
If deg v TK = n + 1, v T is one of the following:

@) 0(2) ® o) tL

"

B) 0(3) @) T e 0.

2 +n-
v 0292001 oo,
If deg v TK =n , v TK is isomorphic to
51 0(2)@ 01 @ o
*
Proof. It is obvious that deg v TK is constant for any V.
*
Moreover Theorem 4 in [Mo] yields deg v TK < n + 1l.Next let us
consider 2). First assume that all the component’s of
-1 1

f (v(P7)) are lines. Then Theorem 2.1.1 and Proposition 1.2 apply.

1

In case that C 1is a component of f_l(v(P }) which is not a line,



Proposition 1.2 (2) vields the dezired fact.

*
Hereafter, when v TK is isomorphic to one (= =} of o,8,y and & in
Proposition 3.1, v 1s said to of = -type.

Iin the proof of Proposition 2.1, the following is shown

Corollary 2.2. Llet v be an element of H "with V(Pl) q R--
* ' i
Assume that <+ T 1s one of_the three tyvples : B,y and §. Then
fnl(v(Pl)) is a union of lines in Q.
{3.3) Let +v be as in Corollary 3.2 and Lv a line in @ with
f(Lv) = -v(Pl). We give a sufficient condition for flL L — V(Pl)

to be birational.

Proposition 3.4. Under the notations 3.1 and 3,3, azsume that
there is a point P (€ Ry} and a subset H’ in Hp consisting of
an infinite G-orbit where each element v in H’ is ¢f B , ¥ or 3
type and G (= {g € Aut Pllg(o) = o} in (1.11)) acts canonically on
HP'

Then for every line L on Q with f(L} # RK’ the restricticon
map f]L:~L — f(L) is birational.’ Moreover the intersection

* .
number L. f KK is independent of a choice of a line L on @ and
the value is -n or -n-1.

Proof. First we show
Claim. Assume that there is an element v in H’ and an
irreducible component LO of f—l(v(LO)) (by corollary 3.2) so that
LO iz a line and fIL LO —_— f(LO) is birational. Then

0



for every line L with f(L) ¢ RK flL L — f{L) is birational.
%k
Proof. For every line L in Q, {-f KK' L) =
(deg flL)(f(L).—KX)

virtue of Propocsition 3.1. Hence

and if f(L) ¢ Ry , f(L). -Ex =mn or n + 1 by
*
by the assumption we see that -f KK . LO = n or n + 1
and therefore for every line L in Q with f(L) ¢ RK
« .
-f KK . L = nor n + 1 by means of Proposition 3.1 again.

This give us the desired result.

Now let us return the proof of our propostion.

Let f_l(P) = {ql,...,qr} and S = {LS] there is v in Hé
where LS is a component of f—l(v(P )) (corollary 3.2). Noting that

S is an infinite set and a line in @ is determined by two points, we
see that a general line I in S contains only one point a; in
£~ hp). si ¢ P
. ince p %
f is umramified at a5 which implies that the
restricted morphism: fi of f to such a line L is birational.

The latter is proved in Claim.

g.e.d.

Remark 3.4.1. For a point gq 1in @, let C{g) be a set:

{a line L in Q| q € L}. Then if n = dim Q = 3, C(g) is an (n-2)

% . -
dimensional smooth quadric hypersurface in P(TQ q b~ p" 1).
2
Corollary 3.4.2. Let the notations and the assumptibn be as in
Proposition 3.4. Then there are an irreducible component HP 0 in
’
H and 1its divisor C 1s canonically induced by

P P



f{C({g)) with some point P (= f(qg)}.

Proof. Proposition 3.4 says that there is an element v 1in the
irreducible component HP,O in’ HP , a4 line L on Q and a point g
on L such that f£{(L) = V(Pl)j f(q)é P and flL is birational.
Since HP is an {(n + 1l)-dimensionail smocoth variety, C(q) induces the
closed subscheme in HP by Propoesition 3.4. Hence our corollary
foliows from the fact that’dim CP = n by Remark 3.4.1 and that £

is a finite morphism.

q.e.d

Hence we have

Theorem 3.0. Let X be a smooth projective variety and
f:Q —— X a separable surjective morphism. Assume that there is a
point v in H (3.1) such that deg v*TX = n. Then f is an
isomorphism.

Proof. By Proposition 3.1.2, the assumptiocon in Proposition 3.4
is satisfied, namely f*KX . L = -n for any line L on &. Hence
from the equality: KQ = f*KK + RQ, it follows that RQ L =0, ancd
therefore, RQ is empty because Pic @ =~ Z. Thus f is umramified,
and therefore etale. Proposition 1.5 asserts this theorem.

g.e.d.

In the sequel we assume thét
{3.6) deg V*TX = n+l. {(Proposition 3.1)

Now let H0 = {v € H | v (Pl) ¢ RX}' Then we see easily that
Hy is an open subset in H. Moreover let H(=) ={ve HOI v is of



i-type} for = = o,6,v.

Now letting # ( ¢ H x X x Pl) the universal scheme corresponding
to the Hilbert scheme H where p: # —— H 1is the first projection
qg:#¥ —— X the second projection and r:# — P1 the third
projection. Then we note that q*TX Ip_l(v) = V*TX for each v

in H.

Hence we have

Proposition 3.7. Under the above notations, H{(a)is an open
subset 1n HO and H(y) is an open subset in HO - H{e).
Proof. Since p:# —H 1is flat, we get the former by the
semi~-continuity of the coherent sheaf. Similarly by considering the
coherent sheaf: q*TX 0] r*O(—B) we get the latter.
g.e.d
(3.8 Hence, first we consider the following case:

there is a point P outsides the branched locus R{ and an

irreducible component HP 0 in HP such that each point <+ 1in
b
HP 0 is o—-type and the imacge V(Pl) of Pl via some element v 1in
b
HP 0 is smooth at the point P.
H
In this case X is a Fano variety by Proposition 1.3. Thus the

proof of Hartshorne’s conjecture in §.3 [Mo] shows that X 1is a

projective space.



Next Corcllary 3.4.2 and Proposition 3.7 states that the
case below does not occur
(3.9) There is a point u in X - RX such that every element v in
some component of the smooth proj§ctivé scheme Hu((E) of 1.9.1) 1s

of B8 or y-tyvpe.

Therefore the following case 1is left to us:
(3.10) For every point u in X - R_, every component of Hu

contains an element of x-type and an element of 8 or y-type.
Hereafter until the end of this paper we treat with this case

which does not occur.

For the purpose we make several preliminaries.

{3.11) Let a point P and an irreducible compcnent HP o be ac
. ’.
) ES
in 3.10 and let us define a morphism % : Hp ¢ — V(TK o )
. ) -xy I
induced by the canonical morphism : H X Pl — X
H : v — dv { Q_) € V(T *)
p,0 2 *,0' 4t XL E
where t is a local parameter of Pl at the fixed point o.
First each element v in HP g N H{x) yvields the umramified
b
morphism v: Pl — X. Next, an element v inv HP n " H{c ) is

induced by the imacge of some line in Q and

f~l

f: Q@ —m X is etale at the points at {(P).

Hence we see that ® i1is defined as a morphism ana &(H

% ,
V(TK p ) - {0}. Thus we Zet morphism

p,0) ©

H — P(Tv » ) (= Pn—l) which 1s G-invariant with G = {g € Aut
P,0 X,P

Pl jg(o) = 0} (see 1.14), which induces a canonical

surjective morphism : Y —— Pn_1 where Y 13 the geometric



quotien

We study a property of the morphism 8.

For an element- v 1in HP 0 set the closed subset w’l(m(v))
as F(v). Then we have
Proposition 3.12. For an element v 1in H

P,0’

let w be an element in F(v).

1) if w is of w-type. Then F(v) 1is smooth at the point w arnd it
is of one-dimension at w.

2) if w is of £ or y tvpe, then F(v) is of one-dimensional at
the point w.

Consequently the morphism & is equi-dimensional and hence

flat.
Proof. 1) is proved in [Mo].

Let us consider (2). Assume that dim w F(v) > 1. Then by 1) there
is a component V ( » w) of F(V) such that every element of V is of

B or vy type, which gives the infinite set of rational curves

1

{(v(F7)]v € V} by the fact that r : H — Y 1is

P,0
equl~one-dimensional by Proposition 1.14,
Moreover setting f—l(P) = {ql,...,qr}

we can find a point qi and an infinite set of lines in @

{line L in Q| L is an irreducible component of f_l(V(Pl}) for
some point v in V and passes through the point qi} by Corollary’
3.2.

Now we remark

(#.) for each 1 (1 = i < r), there is a natural



isomorphism: {3} df*’qi: TQ, a, o TX,P and C({qg) 1in Remark
J.4.1 is canconically contained in P(TX,P*) as a smooth quadric
hypersurface.
Therefore we zet a contradicticn, which yields (2).

q.e.d

Now let us consider the property of the morphism
Xk

g6: Y — P(TX,P)'

Corollary 3.13. Under the condition and the notationslin 3.11,
* .
the morphism 6: ¥ — P(TK p) 1s a finite surjective morrhism.
. -> 3

Moreover [ {H Nn (H(g)u H{y)) {= 3} in Y is of dimension < n-2

P’0
and 6 is etale at each point in Y - J.

Proof. The first part 1s obvious by the above proposition 3.11.
Hence since f 1s finite and surjective, the second is obtained by
# 1n the proof of Propdsition 3.12. The last part is proved in [Mol].

q.e.d.

{3.14) Now we divide the case 3.10 1into two cases:

(I) There 1is a point P (# R} such that

P )

the closed subset (H{(£) u H{y)) n HP 5 is of
3y A
codimension = 2 1in HP 0" (We have an argument till 3.18)
b
(I1) For every point P ’? RK) and  every component HP . of
< ydJ
H (H{g)u H{y))n HP’j is of codim 1 in H ( This case is

P,J°

argued from 3.19)

We get contradictions to each case in 3.18 and 3.30.

Moreover we have



Corollarsy 3.15. Assume that the closed subset
R . . . o . _
{H(g) v H(y)) n HP,O is of codimension = 2 in HP,O' ({see
*
Proposition 3.7). Then the morphism 6: ¥ —— P(TK P) is an
Xy
iscmorphism.

Proof. By Corollary 3.13 the branched part R is empty by the

0
purity of the branched locus. Since Pn_1 is simply connected, we
get the desired fact.
g.e.d
{3.16) Now the following is studied before the claim 8.2. in [Mo].

Under the above notations, we have a G-invariant morphism:

F: HP,O X P:L — Y X X, Flv,x) = (I(v),v(x)), v € HP,O’ X € Pl.
Let Z = Specy y X[(F*OHP,O < Pl)G]. Since Y = Pn_l and
e HP,O — Y 1is equidimensioanl, ' is flat and therefore
universally geometric quotient. Hence
Z 1s the geometric
quotient 'HP,O X Pl / G and is a Pl -bundle ¢ : Z — Y for
Zariski topology because of a section S of Z over Y , via the
morphism Hp,O — (v,P) € HP,O x Pl. Thus we can introduce a

X Pl (v,x) ——

proper morphism via the G-invariant morphism T: HP 0
. b]

vix) € X,

We study the branch locus of the morphism n: Z — X.

First the following is shown in [Mo].

Remark 3.17. n: Z —— X 1is etale at each point of

Z - S - n‘l((H(B) U Hiy)) n HP,O)'



At last we have come to the final staze of the case {(I) in 3.14

Now we assume

(3.18) the closed subset (H(f) u Hi{y)) n HP 0 is of
.. . o . .
codimension = 2 in HP,O'

Then by the above remark, we see that n is etale at each point of

Z - S. Moreover m{(S) = P. Thus, the arsument after 8.2 in [Mo]
says that n*l(Z - S) is finite and etale over X - {P} and hence
n: Z - 5 —— X - {P} is an isomorphism and consequently -
P, Therefore we infer that TX is an ample vector bundle,

which induces a contradiction to the condition 1.

Next, we studyv case II in 3.14.

{3.19) For every point P | ¢ Ri) and evary component HP 3 of
- 3
HP’ (H(B) v Hiy))In HP’j is of <codim 1 in HP,]
By Proposition 3.4 and the equaliti: KQ = foK + RQ , W& see
that RQ. L =1 for anvy line L c¢n 9. Thus we have an important
Proposition 3.20. The branched locus RQ is a hyperplane

section of @, namely, it i1z a smocth one or a cone with an isolated

singularity.



Moreover we have

Proposition 3.21. Assume the condition 3.19. Then
for everv line L on @, deg f T. = n + 1 and
for every line L (4 RQ) on Q,
‘the restrictilion of f*TX on the line L is of 8 or Y —-type.

. . *
Moreover there 1s no line L on Q so that £ T is ample.

X|L

Proof. Proposition 3.4 gives rise to the former.

KlL is GS by

Proposition 1. 7. Hence, Proposition 1.2 and the former yield the

*
Next, for every line L (¢ RQ) on @, T

fact that
) N . - * . "
(#) for every line L (ﬁ RQ) on Q, f Tle is of «,8 or y-type.
Now set T as
. * .
{a line L c @} f TKIL is of B or vy type}.
Then we claim that
T 1is a dense subset in the set {L < @| f(L) ¢ RK}
Proof. For each point P in X -~ RK’ we can take a point g 1in

R with {q) = P and a diviscor Cp in HP ; induced by the scmheme

C{q) (Remark 3.4.1} Dby the assumption 3.19 and Corocllary 3.4.2.

Then noting that C{q) is contained in T, we get the claim.
In view of the above (), the type « in the set T is an open
condition from Proposition 3.7 . Thus the claim yvield the desired
fact.
g.e.d
In the next place, we state a



Remarl 3.22. Let V be a hyperplane section in a smooth quadric

. + . .
hypersurface @ 1in p" 1 {n = 3). Then for each point P in the

regular part of V there i1s a line passing through the point P “and

not in V.

Hereafter till the end of this paper let usz study the exact

sequence of the coherent sheaf on Q:

%
(3.23) 0 — TQ — f TK —— M { the quotient sheaf) —— 0

induced by the morphism f: @ — X.

Note that the support of the coherent sheaf M 1s R

o
Moreover we have
Proposition 3.23. M X kix) ~ ki{x) for every smooth polint x in
RQ . Conseguently M 1s a line bundle on the smooth part of RQ.
Proof. Restricting the exact sequence 3.23 to a line L c RQ’ we
have the sequence: TQ f T —_ —_— 0

N
L XL T
*
Here f TK[L is of g or y-type. Since the homomorphism

jL is a generical isomorphism, we have the desired fact by Remark

3.22.

As the matter of fact, we can check that M is a line bundle on

RQ' For the purpcse we show

Proposition 3.21. Let U be an open subscheme (= An - {one
point = P}) and J: U ===5 Al a natural open immersion. Then, if
n >3, le*OU = 0. Thus, for an open immersion



k: Qn ~ {one point} (= V) —— Qn,(n > 3) , RIKXOV = 0,

Proof. Since le*OU is a quasi-coherent. sheaf induced by the

module Hl(U,OU), it suffices to show that Hl(U, UU) = 0.

By the theory of the local cohomology, we get the following exact

sequence:
— Hpa™,0) —— 1 (a",0) (= 0)—— H'(U,0,)
2. .n 2,.n .. R n . .
—_— HP(A ,0) (=~ HP(P ,0) by the exision where A is contained

naturally in Prl }

Let I be the sheaf of ideal defining the closed point P and

Xm = OPn / ™" the closed subscheme of P". Then there is an exact
sequence:
0 — Im / Im+l — O 0+ — 0.
X X
m+1 m
2 2
Since ™ / Im+1 = Sm(I / I7) and the support of I / I~ is
n-2 m m+1 _ .n-1, . m m+1 - - .
P, H (Xm+l,I /I ) = H (Xm+1,I /I ) = 0, which implies
n-2 n-2, .. .
that H (X , 0« } o= H (X ,0. ) for each m. Thus we infer
m+1 X m X
m+1 m
n-2,%n n- - : “n .
that H™ ~(P ,0n ) = H ‘(Xl ,Ug ) = 0 where P is the
p" &1

formal completicn of ph along the point P, which yields the
desired fact by the formal duality.
As for the latter since Qn is covered with finitely many affine

spaces, the latter is cobtained.

The above result immediately gives riss to

Corollary 3.24.1. The coherent sheaf M in 3.23 is a line bundle
R_.
on Q

Proof. if RQ is smooth, we have nothing to prove. . Next



assume that R. has the isolated singularity v, Letting a canonical

Q
open immercion k: RQ - {v} (= r° )y — R@, consider the foll
exact sequence:
_ _*__ _ _* * ~ _* 1_ _*

Then Proposition 3.2%1 asserts this coroliary.

Thus in view of the above corollary, restricting the exact

sequence 3.23 to RQ’ we get an exact sequence:

j’ *
1 o : : -
{(3.24.2) TQ ‘RQ———ﬁ f TX IRQ — M 0.
Letting Ker j’ = L1 and Cokernel of j’ = E, we obtain
{3.24.2) 0 — L1 _— TQIR — E —— 0, and
R
¥
(3.24.3) 0 —— E — f TX IR - M 0
Q
Hence, by Remark 3.22 we have a
Proposition 3.25. Under the condition 3.19,

L1 in the sequence 3.24.2 1s an line bundle and

E a vector bundle of rank n-1 on RQ. Moreover M = Lj(D 0

owing



To show that M =~ OR‘(Z), we make preparations.

Proposition 3.26. Under the above notations, f_lf(RQ) = RQ'

Proof. First we have a

Claim. For a general curve C on RQ’ MIC is an ample line
bundle.

Proof. Assume that f_lf(RQ) = RQ UDU ... with divisors D,..
Take a general curve C in f(RO). Then there are two components Cl
and C, of fﬁl(C) where 'Cl c R° and Cy, (e D) is not a
line , C, ¢ Rg. Since Tgo  is ample by Theorem 2.1.1, so is
f*TX|C9 (by Proposition 1.1) and therefore so is TKIC' Thus
since f*Txlcl is ample, its guotient line bundle Mlcl is gmple.

To complete the proof of our proposition, we have only to show

*
that {$) there 1s a line L on @ so that f T..

<L is ample, (which
vields a contradiction to Proposition 3.21}
Thus we divide into two cases:
I}) dim @ =2 4 or dim @ = 3 and RQ is singular..
IT) dim @ = 3 and RQ is a smooth quadric surface (=~ P1 X Pl).
First consider the case I. Taking account of Remark 2.5.1, we
infer that M is ample. Hence, Theorem 2.7 asserts the fact ($1).
Next consider the case II. If M 1is ample, Theorem 2.7 vields S.

In the second place assume that

M is not ample. Then we see that M is GS. In fact since T

ql ¢,



. LK .
is GS, so is f T_ s hence so. is T.., .
X|C, Xlc

i

and M Thus by the

I&
claim we infer that M = 0(d,0) with a positive integer d
i

where p.: RQ _ P1 is the i-th projection and ¢(a,b) =

*
P P

@ Ny /g =

Then ~ we can easily check that TQIRQ o TRQ 0

0(2,0) ® 0(0,2) ® 0(1,1)

By virtue of Proposition 3.25, we have the following sequence:

() 0 —— L T E == 0,
1 QlRq h
(= 0{(d-1,-1)) (= 0(2,0) 0(0,2) @ 0(1,1))
N ,
(¥%) 0 ——F _—_ f TX IRQ —_— MlR (=0(d,0)) —— O
Now assume that the restriction homomorphism h
0(1,1100(2,0) E of h to the subbundle 0(1,1)80(2,0) is

generally surgective. Then the restriction 0(1) @ 0(2) -——*Ei

F
of 0(1,1)®0{(2,0) —— E to a general fiber F of p,
implies that E] F is ample. Thus by (%3). we see that
%
f T is ample which gives §.

XI|F
Next assume that h is not generally surjective, Thig give rise
to an exact secuence:
0 —— (0(d-1,-1) —— o{lL,1)®3(2,0) —— 0{4-d,2) ——0.
Immediately we have d = 1 or 2. Moreover
the above exact sequence gives a contradiction because of the
fact Hl(RQ, 0(a,b)) = 0 for a < 0 and b < 0. Therefore

the casé does not happen that:M is not ample.

Thus we complete our proof.

g.e.d.



. .
Since RQ = f hx + RQ’

the above proposition yvields

* . -
Corollary 3.26.1. f UX(RX) = OQ(Q) with RX = f(RQ).

Now before proving that flRO :Ro — RK is etale where R

1s the smooth part of R we consider

Q)
Proposition 3.27. RK "is smooth at each point of f(RO).
Moreover the inverse image of the smooth part of RK is R°.

Proof. Let A be a polint in RO and B = f{A) which yields a

canonical lccal homomorphism f : OX,B E— UQ,A' Let S, be an
element in OQ A defining the divisor R (around the point A). Then,
Ly £
by Proposition 3.23, we can
take a regular parameter (yl,...,yn) at the point B such that
_ _ ' ' 2 )
n-elements f}l,...,fyn_l,xn generate m, / my (mA the maxlmal
ideal of OQ A)’ and therefore they are regular parameter of OQ Ar
3 < &
Now let =z = z(yl,...,yn) be the local equation of f(RO) in X
%
around the point B. Then from the fact that KQ = f KY + RQ. it
IS
follows that p,n = a X with a unit a in @ .
o n ‘ Q,A
- )
Moreover we have (%) f z = b x_~ in O with a unit b. To study

n o, A

the regularity of fR® at the point B, we differenciate # partially

by X Then we get

v

N . . 9z 3z ayi oz 6'yn azn
the left-hand side of s = Z 3%, 5% 3y 3% = a N, Iy and
“n i Y1 ®™n n “*n “n
the right-hand side is = g? e 2 + 2b x
X, n n
EJZn db ‘ i
Thus we have - = { s X, + 2b) / a ,which 1s a unit at the
“Yn n ’
point B. This 1s the desired fact. The latter is trivial,
q.e.d



At last we have come to the final stage.

Letting f the restriction map of f to R

=Y

Proposition 3.28. Under the abeve notations,

we have f

we have

=

ORY
Op - Consequently F : R — RE is etale.
9 B
*
Proof. The former is trivial by the equality: K. = f K. + 0, |
Q X RQ
and Corollary 3.26.1, which gives rise to the latter.
qg.e.d
Now letting j:RQ — Q the closed embedding, the morphism
jf: R° —— X is umramified. Thus since we have a canonical exaét
sequence: 0 —— TRC _— TQ]RC — N RO/ Q {= URC(I)) _—0,
; - _ - o n+1
with Rv(l) = Opn+l(l)|RV (RY c RQ c P ),
the exact sequences 3.24.1 , 3.24.2 give rise to

Proposition 3.29. EIRO = TRC and Ll = ORQ(l).
~ 0 {2)
Rq
Proof. The former is obvious. The latter is

Proposition 3.23.

Thus the exact sequence 3.28 gives an i1mportant

*
— £ T

{3.30) 0 T — 0, (2)

Q

— 0

QR X

Theorem 2.7 asserts that there 1s a line L such that £ T

Consedquently

obtained by

g.e.d.

XL

exact seguence



is ample,

Hence

which contradicts the fact of Corolliary

we can show Main Theorem.
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Logarithmic Transformations on Eljliptic Fiber Spaces. II.

- efliptic bundle case -

By Yoshio Fujimoto

§ 0, Introduction,

In [11]1, Kodaira introduced the notion of logarithmic transformation
and showed thatrany elliptic surface possessing multiple singular
fibers can be reduced to an elliptic surface free from multiple
fibers by means of logarithmic transformations.

Moreover he showed that a non - Kahler elliptic surface and a Kahler
one can be phanged into each other via logarithmic transformations.
Therefore, it is natural to ask whether a similar surjery exists

on an elliptic fiber space. Ueno [131 [14] and the author [51[6]
considered generalized logarithmic transforﬁations along a non -

singular divisor and constructed strange degenerations of surfaces.

In this paper, we shall study " gereralized logarithmic
transformations on an elliptic bundle .
Here, by an elliptic bundle f : Y —— X, we mean that Y is a
principal fiber bundle over a complex manifold X ( not necessarily
compact) whose typical fiber and structure groups are non - singular
elliptic curves. For an elliptic bundle f : ¥ — X over X,
we shall define generalized logarithmic transformations along an

arbitrary Cartier divisor D on X, which is not necessarily assumed



to be reduced, irreduciblie or effective.

Such an attempt was already done by Calabi and Eckmann [2],
when they constructed complex structures on the product of two
spheres of any odd dimensions. It is an-elliptic bundle over the
products of two complex projective spaces and cannot admit as an
unrémified covering a holomorpic C* - bundle, while the corresponding
result holds for elliptic surfaces. The main purpoese of this paper
is to prove the counterpart of Kodaira's theorem for elliptic bundles
and give explanations for these facts.

We state our main theorem.

Theorem (A.) ‘Let f : Y ——> X be an elliptic bundle over a

projective manifold X, which satisfies either of the following
conditions.
(1> Y is Kahler.

or (2) h2*°

(X) = 0.
Then Y can be obtained from the trivial elliptic bundle over X by a
succession of generalized logarithmic transformations in the sense of

definition(1.1.).

To preve the above theorem, we need to characterize elliptic
bundles which are Kahler. We show that an elliptic bundle
( X x E ) —— X over X (, where E.:= /G is a non - singular
elliptic curve and 7y € Hl( X, OCE)) Yis Kahler if and only if the
first Chern class c¢(y) € H2( X, G) of v is of finite order.
( See Proposition(2.1.) below. )

However, theorem(A) does not necessarily hold if we drap the



assumption that Y is Kahler, as was shown by Moriwaki. ( See 8§3.)
Furthermore, we can give the characterization of elliptic bundles
which are obtained fram the trivial bundle by performing generalized

logarithmic transformations. (See proposition(l1.9.).)

Finally, let us explain briefly the contents of our paper.
In § 1, we shall define generalized logarithmic transformations
on an elliptic bundle and we give a characterization of elliptic
bundlies which are obtained from the trivial bundle by performing
generalized logarithmic transformations.
Moreover, we shall give a necessary and sufficient condition
for an elliptic bundle to admit as an unramified covering a
holomorphic C*- bundle. In § 2, we shall give a criterion of
Kahlerity for an elliptic bundle and prove theorem(A). In §3, we
shall give an example of an elliptic bundle which cannot be obtained
from the trivial bundle by performing logarithmic transformations,
which was constructed by Moriwaki.

The author wishes to express his thanks to A.Moriwaki for useful

suggestions.

Notation and Convention.

By an elliptic fiber space g : V —— W, we mean that g is a
proper surjective morphism of a complex manifold V to a complex
manifold W, where each fiber is connected and the general fibers are

non - singular elliptic curves. By an elliptic bundle f‘: Y —X,



we mean that Y is a.principal fiber bundle over X whose typical fiber
and structure groups are non - singular elliptic curves.

For a compact complex manifold X, we use the following notation.
bi(X) : the i - th Betti - number of X.
K{(X) : the Kodaira dimension of X.
KX : the canonical bundle of X.
WP 9y = dimg HY (X, RF -

S|
a(X) = dimg H (X, 0y).

Pic(X) := HI(X, Oi) : the Picard group of X, which has the natural
structure of a commutative complex Lie group.
Let cy ¢ Hl(X, O;) _— HZ(X{ Z> be the first Chern class map.
PicO(X) t= Ker{(c,) : the identity component of Pic(X).

1

X is in the class € in the sense of Fujiki if X is a meromorphic
image of a compact Kahler manifold.

If D is a divisor on\X, we set
[P] : the line bundle on X determined by D.
cl([D]) : the first Chern class of the line bundle [D].
supp(D) : the support of D.

For a non - singular elliptic curve E, we represent E as a quotient
group : E = {/G, where G is a discontinuous subgroup of the additive
group € generated by T and 1, Im(t) > 0, and for any ¢ € , we denote
by [&1 the corresponding element of E = {/G.

GX(E) : the sheaf over X of germs of holomorphic functions

with values in E.

§ 1. Generalized Logarithmic Transformations on an Flliptic Bundle.




Let f : Y—— X be an elliptic bundle over a complex manifold X
( not necessarily compact ) whose typical fiber and structure group
is the elliptic curve E = / G, G := 72 & Zt, Im(t) > 0.
Then Y can be expressed in the form : Y = ( X X E )n for some n €
Hl(X, OCE)). ( Here we follow the notation of Kodaira[il]. ) And
let D be an arbitrary Cartier divisor on X and take o € G
arbitrarily. Choose a sufficiently fine open covering {Ui}i € I
of X such that s, = 0O 1is the local defining equation of D on Ui'
The transition function of [D] is expressed by a cocycle {fij}
(:= Si/sj) and n € Hl(X, O(E)) 1is expressed by a cocycle {nij} with
respect to the covering {Ui} of X.

Now, identify (z, [ni]) € Ui x E with (z, [nj]) € Uj X E

if and only if (0.1 =0[n, + " S log(f, ) + ;1

T on/m1 t]

By patching Ui X E 's in this way, we obtain a new elliptio bundle

Z over X. Outside the support of D, there exists an isomorphism

A Zly O suppom YIy \ supp(d)
v
Cz, In.1) > Cz, [0, - SN S log(s )]
/-1
In fact, an Ui N Uj we have
[n, - — % log(s ) 1 = [ n, - — %  jog(s.) + .l
21/~1 ] on/=1 J ]

And the elliptic bundle over each irreducible component of D is
determined by the restriction of the line bundle [D].

Hence Z can be obtained from Y by performing surjeries along D.



Definition <1.1.) We write 7 = LD(a)(Y) and call‘LD(a)

a generalized logarithmic transformation along D.

Remark(1.2.) In the above definition, D is not necessarily,
assumed to be reduced, irreducible or effective. However by changing
¢ € G suitably and performing successive logarithmic transformations,
Z can also be written in the form:

Z = L., (x,> L. (o,) -+ L. (o
D1 1 D2 2 Dk

is an irreducible, reduced and effective divisor on X.

k) (Y), where ai € G and each Di

Remark (1.3.) Let H be a non - singular analytic arc in X which

intersects with D transversaily. Then when restricted to the
elliptic surface over H, the above surjery just coincides with the
original logarithmic transformations defined by Kodaira [117].

Remark (1.4.) By using generalized logarithmic transformations,

Ueno[14] constructed non - Kahler degenerations of complex tori.
Other examples of strange degenerations of surfaces can be found in
Ueno[13] and Fujimoto[l5].

Remark(1.5.) Calabi and Eckmann [2] constructed a complex

2m+1 % S2n+1

structure M on S with m 2 1 and n 2 1, which is the

simplest example of simply connected, compact homogeneous non -
Kahler manifolds. It is an elliptic bundle over P™ x P" and can be

written in the form : M = Ly (-1)L, (-T) (P™ x P" x B),
1 2
H. = pf Opm(l), H, = p; Opn(l), where pl': P™ x PP —— P™ (resp.

P, : P® x P* —— P" ) is the projection to the first (resp. second)



In order teo prove theorem(A), we need the following proposition.

Proposition(l.6.) et f:Y=(XxE)I —— X be an

elliptic bundle over a projective manifold X with E =~ {/(1,T),
Im{(t) > 0 and n € Hl(X,O(E)). Assume that the first Chern class
c(n) € H(Y,6) of n is of finite order. Then Y can be obiained from
the trivial elliptic bundle over X by a succession of generalized

logarithmic transformations.

Proof. From the exact sequence 0 > G > OX —_— OX(E) —0,

we have the following exact sequence of cohomology:

1 P ¢

— ul(x,6) — H (X,0,) — Hl(X,OX(E)) — s HY(X,G) ——e -

n € HI(X,GX(E)) is expressed by a cocycle {nij} with respect to the

open covering {Ui} of X. And Y is obtained by identifying

i€l
(z,[§i]) € Ui X E and (2,[§j]) € Uj x E if and only if

[§i] = [ §j + nij(z)].

Step 1. We first consider the case where c(n) = 0.
Then there exists 7 = {ﬁij(z)} € Hl(X, @X) with p(n) = n.

Since the structure of Y is uniquely determined by the cohomeology

~

class of np € Hl(X,@(E)), we may assume that [nij(z)] = nij(z).

By identifying (z, §i) € U.1 x L with (z, §j> € Uj x

if and only if §i = §j + ﬁij(z), we obtain an affine bundle W

over X. 22 acts on W by

(k, &) : W > W,
) 1Y)

{z, §i) —_— s ( zZ, §i + kK + 8t )
and Y is isomorphic to the quotient space Y/ZZ

Now, we have the following exact sequence:



1 e

— H (X,Z) — Hl(X, @X) E— H1

(X, (9;’;) — s H3 X, D)

If we put L := e(n), we have L € Pico(X) and the transition
function of L can be expressed by a cocycle { exp( 2n/-1 ﬁij(z)) }
with respect to the covefing {Ui} of X.

Let L be the total space of the line bundle L and define an
automorphism g of E* := L N { zero - section } by

g ¢ LY —— ¥
U \V

(z, ni) — (z, pni)

where we put p = exp2n/-1 ) ¢ |pl ¢ 1 ) and lIU has local coordin
i

ates (z , ni). The group < g > acts on L* freely and properly

discontinuously, so the quotient space Z := l*/<g> is non - singular.
There is a natural morphism ® : 72 — X ,
W )

(z, ni) —_ 2

where by (z, n.), we denote the point of Z corresponding to a point
1

(z, ni) € L*. By this morphism, Z is an elliptic bundle over X and

~

we have an isomorphism A Y 4

\}) )
(z, [éi]) —_— (2, exp(2nJ~1§i))

Since X is projective, there exists a Cartier divisor D on X
with L = @X(D). Hence by the above isomorphism A and
definition(1.1.), we have Y =~ LD(l)(X X E), that is, Y can be
obtained from X X E by means of generalized logarithmic

transformations along D.

Step 7. Next, we consider the general case.

There is a natural isomorphism G ~ Z @& 7 and HZ(X,G) ~ HZ(X,Z) &



H2(X,Z). The first Chern class c(n) € H2(X,G) of n can be expressed

by a cocycle {Cijk}’ Cijk = pijk + t.qijk s pijk’ qijk € 7,

with respect to the covering {Ui} of X.

Then ¢' := {(p.., )} € H2(X,Z) and ¢'' = {q... ) € HZ(X,Z) are of finite
ijk ijik

order, since c{(n) € HZ(X,G) is of finite order.

Hence there exists Cartier divisors D D, on X with cl([Dll) = c',

1 72
cl([DOJ) = ¢''. By performing generalized logarithmic transformations
along D1 and D2, we obtain a new elliptic bundle
Y' := L. (-1)L. (-t)(Y) over X. If we put Y' = (X x ©)7 ,
Dl D2

n' € Hl(X, O(E)), we have c¢(n') = 0. Hence from step 1, Y' can also

be obtained from a trivial elliptic bundle by successive logarithmic

transformations. Since Y = LD (I)LD (t)(Y'), the same is clearly
1 2
true for the original Y. qg.e.d.
Remark(1.7.) The assumption that c(n) is of finite order means

that Y is Kahler. This will be shown in § 2.

Remark(1.8.) In case ¢(n) = @, the elliptic bundle f : ¥ — X

can be defined by locally constant transition functions.

" By the same argument as in the proof of proposotion(l.6.), we get the
following proposition.

Proposition(1.9.) Let f: Y = (X X E)" —— X be an elliptic

bundle over a projective manifold X with E =~ C/(1, ), Im(t) > 0 and
n € Hl(X, O(E)>. Then Y can be obtained from the trivial bundle over
X by generalized logarithmic transformations if and only if the

following condition is satisfied.



Condition(A). Via the natural isomorphism

A H2(X,G) o H2(X,Z) & H2
\Y v

c(p) — ( ¢', ¢'")

(X,Z2>, ¢', c'' € H2(X, Z) are both

algebraic cycles.

Corollary(1.10.) ILet f: Y —— X be an elliptic bundle over a

2,0

projective manifold X with h (X) = 0. Then Y can be obtained from

the trivial bundle over X by means of logarithmic transformations.

h2,0

Proof. Since (X) = 0, Hl(x,@§ ) —— H2(X, 1) is

surjective and the claim follows immediately from proposition(1.9.).

Example(1.11.) The following example is due to M.Kato [8]1, p.b5,

v zy) € p3 | z. = 2., = 03,

17 Z2° 0 1
. . 3 _ _ ._ b3
1P zq) € [ zy = 24 = 0) and put W := P7 N & N £ .

Fix a constant o € € with 0 < |al < 1 and define an automorphism g

example 2. Let £ = {(zo: z

ﬂm = {(20: 2

of W by : g (zO: 21: 22: O: 21: azz: aza).
Then the quotient space M 1= W /<g> is a compact complex manifold

of elags L. By a natural holomorphic map p : M —— Pl X Pl sending

23) — (z

(z_. 1 2,2 2,2 2.) to ((20: z

0 1 9 3 Y, (z, : z,)), M is an elliptic bundle

1 2 3

over Pl X Pl, where by (20: Z z 2.) , we denote the point of M

1° 2%2°

2, 2.0 2,) € W,

corresponding to a point (z 1 9 3

%
. 1 1 1 2.5l 1 .
Since H (P" x P, 0(E)) ~ H (P" x P, G) ~G ® G, M can be written

in the form : M= 1. (-1 L. (P x P x B), H. =~ p¥ 0 . (1), where
H H i i 1
1 2 P
P, : Pl X Pl —_— Pl is the projection to the i - th factor. It is
easy to see that an elliptic surface over the curve of type (1,1) on

Pl X Pl is trivial and contains many rational curves.



Proposition (1.12.) Let Y = LD (1> LD (T)(X X E) be an elliptic
1 2

bundle over a projective manifold X, where E ~ C/(1, T), Im(t) > 0

and D D, are Cartier divisors on X. Then Y is isomorphic to the

17 72
Z - quotient of some C* - bundle over X if and only if
there exists a Cartier divisor H on X with Cl([Dl]) = a-cl([H]),

¢, (ID,1) = B-c,(IHD) for some w, B € 7.

Proof. (necessily) Assume that Y is isomorphic to the Z -
quotient Y' of some C*— bundle on X. Then Y' can be written in the
form : Y' = LD(I)(X X E') , where E' ~ {/(1,t'), Im(t') > 0 and
D is a Cartier divisor on X. Take an open covering {Ui} of X such

that Yluiz U, x E, ¥ Isz U,x E and Y|Ui(resp. Y IUi

Y has

coordinates (z, [§i]) (resp. (z, [ni])). On Ui N Uj, we have

(1) [§ 1=1% +—— logf, ) + —=— loglg, ) ]
T on/-1 J 2m/=1 J
(2) tn. 1=1n, +— togth; > 1,

! J on/~1

where {fij} {(resp. {gij}’ {hij}) is the transition function of the

line bundle [D1] (resp. [D2], [D1). Since the bundle structures of Y

and Y' are uniquely determined by its cohomology class, we may assume
that the above isomorphism over X can be writiten as follows.

n. ' :
i at’' + b
e 1T = Srig sor some

ab

c d) € SL<(2,4).

(3) I §i] = [

From (2) and (3), we have [ &, 1 = [ & + == A 2 logth, )1,
1 on/=1 ]
since N = -¢cT + a. In view of (1) and the natural
ct' + d

isomorphism HZ(X, G) =~ H2(X, ) & HZ(X, 7)), we have

cl([Dll) = a‘Cl([H]), Cl([DZJ) = —C'Cl([H]), a,c € 1.



( sufficiency ) We chosse integers o', B', ¢, d and X such

that cat - B'd = 1, o = ko', B = k8' and introduce.a new fiber

coordinate §' = ——*—S———— on Ui x {{. Correspondingly we replace T
o' + B'T

by T ct *+ d and put G' =7 & 7t', E' =~ C/G'.

S8t o+ o
Then the formula (1) takes the form

(2) L& 1=10¢8;+n;, 1,

1]
—_— T
where [ ni. 1= I Ble + log(f, ) + 't + « log(g, ) 1,
. o2n/~1 1 21/~ 1 1
n'= (.3 € H (X, 6.

1]

Hence Y is isomorphic to the elliptic bundle { X X E')n’ and the

first Chern class c¢(n') € H2(X, G') of n' is as follows.

1 T
@' + 't Cl([Dl]) T T o+ B't

cin') cl([D2])

¢ + BT
a' + B't
k-cl([H]), k € 7.

Cl([H])

Therefore, by the proof of Proposition (1.6.), step 1, there exists a
Cartier divisor D on X such that Y =~ LH(k)LD(l)(X x E'), k € Z.

Hence if we put L = [ kH + D 1, Y is isomorphic to the Z - quotient

of the C*— bundle associated to L. qg.e.d.
Corollary (1.13.) Every elliptic bundle over a curve admits as its

unramified covering a holomorphic C*— bundle, while the correspondig
result does not hold for Calabi - Eckmann manifolds. (c.f.

Bemark(1.5.))

Proposition(1.14.) Let X be a complex manifold ( which are not




necessarily compact) and Xo Cc X be a Zariski open subset with

codim (X N XO) 2 3. Suppose that there exists an elliptic bundle

f7: ¥ —— X over X . Then there exists a relative compactication
f Y — X
Proof. From the exact sequence
0 > G > GX — @X(E) — 0,
we have the following commutative diagram.
1 1

—— H (X, 0,0 — H' (X, 0,(E) — H2(X,6) —— HZ(X,0

1 | | |

— e By o )— H'(x: 0, ° (E)) — H2 (X, G) —— Hz(X:@Xo)

X)

Since codim(X N\ Xo) 2 3, by the theorem of Siu - Trautmann, we have

an isomorphism Hl(X, GX) o Hl(XO, ®.°) and the restriction map

X
Xo) is injective. Hence from the above
diagram, the restriction map r : Hl(X, @X(E)) —_— Hl(Xo,OXO(E)) is

H% (X, 0 —— H2(x°, ©

surjective. If we put Y = (X° x E)Y , Yo € Hl(Xo, @X°(E)),

there exists 7 € HI(Y, 0 (E)) with r(¥) = 7'

Then X := ( X X E )Y ——— X 'is a relative compactification of
£ Y — X, g.e.d.
The above proposition is not necessarily true if codim(Y \ Y°) = 2.

The following example is due to K.Ueno.

Example (1.15.) Let X = €2 N 0 and U, = ((x,¥) € % | x % 03,

U, = {x,y) € c? | v # 0} be open coverings of X.

By patching (x,[&]1) € U0 x E and (y,[&'1) € U

1 X E if and only if

}J, we obtain an elliptic bundle Y over X.

A 1
[g'1 = [g + -



Since {—i;} e H (x, © =~ H'(X, 0(E)) and H'(C?, 0B = o,
the restriction map HI(CZ, C(E)) —— Hl(X, C(EY) is nof surjective.

It is not known whether it has a relative compactification or a

Kahler metric.

§ 2. A Criterion of Kahlerity for an elliptic bundle

and a proof of Main Theorem(A) .

In this section, we shall give a necessary and sufficient condition
for an elliptic bundle to be Kahler and prove main theorem(A).

The following theorem is fundamental.

Theorem (2.1.> (Fujiki [31, Proposition(4.3.), Lemma(4.4.))

Jet £f : X ——— Y be a fiber space of compact complex manifolds in
the class €. Let U cCc Y be a Zariski open subset over which f is
smooth and fU : XU ————— U be the restriction of f to XU.

If leU C 1is a constant system, then q(X) = q(¥Y) + q{(f), where q{f)
%

denotes the irregularity of the general fiber of f£.

Proposition(2.2.) Let £f ¢ ¥ := (X X E)n —— X be an elliptic
bundle over a projective manifold X with E =~ {/G, G ~ Z & Zt,
Im(t) > 0 and n € HL(X, 0(E)).

Then the following conditions are equivalent.
(1) Y is Kahler.
(2) Y is in the class €.

(35 bl(Y) = bl(X) + 2.



(4 The first Chern class c¢(n) € HZ(X, G) of n is of finite order m
in HZ(X, G).

Moreover, if q(X) = 0, (1) is also equivalent to the following

condition.

(b)Y Y is projective.

Proof. (1):::# (2). Obviaus.
(2) == (3). This follows immediately from theorem(2.1.).
(3) == (4). Assume the contrary.

Then we have o(cin)) # 0, where o : HQ(X,G) — H2(X,C) is the
natural homomorphism. Hence by the same method as in the proof of

[111, III, theorem(11.9.), we have bl(Y) £ b, (X) + 1.

1
This is a contradiction.
(4) == (1). We follow the idea of Miyaoka [12].

Since the Kahlerity is preserved under a finite, etale morphism,

it suffices to prove that (X X E)mn is Kahler. Replacing n by mn,

we may assume that c¢(n) = 0. Hence from the exact sequence
1 i 1 c
(%¥) H (X, G) — H X, @X) — H™ X, OX(E)) —_—
HZ (X, G) — H2(X,0,) ,
1
we have n € H (X, @X)/i*Hl(X, )
Since X is projective, we have
i*ulex, ) @ R =~ ulx, 0,0, where j* : nlex, 70 — ulex, 0,
’ Z
is the natural homomorphism. Moreover, from the natural isomorphism
Hl(X, G) = Hl(X, ) & HI(X, Z), it follows that
i*Hl(X, G) ® R =~ Hl(X, @X). Then from the sequence {kn}k - 1.9, ..

z

we can take a subsequence , which converges to nO

Mty = 1,2,---



with a finite order. Hence for a suitable integer m, an is a small

n
deformation of B O, which is projective.

This implies that B™ and hence B" are Kahler.

(1) == (5). Moreover, if q(X) = 0, then the homomorphism
c Hl(X, O0(E)) — HZ(X, G) is injective and (4) implies that
n € Hl(X, C(EY) is of finite order. Hence Y is projective.

q.e.d.

Remark(2.3.) In general, H2(X, G) has torsions, so the

homomorphism o : H2(X, G) — H2(X, ) is not necessarily injective.
Thé following corollary follows immediately from Proposition(2.2.).

Corollary(2.4.) Let £ ¢ Y

i
=
R

. )"‘LDk(ak)(X X E) — X

be an elliptic bundle over a projective manifold X, where

D, are Cartier divisors on X, (Which

ai = mi + nit € G, and Dl,"-, K
are not necessarily reduced, irreducible or effective.) Then Y is
. k K 2
Kahler if and only if (%) ¢, ([ 2 m.D.1) , ¢, ([ £Z n.D.1) € H (X, I
1 i=1 i7i 1 i=1 il

are of finite order.

Remark(2.5.) If g(X) > 0, (%) does not necessarily imply that Y is

projective. There exists a two dimensional complex torus of
algebraic dimension one. An algebraic reductibn gives it the
structure of an elliptic bundle over an elliptic curve, which can be
defined by locally constant iransition functions.

Corollary(2.6.) {(c.f. Katsura and Ueno [9], Appendix 1)

The elliptic surface f : S = L_ (m

P, 1° al)--- Lp (m,_, al)(C X E) — C

2 A

A
over a compact curve C is Kahler if and only if o, = 0.

Moreover if C = Pl, this implies that S is projective.



Proof. Let m be the least common multiple of mi's(l < i £ )
The multiplication map m : E — E induces a finite surjective

morphism ® : § —— Y, where Y = L_ (1,mx,)*--L_ (1,mex_)>(C %X E)
p1 1 pl X

is an elliptic bundle. Hence S is Kahler if and only if Y is Kahler.

A
Corollary(2.4.) implies that Y is Kahler if and only if ai = 0.
i=1
Hence the claim follows. g.e.d.
Proposition(2.7.) Let £f : Y —— X be an elliptic bundle over a

projective manifold X with dim(X) = 3. Assume that for any p -
dimensional submanifold Z on X (, where p 2 2 is a fixed positive
integer), the elliptic bundle YIZ —— Z over Z is Kahler.

Then Y is also Kahler.

Proof. There exists n € Hl(X, O(E)) with Y =~ (X X E)n, E ~ C/G,
G>~Z ® Zt, Im(t) > 0. Via the natural isomorphism

2

H2(X, G) ~ H' (X, Z) & H2(X, Z), the first Chern class c(n) € HZ(X, G)

(¢', ¢''), where ¢c', c'' € HZ(X, Z)y.

of n can be expressed as c(n)
Let V be a smooth hyperplane section of X. Then by Lefshetz's
hyperplane section theorem, the map HZ(X, Q) — HZ(V, Q) induced
by the inclusion £ : V = X is an isomorphism if dim(X) = 4 and
injective if dim(X) = 3. Continuing this process successively, we
find a non - singular surface S ¢ X such that the natural

homomorphism H2(X, Q) — H2(S, @) is injective. Since YIS is

Kahler, proposition(2.2.) implies that c'IS, c"IS € HZ(S, Z) are of
finite order. Hence c¢', c'' € H2(X, Z>) are of finite order.
Therefore, by proposition(2.2.), Y is Kahler, qg.e.d

Remark(2.8.) If we drop the assumption that p 2 2, the above




proposition does not necessarily hold. (See Remark(3.3.>.)

Proof of theorem(A). This follows immediately from proposition

(1.6.), carollary (1.10.) and proposition (2.2.).

Corollary (B.) Under the same assumptions as in theorem(A), there

exXists a Zariski open subset U of X such that the restriction Y|U

—lU over U is a trivial elliptic bundle.

Example(2.9.) Let £ : Y = (X X E)" —5 X be an elliptic bundle

over an n - dimensional projective manifold X. The first Chern class
c{n) € H2(X, G) can be expressed as c¢c(p) = {(¢', ¢'') € H2(X, ) @

H2(X, Z). Put NQ(X) = ({one - cycles on X}/ = ) ® ©) , where =

Z
denotes the numerically equivalehce class. Via the intersection
pairing ( . ) of one - cycles and Cartier divisors, NQ(X) is dual to

NS(X) ® @ , where NS(X) denotes the Neron - Severi group of X. Then
Z

via the cup - product < , > : H(X, Z) ® H*® = 2(x, 1) — Z, - ¢

(resp. - ¢'') is a linear functional on NQ(X) and can be identified

with an element D'( resp. D'') of NS(X) % @ . Namely,

(k%) < %, - c¢' >= (x, D' ) (resp. < X, - c¢c'' >= (x, D'* )) for
for all x € NQ(X). )

Choose a positive integer r such that D1 = rD’' and D2 = rD'' are

integral divisors and put W := LDil)LDér)( X X E )rn

Then by proposition (2.2.), the elliptic bundle WIC — C is kahler

for all non - singular curve C c X.



§ 3. Counterexamples.,

In this section, we shall construct an elliptic bundle f : Y — X
over a projective manifold X which cannot be obtained from the
trivial bundle over X by generalized logarithmic transformations.

We first need the following lemma.

Let E

1

C/7¢1, T», Im(t) # 0 be a non - singular elliptic curve and
put G := Z ® Ztr. There is the following exact sequence
—— H (X, 0E) S5 HPx, & 45 nix, 00—

Lemma(3.1.) For o, B € H2(X, 7Z), we have o + Bt € Im(c) if and

only if () @, g B(Z,O)E = 0, where a., ) (resp. 8 ., )
means the (2, 0) - component of o (resp. 8) under the Hodge
decomposition of H2(X, .
Proof. We have the following commutative diagram.
— nlx, 0m)) —5 B2 (X, @ P » 12 x, 0> ~n%?
l J /////W ¢
HZ(X, O = H2’O ® Hl’1 ® HO’2

where ¢ : H2(X, ) — H2(X, @X) is the projection to the (0, 2) -

component. Hence we have o + 8t € Im(c) = ker(P) if and only if
p( o0 + 81T) = a(0,2) + 8(0’2)r = 0., By taking complex conjugates, it
is also equivalent to a(2,0) B(2,O)r = 0. g.e.d.

The following example is due to A.Moriwaki.

Example(3.2.) (Moriwaki) Let X be a projective manifold which




enjoys the following conditions.

(1) hn%:°

(X) = 1.

(2) Let o be a holomorphic 2 - form on X. Then there exists an
automorphism g of X with g0 = te, t € C, t § R

( For example, put X = pr Ep, Epz /71, p), p = exp(2ni/3)) and

g : (x, y) — (pX, py). )

Next, choose a transcendental cycle B € H2(X, Z) arbitrarily and

2(X, Zy. Since the action of <g> on H2(X,‘Z) is

put o := g*B € H
compatible with the Hodge decomposition, we have
a(2,0) = tB(Z,O) . Put T := -t ¢ R and E ~ €/¢(1,Tt). Then by lemma
(3.1.), there exists n € H' (X, O(E)) with c(n) = a + Bt € H (X, G).
Put Y := ( X X E )n. From our construction, the first Chern class
c(n) € H2(X, G) does not satisfy condition(A) in proposition(1.9.).

Hence Y cannot be obtained from the trivial bundle over X by

generalized logarithmic transformations.

Remark(3.3.) By theorem(A), example (2.9.) and example (3.2.),

there exists a non - Kahler elliptic bundle f : Y —— X over a
projective manifold X such that YIC — C is Kahler for all non -

singular curve C c X.
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A note on an example of a compactification of €

Mikio Furushima

§0. Introduction. Let (X,Y) be a (projective)compactification
of EB with the second Betti number b2(X) = 1. Then Y is an
irreducible ample divisor on X and the canonical divisor is written

as KX = ~-rY (r> 0 , r e 2. In the case of r 2, the structure

of (X,Y) 1is completely determined (cf.[i],[l],[a],[f]). In the

case of r = 1, ¥ must be non-normal (cf.[3]). Moreoﬁer, in this
case, by Peternell-Schneider [?], X 1is a Fano 3-fold of first kind
of index one,genus 12 and Y 1is a non-normal hyperplane section

of X. In the paper [3], the author proved that such a compactifica-

tion (X,Y) really exists. In fact, X = Véz is a Fano 3-fold

constructed by Mukai-Umemura [7], and Y = is a non-normal

1
Hyo

hyperplane section of Véz whose singular locus is a line in VéZ'

Now, in this paper, we will study the double projection

1

of from the singular locus of H which is a line , and

1
V22

22.°
give a geometric structure of the compactification (Véz’Héz) of
EB (Theorem in. §2).
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§1. Mukai - Umemura's construction.

Let €fx,vy] be the polynomial ring of two complex variables

x and y. SL(2,C) operates on C[x,y] as follows:

cx%= ax + by

v9= cx + dy

(a .B)EESL(Z’Q)-

i

for a

Let us denote by Rn the vector space of the homogeneous

. n be
l=

n . .
polynomials of degree n.  Let f(x,y) = I ai(g)xu_lyl c R
0
a non—-zero homogeneous polynomial of degree n. We take

(a :....:an) as homogeneous coordinates on the projective space

P"  on which SL(2,C) operates. Let us denote by X(f)

ke

P(R )
n .

the closure SL(2,C).f of the SL(2,C)-orbit SL(2,€8).f of £ in

P(Rn). Then SL(2,Q) operates on X(f). Now, let us consider

the following two polynomials:

f6(x,y) = xy(xh—yh)

hlZ(X’Y) = xy(x10+llx5y5+y10).
We put

c == N ~ 6

|

v xh ) L p(R, ) = B2

L Vo2 127 G 127 =
Then,

Lemma 1(Lemma 3.3 im [T]). (1) V5 is a Fano threefold of

index 2, genus 21 and the hyperplane section of V5 C>E6 is

the positive generator of Pic V

I

5 Z.
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(2) Véz is a Fano threefold of index l,genus 12 and the

hyperplane section of Vézc) @12 is the positive gemnerator of

Pic V! x>~ Z.

22
The defining equations for V5 ’ Véz are the following
(p.505-p.506 in [7])
j aga, - 4ala3 + 3a2 =0
agads - 33134 + 2a233 =0
2 _
(VS) agag - 9aza4 + 8a3 = 0
ajag - 3aza5 + 2a334 =0
2
L a2, - 4a3a5 + 3a4 =0
(V) g 8 8( - 4 a + 3 y=0
22 A=0 (K%{p_ﬂ X pta-2 fA+1%p+3-2 B+2%p+2-277

Now, we put

® B 5
HS.- V5 ~ {a6—O}C>VP

11
[ -
Byg:= Vyyniag=01Gre

[oe]

Let us denote by Sing HS

22

of H? (resp. Héz). Then we have
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[+ 3 [e9)

Lemma 2. () ([=21) - V5 - HS' =z ¢ and Sing H5 =: s 1is a
line in V5 with the normal bundle 'NSIV = 0(-1) B®o(1).
- s
3
1] _ r =~ - 1 = . .
(Y13 . V22 H22 ' and Sing H22 : £ is a line

in Véz with the normal bundle NO[V' 2 0(-2) ®0(1). In particular,
122

there is no other line in Vé2 which intersects the line £

By a direct computation, we have

) .. P _ _ _ 12
Lemma 3. (1) Sing sz =: g = {ao = a; = ... =a,, = 0} & P77,
2
! ~
B 3
(3) Héz p\{alz # 0} = V(f)C} € (x,y,z), where
_ 4 3,3 3 2 2 b, 2
(*) f = bOx + (blyz + bzz YxT o+ (b3y + b4y z  + bsyz )x
4 3 3 6 5 2
(b6y z + b7y z )x + b8y + b9y z ,
_ 8.2 59,5
bO_— 275 ( b5 = 273
59,3 , _ 52,6
b1 = 27375 : b6 = 273789
- 6,4 _ 8.6
b2 = -2"3'5 b7 = =23
_ 8.3 B 6.3
b3 = -2"377 b8 = =375
_ bk _ 5.7
b4 = -273°127 b9 = 273
(4) Sing V(f) = {x =y = 0} = 2/\{a12 # 0} . Furthermore,
the multiplicity multh = 3, namely, Y is a unique element of
the linear system ‘OV' (1) QDI? ‘ » where I, 1is the ideal sheaf

22
of 9 in 0.'

Voo
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§2. Double projection.

We will study the double projection of Véz from the singular

locus & := Sing Héz which is a line in Véz. For siﬁplicity, we
.= ' .= i

put X: V22 and Y: sz

(I) Let G, ¢ X1 - X be the blowing up of X along the
line £ and put Ll:= 011(2). By Lemma 2-(2), we have L1 = FB
(Hirzebruch surface). Let Yl be the proper tranceform of Y in

%

Xl. By Lemma 3-(4), we have a linear equivalence Yl 3y GlH - 3Ll .

Let us consider the linear systems |H|:= lOX(l)C)Ifl and

%

[Hl[:= {OlH - ZLII Then we have

Lemma 4 (Lemma 5.4 in [<4]). (1) dimaHi:dimmWﬂ = 6 and

*
dlmmblH - 3L1] = dlmlell = 0 (namely, Yl is a unique member of

%*
the linear system |01H - 3Ll]

(2) (H}) = 2

(3) Yl A Ll Y 321 + 7f1 in L ,where &, , f is the negative

1

section and a fiber of Ll'

N :
Since KXl av —OlH + L1 and (Ll.ﬂl) = 1, we have (KXl.ll) = 0.

Thus, by the following exact sequence:

0 - N - N - N - 0
zl[Ll zllxl Lllxllzl
Sl Sl
0(-3) 0(a)edo(b) o(1) >
where a + b = Cl(N21|Xi) = -2, we have
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Lemma 5.

(a) 0(-1) ®o0(-1)

Mo lx, = | ) o) @0
(c) 0(-3) @ o(l)
Lemma 6. Bs H1 = 21 .
Proof. Since (Hl.ll) = -1 < 0, 21 € Bs Hl' By Lemma 2-(2),
there is no other line in X which intersects £ . Thus, by the

same argument as in the proof of Lemma 5.4-(ii) in [4&, we have the

claim.

Let us denote by ”22 a rational map defined by the linear
system H , which is called the double projection from £ . By

Lemma 4-(1), we have a diagram :

1.
Oll/ '.q)l
e 6
X oo P
"2g
where @l 1= @H is a rational map defined by the linear system
1 ‘ '
Hl

We will resolve the indeterminancy of the rational map

@1 : Xl ce D E6. For this, we need the following
Lemma 7. (1) Sing Y1 = 221_, namely, Sing Yl = %, as a set
and multz Yl = 2.
1
(2) Y, A Ly = AL+ A, + Ay, where A, v 20,4, R, + GE,

A3 n 3fl in L1

Proof. One can obtain easily the (local) defining equation

of Yl in Xl from (*) in Lemma 3-(3). Looking at this equation,

we have the assertion.

—108—



(I1) Let 0, X, > X1 be the blowing up of X, along

the negative section 21 of Ll and put L2:= 021(21). By Lemma 5,

we have the following three cases:

Y(a) El X El
L =
2 g
(),
(e) F,
Let Yz be the proper transform of Y1 in XZ' By Lemma 7-(1)
* - =gk -
we have Y2 y OZYl 2L2. We put H2 : OZHl L2 . Let 22 ,fz be
the non-positive section and a fiber of LZ' Since
. ot 1
-22 - f2 if L2 =P xXP
w? ~ .
2 —12 - Zf2 if L2 = WZ

1
=

!
(OS]
Fh
[N
+h
=
1
=

we have easily

Lemma 8.
. - 1 1
(a) 22 if L, = P X P
L 2 2
fanty o~ b) 28 2 ' =
(b) 2 5 + f2 if L2 = EZ
(c) 28, + 4€, if L, = F,

On the other hand, by a direct computation, we have

Lemma 9. (1) YZ,\ L2 = B1 + B2 ,where B1 o 222 , B2 N 2f2
in L2

(2) Sing YZ = 2%2 .

Corollary 10. Lz.; F2 , namely, NQ‘1 XI S O(—2)(@ o .

—109—



Lemma-11. _Bs|H2|v= L

Proof. Since(H2 22) = -1, ¢ f; Bs H2 . On the other hand,

since ‘Hzlf\Lz §?]22 + fZ] » we have the claim.

Since (KXZ-KZ) = 0 = (LZIRZ), by an exact sequence
0+ N - N > N > 0
2, 1L, 2, 1%, L2]X2|5L2
Sh Sil Sii
0(-2) = 0(a)@Po(b)—> 0 ,
where a + b = -2, we have
Lemma 12.
(a) o(-1) @ o(-1)
N =
2, 1%, (b)  0(-2) @ 0
(IT1I) Let Oy X3 - X2 be the blowing up of X2 along
the section 22‘ of L2 ‘and put L3 =Ggl(22). By Lemma 11, we
have the two cases:
(a) Pl x P
J
oo
(v) F,
Let Y3 be the proper transform of Y2 in X3; By Lemma 9-(2),
5 g% - c=g% -
we have Y3 iV GB(YZ) 2L3 . We put H3. 03H2 LB' Let 23, f3
be the non-positive section and a fiber of L3 Since
2 (a) —23 - f3 if L3 = Plx 'Pl
g o
(b) —23 - 2f3 if L3 = F2 ),
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Lemma 12.

Ty Ly = (

By a direct computation,

(a) 223 if L3

+ 2f

(b) 223 3

Lemma 13.(1) Y3 r\L3 = C1 + C2 , where
(2) Sing Y3 = 223 + 2f3
Corollary 14. L3 = F2 ,hamely, Nl [X
3773
Moreover, we have
Lemma 15. BS!H3I = 23 .
Lemma 16.
(a) o(-1) @o
N
) byl %y ((b) 0(-2) @o

The proof is similar to that of Lemma 11,

(1IV) Let X, > X

Ogf * %4 3
the section 13 of L3
proper transform of Y3 in X

let 24 R f4 be

wehave thes two cases:

By Lemma 13-(2), we have Y, ~n

2

(La) "

we have

and put L

4

the zero section ,

be the blowing
-1
and put H4

a fiber o
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1

= 0(-2) @o

(-1)

up of
3). Let
e= %
04H3
£ LA'
Since
if LA
if L4

22

X

one can easily have the following

3

Lemma 12.

3

Yy

By Lemma 16,

n
keS|

It



Lemma 17.

(a) 2% if L, = Wl X El
4 4
Yy by .
(b) 214 + 2f4 if L4 = Fz
On the other hand, by a direct computation, we have
Lemma 18.
Y4 p\L4 = D " 224 in L4.
Corollary 19. 1 1
L4 = P° X [P°, namely, N23}X3 = O(—l)<> 0(-1).

Moreover, we have

Lemma 20. (1) BS,H4[ = ¢ .

(2) #E) =5

(3) vy = Wny = @Eeniy =0 (5= 2,3) , and

(4)

5, where Lj

(Hi»LiA)) is the proper transform of Lj

in X

4
(4)”
(4) (H,-a,"")

(4), _ (4), _ (&)
5, (H40A3 ) =0 , (H4of1 > =1 , where Aj ,

f£4) are the proper transforms of Aj and a general
fiber f1 in X4
By Lemma 20-(1), we have the morphism &: X4 »> P6,Vdefined by
the linear system IH4] We put W := Q(XA)' By Lemma 20-(2), we

3

have deg W 5. By construction, W 1is a compactification of C

1

with bZ(W)
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Since N = 0(-1) + 0(-1), by Reid [§] , L can be
2.]X A
3173 »
blown down along 24, and then blowing downs can be done step-by-step.
Finally, we have a smooth projective threefold Wl with bZ(Wl) =2,
morphism @2: X4 > W, @1 : Wl +~ W , and a birational map
p: X1 - Wl which is called a flop such that
. -3 @
(i) ) @1 .,
(ii) X, - % Z W, - g where g,:= @_(L ,‘L(é)).
1 1 1 1 1 274 1
X,
®
2
P
oo
(D) OlJ, ;
Jd 1
6
X ——m—W—————— > WGP
iid - = - = ®
(i4id) Wl E1 W I' , where E1 p(Yl),F ﬁ(Y4)
= ®
-1(Y1).
Since —KX1 = Yl + 2Ll and p: X1 - 11 = Wl - 8y, Ve have
— = . = T, = )
le E1 + 2Fl , Wwhere F1 p(Ll). We remark that T kl(El)
We put Z = @l(Fl). By Lemma 20-(4), Z 1is swept out by
lines in W C>E6 and TGS Z , I'n g = {one point},where deg I'= 5
and ' ' is a smooth ratiomnal curve.

Let vy Dbe a conic in X which intersects the line ¢ . Then,

we have v (Y. Let Yy be the proper tramsform of vy din X

A ] N\ B PN , N B
We put Yy = o Yl)' Since (Kw£ yl) = —(E1~yl) - Z\Fl.yl) =1 - 2
= -1, by K.M.M.[5], @1: Wl + W is the contraction of an exremal
ray. Since the exceptional divisor E1 is contracted to a smooth
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curve, by Mori [6], W 1s smooth. Thus =-K_ = 2Z. Since

W
W - 2 = €3 by construction, Z 1is ample, namely, W 1is a Fano
threefold of first kind of index 2 , genus 21. Since Z 1s swept

out by lines on W, Z 1is non-normal. Therefore, we have

(W,2) = (V H_ ) (see §1) (cf.[2]). Thus we have

5° 75
; i : . v
Theorem. There is a birational map UPPE V22 )VS , called
the double projection from the line & , such that the restriction
. ¥ _ ' _ 02 ~ 3 s . : s
sz : sz sz ig'VS H5 ( z¢7 ) is isomorphic. The inverse

map p—1 s Vo~----57V is given by the linear system !0 (3)® Iz‘ .
2 5 22 V5 r
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Algebraic Surfaces of General Type with ¢ = 3p, — 6

KAzUHIRO KONNO
Mathematical Institute, Faculty of Science, Téhoku University, Sendai 980, Japan

Introduction.

Let S be a minimal algebraic surface of general type defined over the complex
number field C. Castelnuovo’s second inequality says that the canonical map ® 5 of
S can be birational onto its image only when ¢;(S)? > 3p,(S) — 7 (see, e.g. [11, II,
Lemma(1.1)]). Surfaces with ¢; = 3p,—7 have been studied by several authors (e.g. [8],
[2]). The purpose of the present article is to determine, to some extent, the structure
of minimal surfaces with ¢; = 3p, — 6. We remark that Horikawa ([11, I1I and IV])
studied, among others, those with (p,, ¢7) = (3, 3), (4, 6) in detail. So we restrict
ourselves to the case p, > 5.

In §1, we classify them into three types according to the nature of ®; which is
generically finite onto its image. Namely, a minimal surface of general type with
¢} = 3py — 6 is said to be of type I, type II or of type III, if deg®; = 1,2 or 3,
respectively. We also state a result on regular surfaces of type 1I similar to one in [2].
In §2, we study type III surfaces S and show py(.S) < 5, ¢(S) = 0. Those with p, = 3, 4
are known to exist (see, [11, III and IV]). We show that S with p, = 5 also exists.
It has a pencil |D| of nonhyperelliptic curves of genus 3 with one base point, and the
canonical map induces on D the projection from it to a line, if we identify D with a
plane quartic.

The rest of the article, §§3-9, is devoted to surfaces of type I. Please recall that
the canonical image of a type I surface with ¢ = 3p, — 7 is contained in a threefold
of A-genus 0 [2]. An analoguos phenomena can be observed also in the present case.
We show that the canonical image of a type I surface is contained in a threefold W of
A-genus < 1, which is, if p, > 6, cut out by all quadrics through the canonical image
(Theorem 3.1). Asin the case of ¢? = 3p, — 7, the proof is based on Castelnuovo’s idea:
We cut the canonical image twice by hyperplanes and count the number of quadrics
through the resulting set of points. The key is a more recent result of Harris-Eisenbud
[9] on the Hilbert functions of a special set of points in a projective space, which itself
1s a generalization of classical Castelnuovo’s Lemma. We remark that varieties of A-
genus < 1 are successfully classified by Fujita ([4], [5], [7]). This enables us to study
type I surfaces as divisors on “known” threefolds, and to clarify their structure. We
show, among others, every surface of type I has a pencil of nonhyperelliptic curves of
genus 3 if p;, > 12 (Theorem 6.2).

As mentioned above, surfaces of type I are further classified into two types by the
A-genus of the threefold W. We say that S is of type I-0 or type I-1, according to
whether W is of A-genus 0 or 1. In §4, we study surfaces of type I-1. We show
Theorem 4.2, which says in particular that they satisfy p, < 11. In §§5-9, we study
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surfaces of type I-0. In §5, we discuss whether the canonical map can be lifted to a
holomorphic map into a nonsingular model of W, and show Proposition 5.6. In §6,
we determine the linear equivalence class on W of the canonical image, and prepare
some Lemmas for the later use. It will be clarified that every surface of type I-0 has
a pencil of nonhyperelliptic curves of genus 3 or 4. In the last case, we have p, < 7.
The existence of those with p, = 7 and p, = 6 1s shown in §7 and §8, respectively. In
§9, we study the case of genus 3. We sketch a member of the pencil arising from the
double curve of the canonical image. [n general, it is a hyperelliptic curve of genus 3.

Acknowlegdement and Notes. 1 express my special thanks to Tadashi Ashikaga
for many helpful comments during the seminars we held, to Prof. Sampei Usui for his
constant encouragement. [ also thank Prof. Eiji Horikawa who informed me of his
excellent results on his visit to Sendai (March 1989). 1 was inspired very much by
his beautiful works [11]. Tt would be worth mentioning here that he studied canonical
surfaces with ¢ = 3p, — 7, 3p, — 6 about 1976 and he got a result similar to our
Theorem 3.1. Unfortunately, he did not complete the manuscript “On certain canon-
ical surfaces”. I believe that the present one contains something beyond his, because
Fujita’s classification was not available for him.
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§2. Surfaces of type 111

§3. Quadrics through canonical surfaces
4. Surfaces of type I-1

§5. Lifting of the canonical maps

§6. Divisor classes

§7. Surfaces of type I-0: The case (s.1)
§8. Surfaces of type I-0: The case (s.2)
§9. Surfaces of type I-0: The case (s.3)

1 Canonical maps.

1.1 = Let S be a minimal algebraic surface of general type defined over the com-
plex number field C. We denote by p,(5), ¢(S) and ¢;(S)? the geometric genus, the
irregularity and the Chern number of S, respectively. The canonical divisor of S will
be denoted by K. We let ¢ : S — S be the composition of quadric transformations
which is the shortest among those with the property that the variable part |L] of |o* K|
is free from base points. We denote by K and E the canonical divisor of S and the
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exceptional divisor of ¢, respectively. In particular, we have K ~ o* K + E, where the
symbol ~ means the linear equivalence of divisors.

In what follows; we often use the standard fact that, if a surface admits a rational
map of degree less than three onto a ruled surface, then its canonical map cannot be
birational onto its image.

We recall a well-known result due to Castelnuovo (see, [9]).

Lemma 1.2 (Castelnuovo’s bound)
Let C C P" be an iwrreducible nondegenerate curve of degree d and geometric genus

g(C). Then
g(C) < mo(d,r) = ( 730 ) (r — 1) + mgeo

where mg and €y are nonnegative integers satisfying

d=mo(r— 1D +e+1, 0<e¢ <r—2.

Lemma 1.3 Let S be a minamal algebraic surface of general type with c¢1(S)? =
3pe(S) — 6. Let i : S — Sy C PP be the camonical map of S. Then one of the
following occurs:

1) @5 induces a birational holomorphic map onto S,.

2) @ induces a generically finite rational map of degree 2 onto Sy which is bira-
tionally equivalent to a ruled surface.

3) @ induces a holomorphic map of degree 3 onto Sy which is a surface of minimal
degree p, — 2 in PPI1,

Proof.  We remark that [ K| is not composite with a pencil by [11, 111, Theorem1.1]
and [3, p. 136]. Thus @ induces a generically finite rational map onto its image. Let
0:5 — Sbeasin 1.1. Since Sy is an irreducible nondegenerate surface in P! we
see from [10, Lemmal] that

3pg — 6 = ¢ > L = (deg @) (deg So) > (deg D5 )(p, — 2).

So we have deg @ < 3. Furthermore, if deg @ = 3, the equality holds everywhere.
This implies that Sp is a surface of minimal degree and that |K| is free from base
points [10, Lemma 1]. Thus we have 3). If deg ®; = 2, then we are in the case 2) and
the statement for Sy can be found in [3]. We show that | K| is free from base points
if ¢ is birational. For this purpose, we recall the inequality L? > 3p, — 7 ([11, 11,
Lemma(1.1)]). Thus we have either

i) =12 or
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i) & = L%+ 1.

We show that ii) leads us to a contradiction. Assume that ii) is the case. Then,
by the argument in [10, §1], we see that | K| has the unique base point P and o is the
blowing-up of S at P. Thus we have [0*K| = |L]| + E, where E is the exceptional
(—=1)-curve and LE = 1. Let C be a general member of ||, which we can assume
irreducible and nonsingular. Since Cy := ¢ ;(C) is an irreducible nondegenerate curve
of degree 3p, — 7 in PP*~?| Castelnuovo’s bound (Lemma 1.2) shows that its geometric
genus g(C') is bounded from above by mo(3p, — 7, p, —2) = 3pg — 6. On the other hand,
by the virtual genus formula, we have

1 ~
9(C) = 5C(K+0)+1:L2+LE+1:—:qu—s.

Thus 7o(3py — 7, pg — 2) < g(C), a contradiction. If i) is the case, the absence of base
points of | K| follows from [10, Lemma 1]. g.e.d.

Definition 1.4  Let S be as in Lemma 1.3. We say that it is of type I, type 11
or type III if @ satisfies 1), 2) or 3) in Lemma 1.3, respectively.

Throughout the paper, we assume that p, > 5, since the cases p, = 3, 4 can be
found in {11, I1T and IV].

We now consider type IT surfaces. Since we shall show in Lemma 2.2 and Theo-
rem 3.1 that surfaces of types I and III are regular, we restrict ourselves to regular
surfaces of type II here. Then ®x and the ruling of .Sy induce on S a linear pencil of
hyperelliptic curves. Though the structure is simple, it seems hard to classify them
completely. As for regular surfaces of type II, we have the following:

Proposition 1.5 Let S be a minimal algebraic surface of general type with ¢ =
3py—6 and q = 0 which 1s of type I1 in the sense of 1.4. If p, > 50, then it has a unique
pencil of hyperelliptic curves of genus less than 5. Conversely, take g € {2, 3, 4} and
fizat. Then, for any pawr of integers (z,y) satisfyingy = 3z —6 and = > 5, there exists
a minimal reqular surface S of type 11 with a pencil of hyperelliptic curves of genus g
such that p,(S) =z, ,(S)? = 5.

Proof.  'The first half follows from a result of [13]. The last half can be shown by
the method given in [2]. g.e.d.
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2 Surfaces of type I1I.

In this section, we study surfaces of type II1. Those with p, = 3,4 exist (see [11, IT and
IIT]). Among others, we shall use the following notation. For any nonnegative integer
d, we denote by >, the Hirzebruch surface of degree d. We let I' denote a fiber of ¥,
and A, a section with A2 = —d.

2.1 As we have seen in Lemma 1.3, the canonical image of a type 11l surface is
a surface of minimal degree. Here we recall a result of [12] (see also [4]). Let ¥V be an
irreducible nondegenerate surface of minimal degree n — 1 in P™. Then it is either

a) P’ (n = 2),

b) P? embedded into P® by the complete linear system of quadrics (n = 5),

¢) ¥4 embedded into P™ by |Aq -+ E:—;jif[, where n — d — 3 is a nonnegative even
integer (n > 3), or

d) a cone over a rational curve of degree n —11in P! that 1s, the image of 3, 4
by [A¢ + (n— 1)T| (n > 3).

Lemma 2.2 Bvery type 111 surface S satisfies py(.S) < 5 and g(S) = 0. If
Po(S) =5, then its canonical image 1s a cone over a rational curve of degree 3.

Proof. We put n = p, — 1. We assume n > 5 and show that this leads us to a
contradiction. We denote by f : S — S the holomorphic map induced by @ ;. Then
f 1s of degree 3 and Sy is one of the surfaces in 2.1. Since n > 5, we need not consider
the case a). If b) is the case, then we have K ~ 2f*I, where [ is a line in P?. Thus
(f*D(K + f*1) = 3(f*1)? = 9. This contradicts that (f*I)(KX + f*1) is even. Similarly, if
c) is the case, we have K ~ f*(A¢g+ ((n—1+d)/2)T') and get a contradiction because
(f TK + fT)=3.

We consider the case d). Then, by the same argument as in the proof of [11, I,
Lemma 1}, we have K ~ (n — 1)D + G, where |D| is a pencil and G is an effective
(possibly zero) divisor with KG = 0. In particular, we have G? < 0 by Hodge’s index
theorem. Since 3(n —1) = K2 = K((n—1)D+G) = (n — 1)KD, we get KD = 3.
Thus we have |

i) 0=FKG=(n—1)GD+ G?, and

i) 3=KD=(n—-1)D?+GD.

Further, D? is a positive odd integer, because D(K + D) = 3 + D? is even. Since
G? <0, we have GD > 0 by 1). From this and ii), we get 3 > (n—1)D? > n— 1, which
contradicts the assumption n > 5.

Thus we have py(S) < 5 for a type ITI surface S. Then the vanishing of ¢(.5) follows
from [11, V, Theorem 4.1]. q.e.d.
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Theorem 2.3  Let S be a type 111 surface with p,(S) = 5. Then S is the minimal
nonsingular model of a surface S defined by

w + aqCw? + aCw + az> =0 (1)

in the total space of the line bundle [2A8g + 4T'] on 23, where w is the fiber coordinate
and

a; € HO(B3, O((5 + [1/3]) Do + 451)), 1 < 5 <3,
¢ € HO(¥;,0(A0)).

Proof. This is a verbatim translation of [11, I11, §4]. By the proof of Lenuma 2.2,
we have a pencil |D| with K ~ 3D, KD =3 and D? = 1. Thus it has the unique base
point P. Welet o : § — S be the blowmg up with center P and put £ = o~ *(P). Then
the variable part [D] of |0*D| defines a holomorphic map g : S — P, Since | K| has
no base point, there exists n € H°(S,O(0*K)) which does not vanish on . Further,
we can take nonzero w € H%(S, O(3F)). Then the pair (w, n) defines a holomorphic
map h : S Y5 with h*Ag = 3F and K ~ h*(Ag+ 3T) + E, where K is the canonical
divisor of 5. By the Riemann-Roch theorem,

(K + D)= x(K +D)=D(K + D)/2+ x(Os) = 8.

Since HP(—D) = 0 for p < 2 by Ramanujam’s vanishing theorem, we get h° (K + D)
RP(K + D) = 8. A nonzero £ € H°(2F) defines an injection HO(Ix + D) — HYK +
D +2E). We have K + D + 2E ~ B*(20¢ + 4T') and h%(3s, O(280 + 4T')) = 7. Thus
there exists o € H(K + D) such that ¢f is not induced by H(Zs, O(24A, + 4T)).
We let W denote the total space of the line bundle [2A, + 4I'] on X3 and w its fiber
coordinate. Then putting w = @€, we get a holomorphic map h : S — W over h.

Put S’ = A(S). Since h is of degree 3, we see that S’ is birational to S by the
choice of . We consider the subspace of HO(S, O(h*(6A0 + 121'))) consisting of those
sections vanishing on 6F. It contains

©°E’,

*&al  with a € HO(3;, O(Ag + 41)),
(Pé-IBCZ with ﬂ € HO(EB) O(QAO =+ 8]:\))7
These represent 61 sections. On the other hand, since h*(6Aq + 12I“) — 6/ ~ 40" K,
we have H(S, O(h*(6A¢ 4 12T) — 6F)) = 60. Thus S’ is defined by the equation of
the form (1). Then we can show, as in [11, I1I, §4], that 5" has a double curve along
w = ( = 0 but other singular points are at most rational double points, and that S is
the minimal resolution of S". g.e.d.
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3 Quadrics through canonical surfaces.

Recall that, for a projective variety X C P™ with h°(Ox (1)) = n + 1, the A-genus is
defined by A = dim X + deg X —n — 1. We refer the reader to Fujita [4], [5], [7] for
the theory of A-genus.

The purpose of this section is to prove the following:

Theorem 3.1 Let S be a surface of type 1 with p,(S) > 5. Then the irreqularity
g{(S) vanishes. The canonical image Sy of S is contained in an irreducible nondegener-
ate variely Wy of dimension 3 and A-genus < 1. Wy is cut out by all quadrics through
So unless it is a hypercubic in P*. Further, the following hold.

1) If Wy is of A-genus 0, then it is a rational normal scroll.

2) If Wy is of A-genus 1, then Sy is projectively mormal and has only rational
double points (RDP for short) as 1is singularity.

Remark 3.2  Prof. E. Horikawa has a result similar to Theorem 3.1 (unpub-
lished). His proof is based on a detailed study of quadrics through S, which is quite
similar to “Petri’s analysis”.

3.3 For any projective variety X C P7, we denote by Zx the ideal sheaf of X
in P". We consider the cohomology exact sequence derived from

0 — Zx(n) — Opr(n) — Ox(n) — 0,
for any nonnegative integer n. The Hulbert function hx of X is given by

hx(n) = dimg Im {H(P", Opr(n)) — H(X, Ox(n))}.

I Y is a general hyperplane section of X, then it follows from [9, Lemma(3.1)] that

bhx(n) :=hx(n) —hx(n—1) > hy(n), n > 1 (2)

We remark that X is projectively normal if 6hx(n) = hy(n) holds for any n € N.

We return to the situation we are interested in. Let S be a type I surface with
Pg 2> 5 and put 7 = p, — 2. We choose a general member C € |K|. Since [K| has no
base points, we can assume that C is irreducible and nonsingular. Then the geometric
genus g(C) of Cis given by g(C) = 3C(K +C)+1= K>+ 1= 3r + 1. Since 2K|¢ is
the canonical divisor of C, we have

3r4+1 if n=2,

h%q@@Kk»:{3dn_U sy (3)
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H we put Cp = ;i (C), then Gy is an irreducible nondegenerate curve of degree K2 =
37 in P". We remark that it is linearly normal because mo(3r,r + 1) < g(C) (see,
Lemma 1.2). We take a general hyperplane section Z, of Cy. It is a set of 37 distinct
points in P77 and satisfies hg, (1) = r. Further, since it enjoys the uniform position
property, it follows from [9, Corollary(3.5)] that

hzo(n+1) > min {37, hz,(n) + r — 1}, n € N. (4)
Thus we have (for r > 4)
hZo(l) =T
hzy(n) >n(r—1)+1, if 2<n<3,
hz,(n) = 3, if n>4.

Since Cjy is nondegenerate, we have hg, (1) = r+ 1. Thus (2) and (3) yield
3r4+1= hO(C, 0(21‘:|0)) Z hco(Q) Z r+ 1+ /ZZU(Z).

From this and (4), we get hz,(2) = 2r or 2r — 1.
We now recall two surprizing results due to Castelnuovo and Harris-Eisenbud, re-

spectively. Tor the proof, see [9, p. 106].

Lemma 3.4 (Castelnuovo)

If Z C P ds a sel of d > 2r + 1 points in general position, then hz(2) = 2r — 1
holds if and only of Z lies on a rational normal curve R of degree r — 1, cut out by all
quadrics containing Z . '

Lemma 3.5 (Harris-Eisenbud)

Let Z C P, r > 3, be any finite set of d > 2r+ 3 points in uniform position wilh
hz(2) = 2r. Then Z lies on an elliptic normal curve R of degree r in P™. Further,
R is cut out by all quadrics containing Z if r > 4, and it is a plane cubic if r = 3.

3.6 We consider the case hz,(2) = 2r. Since Z; lies on an elliptic normal curve
by Lemma 3.5, we get hz,(3) = 3r — 1. Then, it follows from (4) that

6r = h°(C,0(3K]|c)) > heo(3) > hey(2) + hy,(3) = 6r.

Thus h¢, (3) = 6r. Similarly, we can show §h¢,(n) = hz,(n) for any n € N. Thus Cj
1s projectively normal.
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We turn our attention to Sp. By (2) and the pluri-genus formula, we have
4r 43 — q(S) = h°(S, O2K)) > hs,(2) > hs, (1) + he,(2) = 4r + 3.

Thus ¢(S) = 0, h°(2K) = hs(2) and 6hs,(2) = he(2). Quite similarly, we get
hO(nkK) = hs,(n) and hg,(n) = hey(n) for any n > 0. Thus Sp is also projectively
normal, and we see that the multiplication map Sym™H°(S, O(K)) — H°(S, O(nkK))
is surjective for any 7 > 0. Thus the canonical ring of S is generated in degree 1. This
implies that Sy is isomorphic to the canonical model. In particular, it has only RDP
as its singularity.

We next show that Sy is contained in an irreducible threefold Wy of A-genus 1. We
first assume that r > 4. By Lemma 3.5, we have h%(Z4,(2)) = h°(ZTx(2)) = r(r — 3)/2.
Since Sy is projectively normal, the linear system |Zg,(2)| is restricted to |Zgz,(2)]
isomorphically. Thus Wy = Bs|Zg,(2)] is an irreducible threefold of A-genus 1, because
R = Bs|Iz/(2)| is an elliptic normal curve of degree r. If r = 3, then 7 is contained
in a plane cubic. Since Sp is projectively normal, it is contained in a hypercubic Wj.
Thus we get 2) of Theorem 3.1.

3.7 We next consider the case hz, (2) = 2r — 1. We recall that Cy and S, are
linearly normal. Thus the linear system |Zg,(2)] is restricted to |Z z,(2)| isomorphically.
If we put Wy = Bs|Zs,(2)], then it is a threefold of A-genus 0, because R = Bs|Z z,(2)]
is a rational normal curve of degree » — 1 by Lemma 3.4.

We show ¢(S) = 0. Since h°(Zz,(2)) = R°(Zr(2)) = (r — 1)(r — 2)/2, we get
hs,(2) = 4r+2. Since hg, (2) < h°(S,0(2K)) = 47+ 3 —q(S), we have either ¢(S) = 0
or g(S) = 1. If ¢(S) = 1, then the Albanese map gives S a pencil of hyperelliptic
curves of genus < 3 by a result of Horikawa [11, V]. This is impossible, because the
canonical map of S is birational. Thus ¢(5) = 0.

According to the classification of varieties of A-genus zero ([4], [8]), W is either

A) P’ (pg = 4),
B) a hyperquadric C P*, (p, = 5),
C) a cone over P? embedded into P° by |O(2)], (p, = 7), or

D) a rational normal scroll C P?¢™") that is, the image of the total space of the

P?-bundle
e Pa,b,c - P(OPI (a) @OPI (b) D OPI (C)) — Pl

under the holomorphic map induced by |T'|, where T is the tautological divisor and
a, b, ¢ are integers satisfying

0<a<b<c¢ at+btec=p,—3.

Thus there are the following three subcases:
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Dl) a > 0: YVO ~ Pa,b,c-

D.2) a=0,b>0: Wyis acone over the Hirzebruch surface ¥._, embedded into
P?s2 by |Ag + cl.

D.3) a=0b=0: Wyis a generalized cone over the rational normal curve in PPs%,

The ridge of Wy is a line (see [7, §1] for the terminology).

We need not consider A) by the assumption p;, > 5. We claim that W, is singular
in the case B). In fact, if Wy is nonsingular hyperquadric, then Sy is obtained as a
hypersurface section of Wy. Then deg .Sy must be even. This contradicts deg Sy = 9.
Thus W, is singular. Then, since rank(W;) < 4, it can be represented as a rational
normal scroll. We next exclude the case C). If C) is the case, then Cy lies on the
Veronese surface. Thus deg Cy must be even, contradicting deg Cy = 15. In summary,
we gel 1) of Theorem 3.1.

Definition 3.8  Let S and Wy be as in Theorem 3.1. We say that S is of type
1-0 or of type I-1 according to whether W is of A-genus 0 or 1.

4 Surfaces of type I-1.

In this section, we let S be of type I-1 and Wy the threefold of A-genus 1 on which the
canonical image Sg lies. We sometimes use the terminology in [6] and [7]. In particular,
see [6, (5.6)] for the definition of a Del Pezzo variety.

4.1 By [7], if Wy € PP is an irreducible nondegenerate threefold of degree
Py — 2, then it is either

1) a hypercubic (p, = 5),

2) a complete intersection of two hyperquadrics (p, = 6),

3) a cone over a surface V C P?*™? of A-genus 1, where V is either
3a) the Veronese embedding into P® of a quadric in P? (p, = 10),

3b) the image of P? by the rational map associated with the linear system |30 —

?

near (p, = 11—k, 0 < k£ <6),

>k, z;], where [ is a line on P? and the =; are points on P? which are possibly infinitely

3c) a cone over a nonsingular elliptic curve, or

3d) a projection of a surface of A-genus 0 in P?*"! from a point,
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4) a non-conic normal Del Pezzo threefold (7 < p, < 10), or
5) a projection of a threefold of A-genus 0 in P?? from a point.

Not all varieties listed above can be Wy in Theorem 3.1. The cases 3d) and 5) are
excluded, because the canonical image Sy and its general hyperplane section Cy are
both projectively normal. The case 3¢) is also excluded because S is regular: In fact,
if it is the case, we can easily show that S has an irrational pencil parametrized by an
elliptic curve (cf. 4.3 below). ' |

Thus we have p,(S) < 11 for any surface S of type I-1, and our Wy is a normal Del
Pezzo variety if p, > 7. In particular, it is projectively normal (cf. [6, §5]).

Theorem 4.2 Every surface S of type I-1 satisfies 5 < p,(S) < 11. The canoni-
cal image Sy 1s a complete intersection of two hypercubics if p, = 5, and it 1s a complete
intersection of two hyperquadrics and a hypercubic if p, = 6. If p, > 7, then Sy is a
hypercubic section of a normal Del Pezzo threefold Wy.

Proof. We use the notation of 3.6. Since Wy is projectively normal, we can assume
that R is nonsingular. Thus h°(Zx(3)) = r(r + 1)(r + 2)/6 — 3r. On the other hand,
we have h%(Zz,(3)) = r(r + 1)(r + 2)/6 — 3r + 1. Thus there exists a hypercubic not
containing R but Z,. Since deg R = r and deg Zy = 3r, we see that Z; is a hypercubic
section of R. This gives Theorem 4.2, because Wy and Sy are both projectively normal.

g.e.d.

In the following, we examine the existence of surfaces of type I-1 in the cases 3)
and 4) of 4.1.

4.3  Here we consider the case 3) of 4.1. Let v be the vertex of Wy. We denote
by Ag the pull-back to S by ® i of the linear system of hyperplanes through v. We let G
be the fixed part of Ay and put A = Ay — G. Then A defines a rational map p: S — V
and we have K ~ H + G, H € A. We note that KG = 0, since | K| has no base point.
Then 3p, — 6 = K> = KH = H* + HG > H? > (deg u)(deg V) = (deg 1) (py — 2)-
Thus degpp < 3. Since S is of type I, deg p < 2 leads us to a contradiction. Thus
degp = 3, HG = 0 and H? = 3p, — 6. Since G = 0, we get G = 0 by Hodge’s
index theorem. Further, we see that p is holomorphic. In fact, if A has a base point
P, blowing S up at P and considering the strict transform A of A, we would have
0% < H? for fI € A and conclude that the map induced by A is of degree less than
three.

The case 3a): As we saw above, a subsystem of |K| induces a holomorphic map
of degree 3 onto ¥y or a quadratic cone in P®. In the latter case, we can lift it to
a holomorphic map S — ¥, as in [10, p. 46]. Thus, in either case, we obtain a
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holomorphic map h : .S — ¥4, with d = 0 or 2, satisfying K ~ h*(280+ (d+2)T"). Let
W — 3, be the line bundle associated with Hy = 2A¢ + (d + 2)I" and, let w be the
fiber coordinate of W. We show that S is birationally equivalent to a surface S’ C W
defined by the equation

w + ayw? + agw + as = 0, (5)
where a; € H%(X4, O(iHy)). Since p,(S) = 10 and A4, O(H,)) = 9, there exists
i € H°(K) which is not induced by a section of O(H,). Thus we get a holomorphic

map f : .S — W over h by putting w = . Since h is of degree 3, f is birational onto
S" = f(S) by the choice of ¢. In H°(3K'), we have the following elements:

P,

Yia  with a € HY(Z,, O(Hy)), (6)
YB  with B € HO(Sq, O(2H,)),

v with v € H°(2q, O(3H,)).

These represents 84 sections. On the other hand, we have h°(3K) = 83. Thus we can
find a non-trivial relation of the form

59° + ol + Prp + v =0,

where 6 is a constant and «, f, y are as above. Since h is of degree 3, we see that § is
non-zero and there is no further relation among the sections in (6). Thus S’ is defined
by the equation of the form (5). Conversely, if we choose the a; in (5) generic, then
the obtained surface is nonsingular, minimal and satisfies p, = 10, ¢ = 0 and ¢? = 24.

The case 3b): Let V be the projective plane blown up at & = 11 — p, points
z1; ---, zx and let ) : V — P? be the natural map. Let Hy = 33— A7(z;) be the
pull-back of the hyperplane of P?77?. We denote by W the line bundle associated with
Hy, and let w be its fiber coordinate. We show that S is birationally equivalent to a
hypersurface S’ of W defined by

w3+a1w2+a'2w+a'3 :O, (7)

where a; € HO(V,0(ill,)), 1 < i< 3. )
Since O(—Hy) is the canonical sheafl of V| we have

ho(Ho) = py— 1, R%(2H,) = 3p, — 5, h°(3H,) = 6p, — 11,

by the Riemann-Roch theorem and the Kodaira vanishing theorem. Let ¢, - - -, Ppy—2, ¥
be a basis of H°(S, O(K)) such that ¢o,---,, _» span the module of A. Since
hO(3K’) = 10p, — 27, the following 10p, — 26 products

W4t didih, dididn
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in H°(3K) are linearly dependent.. Thus S is birationally equivalent to a triple covering
of V defined by '
' ud + az)u® + B(z)u+ v(z) =0

where a, f# and v are homogeneous forms of respective degree 1, 2 and 3 in the ho-
mogeneous coordinates (zg : -+ 1 2, 5) of P?*7? and ¢ = ®%-u. This triple covering
induces via V — V a triple covering 5" of V. Then the equation of S’ is of the form (7).
Conversely, if we choose the «; in (7) generic, then the obtained surface is nonsingular
and satisfies ¢ = 3p, — 6.

4.4 Here we consider the case 4) of 4.1 assuming that Wy 1s nonsingular. In
this case, we can determine the divisor class of Sy by Theorem 4.2 once we know
the structure of Wy. For the classification of polarized manifolds of A-genus one, see
Fujita [5].

i) p, =7 Let Gr(2, 5) be the Grassmannian of two planes in C® embedded into
P? by the Pliicker embedding. Then W, is obtained by cutting Gr(2, 5) three times
by hyperplanes. S; is a hypercubic section of Wj.

i) p, =8

ii-1) Wy = P! x P! x P! embedded by |H; + Hy + Hs|, where H; is the pull-bak
of a point of the i-th factor. Sy ~ 3(H; + Hz + Hj).

ii-2) Wy = P(Op:), where Op: is the tangent sheaf of P?. If H denotes the
tautological divisor, then W, is embedded by |H|. Sy ~ 3H.

i) p, = 9: W, is the blowing-up of P? at one point. If we denote by H and E
the pull-back of a plane of P? and the exceptional divisor, respectively, then W is
embedded by |2H — E|. Sy ~6H — 3L.

iv) py = 10: W, = P® embedded by |O(2)| and Sy is a sixtic surface in P°.

It is clear that Sy with only RDP exists in each case.

4.5  We consider the case 4) of 4.1 assuming that Wy is singular. From [7], we
know that this case occurs only when p, = 7, 8§, and that W, is represented as the
image of the {following W:

)p,=T:
_ i-1) Consider the P*-bundle 7 : P(O ® O ® O(Ag +2I')) — 5. If we denote by
T the tautological divisor, then W ~ T+ 7*(Ay + I').

_ i-2) Consider the P'-bundle 7 : P(O®O(T)) — Py1,1 (see 3.7 for the notation).
If 7' denotes the tautological divisor, then W ~ T' 4+ 7#*(T' — F'), where F' is a fiber of
P1,1,1 — P '
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i) p, = & .
ii-1) Consider the P*-bundle P(O ® O & O(2)) over P*. If we denote by T and F'
the tautological divisor and the pull-back of a line in P?, respectively, then W ~ T+ F.

ii-2) Consider the P>-bundle 7 : P(O @ O @ O(Ag +3T)) — L,. I T denotes the
tautological divisor, then W is a nonsingular member of |T' 4+ 7*(Ao + T)|.

ii-3) Consider the P'-bundle 7 : P(O ® O(T)) — Py, If T denotes the tauto-
logical divisor, then W ~ T + #*(T — 2F).

ii-4) Consider the P%-bundle 7 : P(O® O @ O(Ag +21)) — o. If T' denotes the

tautological divisor, then W is a nonsingular member of |T"+ 7*Ag|.

In each case, the natural map W — W, isinduced by |T|. We have H°(W, O(kT)) ~
HO(Wy, O(k)) for any k > 0, and W has some mild singularities in general (see [7]).
One can casily check the existence of a surface S’ € |37 |w]| with only RDP satisfying
&J%-, = 3/7,0((1}51) — 6.

5 Lifting of the canonical maps.

From now on, we study surfaces of type 1-0. Let S be of type I-0 and Wy the threefold
of A-genus zero on which the canonical image Sy lies. Then Wy is a rational normal
scroll as we saw in §3. In this section, we assume that it is singular, and discuss whether
we can lift the canonical map to a holomorphic map into a nonsingular model of W.

5.1  We consider the case D.2) of 3.7. That is, Wy is a cone over the Hirzebruch
surface ¥, embedded into PP~ by |Aq + cI'|, where 0 < b < c and p, = b+ ¢+ 3.
We denote by W the total space of the Pl-bundle w : P(O @& O(Aq + cT)) — Doy
Then it is a nonsingular model of W,. We let H be the tautological divisor of W and
denote by H, the unique divisor with H, ~ H — w*(Ay+cTI'). Then the natural map
W — W, is induced by |H], and H,, is contracted to the vertex of Wj.

Let Ag be the pull-back to S by @ of the linear system of hyperplanes through the
vertex of Wy. We let GG be the fixed part of Ag and put A = Aj — G. We have KG =0
since || is free from base points. The linear system A induces a surjective rational
map ¢ : S — Yep. Welet o S — S be the composition of quadric transformations
which is the shortest among those with the property that the variable part of oA is
free from base points. We denote by K the canonical divisor of S. Then K ~ o*K + F,
where I is the exceptional divisor of . We have a holomorphic map [ : S — ¥, and
oK ~ M+ E+4 0*G, where M = *(Ag + cI') and  is a sum of exceptional curves
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of o satisfying Supp(£) = Supp(F) and 5 > E. We remark that deg /1 is greater than
two. Since

3b+c+1)=(c"K)> = (¢0"K)M > M? = (deg 1)(b + ¢),

we have either
1) degii=3,or
2) degii=4andb+c=2, 3.
We also remark that (o*K)5 = ME + B =0and (c*K)(0*G) = M(c*G) + G* = 0.

5.2  We consider the case 1) of 5.1. We have M (% + 0*G) = 3. Since KG = 0,
G? is even and so is M(c*@G). Thus we have either

i) ME=1, M(c*G) =2, or
i) ME=3, M(c*G)=0.

We first consider the case i). Then B = —1, G® = —2. Let Fy be a (~1)-curve on
S. Then it is a common irreducible component of & and E. Further, we have M Ey > 0,
because, if M Ey = 0, we can contract Fy contradicting that o is the shortest. Thus
ME = ME = MEy = 1. Then, similarly as in [10, §1], we can show that & = E is
a (—1)-curve Fy, which we represent by F for the sake of simplicity. Thus, ¢ is the
blowing-up at o(E). Since M E = 1, we see that i maps £ biholomorphically onto a
nonsingular rational curve. Put i(E) ~ aly + ST, where o and f are nonnegative
integers. Since (A + cIV(E) = 1, we get (o, f) = (1, 0) or (0, 1). We remark
that (o, B) = (1, 0) occurs only when b = 1, and that, if 5 = ¢ = 1, we can assume
(a, B) = (0, 1) by considering another ruling of 3.

We have K ~ i*(Ag+cl) +2E +0*G. Since (°T)2 = 0, K('T) = 3+ 2E(pT) +
(o*G)(i"T') is an even integer. Thus (¢*G)(4'T) is a positive odd integer. Since
KG = 0, G consists of (—-2)-curves. Thus any irreducible component of ¢*G is a
nonsingular rational curve as well. Since M(¢*G) = 2, we have at most two irreducible
components of 0*G having positive intersection number with M. If we have two such
components Gy and Gy with MGy = MG, = 1, then f(0*G — Gy — Gy) cannot be a
divisor, because M is the pull-back of an ample divisor and M (¢*G — Gy — G;) = 0.
Thus (6*G)i'T = (Go + G1)'T is odd. From this and MG; = 1, we see that one
of them, say Gy, is mapped to Ay and G is mapped to a fiber I'. In particular, we
get b = 1. If we have a component Gy with MGy = 2, then i(0"G — Gy) is not a
divisor and we have either i(Go) = Ag, b =2 or 4(Gy) ~ Ag+ T, b =1 by a simple
calculation. In the last case, we have ¢ < 2 because the irreducibility of Gy implies
(Ao +T)Ag =2~ ¢ > 0. In either case, we have (¢*G)(2*T) = 1.

As a consequence, [i"T'| is a pencil of curves of genus 3 (if () = T) or 4 (if
L(E) = Ag). Put D = 0,4"T. In the former case, [D] is a pencil of curves of genus 3
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without base points. As we shall see in Lemma 5.3, there is a lifting f : S — Py of
the canonical map. In the latter case, | D| is a pencil of curves of genus 4 with one base
point. We show that there is a natural map f : S — Po . over the holomorphic map
induced by |0*K|. Let £ € H(G) and e € H°(S, O(E)) be sections satisfying (£) = G
and (e) = E. Then we can find a section zo € H°(K) such that Supp((c*z,)) does not
intersect with U*G+E Then the pair (c*zg, e0*¢) defines a holomorphlc map f S —
W such that f H,, = "G+ F. In particular, we have 0" K ~ ]\J—I—f Hy, ~ f H. We
remark that there is a holomorphic map v : W — Po. which contracts the divisor
H, to a nonsingular rational curve and satisfies v*T" ~ H. Thus we get the desired
map by putting f =vo 7.

We next consider the case ii). By Hodge’s index theorem, we have G = 0. Since
KM+ M? = 6(b+c)+ 3+ ME is even, ME is odd. Then ME = 1 or 3, since
ME=3and > E. If ME = 3, then we have J\J(E — F) = 0. Thus [L(E — E)is
at most O-dimensional. But then, fx"(/fz*I‘) = 3+ 2FE(i'T) is odd, a contradiction. If
ME =1, then we can find a (—1)-curve Ey with M Ey = 1. No irreducible component
of By := E— Fyis a (—1)-curve, because M Ey = 0. Thus B = 3FE,+E, with ME, = 0.
We have K ~ M + 4Ey + Ey + . Since KE, = —1, we have (B + El)Eo = 2. On
the other hand, we have —3 = i = (3K, + El) = —94 6E,E, + (El)z. Thus
()2 = 6 — 6Fo k. Since ME; = 0, we get (/)% < 0 by Hodge’s index theorem.
Thus EOEl >1. It E0E1 = 2, then E0E1 = 0. This means F;, = 0, because, otherwise,
By must contain a (—1)-curve. Then El is also zero, a contradlctlon. It EOE'l =1,
then (E1)2 = 0. Since ME, = 0, we have By =0 by Hodge’s index theorem, a
contradiction. In summary, the case ii) is excluded.

Lemma 5.3  Let the situation be in the case 1) of 5.2 and suppose that S has a
pencil |D| of curves of genus 3 described there. Then the canonical map can be lifted
to a holomorphic map f: S — Poyp..

_Proof. ‘We choose a general D € |D| and put p = ¢*D. Then D € |*T|. Since
ED = 0, 0*K|} is the canonical divisor K of ). We consider the commutative
diagram

0— H(o*K — (i+1)D) —  Ho*K —iD) —  H(D,K})
[ T T
0— H(Aog+ (c—1—1I) — H Ao+ (c—9)T) — HYT,0(1))
for i > 0. We remark that the vertical maps are injective, since 0* K ~ p*(Ag 4 cT) +
B+ oG A
We measure m(7) := dimg Im{H°(¢c*K —1D) — H°(Kp)}. Since @y is birational,
the natural map H%(o*K) — H°(K}) is surjective. Thus h°(c*K — D) =p,—3=
R°(Ao + (¢ — 1)T). Then, by a diagram chasing, we see that H°(Ag + (¢ — 0)[') —
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H%(o* K —iD) is bijective for ¢ > 0. Thus 0 is the greatest integer such that m(z) = 3.
Similarly, b (resp. c) is the greatest integer such that m(i) = 2 (resp. m(i) = 1) if
b < ¢, and b is the greatest integer such that m(z) > 0if b= c.

Since HY(K —iD) = H(c*K — zﬁ) for any ¢, we can choose three sections z, €
HO(K),z; € HY(K—bD) and =5 € H(K —cD) such that they span H°(Kp). Then the
triple (7o, 21, z2) defines a rational map f : S — Pqp.. We can assume it holomorphic,
since | K| has no base point. g-e.d.

5.4 Suppose we are in the case 2) of 5.1. We have M2 = 4(b + ¢) and M(F +
0*G) =3 — (b+¢), where (b, ¢) = (1, 1) or (1, 2).

We first consider the case (b, ¢) = (1, 1). If ME = 0 and M(o*G) = 1, then
we get G? = —1. This contradicts that KG + G? is even. Thus we have ME =1,
M(o*G) = 0. Then G* = 0. Thus G = 0 by Hodge’s index theorem. Further, we can
show that & = E is a (—1)-curve and (E) = Ap or a fiber I' asin 5.2. We can assume
that fi(E) is a fiber by considering another ruling of ¥o if 4(E) = Ag. Then [T is
a pencil of curves of genus 3. Since E4*[" = 0, we see that .S also has a pencil | D],
D = o.i°T, of curves of genus 3 without base points.

We next consider the case (b, ¢) = (1, 2). Then we have E = G = 0 by Hodge’s
index theorem. Thus o is the identity map and K ~ p*(Aq + 2T'). This shows that S
has a pencil |D|, D = p*T, of curves of genus 3.

In either case, we can show that the canonical map can be lifted to a map f: S —
Py as in Lemma 5.3.

5.5  We consider the case D.3) of 3.7. Thus W, is a generalized cone over a
rational normal curve. By the argument similar to [11, I, Lemma 1], we have K ~
c¢D + G, where | D] is a pencil and G is a (possibly zero) effective divisor corresponding
to the ridge of Wy. Since K2 = 3¢+ 3 > ¢K D, we have KD < 4. By Hodge’s index
theorem and the fact that KD + D? is even, we are left the following possibilities:

1) KD=3, D*=1 DG=1 (c=2),

i) KD=4,D?=0, DG=4 (c=2, 3).

We show that i) is impossible. We remark that a general D € |D| is nonsingular,
since D? = 1. Since S is of type I, ®x maps D birationally onto its image. However,
since KD = 3, we have h°(D, O(K|p)) < 2 by Clifford’s theorem. Thus @ (D) is (at
most) a rational curve, a contradiction.

In the case ii), we let & be the section of O(G) with (£) = G and let zq, z; be two
‘independent element in H°(K) which correspond to hyperplanes not containing the

rigde of W;. We can assume that Supp((zo)) N Supp((z1)) NG = @ since | K| has no
base points. Then the triple (zo, 71, £) defines the holomorphic map f:.5 — Pgg..
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We summarize the above results in the following:

Proposition 5.6  Let S be a surface of type 1-0 whose canonical 1mage s con-
tained in a singular rational normal scroll. Then it has a pencil | D] of nonhyperelliptic
curves of genus 3 or 4.

1) If g(D) = 3, then |D| has no base point and there is a bfting f : .S — Pope of
the canonical map. In this case, 0 < b < 2 and, +f b =0, then ¢ =2, 3.

2) If g(D) = 4, then |D| has a base point P. Let o : S — S be the blowing-up
with center P. Then there is a natural map f : S — Poy,. over the holomorphic map
induced by |o*K|. In this case, b= 1.

Further, it can be assumed that g(D) =3 if p, = 5.

6 Divisor classes.

We assume that p, > 5 as usual.

6.1 Let S be of type I-0. If a > 0, we denote by f :.S — P, the natural map
induced by ®;. We let f have the same meaning as in Proposition 5.6, if a = 0. Put
S* = f(S) (or f(S) in case 2), Proposition 5.6). We choose a general member C € | K|
and put C* = f(C) (or f(c*C) in case 2), Proposition 5.6).

The Picard group of W := P, . is generated by the tautological divisor 7" and a
fiber F. In particular, we have Ky ~ —3T + (p, — 5)F, since a + b+ ¢ = p; — 3. We
have 7% = (p, — 3)T*F in the Chow ring of W.

We determine the linear equivalence class of S*. Put S* ~ o'+ fF and denote by
g : S* — P! the holomorphic map induced by the projection map of W. Then every
fiber of g is a plane curve of degree a. Thus we get o > 4, since, otherwise, S* has a
pencil of curves of genus less than 2 contradicting that it is birational to the surface S
of general type. Since deg Sy = 3p, — 6, we have

3p, — 6 =T*(aT + fF) = a(p, — 3) + f

Thus = (3 — a)(py — 3) + 3. Since C is of genus 3p, — 5, the arithmetic genus of C*
can be written as p,(C*) = 3p, — 5+ § with some nonnegative integer 6. Since we have

pa(C*) = 3T((a—2)T + (B+ py — 5)F)(aT + BF) +1
= 3[3(a—2)(py — 2) + a(f +p, — )] + 1,
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we get (o —4)(f + 1) = 26 —4. Recall that, if p, = 5, we can assume o = 4 by
Proposition 5.6. So we get the following list:

(s.1) S*~ 5T —5F ifp, =7 p,(C*)=16.
(s.2) S*~5T—3F ifp, =6, p,(C*) =14,
(s.3) S*~ AT — (p, — 6)F if p,(C*) = 3py — 3,

This and Theorem 4.2 in particular show the following:

Theorem 6.2  Let S be a surface of type 1. If p,(S) > 12, then it has a pencil
of nonhyperelliptic curves of genus 3. If S 1s of type 1-0, then the same holds for
pg(S) > 8.

Lemma 6.3  The cases (s.1) and (s.2) cannot occur when a > 0.

Proof. We assume a > 0 and show that this leads us to a contradiction.

We first consider the case (s.1). Since p, = 7, we have (a, b, ¢) = (1, 1, 2). We
can identify S* with the canonical image Sp. It has only isolated singular points,
because p,(C*) = g(C) implies that its general hyperplane section is nonsingular.
Thus it is normal by Serre’s criterion. By a direct calculation, we have x(Os.) =
x(Ow) — x(Ow(—5%)) = 4. This is impossible, because S is the minimal resolution of
S* and x(Os) =8 > x(Os-). _

We next consider the case (s.2). Since p, = 6, we have (a, b, ¢) = (1, 1, 1). Thus
W ~ P* x P?. Under this identification, T and F correspond to H; + H, and H;,
respectively, where H; is the pull-back of a hyperplane in P*. Thus S* ~ 2H, + 5H,
on P! x P2, Then it is a double covering of P? via the projection map W — P2 This
contradicts that it is birational to a type I surface. g.e.d.

Let the situation be as in 6.1. In the cases (s.2) and (s.3), the curve C* is singular
since p,(C*) > g(C). In the rest of this section, we study its singularity.

6.4 We denote by ¢ : C — Cy C P, r = p, — 2, the restriction of the canonical
map of S to C. Then Cj is contained in a surface scroll V. Recall that V is one of the
surfacesin ¢) and d) of 2.1. If V is in d), then it is singular. In this case, however, there
exists the lifting C — X, _; of ¢ (see 5.5). Thus, in either case, we have a holomorphic
map fo : C — ¥4 over ¢, where r —d— 1 is a nonnegative even integer and the natural
map 2y — V C P7is induced by |Ho|, Hy = Ao+ ((r — 1+ d)/2)T". Then C* is the
image of fo and Y, can be identified with a member of |T'|. Further, T'|s, ~ Hy and
Fls, ~T. Since 2K|¢ is the canonical divisor K¢ of C, we get K¢ ~ 2f5 Hy.
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Since C* is irreducible, we have C*Ag > 0. Then we get the following list corre-
sponding to (s.1), (s.2) and (s.3):

(c.1) C* ~ 500+ 10T on Yy, (r =5, p,(C*) = 16).
(c.1)) C" ~5A0 45T on Yo, (r =25, p.(C*) = 16),
(c.2) C*~50g+TT on Xy, (r =4, p,(C*) = 14),
(c.3) C* ~ 4o+ (r+ 2+ 2d)T on g, (pa(C*) = 3 + 3),

Il

1

Lemma 6.5  The case (c.1)' of 6.4 can be excluded.

Proof. Since p,(C*) = g(C), we can identify C* with C. By the adjunction formula
and K¢ ~ 2Hg|c, we have

I{C ~ (BAO ~+ SI‘)IC ~ (QAO -+ 4F),C

Thus we get Ag|¢ ~ T'|¢. This is impossible, because C' meets a general member of
|Ao| at distinct five points which are not on the same fiber I'. g.e.d.

Lemma 6.6  Assume that C* is of type (c.2) in 6.4, then it has a singular point
P of multiplicity 2 on A,.

Proof.  Since p,(C*) — g(C) = 1, P is the unique singular point of multiplicity 2.
Let A : V* — X; be the blowing-up with center P and put F = A"'(P). Then the
proper transform of C* is isomorphic to C and it is linearly equivalent to A*(5A¢ +
7I') — 28, Thus we have K¢ ~ (A*(3Ag + 4T') — E)|¢ by the adjunction formula. On
the other hand, we have K¢ ~ 2X*Hglg ~ A*(2A¢ + 4T)|¢. From these, it follows
(M Ag — E)|¢ = 0. This means that P is on Ay. g.e.d.

Lemma 6.7  Assume that C* is of type (c.3) in 6.4. Then it has two singular
points Py, Py of multiplicity 2, which are possibly infinitely near. Further, they are on
the same fiber of ¥q.

Proof.  Since p,(C*) — g(C) = 2, the first assertion is clear. Assume that P; and
P, are on the distinct fibers I'y and T'y, respectively. We let A : V* — I, be the
blowing-up with center Py U Py, and put F; = A7}(F.), 1 <7 < 2. Since the proper
transform of C* is isomorphic to C, we have C ~ XA (4Ag+ (r+ 2+ 2d)T') — 2F; — 2F,
and K¢ ~ (A*(200 4 (r + d)T') — E1 — F3)|¢ by the adjunction formula. On the other
hand, since K¢ ~ 2A*Hyle, we have K¢ ~ X*(2804 (r—14d)T")|¢. Thus, if we denote
the proper transform of I'; by f‘i, we get A\*T|g ~ f‘llC +- f‘glc. This implies that f‘1|c
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and T',|¢ are the pull-back of a point via the natural map C — P defined by [X*Plel.
This contradicts our initial assumption I'y # I's.

We next suppose that C* has an infinitely near double point P;. We denote by I‘l
the fiber passing through Pi. Let Ay : V; — 5, be the blowing up at P, and denote by
By, Ty and C the exceptional curve, the proper transforms of I'; and C*, respectively.
Then C still has a singular point P, of multiplicity 2 on E{. We must show that I,
contains F;. Assume that this is not the case. Let Ay : V* — V; be the blowing-up of
Vi at Py and put By = A;1(P,). We denote by % and T'; the proper transforms by Az
of Fy and Iy, respectively. The proper transform of C by A, can be identified with C.
We put A = A0 A : V* — 5, Since C ~ M*C* — 2F, — 4F,, it does not intersect
with F;. Then, using K¢ ~ 2X*Hylc and the adjunction formula, we get

Ko ~ X2A0+ (0 —14+d)D)|e

Since I'y ~ AT — E;, — E, and CFE, = 0, we have 2f‘1|c ~ X T|e. Thisﬁ 1s impossible
by the same reasoning as in the previous case. Thus P, is contained in I';. g.e.d.

7 Surfaces of type I-0: The case (s.1).

By Lemma 6.3 and the definition of the map f, we see that the cases (s.1) and (5.2)
of 6.1 correspond to 2) of Proposition 5.6. In this section, we prove the existence of
surfaces of type (s.1).

7.1  Since p, = 7, we have (a, b, ¢) = (0, 1, 3) by Proposition 5.6 and Lemma 6.3.
We choose sections Xo, X5 and X5 of O(T), O(T'— F) and O(T' 3 F), respectively, such
that they form a system of homogeneous fiber coordinates on each fiber of W — P
Then the equation of S* can be written as

S ¢uXeTTXIX) =0,

§,720,i+5<5

where ¢;; is a homogeneous form of degree i+ 35 — 5 on P'. Thus S* is singular along
the rational curve B defined by X; = X, = 0. Note that B is contracted to the vertex
of Wy under the holomorphic map induced by |T'|. Since p,(C*) = ¢(C), we see that
S* has only isolated singularity except for B.

We let v : W — W be the blowing-up with center B. Since W is nothing but the
manifold appeared in §5, we use the notation there. In particular, we have v*7" ~ H,
v F e~ w T and v 1Gy) = Heo. Let S be the proper transform of S* by v. Then
we have S/ = j‘(S), where f : § — W is the holomorphic map defined in 5.2. If
the multiplicity of S* at a generic point of B is k, then S is linearly equivalent to
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5H — 5w — kH,,. From this, we infer readily & = 2, since i : § — %5 is of degree 3.
Thus S’ ~ 3H + w@* (280 + T) on W.

We choose sections Yy and Y; of O(H) and O(H,,), respectively, such that they
form a system of homogeneous coordinates on each fiber of w : W — £,. Then the
equation of S’ can be written as

hoC?Vg + QYT Ys + ol VoYY + bV = 0, (8)
where ¢, 1o, 11, 15 and 13 are sections on ©5 of O(Ag), O(T), O(2A0+4T), O(300+7T)
and O(5A¢+ 10T'), respectively. Thus S’ is singular along the rational curve A defined
by ( = Y; = 0. Since (54A¢ + 10T')Aq = 0 on 35, 15 is constant on Ay. Since S is
irreducible, 13 does not vanish on Ag. We also remark that )y is not identically zero.
Thus the multiplicity of S at a generic point of A is 2. Moreover, S’ has only isolated
singular points except for the double curve A.

Let 7 : W —— W be the blowing-up with center A and put & = YA, If S is
the proper transform of S’ by 7, then it is linearly equivalent to 7S5’ — 2€. Since the
normal sheaf of A ~ P! in W is O(—1) @ O(—2), £ is isomorphic to 5.

7.2 We show that S is nonsingular in a neighbourhood of SN &. For any point
P € A, we can assume that ({, y, t) forms alocal coordinate system in a neighbourhood
U of P, where y =Y1/Y, and ¢ is a local parameter of A at P. We regard the 1; in (8)
as functions of (¢,() in U. Then, on U, S’ is defined by

D3y 4+ Yo Cy® 4 i Cy + 1hoC? = 0.

Since 13 does not vanish in a neighbourhood of A, we can assume 1, = 0 by replacing
y by y+ 120/ (3%3).

We cover 771(U) by open sets Uy, U, with coordinates (uy, v1, t1), (ug, va, t2),
respectively, where

= 1wy = Uy, ¥ = Uy = Ugty, 1 =1y =1,
Then S is defined by

Paus + rvr + vy =0 on Uy, (9)
Yaugvs + Y1vy + g =0  on U,.

Since 13 1s a nonzero constant on vy = 0, S is nonsingular in U;. Since g is at most
of multiplicity 1 at P, S is nonsingular in Us.

Thus S has only isolated singularities. Hence it is normal by Serre’s criterion.
We remark that S is not necessarily the normalization of S: If 11 does not vanish
identically on A, then £ N S consists of two disjoint curves E and G, where E is
defined by v; = 0, and G is defined by 1 + vy = 0 on U; and Yqvy + 9y = 0 on
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U,. Thus S is the normalization of 5" in this case. On the other hand, if 1; vanishes
identically on Ag, then we have £|z = 2F + G, where G is defined by ¢y = 0. Since
o has a simple'zero on Ay, G is a fiber of £ — A. Thus S is obtained by blowing up

a point on the normalization of S’
We show that F is a (—1)-curve on S. We let Z be the divisor on W defined by

w*( and Z its proper transform by 7. Then Z ~ 7*w* Ao — £ and it is given by vy = 0.
Thus (9) shows that F = Z|5 We identify Z with 2;. Then we have

T*HIZ ~ A0+I‘, T*w*r|2 ~ F, 5’2 ~ AOT

Further we have

Zl; ~ (rw* (Do +20) — 20wl — )|
~ —Ag— T

since we have Ag(Ag + 2T) = 0 on 3. Thus we get

B =

Nt R‘l

il

7’5
[P(3H + w'T) -+ 27

—(Do 4+ 2D)[3(Ag +T) + ' = 2(Ap +2T)] (on Z ~ %)
= -1

Il

Lemma 7.3 The map f:5 — S’ factors through S.

-~ Proof. Let 7 be the ideal sheaf of A in S’. We show that ]AFII O is invertible.
For this purpose, we freely use the notation of 5. 2. Let G be the greatest common
divisor off H, and f w*Ag = 1" Dg. Recall that f Ho, = 0"G+ E and that 0*G can
be written as Gy 4 G1 + G’ with i(Go) = Ag, 4(G1) ~ T'. Since i(F) = Ay, we have
G > F and G > Gy. Thus it suffices for us to show that }*HOO — G and Ay — G do
not meet.

Let G5 be an irreducible component of G'. Since p(G3) is a point, we have
Go(fi" Ag) = 0. Thus, if G, intersects with a component of f*Ag, it must be a com-
ponent of G. We next consider the curve Gy. Clearly, it is not a component of " A,.
Since G1{ft"Ap) = 1, it suffices to show GG > 0.

The case Gy # E: We have G > E' 4 Gy. Since F is a (—1)-curve, we have

~1=KE=ME+2E + E(c*G). (10)
Thus E(¢*G) = 0. Then each irreducible component of ¢*G is a (—2)-curve. In
particular, KGy = 0 and we have GoG1+G'G; = 1. If GyG; = 1, then we get (4G > 0

since G > I+ Gy. We assume GoG; = 0 and G'G; = 1. Let G, be the component of
G' with G1G, = 1. I it is a component of G, then we are done. So we assume that G,
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is not a component of G and show that this leads us to a contradiction. Since G is a
(—2)-curve, we have

0= KGy = MGy +2EG, + GoG + GG, + G2 4 Go(G' — G).

Since MGy = EG, = GoGy = 0, we have G5(G' — G3) = 1. Thus we can find a
component Gy of G’ such that G3G3 = 1. Since (4 is not a component of G, so is Gj.
Then we have, as above, G3(G' — G5 — G53) = 1 since G5 is a (—2)-curve. Thus we can
find a component G4 of G' — Gy — G5 with G3G4 = 1, which is not a component of G.
Continuing this procedure, we would get infinite number of components G;, ¢ > 2, of
G’. This is impossible.

The case Gy = E: We have E(G; + G') = 1 by (10). If EG; = 1, then we are
done. So we assume that £G; = 0 and EG" = 1. Then G; is a (—2)-curve. Thus,
as in the previous case, we can find a component G, of G' with GG, = 1. If G, is a
component of G, we are done. So we assume that this is not the case. We in particular
have G, F = 0. Thus it is a (—2)-curve and we can find a component G5 of G' — G,
with G3Gs = 1. Then, as in the previous case, we get a contradiction by continuing
this procedure. Thus we have a chain G’ = G, + G, + --- + G, < G of irreducible
components of ¢*G such that G;G;41 = 1, G; is a (—2)-curve for 1 < n, and G, is a
(—3)-curve. g.e.d.

7.4  We calculate the invariants of S. Since 7°(K, + 5 — &) ~ 7°H + Z, the
duahzmg sheaf of S is given by wg = (9( *H|z+ E). Since F(7*H) =0 and E? =
we get w? = 14 by

(T H|z)? = (TH)(7*(3H + @* (280 +T)) — 2£)
HY3H +w* (200 +T))  (on W)
15,

I

Il

where we have used the equality H? = Hw*(Ay + 3T') in the Chow ring of w.
In order to calculate x(Oz), we use the exact sequences

0— O(Ky) — O H+Z) — ws — 0,
and
O~ )—>(9(TH+Z)—>O( I')—o.
From these, we get Hq( ) ~ HYO(r*H + Z)) HYO(rH)) ~ H(W,O(H)) for

Wg
g <2 Thus P(wz) = 7, h'(ws) = 0. Since S is a normal surface on the nonsingular
threefold W, we see that S has only RDP as its smgulanty from the equality x(03) =

x(O3).
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7.5  Conversely, we start from S’ defined by (8). We can assume that it has
only RDP except for the double curve A if we choose the ¢; in (8) general. Let S be
its proper transform by 7 : W — W described above. Then it has only RDP. Let S
be the minimal resolution of S. Then S has a (—1)-curve E. Let o : S = S be the
contraction of E. Then S is a minimal surface satislying p, = 7, ¢ = 0 and ¢? = 15.

Since HY(K) is in bijection with HO(VV, O(H)), it is of type I.

8 Surfaces of type I-0: The case (s.2).

Im this section, we study the case (s.2) of 6.1.

8.1  Since p, = 6, we have (a, b, ¢) = (0, 1, 2) by Lemma 6.3. As in 7.1,
we can show that S’ = f(S) is linearly equivalent to 3H + w*(2A¢ +T) on W =
P(O @ O(Ag + 2T")) and that its equation can be written as

YoV + P YEYs + YoV} + aY = 0, (11)

where (Y, Y1) is a system of homogeneous coordinates on fibers of w : W — %, and
¢, 1o and 1p;, 1 < 1 < 3, are sections of O(Ag), O(Ae+1T') and O((i+2) Ao+ (2¢+ 1)T),
respectively. We let Z be the divisor on W defined by (.

We study the singular locus of S’. For this purpose, we let H € |H| be a general
member. Then it is isomorphic to %; and H N S’ can be identified with C*. Since
p.(C*) = ¢g(C) + 1, C* has a singular point P of multiplicity 2. By Lemma 6.6,
P e HNZ. I we vary H in |H|, such P traces a curve A on Z ~ %;, which is a
multiple curve of S'. Putting ¢ = 0 in (11), we get Y1 (1 YZ + ¢YoY: + ¢3Y7) = 0.
Thus, by identifying Z with ¥;, we get S'|z = Ag + G’ with G' ~ 24y + 2. Since
G' > 2A, we have either

i) S|z =Ag+ 2A, A ~ Ay + T is irreducible, or
i) S'; =3A¢+2A, A~T.
We let D be a general member of |*T'| on S, and put D' = ]A‘(f)) Then D' ~ w*T'|g.
Since wpr = Op(H + w* (Ao + 1)), we have
degwpr = (H + w* (Lo + T))(3H + @™ (240 + T'))w™T' = 8.

Thus D' is of arithmetic genus 5. Since D is of genus 4, D' has a singular point of
multiplicity 2. Thus S’ has a multiple curve which intersects with D’. In the case 1),
A has such a property. In the case ii), there is a multiple curve other than A.
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8.2  Here we consider the case i) of 8.1. Since a general H € |H| induces on
7 ~ %3, an irreducible divisor linearly equivalent to Ag + I' and since the restriction
map HO(W,0(H)) — H%(Z,0(H|z)) is surjective, we can assume that A = Z N ()
by a suitable change of (Yg) € |H|. Thus 1, and 3 in (11) can be divided by (. Since
A is a double curve, S’ is defined by -

YoC¥y + hr Yo' V1 -+ YCYoYY -+ (7YY = 0, (12)
where ¢, 1 = 2,3, is a section of O(3A¢+ (2¢+1)I") on ¥;. We remark that ¢; must be
a nonzero constant on Ay, since S’ is irreducible. In particular, the multiplicity of S’
along A is 2. Further, we can assume that ¢, and 5 do not vanish identically on A,.
This can be seen as follows: Let w be a section of O(2I') and put ¢ = (w. If we replace
Yy by Yo+ Y1, then 4, for example, is replaced by t(*w® + 1hyw? + ¥4 Cw + 0%, Thus,
by such a change of coordinates, we can assume that ;] does not vanish identically on
Ay, since 1 # 0 on Ag.

Let 7 : W — W be the blowing-up with center A and put & = 7~1(A). Let §
be the proper transform of $’ by 7. Then S ~ 7°5' — 2£. For any point Q € A, we
can assume that ((, y, t) forms a local coordinate system in a neighbourhood U of Q,
where y = Y5/Y; and ¢ is a local parameter of A at Q. We cover 7~ *(U) by open sets
Uy, U, with coordinates (uy, vy, t1), (uy, va, t2), respectively, where

C=ujv; = Uy, Y= U = Uplp, T =11 =15
Then S is defined by

ouivy + 1 + Phvs + P5of =0 on U,
Yousvs + Prvi + Yhus + 95 =0  on U,.

Since 1 is a nonzero constant on Ag, S does not meet the divisor (v1) on U;. Since v/}
and 1 do not vanish identically on Ag, S has at most isolated singularities on U,. The
curve ENS is defined by uy = 91 + v, +14v? = 0 on Uy and u, = Prvi+Phug P =0
on U,. Thus S is the normalization of S’. In particular, the map [ : 5 — S factors
through 5.

Let Z be the proper transform of Z. Then we have wz = O¢(7*H + Z). We recall
that S contains a rational curve F defined by ¢ = Y; = 0 and that it is nonsingular
in a neighbourhood of E. Thus the above local calculation shows in particular that Z

induces F on S. We have the following by identifying 7 with ;.
T H|; ~ &z ~ Ao+ T, 77w T~ T, Z]z ~ =0y — 2.
Then
B2 =75 =7"[r(3H + ') +27] = —1.
Thus E is a (—~1)-curve. The invariants of S can be calculated as in 7.4. We get

wi = 11, h’(wg) = 6 and A'(wz) = 0. We remark that H°(wz) is in bijection with

HO(W,O(H)). Since x(03) = x(Ogz), we see that S has only RDP. The existence of

surfaces of this type is now clear.
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8.3  We consider the case ii) of 8.1. In this case; ¢;, 1 <1 < 2, can be divided
by ¢. We let P be the point on 3; with @ *(P) = A. Then P lies on the zero section
Ag. Since A is a double curve, the equation of S’ can be rewritten as

GoC?YG + $1CYGY1 + $2CYoYY + 45Y) = 0, (13)

where ¢o, ¢1, ¢ and ¢3 are sections of O(I'), O(280+3T"), O(3L0+5T") and O(5A4+TT)
on Yy, respectively, which satisfy the conditions:

0) ¢ is not identically zero.
1) ¢; and ¢, vanish at P.
2) P is a singular point of multiplicity 2 of the curve (¢3).

Thus, if {5 is a section of O(Ag+T') such that ((o, ¢) forms a system of homogeneous
coordinates on fibers of ¥, then ¢; can be written as

$1 = ol + a1 (o + @,
$s = Pow(S + L1+ faloCP + B,
¢s = WG + NwGl+ 12GEC + VG C + 1ot + 1,

where w is a linear form on P* which gives P on Ay, and «;, f;, 1 are homogeneous
forms on P! whose degree can be determined uniquely by the linear equivalence classes
of ¢’s. In particular, oy is a constant. Further, we can assume that (¢3) is irreducible
and nonsingular except for P.

We let Aq be the curve on W defined by ¢ = ¥; = 0. Then S’ has only isolated
singular points except for the curve A 4+ Ag. We let 75 : Wy — W be the blowing-up
with center Ay and denote by £ the exceptional divisor. Since the normal sheaf of
Ao ~ PYin W is O(=1) @ O(—1), & is isomorphic to 5. If we denote by S” the
proper transform of S’ by 71, then we can show that f: 5 — &’ factors through it as
in Lemma 7.3.

For any point @ € Ag, we can assume that (¢, y, ¢) forms a local coordinate system
in a neighbourhood U of @, where y = Y7/Y; and ¢ is a local parameter of Ag at Q. We
cover 7~ 1(U) by open sets Uy, U, with coordinates (u1, vy, t1), (ug, vz, ts), respectively,
where

(= uv; = Uy, Y= Uy = Uplsy, =11 =1,.

Then S” is defined by

‘f’OUf + P1v1 4 Pouqvr + P3u; =0 on Uy,
$o + P12 + Pausv? + Pausvd =0 on Us.

Since ¢ is the function in ¢ of degree 1, S” is nonsingular on U,. On Uy, it is singular
along the curve v; = w = 0, which is the proper transform A’ of A by . S"N&"is
defined by u; = v1(Pov1 + ¢1) = 0 on U; and uy = ¢y + ¢1v5 = 0 on Us.
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Let 7 : W — W, be the blowing-up with center A’. Let £; be the proper transform
of & by 7, and let &, be the exceptional divisor of 7. Then &; is £y blown up at
one point, and &£, is isomorphic to ;. The proper transform Sof 'by 7=1 07 is
linearly equivalent to 7S’ — 2(&; + Er).

. We let V be a sufficiently small open neighbourhood in W; of a point @ € A
On V, we can regard ¢y, o;, f;, v as functions of w. In particular, we can write
¢o = Tow + r with some constants ro, r1. If @ € &' then we can assume that
(us, vy, w) is a local coordinate system on V. We cover 7, (V') by open sets V3, ¥, with
coordinates (uy, wi, z1) and (u1, wq, T2), respectively, where

W= wW1T1 = Wy, U3 = W1 = WyT3.
Then S is defined by

Po + ¢1 + Phus + Pyug = 0 on Vi,
QSOm% + ¢lzo + Phuszy + dhu; =0 on Vs

where

P} = gz + oqus + auiwy,

Py = 50551 + Prus + Pouiwy + Bsuiwy,

¢h = 27 + pwzs + Vi, R w . 2;

¢] = oo + aquize + azufwzmg,

= fo + Prurza + Polurz2)wa + fa(urz2) w3,
3 =1+mwzs + iy Yiluaza) wy .

Thus S is nonsingular on V; and it has at most isolated singular points on V;. Varying
Q on A’, we find similarly that S has only isolated singular points. SN & is defined
by uy = row + 71 + apwv, = 0 on Us, uy = rowyzy + r + agz; = 0 on Vi and
Up = ZL'Q((T’()'IUQ + r1)z2 + ap) = 0 on V5. SN 82 is defined by

w) =T + aozy + ur(og + foz1 + frus + 23 + iwazy + ud) =0 on V3
wy = 1173 + cpTa + ur (172 + Pozs + fruizs + 1+ yuizs + %2uiz2) =0 on V

Thus S is the normalization of S” unless r; = ag = 0. If r; = ap = 0, then it is
obtained by blowing up a point of the normalization.

Lemma 8.4  The map f: 5 — S' factors through S.

Proof. We can assume r; = o = 0. Let T, be the fiber of 3, defined by w = 0.
Let us use the notation of 5.2 and the proof of Lemma 7.3. We have the natural map
[ S — ¥, Welet F be the greatest common divisor of 4*T',, 4"Ag and f Ho. As
we have seen above, S is obtained as the blowing up of a point of the normahzatlon
of*S”. Thus it suffices to show that F is not zero and that *T', — F, i"Ag — F and
}*H o — F do not meet simultaneously.
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We first extract information from S — S”. Since UsNS"N(vy) is defined by ¢ = 0,
G, is a common component of'}*Hoo and 4*T',. Similarly, considering S” N &', we can
find a-.common component GG, of them, which results from the curve E'Nrrw T, and
satisfies G;G5 = 1. G, meets no other component of }”*Hoo. In particular, G; does
not meet /. Thus it is a (—2)-curve. Further, it can be checked that Gy = E. By the
proof of Lemma 7.3, we have a chain of rational curves C = G, + --- + G,, consisting
of components of ¢*@ satisfying G;G;11 = 1, 1 < n, G;G; = 0 for |1 — j] > 1, G; is
a (—2)-curve for 1 < n, and G, is a (—3)-curve with G,E = 1. Note that G; is the
unique irreducible component of ¢*G with G;G;..; > 0 and that the multiplicity of G;
in 0*G is one. We have C < G. Since the support of 77 H,, NS” is contained in the
union of 77w*T, and the proper transform 2’ of Z by 71, C — G5 results from the point
7 Hoo N Z' N1yw*l,. Thus it follows that G; 4 C coinsides with the greatest common
divisor of f H,, and 2*T,. Therefore F = C.

Thus it suffices for our purpose to show that any irreducible component G* of
G" := "G — E — (7 — C does not meet C. The curve G;, 1 < n, does not meet G*.
We show G, also does not meet it. Since G, is a (-—3)-curve, we have 1 = IA(G”‘ =
(M +3E+G1+C+G"G, =3+1-3+G"G,. Thus G"G,, = 0. This show the

assertion. ‘ q.e.d.

8.5 Welet Z be the proper transform of Z by 7. Then 7~ mrwr Ay — £ — Es.
Thus wz = Oz(7*H + Z). We show that F := Z|z is a (—1)-curve. For this purpose,
we 1dentify Z with ¥;. Then we have

T*Iflz ~ A0+I‘, 51'2 NAQ, 52|Z ~ P

Since Z|; ~ ("@" (Ao + T) — 7w'T — & — E3)|z ~ —Ag — 2T, we have S|y ~
3(Ao+T)+T'+2Z]5 ~ Aq. Thus E is a nonsingular rational curve. As we saw above,

S is nonsingular in a neighbourhood of E. Since
B*=7"8= 7' (30 + w'T) + 22) = —1,

we conclude that £ is a (—1)-curve. Thus wg ~ 7 H|3z+ E. The invariants of S can be
calculated as in 7.4. Weh have w% = 11, h’(wz) = 6 and h'(wg) = 0. Further, H‘i(w:q)
is in bijection with H°(W,O(H)). In particular, since we have x(03) = x(0Os), S has
only RDP. The existence of surfaces of this type can be checked, if we choose s, f;, &
general.
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9 Surfaces of type I-0: The case (s.3).

In this section, we study the case (5.3) of 6.1.

Lemma 9.1  Suppose that S* ~ 4T — (p, — 6)F on W =P, .. Then
1) the dualizing sheaf wg- of S* is given by wg- = Og-(T + F') and

hO(S*7u}5‘) :pg+3) hl(S*,wS.) :0,
wi. = 3h°(S*, ws.) — 7 = 3p, + 2,

2) the singular locus Sing(S*) of S* has no horizontal component, i.c., the image
via g : S* — P! of any connected component of Sing(S*) is one point.

Proof. 1): Since Kw = —3T + (p, — 5)F, we get wg. = Og (T + F) by the
adjunction formula. By using the exact sequence

0— O(Kw) = O(T + F) — wg« — 0
and the fact that

HY(W,O(Kw)) =0 for q <3,
HI(W,0(T + F)) =~ HI(P",0(a+ 1) O+ 1) ® O(c+ 1))

for Vg, we get the desired formulae for 79(S*, wg+). Further, an easy calculation shows
wi.= (T + F)*(4T — (p, — 6)F") = 3p, + 2. Thus we get 1).

2):  Suppose that Sing(S*) has an horizontal component. Then any fiber of g is a
singular plane quartic curve. Thus the normalization of S* has a pencil of curves of
genus < 2. This contradicts that it is birational to the type I surface S. Thus Sing(S*)
1s vertical. g.e.d.

Lemma 9.2 Let S* be as in Lemma 9.1. Then the double curve of S* is the
unique fiber C, of g : S* — P'. Its support is a (possibly singular) conic curve or a
line viewed in the fiber P* of W.

Proof. 1t follows from Lemma 6.7 that C* ~ 4Ay + (p, + 2d)I" on ¥, and that
C* has two singular points P; and P, of multiplicity 2 on the same fiber T';. Thus C*
meets I'; at no other points. We regard ¥, as a member of |T|, and let F; be the fiber
of m: W — P! which induces I', on ©,;. The rational curve T’ is a line in F, ~ P2. If
we vary Yy in |T'|, then, by 2) of Lemma 9.1, singular points of C* traces a curve on
F;, which is a double curve of S*. Since C* is nonsingular except for P; and P, there
is no other multiple curve. Thus the double curve is a line or a conic (in F,) according
to whether the singular points of C* are infinitely near or not. g.e.d.
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Lemma 9.3  Let S* be as in Lemma 9.1. Then the integers a, b, ¢ satisfy the
conditions

1) a+c<3b+3, and
2) b<2a+2.

Proof. We take sections Xo, X7 and X, of O(T' —aF), O(T ~bF) and O(T —cF),
respectively, such that they form a system of homogeneous coordinates on each fiber
of W = P, — P'. Then the equation of S* can be written as

> duXo TX1X] =0, (14)
1,520,i45<4 :

where ¢;; is a homogeneous form of degree (4 — i — j)a -+ b+ jc — (p, — 6) on P'. If
4b < p, — 6, then the left hand side of (14) can be divided by X», which is impossible
since S* is irreducible. Thus we get 1). If 3a + ¢ < p, — 6, then the curve B defined
by X; = X, = 0 is a multiple curve of S*. This is impossible by Lemma 9.2. Thus we
get 3a+c>p, —6,1e,b<2a+3. If b= 2a+ 3, then ¢ and ¢y are constants. As
we have seen above, ¢g; cannot be zero. But then S* is nonsingular along B. Since
the double curve C, meets B, this is impossible. Thus we get 2). g.e.d.

9.4 We call C; in Lemma 9.2 the singular fiber of S*. We have the following
list of singular fibers (as plane quartics):

1} Cy = 2L, where L is a nonsingular conic.
2y Cy=2L, L =1L1,+ Lo, where Ly, L, are distinct lines.
3) Cy = 4L, where L is a line.

We let F; be the fiberof 7 : W = P, — p! containing C; as in the proof of
Lemma 9.2. Take an affine coordinate ¢t on P! such that ¢t = 0 defines F, on W. Then
the equation (14) can be rewritten as

dc—p,+6 .
> (X, Xq, Xo)t =0, (15)
i=0
where the 1); are homogeneous forms of degree 4 in Xy, X;, X;. Then 1y defines C,
on F, ~ P?.

We denote by v: W — W the blowing-up with center L, and let S* be the proper
transform of S* by v. Let Z be the ideal sheaf of L in S*. Since f71Z - O is clearly
invertible, f : S — S* factors through 5’

In the following, we shall sketch the curve D, on S coming from C,, which we call
the canonical degenerate fiber of h =go f : S — P*.
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9.5  We assume here that S* has the singular fiber of type 1). For any P € L,
we can take a small open neighbourhood U of P in W with coordinates (¢, z, v}, where
{is as in 9.4 and (z, y) is a local coordinate system on F, ~ P? such that [ is defined
by z = 0. Then, on U, the equation (15) can be rewritten as

4c—(py—6)

2+ frot + Z fiti =0,
=2

where the f; = fi(z,y) are holomorphic functions in z, y.

Let v : W — W and S’ be as in 9.4. We put £ = v~ (). Since the normal sheaf
Ny, of L = P! is given by O(4) ® O, £ is isomorphic to Ly. We show £|¢ ~ —Ag: Since
det Nj, = O(4), we have Op(Kw) = O(—6). Then we get

[l’g ~ (I/*](W + 25)]5 ~ —6I' + 25!5

On the other hand, we have Ky ~ —2Aq — 6I". Thus we get &|s ~ —A,.

We have S' ~ v*S* — 26 ~ v*(4T — (pg — 6)F) — 2E. Thus S'|¢ ~ 24 + 81" on
£ ~ ¥,. Let F' be the proper transform of F;. Then F' ~ v*F — &, and it does not
meet S’. Further, S’ is the normalization of S*. These can be seen as follows. We cover
v=YU) by open sets Uy, U, with coordinates (u1,v1,y1) and (uz, vz, y2), respectively,
where

1= UV == Ug, T = U3 = UpUsp, Y == Y1 = Y.

Then S’ is defined by

T+ fivr + Zise fiU§_?U§ =0 on Uy,
V2 fivg + Yisg fius ©=0 on U,.

Since F’ is defined by v; = 0, it does not meet S'. We remark that F' induces
on & the O-section Ag. Thus v|s : §' — S* is finite. £ N S" is defined by v, =
T+ £1(0, y1)vs + f2(0, y1)v? on Uy and uy = v2 + f1(0,y2)v2 + f2(0,y2) == 0 on U,. Thus
‘there are the following possibilities:

1) S'|¢ 1s irreducible.

i1) S'|¢ is reduced and consists of two irreducible components each of which is linerly
equivalent to Ag + 41

i) S'le = 2L/, where L' ~ Ag + 4l is irreducible.

If S" has a multiple curve, then it must be contained in v*F as we saw in Lemma 9.2.

Thus S’ may not be normal when ii1). Since the singularities of C* are not infinitely

near, and since v*1" meets L', we see that L' cannot be a multiple curve. It follows that

S’ is normal. The cases i) and ii) occur when the singular points of C* are ordinary

double points. On the other hand, the case iii) occurs when they are simple cusps.
Since (v*T' + F — )]s ~ v*T| g1, we have wg: = Os(v*T'). Then

Wi = (VTP (*S* —28) = T*(AT — (py — 6)F) = 3p, — 6.
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In order to calculate x(Og), we use the exact sequences

0— O(Ky) = OWT+F')— ws — 0,
0—O0WT)— OWT+F")— Op(—1) — 0,

where " is identified with P?. From the cohomology exact sequence derived from the
first sequence, we get H9(wg) ~ HI(W,OW*T + F')) for ¢ < 2. From the second
one, we get H?(O(v*T + F')) ~ H?(W, O(T)) for any p. Thus we have h%(ws) = p,,
h'(wsg) = 0. Then, since x(Og) = x(Og'), we see that S’ has only RDP. The canonical
degenerate fiber D, is in general a hyperelliptic curve of genus 3 as i) shows.

9.6 We consider the singular fiber of type 2). Let P € L. If it is not L N Lo,
then we can study S* in a neighbourhood of P as in 9.5. So we assume P = L; N L,.
We can take a small open neighbourhood U of P in W with coordinates (t, z, y), where
tis as in 9.4 and (z, y) is an affine coordinate system on F, =~ P? such that L; and L,
are defined by z = 0 and y = 0, respectively. Then, on U, the equation (15) can be

rewritten as
45”‘(?9 ’“6)

oy’ + fzyt+ o fit' =0,
=2
where the f; = fi(z,y) are polynomial functions in z, y.

Let 7, : W7 — W be the blowing-up with center L;. We denote F' and &£’ the
proper transform of F, and the exceptional divisor of 77, respectively. We let S; be the
proper transform of S* by 7;. We cover 77}(U) by open sets U1, U, with coordinates
(u1,v1,y1) and (uy,vq, y2), respectively, where

1= U1U) = Uy, T = Uy = UyVp, Y = Yy = Yo.
Then S5; is defined by

yf + fiyavr + 2i>2 f,‘ufl_zvj =0 on Uj,

y3v5 + fiyovs + 22 fiU;_Q =0 on U,.

Let 7, : Wy — W; be the blowing-up with center the proper transform Lj of L,
by 1. Put 7 = 73 075 and let #* and & be the proper transform by 7 of F' and
&', respectively. We also put £, = 7, '(L}). We remark that £; is ©; blown up at a
point on A, and &, is isomorphic to X,. If S is the proper transform of S* by 7,
then it is linearly equivalent to 7*5* — 2£; — 2&,. Let V be a open neighbourhood
of @ € F'NE'". We can assume (ug, v1,y;) forms a system of local coordinates on V.
We cover 75 (V) by two open sets V;, V, with coordinates (u;, wy, z1) and (uy, w, z5),
respectively, where

U1 = WiTy = Wy, Y1 = Wy = Waks.
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Then S, is defined by

I+ fiz1 4 Zise fi(ulwl)ifzxj =0 on Vi,
25+ fiza + Liso fiwt 2wy ? =0 on Vi

Thus it does not meet F. S, NE; is defined by uy = y2v2 + 1100, y2)yava + f2(0,y2) = 0
on Uy, uy = 1+ f1(0,w1)z; + f2(0,wy)z? = 0 on Vi and wy = z3 + f1(0, wzz2)z2 +
f2(0, wyz5) = 0 on V,. Further, S;NE, is defined by wy = 1+ fi(u1, 0)z1+ fo(us, 0)z? =
0 on Vi and wy = 23 + f1(u1,0)zy + fo(u1,0) = 0 on V. Since P~ — & — &,
and since it does not intersect with Sy, we have wg, = Og,(7*T). Then we can
calculate the invariants of S, as in 9.5. We have w?, = 3p, — 6, h%(ws,) = py and
h(ws,) = 0. Further, H%(ws,) is in bijection with H°(W,O(T)). In particular, we
have x(Os) = x(Os,).

We assume that S, is not normal and show that this leads us to a contradiction.
By Lemma 9.2, any multiple curve is contained in £; U &, because S, does not meet
F. Recall that the singular points of C* are not infinitely near. Since 7*1" induces on
each &; a fiber of the natural map £; — P', we see that the possible multiple curve
is = defined by uy = yo = 0 on U, and u; = z, = 0 on V5. This occurs when f; and
f3 vanish at z = y = 0 and f, vanishes twice at that point. Let 75 : W3 — W, be the
blowing-up with center =, and let S3 be the proper transform of S, by 75. We denote
by £3 the exceptional divisor. Then S; is normal and ws, = O(73 71 — £3). Thus
H%ws,) is in bijection with H°(W, O(T — {z = y = 0})). 1t follows h°(ws;) = py — 1.
Since the minimal resolution of S3 is birational to S, this is impossible. Thus S; is
normal.

Let W and S’ be as in 9.4. Then W is obtained from W, by contracting the curve
= to the point & If f,(0,0) # 0, then S; does not meet =. Thus S’ ~ S, has only
RDP as the above calculation shows. On the other hand, if f,(0,0) = 0, S, is obtained
from S’ by blowing up £&. We show that £ is a RDP on §'. Let 0 : X — S, be the
minimal resolution. Since X is birationally equivalent to S, we have x(Ox) = x(Os).
Then we see that S, has only RDP by x(Os,) = x(Ox). We in particular have
wy = 0*wg, = O(c*7*T'). Let E' be the proper transform of = by 0. Then

(UXEI = (O’*(.USQ)E, = (U*WSQ)(U*E) = LL}S2E = 0.

Thus ='is a (—2)-curve on X. Then, since S, has only RDP, each irreducible component
of 0”2 is a (—2)-curve. This implies that £ is a RDP on S’. Thus S’ has only RDP
and S is the minimal resolution.

In order to describe the canonical degenerate fiber, we let A : £; — £ ~ %, be the
restriction of 75 to £;. This is the blowing-up with center £' N L}, and its exceptional
curve F can be identified with the intersection £; N &,. With these notations, S|, is
linearly equivalent to A*(2A¢ + 4T') — 2E. Thus it is the proper transform of a curve
of arithmetic genus 2 with a double point. Since Sy|z, ~ 24+ 4L on &, =~ 3y, it is
an elliptic curve.
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Thus, in general, the canonical degenerate fiber consists of two elliptic curves meet-
ing at two points. The self-intersection number of each curve is —2.

9.7  We suppose that S* has the singular fiber of type 3). For any P € L, we
can take a small open neighbourhood U of P in W with coordinates (¢, z, y), where ¢
is as in 9.4 and (z, y) is an affine coordinate system on F, =~ P” such that L is defined
by z = 0. Then, on U, the equation (15) can be rewritten as

4c—(py—6) .
at+ fir’t+ > fit =0,
1=2

where the f; = fi(z,y) are functions in z, y. Since L is a double curve, f,(0,y) is not
identically zero. ‘
Let v : W — W and S’ be as in 9.4. We denote by £’ and F' the exceptional divisor

and the proper transform of Fi, respectively. We cover v~ (U) by open sets U, U,
with coordinates (uy, vi,y1) and (uz, vz, y2), respectively, where

t = uv1 = Uy, T = Uy = UpVs, ¥ = Y1 = Yo.
Then S’ is defined by

2 —2,0

ui + fruavs + s fivy vy =0 on Uy,
2,4 2 =2

uzvy + frugvy + Uisa fiug =0 on Us.

We let 7 : W — W be the blowing-up with center /N & and put 7 = v o 7. We
denote by F, &, and &, the proper transforms of F', £ and the exceptional divisor of
7, respectively. Then & ~ ¥; and £, = 5,. We have &3|g, = Ay, &g, ~ Do+ 2T
and Flg, = Ao. Further, we can show &;]s, ~ —2A¢ and Eqlg, ~ —A¢ — T

Let S" be the proper transform of S* by 7. Let V be a open neighbourhood of
Q € F'n&. We can assume (uy,v1,y;) forms a system of local coordinates on V.
We cover 77 *(V) by two open sets Vi, V, with coordinates (wy,z1,v1) and (ws, 22, 11),
respectively, which satisfies

U1 = W1 = Wy, VY1 = W1 = UWQTLo.
Then S” is defined by

3+ fizy + Lo+ Tiss f,'wfi__"*m’fiz =0 on Vi,
1+ frza + fozh + Livs fiwszi =0  on V.

Thus S" does not meet F. S" N &, is defined by uy = £5(0,42) = 0 on U, and =y =
£2(0,71) = 0 on V;. Further, S”" N &, is defined by wy = 23 + f1(0, y1)z1 + f2(0,1) = 0
on V3 and wy = 14 £1(0, y1)22 + fo(0,y1)25 = 0 on Vo. Thus 5" — S’ is finite.
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We have S” ~ 7*(4T — (p, — 6)F) — 2&, — 4&,. Since F e F— & —2&, and
since it does not intersect with S”, we get wgn ~ 7T gn. Then we can calculate the
invariants of S” as in 9.5. We have w?, = 3p, — 6, h®(wsn) = p, and A'(wss) = 0. In
particular, we have x(Og) = x(Os»). We can show that S” has only isolated singular
points as in 9.7. Thus S” has only RDP. Further, we see that S is the normalization
of §’. In particular, we have a holomorphic map S — S”.

Since we have S5”|¢, ~ 4T and S"|g, ~ 20¢ + 41", the canonical degenerate fiber
D, consists of an elliptic curve R and 4 rational curves [;; 1 < ¢ < 4, in general. Fach
[; intersects with R at a point: Since 5%5" = —8 and 5%5” = —2, each of them has
self-intersection number —2.

9.8 In order to show the existence of surfaces of type (s.3), we consider the

surface S* in P, . defined by
' e P+ 0qQ =0, (16)
where

ap € HY (P, 4., O(F)),

a1 € H'(Pyp., O(eF)),

P € H(Pype, O(4T — (pg — 4)F)),

Q€ H(Pupe, 02T — ((py — 6 + €)/2) 1)),

with € = 0 or 1 according to py is even or odd. We assume that the a;, P and
Q are general. Let (Xo, X3, X3) be as in the proof of Lemma 9.3. We put P =
Yo Xo X (7 and Q = g Xeo '“JX‘XQ as in (14).

By the argument found in [2, §2], we can show the following:

i) Consider the linear system |41 — (p, — 4)F|. If 2a + 1 > ¢, then its general
member is irreducible and nonsingular. If a + ¢ < 3b+ 1 and b < 2a + 1, then its
general member is irreducible and has only RDP.

ii) Consider the linear system |21" — ((p, — 6 + €)/2)F|. I b+ ¢ < 3a + 2, then it
is free from base points. If @ + ¢ < 3b+ 3, then its general member is irreducible and
has at most singular points of type A;.

In i) and ii), the singular points are on the intersection of the curve B defined by
X; = X, = 0 and the fibers defined by pg; = 0 and go; = 0, respectively. Further, we
remark that the following holds.

iii) If a + ¢ = 3b+ 2, 3b + 3, then X, is a fixed component of [4T — (p, —4)F|. In
this case, we can write P = X,P' with P’ € H°(O(3T — (p, — 4 — ¢)F)). The linear
system |31 — (p, —4 — ¢) F| is free from base points if b < 2a + 1. Thus we can assume
that (P) is a divisor with simple normal crossings.

We show that S* has only RDP except for the double curve C, defined by oy =
Q = 0, assuming that a +¢ < 30+ 3 and b < 2a + 1. Let £ be a singular point of
S*\C;. Then it is contained in the set of singular points of (P) on (Q).
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We first consider the case a+c¢ < 3b+1. Then, by i), (P) has only isolated singular
points on B. If 2a4+1 > ¢, then we can assume that (P) is nonsingular. If b+c < 3a+2,
then we can assume that (Q) does not pass through singular points of (P). Thus S*
is nonsingular except for C; in these cases. So we can assume that 2a + 1 < ¢ and
b+c > 3a+ 2. Then (P) and (Q) contain B. The singular point £ is a zero of py;.
Put z; = X1/Xo and z, = X5/Xo. Then, in a neighbourhood of B, (z;, 7,) forms a
system of affine coordinates on each fiber of m. We take a local parameter ¢ of B at £.
We can assume pg; = ¢ in a neighbourhood of £&. Then we can rewrite (16) locally as

—za(at + )
= (a’gpzo + algfo):v:f + (Ofgpso + 2a1q10f120)$§ + (agpm + 041930)-"3%

Thus € is a RDP of type A,, for some n < 3, if we choose «;, p;;, g;; general.

We next consider the case a+c¢ > 3b+2. Let P be asin iii). Since b < 2a-+1, we can
assume that (P') meets transversely with B. If a = b, then Bs|2T — ((py,—6+¢)/2)F| =
{) and we can assume that the divisor (X5)+(P’)+(Q) has only normal crossings. Thus
£ is a A;-singularity as (16) shows. If a < b, then goo = g10 = 0. Thus (Q) N (X,) = B
and (Q) contacts (X,) at a generic point of B. Thus £ € B. Then a local study as in
the previous case shows that it is a RDP of S*.

Remark 9.9  The singular fibers of type 3) are implicitly used in [1] to construct
surfaces with pencils of nonhyperelliptic curves of genus 3. Note that we get a simple
elliptic singularity of type Ey if we contract the curve R in 9.7.
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fntroduction

Let «(V,0) be a normal isolated singularity . If we cut V with a
small real sphere centered at o , we have a real hypersurface M

of V with a natural strongly pseudo-convex CR structure
Deformations.of strongly pseudo-convex CR structures on # with
dimRMZS were considered first by M.Kuranishi (cf. [Ku31) in order to
treat deformations of (V,0) differential-geometrically, and were
improved later by T!Akahori for M4 with dimRM27 (cf. CA1ID)

It is a natural question to ask whether the Kurahishi family of
strongly pseudo-convex CR structures on # obtained in [Al1]l (also cf.
[M11) actually induces the versal family of deformations of (V,o0)

(cf. [G]) . In the case of codh(V,0)>3 , by [F1 , the latter
versal family is obtained as the maximal Stein completion of the
versal family of deformations of its regular part V™o .

On the other hand , realizations of deformations of abstract CR
structures are one of basic interests of deformation theory of CR
structures . Under some cohomological conditions , G.K.Kiremidjian
has done such a realization as boundaries of deformations of the
interior domain (cf. [Ki 1, 2, 31) . But in order to approach the
above problem , it is enough to consider embeddings of deformations
of CR structures into deformations of a tubler neighbourhood of #

So the main result of this paper is the following relative
version of T.Ohsawa's embedding theorem of a strongly pseudo-convex

CR structure (cf. [0]) :

—155—



Theorem.2. Let M be a smooth strongly pseudo—éonvem compact real
hypersurface of a compler manifold X with dimCX24 . Then the
Kuraniahi family of strongly pseudo—conver CR structures on M is
realized as a real hypersurface of the formally versal convergent

family of deformations of X near M

Hence , as stated above , we have

Corollary. Let «(V,o0) be a normal isolated singularity with
dimc(v,o)z4 and codh(V,o0)=3 . Let H=VnS with a sufficiently
small real sphere S centered at o . Then the Kuranishi family of

strongly pseudo—convexr CR structures on M is realized as a real

hypersurface of the wversal family of deformations of (V, o)

The existence of the formally versal convergent family of
deformations of X near 4 (Theorem 1) was essentially proved
in [A2, 31 . We will prove Theorem 2 as an application of a formal
deformation theory of X near ¥ . That is , we will show that the
versal map from the parameter space of the family in Theorem 1 into
the one of the Kuranishi family of CR structures is formally
isomorphic . The essential part of the proof is to construct the
formal inverse map by showing that the Kuranishi family of CR
structures on # 1is extendable to a formal family of complex
structures on a tubler neighbourhood of ¥ . This is a consequence

of the isomorphisms Hé(ﬁ,T’X)zHi (M.T’XIM) for i=1,2 , which was

9,
obtained in [Y]l , where Q 1is a tubler neighbourhood of ¥ in X .
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The arrangement of this paper is as follows . In §1 , we will
give a formulation of deformations of X near M . In §2 , we will
adjust arguments in (A21, [A-K] and (Kul, 21 to prove Theorem 1
Though they treated only reduced deformations , we will consider
non-reduced ones as well by slightly modifying their arguments .

We will prove Theorem 2 in §3

In more general situations dealt with in [M2] ,'thé method in
this paper works well and Theorems 1 and 2 hold

Some parts of this work were done while the author stayed in SFB
170 in Gottingen. He would like to thank Professor Dr. H.Grauert and
Professor Dr. H.Flenner for their hospitélities. He would like to
thank Professor Dr. A.Fujiki for valuable discussions in preparing

this paper.
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1. Formulation of deformations of a complex manifold near a real

hypersurface

Let X be a complex manifold with dimCX:N24 and 4 a strongly
pseudo-convex compact real hypersurface of X . We will consider a
functor of deformatibns of X near 4 : ?M : (Gan) -» (Sets) ,
where (Gan) denotes the category of germs of complex spaces , given
by

?M((T,O)):{(%.n)l(i) a complex space % ,

(ii) a smooth morphism n:q - (T,0) ,

(iii) n !(0)~a neighbourhood of # in X }/~ ,
where (%L, 7U~(L",n") if there exist neighbourhoods %1 and %i of
Yxo in %L and 4" respectively and a complex analytic isomorphism
X: ile'ﬂi such that n’e.x=n

We may assume that there exists a smooth strictly
plurisubharmonic function r: X~ (a*,b*) , —msa*<0<b*s+oo such
that dr=0 on X , Qa’b:{a<r($)<b} is relatively compact in X for
any a*<a<b<b* and H={r(z)=0}

Because #,(Spec C[t]/(t*))=1im H'(U,8,) , and by [A-GI ,
# UoH v

Hl(Qa b,e) measures the infinitesimal deformation space of ?M for

*®
any a*<a<0<b<b , Where 8 denotes the sheaf of germs of

holomorphic vector fields on X .
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Theorem 1. Under the above agsumption and if a*<a<0<b<b* , there
exrists a family n:d » T of complexr manifolds witlh n_l(o)zQa b and

such that it gives a formally versal convergent family for ?M for
c
any a<e<b . Where we denote MC:{r(m):c} .

We will prove Theorem 1 in §2 .
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2. Proof of Theorem 1

We fix a*<a1<a<0<b<b1<b* and an hermitian metric on X which

is real analytic on a neighbourhood of Qa b and equals to the Levi

metric near agal'bl . We denote QzQa,b and QI:Qal,bl‘

In the first place , we will construct a versal family (in
Kuranishi's sense) of complex structures of 4"-class over ﬁl , by
means of the method in [A2] . As shown in [A3] , we are able to

apply the method even to a (1,1)-convex-concave domain Ql .
Let r:dimCHl(ﬁl.T’X) and denote (t):(tl,...,tr)ecr . Let

f "}O,m) be a norm , between the Sobolev (m*1)-norm and the

tangential Sobolev (0,m)-norm , introduced in [A21 . In [A21 , we

obtained a convergent powerseries w(t)eﬂz’l{tl....,tr} , where

dg'q denotes the completion of Ao'q(ﬁl.T’X) with respect to

f H}O,m)—norm » such that

(2.1) @o(0)=0 ,

(2.2) if we denote by wl(t) the linear term of (%) , then

5¢1(t):0 and ¢, (t) spans HO’I(QI,T’X) ,

(2.3) 8¢(t)=0 on a neighbourhood of Q ,

(2.4) 39(t)—(1/2)38N [ (L), @(t) ]=0 .

Where N 1is the Neumann operator for a new boundary condition

introduced in [A21 . We recall the properties of N which will be

needed in our arguments (cf. [A21, Theorem 5.1)

(2.5) ¥ = Hy + (39+33)Ny¢
(2.6) If 8¢¥=0 and H¢=0 then ¢=33Ny ,



where H 1s the projection onto the harmonic Space H-2 with respect
to the new boundary condition , and
(2.7) H® is naturally isomorphic to HO'Z(QI,T’X)

Let h Dbe a complex analytic map from a neighbourhood W of
|

0eC’  into H2 given by h(t)=H[@(t),@(t)] , and T=h (0)
Let P(e(t))=8@(t)—(1/2){o(t),@(t)]
... ag,2
Proposition 2.1. P(Q(t))EFT'O®CA(O’m){t1,...,tr} , where
d?ézm) denotes the completion of AO’2(QI,T’X) by tangential Sobolev

(0, m)—norm .

The following Lemma implies Proposition 2.1 by the Grauert

Division Theorem (cf. ([G1)

_ ptl 0,2 ‘
Lemma 2.2. P(o(t))=0 mod (m +}T,o)®Cd(0,m){t1""'tm} for
all p=0
Proof. We will prove Lemma 2.2 by the induction on u . For

_ L 2 0,2
p=1 , it is clear because P(w(t))emt®cd(0'm){t}
_ ntl 0,2
Assume that P(e(t))=0 mod (m +}T,o)®cd(0,m){t} for p>1
By (2.4) , P(e(t)) =(1/2)39N[e(t), @(t)]—-(1/2)[o(t), (L) ]

If we denote by ¥ (t) the canonical modulo of [e(t),e@(t)] mod

(m“+2+9r'0)®cdga?m){t} by the Grauert division , then we have
Plo(t)) = (1/2)B3M()~(1/2%(t) mod (n"'2+g,. o2 {t] .
Hence H¢(t)=0 . Since 3dlo(t),@(t)]=2[P(e(t)),@(t)] , we have

¥ (t)=0 by the inductive assumption . Therefore we have

V(Et)=338N¥(t) by (2.6) . Q.E.D.
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By (2.3) and (2.4) , (1) satisfies an elliptic partial
differential equation Zi,j(82w/8tiafj)+D¢—(1/2)8[@.@]:O and also
satisfies 8¢/38t=0 , over a neighbourhood of @xD , hence ¢(t) is
real analytic and depends complex analytically on ¢ on a

neighbourhood of QxD where D is a neighbourhood of 0 in Cr .

Proposition 2.3. There exigsts a family of compler maniflods wn:%4 -
T with n—l(o)zQ and with a real analytic igsomorphism G:QxT - 4
such that (i) Gleo:iXmQ ,

(ii) G 1is a complexr analytic map with respect torthe complex
structure on QxI' defined by o({) ,

(iii) G is complex analytic on pxI for each fizxed ' p€eQ

Proof. By ideal—theoreticaily improvement of the argument in the
proof of Proposition 7.3 of [Ku2l , we can obtain a collection of
families of local charts . By the same argument in the proof of
Proposition 1.3 of [Kull using the Grauert Division theorem instead
of Lemma 1.3 of [Kull , we have an analytic space % by patching

these local charts together . Q.E.D.

Next we will show that this family m:% =+ (T,0) 1is a formally

versal family for ?H for any a<e<b .
c

Let a<a <c<b2<b and Q,=0Q Then , by the same

2 2 a2.b2 )

arguments in §3 of [A-K1 , slightly modified with the Grauert
Division Theorem (cf. [Gl) and relying on the isomorphism
T’X) for i=1,2 (cf. [H] Theorem 3.4.8) , we have

1.5 . i.5
H (QI'T X) ~H (92.
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Proposition 2.4. Let (T,0) and o(t) be as coustructed above .
If ' :%° > (S,0) be a family of compler manifolds with n° '(o)=a
netighbourhood of Qz . Suppose a morphism ot S‘1 - Tu and an

embedding g“: ﬁ2x8u - fi’xSS‘u are given for some p=0 satisfying

* oMz
(1)u p2 9", and

0,1

(2), (5ot (1)) (57 gz 80 emb" 4 AV L wed,, T X) [ (811 for

S,o)®C
any charts (U,z) of X and (U, (t",8)) of A , where pé and

Py denote projections onto the second factors . Then there exist

. utl utl, = .
extensions « ;8 and g : szsu+l - 4 XSSu+1

satisfying (1)u+1 and (2)u+1 . Where by subscript o we denote the

utl Tu+1
infinitesimal neighbourhood of order u

We will now show that Proposition 2.4 implies the following

formal versality of n:q4 - (T, 0)

Proposition 2.5. Let n:L - (T,0) be as in Proposition 2.3 and
n L > (S,0) be a family of complex manifolds with n’—l(o)za
neighbourhood of ”c . If a morphism ot Su - T“ and an

- ; . - p -
isomorhism H": StleSu - %leSu are given for some p=0 , where 11

and %1 are neighbourhoods of Mexo in 4° and I respectively ,

. utl ., utl . .
then we have extensions «o ; Su+1 -+ Tu+1 and H : ;'iszSwL1 -
12szu+1 . Where 1é and %2 are smaller neighbourhoods of cho

in % and 4L~ respectively
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1

Proof.  We may assume that ﬁéxo c %, . Let ct=cg*)™*  and
g“:G“o(a“)*(Glﬁ <) + where (@®)*G  is the real analytic
2

isomorprhism Q><S‘u -+ ;‘[xTSL1 induced from & 1in Proposition

2.3 via ot . Then , by Proposition 2.4 , we have extensions

ptl, utl .5 . . .
54 ’Su+1 - T“+1 and g -Q2X5“+1 - 9 x33“+1 satisfying (1)u+1 and
(2)u+l of Proposition 2.4

Let {ﬂi'(gi’t)} . {ﬂi,(gi,t)} and {Ui'zi} be systems of

local charts of 94 , 4 and X respectively and assume that

gi:fij(gj't) on ﬂinﬂj . §%:hij(§},s) on ﬂinﬂj and Zi:fij(zj)

on U.nU. . We denote §.°G(z.,t):§.(z.,t)
i g i i i 71
Suppose that the isomorphism ¢"* is given by §;:G%(§i,s)

Let x. (3s) be a homogeneous polynomial of s of degree u*l

Silutl
+ ~
given as the canonical modulo of g% 1(3)—Gﬁ(zi(zi,a“+1(s)),s)

u+2 . OoO ~ ’
mod m +}S,o in A (Uian,T X)([s]].
femma 2.6. 8xi|u+1(8):0
Proof. 8xi|“+1(s) =

(3-o(a®* 1ay) )g{z“ (s)-(aGH/at ) (3¢ (® g VE (z, o legy)

+¢(a”+1(s))x. (s) = 0 mod nP 2+yg

ilu*1 g S.0 ° Q.E.D.

_ u+l1 Al
Let Gi|u+1(3)~xi|u+l(8) and G, " (s8)=G7(s)*G; (s) .

ifu+l

ptl_pAptl . i
Lemma 2.7. G _{Gi (8)} 1is a holomorphic map from ﬁszSu+1

into aleSu+l where %2 is a smaller neighbourhood of Mcxo
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.I_
Proof. Let E%jl(s) be the canonical modulo of

pt2

utl u+l utl .
Gi (f (§ ., o (g)),s8)- h (G (§ ., 8),8) mod g +§S,o in

0
C (Uintan,e)[[s]]

Then =*1(% (z ., a*1(s)),9) = “+1(z 2 8)=h, ( Bl 5),8) =0
1J J J J J
ut2
mod. L +yS,o .
Let D={ord(h) | hem““ﬁ?s ,] - Then,
since 9“+1 s)=y g(”)(g )sY with 5 (z )EC ({U .00 } 8) and
“ij veD™ 4
(v) _ wt2
Eng& (z +0(s))s’=0 mod g +§S,o ,
we have &(v)(z .)=0 by induction on |v| ., where o(s) is a term of
order greater than zero with respect to s .
=il = pt2,
Hence Sy (§j,s)_0 mod My }S,o Q.E.D.
. ut1 u .
Hence we have an extension G of G© . It is clear that

-1

(C“+1) is an extension of a* .

Therefore Proposition 2.5 and Theorem 1 are proved .
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3. Proof of Theorem 2

Let mn:4 -» (I,0) be a family of complex manifolds with n—l(o)zﬂ in
82 and (w(s8), (S5,0)) the Kuranishi family of CR structures on M
with ©(0)=0 obtained in [Al1l or [M11 . Though we treated in [M1]
only reduced parameters ., we can improve the argument by the same way
as in the proof of Proposition 2.1 .

By the same argument in [A-M] , improved with Grauert Division
Theorem , we have a holomorphic map 8:(7,0) = (S,0) and a
Ck—embedding g:Hx(T,o0) » 4

Hence Theorem 2 will be reduced to the following Proposition
Proposition 3.1. 8 1is an isomorphism .

Proof. In order to prove this proposition , it is sufficient to
show that 8 induces a formal isomorphism .

On M , we have a direct sum decomposition as C -vector
bundles ; CTM=CF+°T"+°T" where °T':T’X|MnCTM , °T":T"X1MnCTﬂ and

F is a real line bundle . We denote CF+°T" by T° and

(p’IT,)_1 by <t where p’:CTXlMAT’XIM is the projection
We denote by the same symbol <t the composition of the

restriction map Ao’q(ﬁa pr 7K = Ag’q(M,T’XIH) and the map

Ag'q(ﬂ.T’XIM) - Ag’q(M.T’) induced from the above bundle

isomorphism <t , where a*<a<0<b<b* (cf. [Ak2]1 p. 319) .
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x*
Lemma 3.2. For any a,<a<0<b<b , Tt induces an isomorphism

0|q = ’ ~ g , .
H (Qa,b’T X) =~ Heb(H,T ) (1£q<n—2)

Proof. By the same arguments in pp. 81 and 82 of LYl , we have

0,95 %) =~ gl
H (Qa,O’T X) =~ H

3 (M.T’XlM) (1<q<n—2)

b
Since the bundle isomorphism t:T’X|M+T’ induces the isomorphisms of

cohomologies Hg’q(M,T’XIM)zHg'q(M,T') , Wwe infer the lemma from
b b

Theorem 3.4.8 of (H] . Q.E.D.

We note that Lemma 3.2 implies that BlT is an isomorphism .
1

Suppose that B“:B'T :Tu - Su- is an isomorphism for uxl
u

We recall that g(t) 1is represented by a formal power series
gi(t)eAO’O(UinM.T’X)[[t]] for each local charts (Ui'(zi)) of X
and (U, (5.,1)) of 4 respectively (cf. [A-M] §3) . Let g" be
the embedding MxTu - L’CxTTu induced from g .

Since the sheaf of differentiable sections of 77X vanishing
on # 1is a fine sheaf , we can extend g" to an embedding g":(a

neighbourhood of Q_.,=Q
3 b
3'73
Let o6%¢(t) be a family of complex structures over the neighbourhood

IXT = 4Ax..T for some a<a,<0<b,<b
u T'u 3 3

- of Q3 induced from the complex structure of % via the embedding

gt . Let o¢"(s) be a AO’I(Q3,T’X)—valued polynomial of g of
degree p given by @”(S)EG”((B”)hl(s)) mod-mg+1 . Then we have

(3.1)u P(@“(s))zo mod mg+1+} in A0’2(ﬁ3,T'X)[[S]] , and

S,0

in AO’I(H,T’)[[S]]

Boay— ntl
(3.2)u Tt (8)=0(8) mod ms» +§ b

S, 0
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Let Eq be a subbundle of T eA%¢°7r")”* such that
_ qu o , ~ 01q+1 o , . S qu ~ : ,
F(M,Eq)~{m€Ab (M, °T") | SbmeAb (M, °T")} and 6q—{@eA (Q3,T X
rweF(M,Eq)} (cf. [AK11 Proposition 2.1 and [Ak2]1 p.323

respectively )

Sublemma 1. Let @GAO’I(Q3,T’X) and o an almost CR strueture on

M induced from the almost complex structure ¢ on § ‘ Then

3
t@eAg’1(°T’) if and only if m€A2’1(°T’) . Moreover To=w

Proof. Since mT"ch"XIM , u—m(u)ewT"Xlﬁ for we°rT . If we

4 ”

denote by p and o the projections from CTXlM onto T’XIM

and T"XIM respectively , o{u—p“"o(uw)=p 0olu) . Since tp'lT,:id s
0,1 o , . - 091 ° - | 091 o‘r
rmeAb (°T") if and only if meAb (°F") . If meAb (°T”) , then

@(u)=w(u) for wue°T" . This implies =t¢=0 . Q.E.D.

Let P(p) and Pb(m) denote the integrability conditions of an
almost complex structure ¢ on 53 vand of an almost CR structure
o on M respectively (cf. [A2] Definition 2.1 and [MIJ (1.2)
respectively)

In the followings , by a subscript T°X (resp. T° , °T" and

CF ) we denote the projection onto T°X <(resp. T~ , °T" and CF )

Sublemma 2. If wegl , then rP(@)sz(rw)
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Proof. 1f t@EF(M,El) we have

TPQ) (U, ») = (TP (U WIHT(LQ (W), @ (V) ] o ) =@ (LU, @ (V) ]y (L@ (U, V] s y)
for u, verdM, °r”) . (Cf. [Ak2]rDefinition 2.1.) Since o(u)

and ¢(v) are in ['(#,°FT") we have t([w(u),@(v)]T,X)zlm(u),w(v)]
On the other hand Pb(r@)(u,v):ébrw(u,v)+[r@(u),rm(v)]r,
—r¢([u;t¢(v)]orﬂ+[tm(u),v]oT")—tm([rm(u),rw(v)]oT") for u, v

erdM, °1r") . Since ¢(u) and @(v) are in T[(H4,°T") we have
Pb(tm)(u,v):ébt@(u,v)+[m(u).w(v)]—@([u,w(v)]orn+[w(u),v]oT")

Now , since r@eAg’l(°T’) we have 5btw(u,v): [w(u),v]T,+[u,¢(v)]T,

-o({u,vl]) . Since 5br¢(u.v)er(ﬂ,°f’) , [o(uw), v]popt U, () ]op=0
Hence [w(u),v]T"X+[u,¢(v)]T"X:[¢(u),v]oT" +[u,@(v)]°T" . Thus - we
have tP(m)(u,v):Pb(t@)(u,v) for u, v €rdM, °77) . Q.E.D.

As was shown in the proof of Theorem 2.4 of [All , for any
0,q9-1

qu T’ —/(0
meAb (CF) , we have a eeAb (°T") such that m—(abe)CF . Hence
we have
Sublemma 3. Let B° be a finite dimensional subspace of Ag'q(CF)
Then we have linear maps @:B° - Ag’q_l(°T’) and @:B° - Fa-1"

qu_l A I'4 O,Q_l o g, . - — A ‘
{p€eA (QS,T X)It(w)eAb (°T")} satisfying (1) m—(abe(m))CF and
(2) <=0 .
Sublemma 4. Let B be a finite dimensional subspace of
Ao’q(ﬁs,T’X) . Then there exist linear maps p:B - $q and

pb:t(B) - F(H,Eq) gatisfying (1) pangq:id , (2) pblt(B)nF(M,Eq)

=id and (3) tp:pbt .
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Proof. Let B(=(tB)¢p and B/, =(8;TB)cp .  Then , by sublemma

N N . 2 R , 0‘, 1’1_1 o T,
3 , we have linear maps ei'Bi - ?i—l and ei'Bi - Ab (°T")
satisfying (1) and (2) of sublemma 3 (i=q, q+1) . If we set
p(@):¢—a§q((r¢)cp)—GQ+l((abr@)CF) and
pb(w):m—ebeq((m)CF)—9q+l((8 m)CF , then it is clear that p(w)e&q .
pb(w)GF(H,Eq) and satisfy (1), (2) and (3) . Q.E.D.

Let D:{ord(h)lhefS O} and A be the reducing system of D .

Then we have a system of generators {h }aEA of }S with the
form ha(s):8a+ga ord(ga)>a . By the Grauert Division Theorem (cf.
[Gl) , for any f(s)€A[[s]] there exists a unique r=y vepTuS Vealls]]

such that f(s)—r(s)eﬁs 0®A[[S]] , where A denotes a C-module

o -
By (3.2), , we have tg (s)-0(s)=3_,a 0 (8 Ry (B F2 1aper, 1¢08 1S

where aa(s)eAO’l(T’)[s] and 8

b AY

€ b (T’) . Let B be a finite
dimensional subspace of AO’I(QS,T’X) which contains all
coefficients of ¢"(s) and such that =(B) is generated by the
coefficients of <to"(s) , w(s) , aa(s) of degree less than p+2
and 8, for [I{=p+1 . By sublemma 4 , we have linear maps

p:B - 61 and pb:r(B) - F(M,El) satisfying (1), (2) and (3) of
sublemma 4 .

1f we set $*(s)=pet(s)) , then ¢“(s)e&l[8]' and satisfies

(3.2); wH(8)-0(8) -3, al () (3)-F | !

e A% u+1,I¢DB}8

ent*?eA)' 1 (1*)[[s]] , where al(s)er(M,E)(s] and B7€l(H,E,)
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Also by (3’2)u , we have (T (S))CFe(mu 1+§ )®A (CF)[[S]] and

(5bt@“(s))CF€(mg 1+}S,o)®Ab, (CFY[[si] . Hence by the definition
Boay _ ptl ' 0,1,5 ,
of p and Py > We have ¥" (8)-¢ (s)e(ms +f8,0)®A (QS,T X)[[s]}

Hence by (3.1)‘1 , We have

Pt (s))=P et (s))=0 mod (mg+l+f >®A0’2(§3,T'X)[[su

5,0

Since P(w“(s))€82[8] , by the same argument as above , we have

. U ‘ L
(3.1, PO (s))= =Zqepb a(S)ha(S)+z|I|:u+l,I¢DYIS
em“+2®A0’2(ﬁ T°X)[[s]] where b (g)€§, (3] and v €8
s 3’ ? o 2 ‘ =2
Lemma 3.3. There exists an ertension ¢”+1(s) of -wu(s)

satisfying (3'1)u+1 and (3.2)I]l+1

Proof. Let ¢L+1(S) be an &,-valued homogeneous polynomial of s

|
of degree p+*1 such that tWA+1(8) is the canonical modulo of

twu(s)—m(s) mod mg+2+} Then by (3.2)& we have

5,0
¢'+ (8)661[81

- u 4
Let pu+1(8) be the canonical modulo of P(¥ (S)+¢u+l(8))

mod. mg+2+f Then , by (3.1)& and since (the canonical modulo

S, 0
u . u+2 _ .
of P(¥ (s)+¢u+1(s)) mod L +§S,o) = (the canonical modulo of

u+2

P(W“(s))+§¢;+1(s) mod m +§ ) = (The canonical modulo of P (s))

5,0

+2

n Nl 7
mod Mg +y8,o)+a¢u+l(3),’ we have 166 (8]
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- ~ IJ, , . u rd IJ. g _—
Since AP (¢ (s)+w“+1(s))— (P (8)+¢u+1(s)),w (s)+¢u+1(8)]=0

ut2
g

mod m; o _ in AO'3(QS,T’X)[[S]] , we have

(3.3) 8p’,, (s)=0

By Sublemma 2 and the definition of ¢’ (s) , we have

ptl
u . = ut2 Ny
TP (¢ (s)+¢u+l(s))_Pb(w(s)) mod mS +ﬁ3’0 in F(M,E2)[[8]]
Hence we have
(3.4) tp&+1(s):0 .
0, °

Now we consider a subcomplex (& ,9) of T X-valued
d-complex . Let Qo’q:{weAO’q(§3,T’X)l te=0 on M}
Then Lemma 3.2 implies
3.5) #3g?>")=0 for 2<qsn-2
Hence , by (3.3) , (3.4) and (3.5) , there exists

0,1

¢L+1(S)€Q such that 8¢u+1(s): —pu+1(8)

. ntl Y . . utl
Hence , if we set ¢ (8) =y (8)+¢“+1(8)+¢u+1(8) then (s)

satisfies (3.2)' and
ptl

[J+1 I +"' P — IJ.+2 -
(3.6) PO (S))_p“+1(8) 8¢u+l(8) 0 mod mg +fS,o in 52[[5]]‘.
Hence we infer (?».I)IJPLl from (3.6) . Q.E.D.
Lemma 3.4. There exists a family of complexr manifolds n":4" = Su+1

associated with the family ¢”+1(s) of complex structures and suéh

that %'x S =~ ile Su where %1 i8 a mneighbourhood of Mxo

Su+1 H u

in 94 .
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Proof. First , we will show the existence of families of complex

charts . Let {Vv} be a refinement of {Ui} with Mc\)vvvcﬂ3

and such that Vv is holomorphically equivalent to a polydisc in a
complex Euclidean space . Let z%(s) be the polynomial part of
5%((3“)-1(8)) of degree less than or equal to p . Since

0-1¢q. . T"X)([s]] we have

o*(s)=¢"(3) mod mg+1+f in A 3

5,0

= ol u _ ptl . 0,1 .
(3'7)u (39— (8))Zi(8)_0 mod M +f8 in A (Ui,T X)([sl]]

, 0
Let €“+1(8) be the canonical modulo of *(é—w”+l(s))zg(s)

ut2 0,1

mod Mo +§S,o in A (Ui,T’X)[[S]] . Then €u+1(8) is a

homogeneous polynomial of g8 of degree pfl , and §&u+1(s):0 because

u+2+f

55yl Boay=pgtt?] u
(3 (S))Zi(S)_P(W (S))Zi(S) mod .y S o

.7
by (3 )u

Since Vv is a polydisc , there exists Zv|u+l(8) such that

Szvlu+1(8):€u+l(s)lvv

ptl oy 0 +
I1f we set Zv (s) zi(v)(S) ZV|M+1(8) then we have (3.7)‘u+1
Next , -We obtain a family n :4" - Su+1 associated with
+
w“ 1(s) by the same argument as in the proof of Proposition 2.5
. Bog) =gt utl, -
q x5“+18uzi1xrusu follows from " (g)=¢" (3} mod L 95,0 in
A @, s . Q.E.D.
By the formal versality of m:4 =+ (I,0) for ?M , we have an
: ptl, B pghty—1 ; ptl putl_o1 ol
ext¢n51on Y 'Su+14 Tu+1 of vy =(8%) Since 7 8 =y o =1
+ + ] .
mod m% and 8" 1°?”+15810y151’m0d mg , gt 1 is isomorphic .

This completes the proofs of Proposition 3.1 and of Theorem 2 .
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Cohomological Criterion of Numerically AEﬂ‘ectivity
by
Atsushi Moriwaki

Let X be a d-dimensional non-singular projective variety and I a divisor on X. Then, if L is nef and
big, by Kodaira-Kawamata-Viehweg vanishing Theorem, H*(X,Ox(L+ Kx)) = 0 for all ¢ > 0. In this note,
we consider an inverse problem of the above Theorem.

We fix our situation. Let X and L be as above. We assume that L is big and there exists a very ample
divisor A such that for any general member B € |A|, L;p is nef on B. Then, we have

di 1
Theorem If lim sup im H'(X,0x(Kx + mL))

= 0, then L is nef.

We start the following claim.
Claim 1. HY(X,Ox(Kx +mL))=0, form>0,i>1.
We take a general member B of |A] such that L,p is nef. Consider the exact sequence
By applying Kodaira-Kawamata-Viehweg vanishing on B,
Hi(X,0x(Kx +mL+ (j — 1)L)) "> H' (X, Ox(Kx + mL + 5 L)),
for 2 > 1, j > 0. Hence Serre vanishing implies our claim 1.

Let C be an irreducible curve on X and I the defining ideal of C. We must show (L - C) > 0.
Claim 2. To show (L - C) > 0, we may assume C is non-singular.
There is a sequence of blowing-ups

Xt x B Ly =x
such that X,-L»X,-_l is a blowing-up at some point of X; _; and proper transform C}, of C by fi. - -- f1 1s non-
singular. Let C; the proper transform of C by f;--- f1, L; a pull-back of L by f;--- f; and E; the exceptional
locus of f;. Then, since Kx, + mL; = f{(Kx,_, + mLi_1) + (d — 1)E; and R?(f;).(Ox,((d — 1)E;)) =0
for j > 0. Therefore, we get H*(X;, Ox,(Kx, + mL;)) ~ H(X;_1,0x, ,(Kx, , + mL; 1)), which implies
claim 2.

We set C, = Spec(Ox/I"!). Considering the exact sequence
0—Ox (Kx +mkL) ® I™—Ox(Kx +mkL)—0Oc, _, (Lx +mkL)—s0
and claim 1, we get the inequality
dim HY(Cu_1, Oc,,_,(Lx +mkL)) < dim H'(Ox (Kx + mkL)) + dim H*(Ox (Kx +mkL) ® I™).
Hence,

_X(Cm1,Ocpy (Lx + mEL)) _ dim H'(Ox (Kx +mkL)) | dim H?(Ox (Kx +mkL) @ I"™)
A < .

m mae ma
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Taking superior limt of the above inequality, we obtain

1,0 L kL dim H?(Ox (K ELYyeI™
— lim X(Crn-1, C’"“d( x +mhL)) < lim sup —— (Ox( :Ld_*_m )® )
m—+00 m m—o00

_ . x(Cm-1,00,,_,(Lx +mkL)) _k(L-C) , deg(I/I?)
Claim 3. T, md -t a

Considering the exact sequence

0—Sym*(I/I*) ® Oc(Kx + mkL)~—Oc¢, (Kx + mkL)—Oc,_,(Kx + mkL)—0,

we have
m—1
X(Cm—1,00c,,_,(Kx +mkL)) = Y x(Sym*(I/I*) ® Oc(Kx +mkL))
a=0
m—1

= > {rank(Sym*(I/I*))(Kx + mkL - C) + deg(Sym*(I/I%))}

:T:z;:_:{(“;f;2)(Kx+ka-C)+ di&“;i; 2) deg(I/I%)}.

Hence, by easy calculation, we get claim 3.

Claim 4. There exits a constant M such that M is independent of k and
dim H*(Ox(Kx + mkL) ® I™) < M -m*.
Take a general member B of |A| such that Op ® I™ = p7*---p{* for all m > 0, where p;,---p, are

maximal ideals of Og. Set P = p; ---p,.. Let ¢ : B'— B be a blowing-up by ideal P and I;’s exceptional
set of g. There is a constant T’ such that T'g*(A4) — > I; is ample on B’. For 2 > T'(m — d + 2), since

g* (K5 + (i — 1)A+mkL) - Zml,— = Kp + (m — d + 2)(Tg*(A) — Z L)
+(G—~1-T(m—d+2))g*(A) + mkL
and
_ (m—d+2)(Tg"(A) = Y L)+ (i —1—T(m — d+2))g*(A) + mkL
is ample, we get
HY(B',0p:/(g"(Kp + (i — 1)A+mkL) — Y _ml;))) = 0.
Hence the above vanishing and R g,O(— Y, ml;} = P™ imply
HY(B,0Op(Kp+ (i —1)A+mkL)® P™) =0 foralli>T(m—d+2).
From the exact sequence v
0—Op(Kp+ (i —1)A+mkL) ® P"—0Op(Kp + (i — 1)A + mkL)— Op(p, 4-tp,) —0,

we obtain the surjective homomorphism H®(O,,(p1 +--- +p,.))%H1 (B,Op(Kp+ (i —1)A+mkL)® P™)
and H%*(B,Op(Kp + (i — 1)A+mkL) ® P™) = 0 for : > 0. Therefore, the exact sequence

0—Ox(Kx + (i —1)A+mkL) @ I —Ox(Kx +tA+mkL)—Op(Kp + (i — 1) A+ mkl) ® P™—0,
implies an inequality

T(m—d+2)
dim H*(X,Ox (Kx + (i = 1A+ mkL) @ T™) < > dim H(Om(pytip,))-
i=1

Thus, we get claim 4.
EL-C) B deg(I/1%)
(d—1)! d!

integer, (L - C') must be non-negative, which proves our Theorem.

By claim 3 and 4, we have an inequality — < M. Since k is arbitrary positive
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On Finite Galois Covering Germs

Makoto Namba

Dedicated to Professor Shingo Murakami on his sixtieth birthday

Introduction. We denote by ¢” the n-th Cartesian product of the

complex plane €. Let W = (W,0) be the germ of open balls in €” with

the center 0 = (0,°-°,0). A finite covering germ is, by definition, a

germ TC : X——=>W of surjective proper finite holomorphic mappings, where
X = (X,p) 1is a germ of irreducible normal complex spaces.

Every normal singularity (X,p) has the structure of a finite covering
germ 7L : X——=>W, (see Gunning-Rossi[4]).

Finite covering germs were discussed in Gunning[3] from the ring
theoretic point of view.

In this paper, we introduce the notion of finite Galois covering

germs and prove two basic theorems (Theorems 2 and 3 below) on it.

1. Some definitions. let M be an n-dimensional (connected) complex

manifold. A finite covering of M is, by definition, a surjective proper

finite holomorphic mapping 7T : X —>M, where X is an irreducible
normal complex space. let 7 : X——>M and M : Y——=>M be finite
coverings of M. A morghism (resp. an isomorphism) of 7T to M is, by
definition, a surjective holomorphic (resp. biholomorphic) mapping @ :

X —>Y such that P = 7. We denote by G7T. the group of all automorphisms
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of 7t and call it the automorphism group of T. G, acts on each fiber

of T,

A finite covering 7 : X—=>M is called a finite Galois covering

if Gy acts transitively on every fiber of 7. In this case, the quotient
complex space X/Gj (see Cartan[l]) is biholomorphic to M.
For a finite covering 7 : X ——>M, put

Ry {peX

Br = T(Ryp) -

7. is not biholomorphic around p } ,

They are hypersurfaces (i.e. codimension 1 at every point) of X and M,

respectively and are called the ramification locus and the branch locus

of 7, respectively.
Let B be a hypersurface of M. A finite covering 7T : X—>M is

said to branch at most at B if the branch locus B, of 7CL is contained

in B. In this case, the restriction

A X - T H(B)—>M - B
of 7C is an unbranched covering. The mapping degree of 7' 1is called the
degree of 7 and is denoted by deg ™.

By a property of normal complex spaces, we have easily (see Namba[5])

Proposition 1. (1) G o< an naturally. (2) 7L is a Galois covering

if and only if ' is a Galois covering.

Corollary. #G, < deg 7, where #G, is the order of the group G.

Moreover, the equality holds if and only if 7t is a Galois covering.

The following theorem is a deep one.
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Theorem 1 (Grauert—Remmert[2]). If ' : X'—=>M - B is an unbranched
finite covering, then there exists a unique (up to isomorphisms) finite

1

covering 7t : X —>M which extends ' .

Take a point qoélﬂ — B and fix it. We denote by 7[1(M - B, qo) the

fundamental group of - M - B with the reference point qy-

Corollary. There is a one-to-one correspondence between isomorphism
classes of finite (resp. Galois) coverings 7t : X ——>M which branches
at most at B and the set of all conjugacy classes of subgroups (resp.
normal subgroups) H of 711(M - B, qo) of finite index. If H is
normal, then 70 corresponding to H satisfies

Gp 7, (M~ B, qo)/H.

n

Example 1. Put X = @n, M=¢€ and

T (g x JEC > (ay, ++,a ) ECT,

where
a; = —(Xl Feset Xn>,
Ay = XqXy + XXg Foeecd X X
n
a = (-1) Xpree X

In other words, Xj (1 € j <£n) are the roots of the equation
n n-1
X 4+ a.x + 0.4+ a = 0.
1 n
Then 7€ is a Galois covering of M = €' such that (i) By = A is the
discriminant locus and (ii) Gp 2 Sn (the n~th symmetric group).

We may identify G, and Sn through- the isomorphism.'Sn is then

regarded as a finite subgroup of the general linear group GL(n,C).

—180—



Example 2. We regard Sn as a finite subgroup of GL(n,{) as in
Example 1. Put Y = €. Let G be a subgroup of Sn' The quotient space
Y/G is an irreducible normal complex space and the canonical projection

Mo Y—>Y/G =N
is a holomorphic mapping. Let
ol : M——>N
be a resolution of singularity of N. Then the finite Galois covering
7. : X —>M of M, defined by the following diagram, satisfies G2 G
X —EraM)<NY-——>Y
17Tk
M T >M > > N.

Here, M)KNY is the fiber product, § is the normalization and id is the

identity mapping.

2. Finite Galois covering germs. Now, let W = (W,0) be the germ

of open balls in ¢" with the center O = (0,+++,0). Let 7t : X—>W
be a finite covering germ (see Introduction). Every notion in él can be

easily extended to finite covering germs. In particular, a finite covering

germ 7¢ : X—>W is called a finite Galois covering germ if G acts
transitively on every fiber of 7r. Also, a similar assertion to Corollary
to Theorem 1 holds in the case of finite covering germs, if 7tl(M - B, qo)

is replaced by the local fundamental group 7T of W-B at

1,10c,0(w - B)

Example 3. Let 'ﬂb : X——>W be the restriction of the covering

ol

T: € —>€¢" in Example 1 to W = (W,0) and X = (X,0) = 70 L(W). Then

ﬁb is a finite Galois covering germ such that Qm ~ S .
n
o
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There exist a lot of finite Galois covering germs in the following

sense:

Theorem 2. For n » 2, let W = (W,0) be the germ of balls in ¢”
with the center 0. For every finite group G, there exists a finite Galois
covering germ 7t : X —> W such that G, =~ G.

Proof. Case 1. We first prove the theorem for the case n = 2. lLet

W be a ball in €2 with the center 0. Let Lj (1< j £ s) be mutually
distinct (complex) lines in ¢’ passing through 0. Put Dj = Lj{\w (1 £

j<s) and

~

1 S
(see Figure 1). 4_/,,,5/—‘<3§££§§§:>

Take a point qoéiM —~ B and fix it. Let K} be a loop in M - B

starting from g and rounding Dj - O once counterclockwisely as in

i 2. We identif . with its homoto class. . ,
Figure ! y rj by - fzaﬁjfj%/
Then, as is well known, nl(w - B, qo) is a group generated by B&,

.o °,K; with the generating relations

¥;0=8Y (<i<s),
where § = Kiabo Xg.

Let FS_ be the free group of (s - 1)-letters b,,==<,b . Put

1 1’ s-1

bS = (b1°-°bs_l)_1. Then there is the surjective homomorphism

® :7m (-8B, q)—>F_,

defined by @(‘b’j) =b, (1<j<s).

For any finite group G, there is a surjective homomorphism
ﬂ} : Fs_lv——> G
for a sufficiently large s.

Now, the kernel K of the surjective homomorphism
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'@@ : 7r1(w - B, qo)——%G
has a finite index such that
7[1(W - B, qo)/K ~G.
The finite Galois covering 70 : X —>W corresponding to K in Corollary
to Theorem 1 satisfies Gy 22 G. |
The finite Galois covering germ determined by 7L is a desired one.
Case 2. Next, we prove the theorem for the case n > 3. Let W be
a ball in €" with the center 0. Let P and Q be a 2-plane and an
(n - 2)-plane in Cn, respectively, passing through O Such that PNQ = {O}.

Let Hj (1 £ j «s) be mutually distinct hyperplanes in ¢" passing

through O and containing Q (see Figure 3). — F}S“VQEB.
e
Put Dj = ij\w (1 €£j«Ls) and

B=D(\+/\D_.
Then W - B and WP - BMNP are homotopic. Hence, by Case 1, taking
sufficiently large s, there exists a normal subgroup K of 7[1(W - B, qo)
of finite index such that

ﬂﬁ(w - B, qo)/KC!(l

The rest of the proof is similar to Case 1. g.e.d.

Now, we give a method of concrete constructions of every finite Galois
covering germ. Our method is suggested by Professor Enoki and is different
from and simpler than Namba[6] in which finite Galois coverings of projective

manifolds were treated.
Theorem 3. Let 70: X—>W be a finite Galois covering germ. Put

m = deg 7T. Then there exists a germ f : W —5¢" of holomorphic mappings

and a finite subgroup G of Sm with G ~vG,. such that 7L 1is obtained
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by the following commubative diagram:

X =g WX Y —s" =Y

®
rl l J{M
m
W idf7 W 7 > € /G = N,

where W)(NY is the fiber product, § is the normalization and id is

the identity mapping. Here Sm is regarded as a finite subgroup of
GL{m,€) as in Example 1.

Proof. We may assume that W dis a small ball in ¢” with the center
0. Take a point qOE;W - B and put

n_l(qo) = {pysr o, b

Put Co= {0y = 1,0, 0,0 |

Note that X dis a Stein space. Let h be a holomorphic function on
X such that

h(p.) £ B(p) for JAK cee (1)

Put

h. = g"’;h = hacrj (1 <3 <m).

J = e
let F: X—>€" be the holomorphic mapping defined by
F(p) = (hy(p), = +,h (p).
Then, for o €G,

(¢*F)(p) = F@(p))

|

(hl(Q'_(p)), =ee,h (@(p))

(h@(p)),h(ET (D)), * * *,h(@ T(p))

= (hk(l)(p)’hk(2>(P)s' e ,hk(m)(P)) ~ee(2)

Thus @~ gives the permutation

R(G‘) — 1 2 ® o o IN

k(1) k(2)* » = k(m)

The correspondence
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R : o —>R(0)
is then an isomorphism of G,. onto a subgroup G of Sm. (2) can be
rewritten as
0*F = R(@)F for all ¢€G . (3)
Hence F induces a holomorphic mapping £ : W—> €"/G = N such that the
following diagram commutes:

X —2 s ¢y

Kl
W

By the assumption (1), we can easily show that £ has the following

M

M

-“TF——? € /G = N.

e

two properties:
(1) f(W)gé Fix G, where Fix G is the union of the fixed points of
all elements of G except the identity and

(ii) f 1is not decomposed as follows:

W —2I 5 ¢y

J ]

W ——> ¢'/c,
where H (£ G) 1is a subgroup of G, V is the canonical projection
and f' 1is a holomorphic mapping.

A holomorphic mapping f with the properties (i) and (ii) is said

to be G-indecomposable (see Namba[6]). For such a mapping £, the fiber

product W){NY is irreducible and the finite Galois covering T, Xo———élw
defined by the commutative diagranm
X —_— W)(NY — "

Tk

satisfies GH ~ G. Now, we can easily show that 7L dis isomorphic to 7[6,

—185—



(see Nambal[6]). g.e.d,

Remark. (1) f£(0) 1is not necessarily equal to JA(0), where O is

the origin of ", (2) A similar theorem to Theorem 3 holds for finite

Galois coverings of a Stein manifold.

Problem. Characterize normal singularities (X,p) which has the

structure of a finite Galois covering germs 7r : X——> W.

[1]
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Zariski-decomposition Problem for Pseudo-effective Divisors

Noboru NAKAYAMA

Introduction. In this paper, we shall study some numerical
properties of pseudo-effective divisors on projective complex
manifolds. Here the "numerical prorerties”" are the preoperties which
depend only on the first Chern classes of the divisors. In the paper
of [Z]1, Zariski found the so-called the "Zariski—decomposifion”

D =P+ N for an effective divisor D on a projective smooth
surface, where P is a nef @-divisor, N 1is an effective Q-divisor
with negative intersection matrix, and P'N = 0. The construction of
the decomposition depends only on the intersection numbers of D

with irreducible curves on the surface. Fujita [F1] showed the
similar decomposition exist for all pseudo-effective divisors on-
surfaces. The Zariski-decomposition is very useful to study the
projective surfaces and open surfaces. In [F21, PFujita generalize
the notion of Zariski-decomposition to higher dimensional case and
conjectured the existence of the decomposition for pseudo-effective
divisors. In higher dimensional case, one cannot obtain a desired
decomposition (namely the positive part is nef) on the fixed
manifold, in general. So we must blow;up the manifold. His conjecture
is the existence of such a nice blowing-up. On the other hand,
Cutkosky [CJ] found an example where the negative part of the
Zariski-decomposition is not a G-divisor. MatsudalMal also studied
the ZarisKi-decomposition in Fujita's sense and considered the

o-decomposition (see §1). But in his paper, the negative part of the
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o-decomposition may have infinitely many components. If the
Zariski-decomposition of the canonical divisor of a projective
manifold of general type exists, then the canonical ring is finitely
generated over € , by [K11l. Therefore, for example, the Flip
Conjecture (the existence of the flip) in the minimal model theory
(cf. [KMM]) follows from the existence of the relative

Zariski-decomposition of the Candnical divisor.

In §1, we shall! define the o-decomposition D = Py (D) + N_(D)
for pseudo~-effective divisors D bn'a projective complex manifold
X . Here NO(D) is an effective R-divisor determined by the first

Chern class of D . We shall show the following properties ({(1.9)):

(a) c (P (D)) € Mv(X) , and
(b) if ¢, (D - A) € Mv(X) for some effective R-divisor A ,

then A = NO(D)

Here Mv(X) is the movable cone of X which is the closure of the
cone in H2(X, R)Y generated by the first Chern classes of fixed part
free effective divisors on X (see (1.8)). If X is a surface, then
the oc-decomposition is nothing but the Zariski-decomposition, since
the movable cone Mv(X) is the nef cone in this case. We now

formulate the Zariski-decomposition Problem as follows:

Problem. For a pseudo-effective R-divisor D on X , does there

exist a modification i : Y —— X such that Po(u*D) is nef 2
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I1f such a modification exists, then the decomposition
* % *
u D = Po(u D) + No(u D) is said to be the Zariski-decomposition of

D . This is actually in the sense of Fujita [F2].

In §82, we define the v-decomposition D = P, (D) + N (D) which

satisfies the following two properties:

() Cl(Pv(D)) € NMv(X) , and
(ay if Cl(D - A) € NMv(X) for some effective R-divisor A ,

then A 2= Nv(D)

Here NMv(X) 1is the cone consisting of the first Chern classes of
pseudo-effective divisors whose restriction to any prime divisors on
X are still pseudo-effective (cf. §2). The o-decomposition and the
y-decomposition of the given divisor are different in general, but
the calculation of the v-decomposition is easier than that of the
o-decomposition. We obtain the Zariski-decomposition for suitable
divisors using the v-decomposition in 84. 83 is devoted to the study

of the relative version of o-decomposition.

The author thanks to Dr. K. Matsuda and Dr. A. Moriwaki for the
useful discussion, and also thanks to the Fﬁjukai—foundation for the

support.
§0. Preliminaries.

We shall use the similar notation as in [KMM] and [N1J. Let X
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be an n-dimensional projective complex manifold. We denote by

Nl(X) the real vector subspace in HQ(X, R) generated by the first

Chern classes Cl(L)R of line bundles . on X . Note that

Cl(L)Q = 0 if and only if L-C = 0 for any irreducible curves C

We denote the cl(L)R by CI(L) , simply. Let Div({X) be the

divisor group of X . An R-divisor D should be an element of
Div{X)®R . lLet D=2 ajrj be the irreducible decomposition of an
R-divisor D . D 1is called effective, if a, = 0 for all j

Let Eff(X) be the cone in Nl(X) generated by the first Chern

classes of effective R-divisors and let us denote its closure by

PE(X), which is called the pseudo-effective cone. The interior of

the cone PEX) is denoted by Big(X), which is called the big cone.
An R-divisor D is called pseudo-effective, (resp. big), if
cl(D) € PE(X) (resp. Cl(D) € Big(X)). Then we have:

Lemma (0.1>. The following two conditions are equivalent:

(7) B 4is a big R-divisor.

(2) limsup h°(X, [mBL/m® > o ,

m =
where [mBl1 is the integral pari of mB

Let Amp(X) be the cone in Nl(X) generated by the first Chern
classes of ample line bundles on X .  Then Amp(X) is an open

convexX cone in Nl(X) which is called the ample cone of X . The

nef cone Nef (X) should be the closure of the Amp(X) . An
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R-divisor D 1is called ample (resp. nef), if ¢, (D) € Amp(X) (resp.

1
Cl(D) € Nef(X)). Then we have:
Lemma €0.2). Let A be an amnple R-divisor on X . Then A is8
numerically equivalent to 2 stj , for some ample Q-divisors Hi

and posilive real numbers Si

Proof. Let T I r be the irreducible components of A

g0 Toors Ty

whose coefficients are irrational numbers. Since the ampleness is an

open condition, [mAl and [mA] + ij (1<j<Kk) are ample for large

' K
integer m . We may assume that <mA> := mA - [mAl = 2 thj , for
j=1 )
K K -
0 ¢ t, <1 . Thus mA =2 (t,;/K)(ImAT + kI';) + (1 - 2 (t,/k))ImAl

j=1 j=1
Q.E.D.

8§1. o-decomposition.

Let I' be a prime divisor of X and let B be a big
R-divisor on X . We define OF(B) (resp. OF(B)Q) to be the

following number:

inf{multr(A)l A is an effective R-divisor

with Cl(A) = Cl(B) {resp. A ~0 By,

where the symbol ~® means the Q-linear equivalence relation.
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Lemma (1.1>. (1) éig UT(B‘+ SA)Q = OF(B)Q , for any ample

R-divisor A

(2) UT(B)@ = OT(B)

(57 or(Bl + Bz) < ar(Bl) + cr(BZ) . for any big R-divisors B

and B,

Proof. (1). It is easy to see that if 0 < 81 < €

or(B + 81A)® p2 Gr(B + 82A)® . Thus éig OF(B + 8A)@ < Or(B)@ . On

the other hand, by (0.1), there are an effective R-divisor A and a

5 then

positive number & such that B ~® SA + A . Therefore we have
(1 + €)B ~n B + g3A + €A . Thus the inequality

. i 1 ;
(1 + B)GF(B)Q < OF(B + 86A)® + Smultr(A) heolds. Taking € 0 , we

have 0.(B)~, < lim 0~(B + £A)
r Q £40 T 0

(2>, By definition, we have only to prove UF(B)Q = OF(B)
Let A Dbe an effective R-divisor such that cl(A) = CI(B) . Then
B+ A - A is ample for any ample R-divisor A . Thus
OF(B + A)® < multr(A) . Taking A very small, we have
or(B)® < multr(A) by (1). Therefore GF(B)@ < or(B)

(3) is obvious. Q.E.D.
Let D be a pseudo-effective R-divisor on X

Lemma (1.2). (7) 1im cr(D + gA) < +o for any ample R-divisor A
gl

(2) The number lim GF(D + gAY does not depend on the choice
£d0

of A
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Proof. (1). We have easily (D + 8A - o.(D « emT™ A" > 0 for

any € > 0 . Hence Or(D + EA) £ (D + SA)-An—l/I“-An_1 Therefore
1im UF(D + EA) is bounded.
g0

(2). Let A~ be another ample R-divisor. Then there are an

effective R-divisor A and a positive number & such that

c (A7) = ¢, (3A + &) . Hence op(D + E8A) + Emultp(A) 2 0 (D + A7)
Therefore lim o.(D + EA) = 1im or(D + gAT) . Q.E.D.
gl0 g0

In what follows, we denote the 1im o-.(D + gA) above by Or(D).

v €40 r
Note that GF(D) = GF(D Yy , it Cl(D) = Cl(D )
Lemma (1.3>. Let Tl, F2,..., FQ be mutually distinect prime
divisors and let Sys Sgr-cs Sg be real numbers with
4
0<s, < ori(D) for atl i . Then ori(D —jgls.r.> = ori(D) - s,

for all i

Proof. Take an ample R-divisor A such that A - 2 Fi is also
ample. By definition, for any positive number & , there exists a

positive number & such that 0 < ar {D) - or (D + &A) < g , for
i i

all i . Let E :=D -2 sjrj . Then we have

E+ (8 + 8)A =D + (8 + 8)A - 2 sjrj

(D + 8A - 2 o (D + 6A)Tj) + E(A - 2 rj)
i
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+ (S(g - (o~ (D) - o (D + BA)))FJ)

] ]
(DY - s HI')
i AR

r

+ (E(or

Therefore we have g + OF (D + dA)Y - sj = cr (E + (& + &6YA) . Taking
‘ ] ]

b £ £, we get & + Gr (b)Y - sj = OF (E + 2gA) . Hence
‘ J j

OF (D) - sj > or (EY . On the other hand, we have
] N

o (E + gA) + 5 5 > 0

r r (D + eA) , since E + €A + > sjrj = D + EA

1 ]
Therefore -or D —.sj =g (E) . R.E.D.
J

Proposition (1.4). Let D be a pseudo—effective R-divisor and let

Fl, F2,..., FQ

i(D) >0 for all 1 . Then cl(Fl), cl(Fz),..., Cl(rQ) are

be mutually distinet prime divisors on X such that

or

linearly independent in Nl(X)

Proof. Assume the contrary. Then we may assume

s 2
that Cl( > aiFi) = 01( > b.l'.) for some positive numbers a, and
i=1 j=s+1
bj and‘for some 1 < s < 2 . Take a positive number € such that
o D) > ea, for 1 < i < s and that o (D) > Sbj for
i J
v s
s+1 < j < 2 . Applying (1.3) to D - €¢C 2 a,l'.) and
i=1
/)
D-¢8C > b.'.) , we have a contradiction.
j=s+1

Corollary (1.8). For any pseudo—effective R-divisor D , there ezxist
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at most finite numbers of prime divisors T on X such that

Gr(D) > 0

Definition (1.6). For a pseudo-effective R-divisor D , let N, (D)
be the effective R-divisor 2 op(D)T  and set P (D) := D - N (D)
The decomposition D = PO(D) + NO(D) is said to be the

o-decomposition of D and PO(D) and NO(D) are called the

positive and negative parts of the o-decomposition of D ,

respectively.

Remark. (1) We have N_(B) = lim (1/m)-|[mBJIfiX for big divisors
n’]—)(x)

B
(25 If PO(D) is nef, then the decomposition
D = PO(D) + NO(D) is the Zariski decomposition in Fujita's sense

(IF21). Therefore we are interested in the following:

Zariski-decomposition Problem. For a pseudo-effective R-divisor D
on X , does there exist a modification wm : Y —— X such that

b4 .
Po(u D) is nef?

Proposition (1.7>. (1) op PE(X) —— Rzo is a lower

semi—continuous function. (Therefore il is coniinuous on Big(X)).

(2) lim cr(D + gE) = or(D) for any pseudo—effective
g0

R-divisors E on X

(3y If OF(D) = 0 , then for any ample R-divisor A , there

erxists an effective R-divisor A with cl(A) = cl(D + A) and
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multr(A) = 0

Proof. (1). Let {Dn} (n € N) be a seguence in PE(X) which

convergent to D . Assume that OF(Dn) < x for any n . Take an
ample R-divisor A on X . Then for any €& > 0 , there is a number
no such that D - Dn + €A is ample for n = nO . Since
D+ gA = (D - Dn + EA) + Dn , we have OF(D + gA) < OF(Dn) < A

(2). By (1), we have 1liminf 0.(D +gE) > o_.(D) . On the other

r r
gl0

hand, or(D + ghE) < GF(D) + EOF(E) . Therefore we are done.

(3). Let m be a positive number such that mA + I’ is ample.

For any small € > 0, there exist positive numbers X and & and an
effective R-divisor B -such that CI(B + 8 = CI(D + AA),

multr(B) = 0 and that md + X < & . Then
Ci(B + S(mA + T)) = cl(D + (md *+ AYA). Thus we can find a desgsired

effective divisor. Q.E.D.

The following definition is found in KawamatalK21].
Definition (1.8). Let Mv(X) be the cone in NI (X) generated by
the first Chern classes of fixed part free line bundles L (i.e.,
[LlfiX = 0). We denote its closure by Mv (X) and denote by Mv(X)
the interior of Mv(X). The cones Mv(X) and Mv(X) are called the

movable cone and the strictly movable cone, respectively.

Proposition (1.9). (7)) For a pseudo-effective R-divisor D ,

Ny(D) = 0 if and only if c, (D) € My (X)
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(2) For a pseudo-effective R-divisor D , if there is

effective R-divisor A such that (D - A) € Mv(X), then

©1

Proof. (1). Assume that NO(D) = 0. Then by the proof of

an

1
A = RO(D).

(1.7, (3)), we see that ¢, (D + A )€ Mv(X) , for any ample R-divisor

1
A . Therefore Cl(D) € Mv(X). The converse is derived from
.7, 1».

(2). By (1), NO(D - A) = 0 . Thus for any prime divisor T,
or(D) < GF(D - A) + Or(A) < multr(A) . Therefore NG(D) < A Q.E.D.
Remark. If X 1s a surface, then the movable cone is nothing but
the nef cone. Therefore by (1.9), we see that the o-decomposition is

nothing but the usual Zariski decomposition (¢f. [Z]1 and [F11).

Definition ¢(1.10). Let W c X be a subvariety with codim W = 2.

For a pseudo-effective R-divisor D , we define ow(D) to be the

following number:

lim inf{multw(A)l A is an effective R-divisor
glo

wilth Cl(A) = Cl(D + EA) 1},

where A 1s an ample divisor.

From the following (1.11), we see that the number o¢_(D) does not

W

depend on the choice of A
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Lemma (1.11). liet QW(X) —— X be the blowing-up along W and
tet Y —— Q,(X) be a resolution of singularities. Then for the

nain exceptional divisor E, on Y , we have p (¥ D)y = ow(D) ,
V&I

where f : Y —— X is the composilion.

Proof. 1et A be . an effective R-divisor on X . Then
mult, (A = mult (f*A) . Thus we have that
W Ew
0. (DY = 1lim o, (£°(D + gA)) = o_ (£°D) by (1.7, (2)). Q.E.D.
W el EW EW

Lemma (1.12). «(¢7) OW(D) < oX(D) for all x € W

(2) There 1is a countable union S of proper closed analytic

subsetls of W such thaet OW(D) = oX(D) for x € W\ S

(3) The function X 3 X +—— oX(B) 18 upper semi—conlinuous

for big R-divisors B

Proof. (1) and (2). Let A be an effective R-divisor and
A = 2 eri be the irreducible'decomposition of A . Then by

definition, multw(A) = > rimult (Fj) . Therefore

W

multX(A) > multw(A) and further there exists a Zariski-open subset
U of W such that multX(A) = multw(A) for x € U . Thus we are
done.

(3). We have o_(B) = lim inf{mult_(A)| A > 0 and
X £40 X

cl(A) = ¢,(B) }, since B 1is big. Therefore the upper

1
semi-continuity of oX(B) is derived from the upper semi-continuity

of the function X F—— multX(A)
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Lemma (1.13>. Let D be a pseudo-effective R-divisor on X

(1) If £ : Y — X be a birational morphisn from a
projective manifold Y . then No(f*D) > f*NO(D)

2) =

(2) OX(D) OX(PO(D)) + multX(No(D)) for =x € X

(%) Let u : QX(X) —— X be the blowing-up at a point x € X

Then for any v € f 1(x), we have oy(Po(u*D)) < oX(PO(D)).

Proof. (1). Take an ample divisor A on X . If A is an

effective R~diviser on Y such that Cl(A) = Cl(f*(D + EA)) for

some positive & , then A = f*(f*A) and ¢, (f,A) = ¢ (D + gA)
Therefore we have No(f*(D + gA)) = f*Nc(D + gAY . By (.7, (2)), we

are done.

(2. Let E = u_l(x) be the exceptional divisor for u

(defined in (3)). Then by (1) and (1.3), we have

oE(u*D) =0 (M*PO(D)) + multE(u*No(D)). This is just the desired

E
formula by (1.11).
(3). By (1) and (1.7, it is enough to prbve (3) in the case

that cl(D) € Mv(X). In this case, (3) is derived from the

following fact: Let A be an effective divisor on X and let A~
be the proper transform of A by u . Then multy(A/) < multX(A)

for vy € u—l(x). Q.E.D.

Proposition (1.14). If cl(D) € Mv(X) , then there exist at most a
Ffinite number of subvarieties W of X with ow(D) > 0 and

codim W = 2
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Proof. Let Z be the intersection of all the supports of effective
R-divisors which are numerically eguivalent to D. Then by

(1.7, (3)), codim Z = 2 . 1f OW(D) > 0, then W c Z . Q.E.D.
Proposition (1.15). If dim X = 3 , Ny (D) = 0 and D-C, < 0 Jfor
some finitely many irreducible curves Ci s, then there exists a
bimeromorphic morphism n : X —— Z onto a complexr variety Z such
that n(Ci) are poinits and n  induces an isomorphism

XN U Ci ~ 7 N U H(Ci).

Proof. We may assume that ’Cl(D) € Mv(X) and that D 1is a Cartier
divisor. By the proof of (1.7 (3)), we have itwo effective Cartier
divisors A, and A, such that dim (A} N A =1 and &, € [nD
for some m > 0O . Since ‘D'Ci < 0, by [N2, (1.4)]1, we can contract

all the C, - ' Q.E.D.

§2. v-decomposition.

We introduce another decomposition for a pseudo-effective

R-divisor D . We remark that for the positive part of the

o-decomposition PO(D) and for all the prime divisecrs I , PO(D) r
is pseudo-effective. So let us consider the set
G := { A | an effective R-divisor such that (D - A) - is

pseudo-effective for all prime divisor ' on X }.
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Then we have:

2 inf{mult_(a)| A € & T is

r

1l

Lemma (2.1>. The divisor Nv(D) r

also an element of 6

Proof. For any prime divisor I’ and for any positive number € ,
there is an effective R-divisor A € & such that

6 = mult (Nv(D)) - mult.(A) £ E . Thus

r r
(D - Nv(D))Ir +6r|r = (D - A) S N, (D7) r is

pseudo-effective, where A  := A - multr(A)F and

Nv(D) i= NV(D) - multr(Nv(D))F . Therefore Nv(D) € 6 . Q.E.D.
Since NO(D) € 6, we have Nv(D) < NO(D) . Especially,

Pv(D) := D - Nv(D) is a pseudo-effective R-divisor.

Definition (2.2). The decomposition D = Pv(D) + Nv(D) is called

the v-decomposition of D . P (D) and N (D) are called the

positive part and the negative part of the v-decomposition of D ,

respectively.

Remark (2.3). Let NMv(X) be the cone generated by the first Chern
classes of the pseudo-effective R-divisors A such that AIF are

still pseudo-effective for any prime divisors T . Then it is easy

to see that for pseudo-effective R-divisors D , Cl(Pv(D)) € NMv (XD
and that 1f Cl(D - A) € NMv XD for some effective R-divisor A ,

then A = Nv(D)
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Remark (2.4>. We can calculate the v-decomposition of given D as

follows: Let Dl = {Fl, | Fm } be the set of prime divisors
= 1

is not pseudo-effective. 1f D is empty, we

' such that D 1

r

stop here. Otherwise, the set

m

1
T ‘= : | - |
Tyt L)) e [0 < ri €l and (D .g riri>‘r‘ is
1 i=1 i
pseudo-effective for all i}
. (1) v (1> ._ .
is non-empty and we have (t. ) €%, where ti = inf{ t = 0 |
t = ri for some (ri) € Il }, by the same argument as in the proof
of (2.1). Here we set
My
p op -3 1 Pr,
. 1 1
i=1
D(l) 1s also pseudo-effective. Next we consider the set
D2 = {Fm1+1{ rm1+2,...,.rm2} consisting of all the prime divisors
[ such that D(l) r is not pseudo-effective. If Dz is empty, we
stop here. Otherwise let 12 be the set { (r.l)1SiSm2 | 0 < rj e R
m, 7
and (D - 2 riri)lr is pseudo-effective for all 0 < j < m, }.
1=1 ]
Then (t;z)) € Iz , where tj i= inf{t >0 ] t = r for some
my
(r;) € iz } and we set D%’ := D - > t§2)Fi . Similarly, if we get
1=1
. .. (k+1)> . .
the sets Dk v Ty and the divisor D Since the prime
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divisors contained in some Dk are components of NO(D) , this
process must be terminated. The last divisor D(k) should be the

prositive part PV(D) of the v-decomposition of D

Remark ¢(2.5). (1) Zariski [Z] and Fujita [F1] have constructed the

Zariski-decomposition on surfaces just by the same way as above. But

VD@

; ; , are calculated by linear eguations.

in their case,
(2> 11 Pv(D) € Mv(X), then this v~decomposition is nothing but
the o-decomposition by (1.9) and (2.3>.
(3> In general, NO(D) = NV(D). For example, let us consider the

point blow-up f : Y — X . Then Nv(f*D) = f*Nv(D) , but

N (£FD) = £ N_D) , if o (D) > 0
ag @) X

Proposition (2.6). [f dim X = 3 , Nv(D) =0 and D-C < 0 for an
irreducible curve C , then there exisils a proper bimeromorphic
morphism U 1 X —— Z such that n(C) is a point and W induces

an isomorphism X N C =~ Z N 7 (C).

Proof. We may assume that D is a big Cartier divisor. Let A Dbe
an element of {mD | for some positive integer m . Since A-C < 0,
there is a_component ' of A such that T'-C <¢ 0 . Thus T o C

By the assumption, Alr is a pseudo-effective divisor on T
Therefore there exists an effective Cartier divisor E on [ such

that (E-C) < 0 . Let £ ©be the defining ideal of E on X . Then

r

we have the following exact sequence:

0 — @X(—r)®®c — f®@c — 0 (—E)®@C — 0

r
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Therefore 9®@C .is an ample vector bundle. Hence by the contraction

criterion [N2, (1.4)], we can contract the curve C . QR.E.D.

83. Relative version.
Let m : X —— S be a projective surjective morphism from a
complex manifold X onto a complex variety S . Fix a point P on

S.

Definition (3.1>. An R-divisor D on X is called n-big over P ,

1f for a m-ample divisor A , there exist a positive number & and
an effective R-divisor A such that D - €A = A in Nl(X/S; P)Q

(cf.IN1 8431). An R-divisor D is called m-pseudo—effective over P ,

if D+ gA 1is m-big over P for any positive number g

Now we shall define the relative o-decomposition. Let T' be a prime
divisor on X with mn(I') 3 P- and let B be an R-divisor which is

n-big over P . First of all, we define the following numbers:

6-(B; P)® := inf{mult~(AYIA > 0, A =B in Nl(X/S; P)Q},

I

or(B; P>

r
inf{multr(A)[A >0, A=B in Nl(X/S; P)).

]

By the same argument as in (1.1), we have

c~(B; P)n = 1im o~ (B+gA; P) for any nm-ample divisor A and
r Q ci0 I Q
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or(B: P)® = or(B; P). Let D be an R-divisor on X which is

n-pseudo-effective over P

Proposition (3.2). (7Y. The limit 1im OF(D + gA; P)Y (might be +w)
40

does not depend on the choice of a n—ample divisor A . (In whal

Jfollows., we denote the Limil by or(D: P)).

(2). If one of the following conditions are satisfied, then

o~(D; P) < +ow

r

(a) n(I') = 8§

(b) codims(n(r)) =1,

(¢) There exists an effective R-divigsor A with A =D 1in
N (x/s: Py,

Proof. (1). This is derived from the same argument as in (1.2,(2)).

(2., (a). It is easily proved restricting D to "general"

fibers of . (c¢). Trivial. (b). We may assume that n 1is a
projective fiber space‘and S is normal. Let FO = T, Fl,

F2 e e e FQ be all the prime divisors on X with n(Fi) = (")
Then there exist positive integers ai (1<i<®) , a reflexive sheaf

¢ of rank one on S and a Zariski open subset U of S such that

EIU is invertible, CodimS(S N U) 2 2 and
% g
L)) = @X(igoairi)|n-1(u)

By taking a blowing-up of X , we may assume that
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) 2
H*H*GX( > aiFi)/torsion is invertible and isomorphic to

i=0
2
@X( > airi - BE) for some effective divisor E on X with
i=0
. 2 ‘ »
codim n(E) =2 2 . Since > airi - E is m-nef, we have
1=0
[}
OT.(.g airi; P) £ OT.(E’ P) = 0. Thus OF.(D’ F)> = 0 for some Fj
i i=0 ] : ' ]
')
For any & > 0, (D + A - 2 op (D+gA; P)T.) is
P i T,
1i=0 71 ]
(KIr Y-pseudo-effective over P . Hence if H(Fk N Fj) = 7(I'), then
]
or (D; P) < #o . Since mn is a fiber space, we have GF(D; P) ( +=
k

Q.E.D.

1f GF(D; P) ¢ +o for all prime divisor ' with #n(I') 3 P , then
the similar results as in (1.3>, (1.4> and (1.5) are obtained. Thus
we can define the negative part NO(D; P> of the relative

o-decomposition to be the effective R-divisor 2 or(D; Pr . Also we

can define the relative v-decomposition as in §2.

84. Examples.

(I>. Let f : X —— Z Dbe a proper bimerpmorphic morphism from a
3-dimensional complex manifold X such that the f-exceptional set is
just a compact smooth curve C . This morphism { is called the
contraction of C and C is Calléd an exceptional curve in X (cf.
[N21). Let P be the point f(C). Now we shall consider the

relative Zariski-decomposition Problem. Since. Nl(X/Z; P is one
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dimensional, we treat a line bundle ¢ on X with £-C <.0.
Clearly No(f; Py = 0. To get the Zariski-decomposition of £ , we

must consider the blow-up along C . We use the notation of [N2 §27.

Let “1 : X1 —— X be the blowing-up along C , and let El be the
. .. -1 , 2 . ..
~ P ;
exceptional divisor ul (C) = LC(IC/IC) s uhere IC is the defining

ideal of C in X

.. 9
Proposition (4.1). I1f the conormal bundle IC/Ia is semi-stable,
x 2 s
then we obtain Nv(ulﬁ) = —2(£°C)/deg(IC/IC)E1 and the positive
part Pv(ufﬁ) is nef over Z . Namely, the relative

Zariski-decomposition for ¢ eXxXists.

Proof. We must know when the divisor A := (ujf - XEI)IE is
1
pseudo-effective. Since IC/Ié is semi-stable, every effective

7
divisors are nef and A is pseudo-effective, if A" 2 0 and x > 0

: P 2
by [Mi (3.1)1. Thus N (u £) = -2(£:C)/deg(1 /T 0B . Q.E.D.

Assume that the conormal bundle I /I2 is not semi-stable. Then

Cc °C
we have an exact sequence : 0 — ¢ — | /I2 — M > 0,
: 0 Cc"°C 0
where ﬂo and MO are line bundles on C with deg(ﬁo) > deg(ﬂo)
Thﬁs there is the negative section C1 on the ruled surface E1

— 1
~ !
such that @(C1)®®C1 ~ AO®KO

Proposition 4.2>. [7f Zdeg(ﬂo) > deg(ﬁo) , we have the relative

Zariski—decomposition of £ over Z
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Proof. Let- PN X, — X1 be the blowing-up along C1 . E2 the

H,-exceptional divisor and let Ei be the proper transform of E1

By the exact sequence:

2
- P -
0 — 0« E1)®0C —_— IC /IC —_— OC ®VE ( Cl) — 0 ,
1 1 1 1 1
- I PR - - - .
if 2deg(ko) > deg(ﬂo) , then C2 i = E1 N E2 is the negative
section of E, . If 2deg(ﬂo) = deg(%o) , then E2 is the ruled

surface over C associated with a semi-stable vector bundle

IC /Ié Therefore by [N2 (2.4)], wve obtain a proper modification
1 1
o Y — X2 such that
(1) w_l(EI U E2) is a union of ruled surfaces Fj (1 £ j £ K>

over C for some Kk = 2,

(2) there is just one surface Fk is a ruled surface
associated to a semi-stable vector bundle on C , and that

(3 the negative section of the other surface Fj (i < k) is

the complete intersection of Fj and other Fi

Therefore if AIF is pseudo-effective for a divisor A on Y ,
i
then AIF are nef. Thus the v-decomposition of the pull-back of
] ‘

¢ gives the relative Zariski-decomposition. Q.E.D.
By the same argument as in {(4.2), we have:
Proposition (4.3). Jf there ezist a vector bundle ¥ of rank two

on C and an open neighborhood U of the zero section of L such
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that U 4is isomorphic to X . them we can find the relative

Zariski—-decomposition of £

Proposition 4.4>. If there exist two irreducible divisors A1 and

A, such that A1~C <0, A,:C <O and Al naAa, =C¢C. then we can

Ffind the Zariski—decomposition.

Proof. Let my and m, be positive integers such that

ml(A1°C1) = mz(Az'Cz) . Let f : ¥V —— X be the normalization of
the blowing-up of X along the ideal J := @X(—mlAl) + OX(—mzAz)
-1

Since J®®C ~ @C(—mlAl)QOC(—m2A2) , f (C)red =: E 1is the ruled
surface over C associated with the semi~stable vector bundle J®OC
The divisor E 1is Q-Cartier, since f*J/torsion is an invertible
sheaf and isomorphic to GV(—kE) for some Xk . Let us consider the
v-decomposition of t¥2 on V . Since the divisor on E is

pseudo-effective if and only if it is nef, the positive part of the

v-decomposition is nef. R.E.D.

Remark <(4.5). (1). There is an example where the assumption of {4.4)

is not satisfied: Let 0 —— @C » & > @C - 0 be the
non-trivial extension over an elliptic curve C and let E be the
total space V(&E®N) of ¢&®K , where X is a negative line bundle

on C . Then the zero-section of E is an exceptional curve, but

1° A2 on any

there exist no such effective prime divisors A
neighborhoods of the zero-section as in (4.4).
(2). If there is a proper bimeromorphic morphism X — 7

which is iscmorphic outside of P and is not isomorphic to the
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original {f , then the assumption of (4.4) is satisfied. But the"
converse does not hold in general. For example, let £ be the total
space W(@C@M) of @CQﬂ on an elliptic curve C such that # has
degree zero but is not a torsion element in Pic(C). Then the
relative Zariski-decomposition for a divisor L on X with

L-C ¢ 0 exists by (4.3), but its positive part is not relatively

semi—-ample over Z . Thus it is impossible to obtain the morphism

X~ —— Z above.

(IID. Let & ©be a locally free sheaf of rank r on a projective
smooth curve C , 7w : X := Pc(é) —— C the assodiated projective

bundle and let @g(l) be the tautological line bundle on X such

that . H*@g(l) ~ & . We shall consider the Zariski-decomposition
Problem for pseudo-effective divisors on X . et F be a fiber of
o Then every R-divisor is numerically eqguivalent to a linear

combination of Og(l) and F . By [HN], we have a unique filtration
(which 'is called the Harder-Narasimhan filtration of &) by
subbundles: 0 = 80 C 61 C e+ C ££ = & , which satisfies the

following two conditions:

(1> £i/£i_1 is a nonzero semi-stable vector bundle for all
1 <3 < 4.
(2) u(éi/éi_l) > u(€i+1/6i) for 1 < i < £-1, where

p(é&) := deg(&)/rank (&)

Lemma (4.6>. For a real number t , the divisor Og(l) - tF 1is

péeudo—effective if and only if t < u(él) . Also the divisor
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@6(1) - tF is nef if and only if t < WOE/E, )

Proof. First of all, we must mention that in the case of

semi-stable & , this lemma is proved in [Mi, (3.1)]. Therefore if

© >t < pu(&,) , then the divisor O, (1) - tF on P _ (&.) 1is big.
1 61 CcC 1

. 0 K. . tk . 7

Thus h (C, Sym (él)®d Y # 0 for k >> 0 with +tk € Z , where

is a line bundle of degree one on € . Hence hO(C, Symk(6)®dtk) = 0

Therefore O{(l) - tF is pseuvdo-effective for t < u(él)

Conversely, assume that @ 3 t > u(él) . Then the divisors

0 (1) - tF are not pseudo-effective on Pc(éi/éi_l) for

1-1
1 <1 < 4, respectively: From the Harder-Narasimhan filtration, we

&./6
i

see that ho¢C, Sym®(&)e4*®y = 0 for all k > 0 . Thus 0,(1) - iF
is not pseudo-effective for t > u(él) . Next we assume that

06(1) - tF is nef on X . Then @g/g (1) - tF on

-1
P (¢ P g - . :
Nc(o/é{_l) c P (&) is also nef Therefore t < u(&/fﬁ_l)
Conversely, suppose that 08(1) - tF is not nef. Then there is an
irreducible curve I' in X with (@gfl) - tF)I' < 0 . Let

¢C —— I be the normalization of TI' and let f : C° —— C be the

composition with [ ~——— C . Since the Harder-Narasimhan filtration
of - £7¢ is just the pull-back of éi's , we may assume that T 1is a
section of X —— C . Then [ corresponds to a surjective

homomorphism & —— ?' onto an invertible sheaf # such that
deg(F) < t . By a property of the Harder-Narasimhan filtration, we

). Q.E.D.

have u(6/6£_1) < deg(%) . Therefore t > u(&/éf_l

Proposition (4.7). VWe have the Zariski—decomposition of the divisor
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Oé(l) - u(él)F

Proof. If & 1is semi-stable, we have nothing to prove. So we assume
that ¢ =2 2 . Let £ : Y —— X be the blowing-up along Pc(é/él)
Then we have a projective bundle structure n : Y —— ?C(él) such

that the exceptional divisor E of f is isomorphic to the fiber
product ?C(él) X PC(€/£1) , where the restrictions of mw and f
to E correspond to the first and second projections. respectively.
We need the following:

Claim 4.8). The R-divisor A = xpr*@ (1) + yprzG ) - tF  omn

(1
1 61 6/61
Pc(él) X ?C(é/él) i8 pseudo-effective if and only if x =2 0 ,

vy 20 and t < xu(él) + yu(62/£1)

Proof. First assume that x, v = 0 and
A = xu(él) + yu(éz/él) -t >0 . Then

* % .
A = xprl(Oé(l) - u(&l)F) + yprz(Og/gl(l) - u(éz/él)F) + AF is

pseudo-effective by (4.6). Next suppose that A is pseudo-effective.

- . - ) - Tp
Since 081(1) u(él)F is nef on Lc(él) s

He 1= 0, (1) - (u(él) -8)F is ample for any positive rational

) 61
number & . Take a positive integer m so large that mH6 is a
very ample Cartiervdivisor and take general members Hi € lmH6[ for
1 <1« rank(él) - 1 such that the intersection Z := N Hi is a
smooth curve on X . Then the restriction of A  to the fiber

product Z Xe Pc(é/él) &~ Pz(r*(é/él)) is still pseudo-effective,

where T is the morphism Z —— C . Now this restricted divisor is
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numerically equivalent to:

) = BTG, /E D)+ (x(0, (1) = p(EPFIZ + AF-ZYE

v x . (1
T (£/£1) 1

where f denotes the fiber class of Pz(r*(é/él)) —— Z . Thus by

(4.6>, vy = 0 and X(@{ (1) - u(él)F)~Z + AF+Z = 0 . Hence
1

x(0, (1) - u(£1>F)-Hga“k(81)”1 " AF'Hgank(gl)—l >0 . Taking & ¢ 0 ,
"1

we have x = 0 . Similarly, if we take a general ample intersection

on Pc<a/gl> , then the inequality x = 0 is derived. Q.E.D.

Proof of (4.7) continued: We shall calculate the v-decomposition of

* . # %
f (@6(1) - u(él)F) . Since 061(1) ~ f Gé(l)®@Y(—E) s

B3 E 3
@E(—E) ~ prIGgl(l) ® przﬁg/él(-l) . Therefore by (4.8),

(f*(@g(l) - u(él)F) - aE)IE i1s pseudo-effective if and only if
0 <o £ 1 and u(él) < au(él) + (l—a)u(éz/él) . Since
u(él) > u(éz/él) , these inequalities hold if and only if o =1

Therefore P (f*(O (1) = wu(EDNF)) = H*(O (1) - u(&.)F) , which is
V) 6 1 61 1

nef. Thus this is the Zariski-decomposition. Q.E.D.
Also by the same method as above, we can prove the following:

Proposition (4.9). JIf { < 2, then the Zariski—-decomposition exist

for every pseudo-effective divisors on X
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81. Introduction

Recently, a lot of examples of Calabi-Yau threefolds(i.e. compact
Kahler threefolds with trivial first Chern class and with finite
fundamental group ) have been constructed. In contrast with the case
of K3 surfaces, it is observed that they have a large repertory of
-Euler numberé, in other words, they can not be connected by
deformation in the proper sense. But some families of Calabi-Yau
threefolds can be regarded as strata of other families by means of
small resolutions. The following result was shown by H. Clemens and R.
Friedman in [11,[21: A general quintic threefold has many nmnutually
disjoint (—1,-1)-curves(i.e. rational curves with normal bundles
isomorphic to Opl(—i) ® @P1(~j)) and the nodal wvariety obtained by

the contraction of at least two of them is deformed to a 2—connected

complex manifold V with KV = 0. By the result of C.T.C. Wall [111]
such a complex manifold V is diffeomorphic to a conneted sum of N
copies of 8% x 83, (8% x gay# N , where N.= 1/2 by(V). Prompted by

this result, M. Reid has suggested in [39]1 that all families of
Calabi-Yau threefolds with m; = 0 may be embedded in an irreducible
moduli space as strata, and that a géneral point of thié moduli space
corresponds to a non-Kahler 2-connected threefold. For a more

general and detailed statement, see [9].
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In this paper we restrict our attention to the smooth projective
threefolds X with the foilwing properties (%)
(%) 1) X has an elliptic fibration with a rational section over a
smooth rational surface S.
2) Pg(X) = 1 and k(X) = 0.
Remark that many Calabi-Yau threefolds are contained in the above
class. For example, the Calabi-Yau threefolds studied in [10] satisfy
().
We want to study the relationship between these X( exacxtly speaking,
their birational classes) and 2-connected non~Kahler threefolds
with trivial canonical bundle. My plan to this problem at this point
(which might need some modification, and only one part of Step 1 has
been completed) is divided into two steps:
Step 1. For X with the pfoperties (%), construct a flat family
of threefolds f: L — A : unit disk , such that
1) the central fibre ¥y is a (possiblf singular)
projective threefold birational to X,
2) a géneral fibre %t is a smooth, simply-connected,
projective threefoldwil) ﬁqvmﬂ awwwkweﬁﬁuibwwl&;

3) there are sub-flat families Qi (1 £1i £m ) of curves

of 4,
@i c X
N l , where §. is a curve on &%
i,t t
flat
M
A

4) @i and ﬁj (i # j ) do notlt intersect over A¥ = A - {0}
5) For t # 0, @i ¢ (1 £ i £ m) are mutually disjoint
(-1,-1)-curves on ﬂt(i.e. smooth rational curves with
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normal bundles @Pl(—l) Q‘OPl(—l) s

6) For t # 0, the complex analytic space it obtained
from %t by contracting @i’%s , can be deformed to a
non-Kahler 2-connected complex manifold with trivial
canonical line bundle.

Step 2. Observation of the relationship between %y and the
non-Kahler manifold: For example, it is .desired that
there is a semi-stable degeneration g: ¥ — A such that
1) one component of ¥y is bimeromorphic to %Ly hence,

to X itself), and
2) a general fibre @tis a non-Kahler 2-connected
complex manifold with trivial canonical line bundle.

The purpose of this paper is to introduce a partial result with

respect to Step 1. Our starting point towards Step 1 are the
following , one of which is the result of N.Nakayama:

Lemma Let f:9¥4 — T be a flat projective morphism between

algebraic vafieties. Assume that a general fibre of f is a smooth
threefold. Let to and t be two distinct point of 7 , and assume the

follwing:

a) ito is a (possibly singular) projective variety.

b) ¥, is a smooth simply-connected threefoldwih Wik conewical Lo bondls,
¢) For ﬁt, there are mutually disjoint (-1,-1)-curves Ci’t’s on
%t’ and the complex analytic space @t obtained by contracting
these curves can be deformed to a non-Kahler 2-connected

complex manifold with trivial canonical line bundle.

Then there is a flat family f: 4 — A , for which 29 = ﬂt and the
(8]

properties 1)... 6) in Step 1 are satisfied.

Proof
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LLet D be an irreducible curve on I passing through t and tg.
1f necessary, taking its normalization, we have a flat family of
threefolds £ — D, where D is a smooth curve. Hilb%/D is etale over
D at [Ci,t] because NC_1 t/%t'z @Pl(—l) & @Pl(—l). Let us denote by:
Hi the irreducible component of Hilb%/D containing [Ci,t]’ For
different 1 and j, Hi and Hj may possibly coincide. But by taking a
suitable finite cover of D, we may assume that Hi = Hj for i,j with
i # j , and that each Hi is birational to D. In this situation, We

restrict our attention to a sufficiently small neighbourhood A of tg.

From now on, we use the following notation:

. . £3 .
p.1 can be assumed to be an isomorphism over A , because Hi is

birational to D. Denote by %i the universal family over Hi' For a

general point h € Hi’ %i X k(h) is isomorphic to P!. Therefore we
. . . 1_

may assume that %i,A 1= %i Xp A is a P bundle over Hi,A*

Moreover we may assume that for a point h € Hi A*’ %i X k(h)

(1 £ 1 £ m are mutually disjoint (~-1,-1)-curves on Kp (h)* since
i

Ci ¢ are mutually disjoint (-1,-1)-curves. Let @i be the image ( with

reduced structure ) of %i A in %A . Then @i is flat over A*
because @i is ifreducible, reduced and dominating l-dimensional disk.
By the construction, @i N gj = ¢ for i,j (i # i) over A% . Finally

remark that 2) in Step 1. is a topological condition. As for 6) in

Step 1. see [2].
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Theorem ([6,(3.4)1) Let X be a smooth projective threefold with
(). Then X is birational to a Weierstrass model W over P2 or Zr
(0 £ v £ 12).(For the definition of a Weierstrass model, see (2.11).)

Moreover W has only rational Gorenstein singularities.

By the above results, we may only consider the Weierstrass
models W over P? or Zr (0O < r £12). But the following lemma shows

that the case of X, can be excluded in our context.

Lemma( Jumping of the complex structure Zr)

1) Let r be an even (resp. odd) integer.
Then for Zr'( r =2 2), there is a smoofh projective morphism
fr: ¢ — Cr such that @ Cr is a smooth curve ( not

compact) with a distinguished point ty , b) g, 1is
0

isomorphic to Zr » and C) F, (t # to) is isomorphic to X

(resp. 2{).

2) For an arbitrary n, Xx( @Z (—nKZ )) = (2n + 1)2,
r r

1 - - 2 _ —

If 0 < r <2 , then h'( OZ ( nKz Y)Y = he( @z { nKz‘)) = 0
r r r 1

for n =2 1.

Proof
1) See [12] p.205 , Step M).

2) By the theorem of Riemann-Roch, Xx¢ @2 (—nKZ )) = (2n + 1)2,
r T

By the Serre duality, we have

h?( @Z (—nKZ )) = hO¢ @z (n+1)KE )),
r r r r

R1C 0O RiC 0

(—nKZ ) n+1)K

r r

r r
We shall prove by induction that the right hand sides are zero for

n = 1.
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Since, for n =1, =K~ 20y + (2 + r)f ( Cnp: negative section , f:
fibre), we can find a reduced element D in [-K|]. Indeed, take

as D, Co + C + 2f , where C is a section of self-intersection number
r. From the exact sequence

0 — 0Ky — 0 — 0 — 0,

D
we have

Hoﬁo) — HoﬁoD) — HL(0K)) — HI(®) = 0
C o C
This shows that H'(O(K)) = 0. For the case n > 2, from the exact

sequence
0 — 0(nkK) — 0((n-11)K) — @D((n—l)K) — 0,
we have
HO (0 ((n-1DK) — H'(0nK)) — H'(0((n-1)K)) = 0 (by induction).
Since D = Cy + C + 2f , (Co .(n-1)K) = (n-1)(r-2) , (C. (n-1)K) < 0,
(f. (n-1)K) < 0, and (€g. 2f) = 2, in the cases r < 2 HO(GD((n~1)K)

= 0, which implies H!(Onk)) = 0. Q.E.D.

Let Wy be a given Weierstrass model over Z,, and Wy a
smooth Weiérstrass model over Z5. Then , by the above lemna,
we can connect two varieties by a fiat deformation , and a general
member of this flat deformation is a smooth Weierstrass model over

2p. Indeed, we may consider the following flat morphism{ with the nstatizp

in Lemma ) -

i 5 WK, . alt), b(t))
| U
V. (RO, y x VARYF, 0,578 5 Calt), b(t))
f & 9/0 cSf™ 52 0y /¢, ;
,Wwhere t € Co,
a(tye HO¢ mg®—4 ),
¢
botre HO¢ wg®“6 ),
¢
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4a? + 27b2 'not identically

zero.
Therefore we may only consider the Weierstrass models over P? , Zr
(0 £ r €12, &r = 2). We are now in a position to state the main
result of this paper.
Theorem

Let W be a general smooth Weierstrass model over Pl x pl.
Then there are mutually disjoint rational curves C., """, L4 on W with

the following properties:

1) Nci/w o Opl(—f) 2 @Pl(—z) for each i.

2y Cy, " ,C4 span Hy (W ; 7).

Moreover, if we denote by @:W —— W the contraction of C{s, then
W can be deformed to a 2-connected compact complexr manifold with
K = 0.
The infinitesimal Qeformation spaces of Weierstrass models are
very large. For example, h'(W, Bw) = 243 in our case where W
is a Weierstrass model over P! x pl.

We shall sketch the proof of the above result. First
we relate a singular Weierstrass model W over P! x P! with a fibre
prodict X = § XP18+ of two rational elliptic surface with sections.
The birational map between W and X is a composition of flops and
divisorial contractions. The merit of considering X is the boint
that it is éasy to study the rational curves on it. Next, we choose
suitable isolated rational curves on X. It is desired that «) the

birational map between X and ¥ does not make myeﬁedon thses curves,

and B8) these curves have different numerical classes. We need 2) to
proceed with the argument along the idea [27. Then, what kKind of
curves should we find on X ¢ We note that S has many
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representations as blow-ups of P! x P!. Take one of such
representations and consider the linear system % on S coming from the

rulings of P! x P!. A general member C of X is a nonsingular rational

curve and is a double cover of P! by n: S — P!. By Hurwitz
formula, € has two ramification points {P;, Po}. Also for x:
st —s P!, we consider similarly ¢t e ¥ and {Qy, Q. If (PO =

X(Qy) and nw(Py) = x(Qs), then C XP1C+ c X consits of two
nonsingular rational curves D, and D; intersecting at two points
trénsversely. Under the suitable conditions ( which can be described
by using the degree of a ramificalion map (Def.(2.5))) ,‘D.1 is shown
to be isolated. (Prop.(2.10)) The main object of this paper is a

curve of such a type. Changing the representation of S( resp. S+) as

a blow-up-of P! x P!, and replacing 3 (resp. % ) by new one, we can
find many isolated rational curves of different numérical types. We
must take these curves mutually disjoint. For this purpose, in 83,

we observe the degeneration of Di' As a consequence, we will be able
to choose suitable curves for which o) and 8) holds. These curves
are regarded as the curves on W. The normal bundles of these curves in
W are 0(-1) @ 0(-1) or 0 @ 0(-2). In the latter case, we must deform
the curve and W so that it splits up into a union of curves of the
former type. Thus 84 deals with the deformation of rational curves on
W.(Prop.(4.4)) In Appendix,'We calculate (W ; Z) for a nonsingular
Weierstrass model W and show that it is torsion-free , which will
guarantee 2-connectedness of the smoothing of W in Theorem of §4.

In the case where W is a Weierstrass models over P2, it seems that we
must deal with the.curves C of (1,-3) type(i.e. NC/W ~ (1) @& 0(-3))

and their deformation.
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§ 2. Preliminaries

Let S and S* be rational elliptic surfaces with sections, and
we denote by 71 and x , their fibrations over Pl, respectively.
We shall consider the case where the following are satisfied:

(2.1) Generic fibfes of 1 and A are not isogenous to each
other.

(2.2) All singular fibres of m and X  are irreducible. _

Taking the fibre product of S and S+ over Pl, we obtain the

the following diagram (2.3):

S X5+
/s ]Pl\

\Pl/

From the assumption(2.2) we have the following commutative exact

diagram:
Pic S x Pic S'——— Pic ® Y x Pic At () —— 0
. *
2.4 p ® q* an) ® q?n)
7 £¥0(1) — Pic S XP15+ _—_ Pic £ 1) — 0,
where n is a generic point of Pl. p?n)/® q?n) is an isomorphism
by (2.1). Since £¥0(1) =~ p'n 01>, p'® ¢© is surjective. Hence

for a line bundle § on X, we have § = p*L ® q*M, where

L (or M) is a line bundle on S (or Sf resp). By Kunneth

formula, f*(S ) H*L 2] A*M , and if § iseffective, we may assume
that L and M are effective. In fact, if § is effective, then f*ﬁ
has a non-zero section. Since n*L and A*M are vector bundles on
Pl,they are direct sums of line bundles. Hence we conclude that {for

a suitable line bundle K on Pl, H*L ® K and X*M ® K_1 have
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non-zero sections. We can write § =~ p*(L Q R*K)A® q*(M Q A*K—l).

Since L ® H*K and M ® A*K_l are effective, we may assume that L

and M are effective.

Remark Set X = S XP15+' Then X has at worst terminal singularities
because the singular fibres of m and X are of type I, or II. Moreover
X is @-factorial( i.e. far any Weil divisor D on X, some multiple mD
is a Cartier divisor ). This is shown as follows: If X is not
Q-factorial, then therg is a small projective resoclution r: ¥ — X
for which Y is Q-factorial. But then we have (2.4) for Y instead of
X and the exceptional curve of r is numerically equivalent to 0,
which contradicts the projectivity of Y. Hence X is Q-factorial.

On the other hand, since X is a Gorenstein 3-fold, X is factorial by

[ 4, §51.

Definition(2.5) Let m: S —— P! be a rational elliptic surface with
sections. Let X be a linear system on S whose general member C is a
nonsingular rational curve with €2 = 0. Then theryamification map
w(S,H,Z) is defined as follows.

The members of X is parametrized by a projective line P!,
because dim 2 = 1. We shall denote by Ct’ the member of %
corresponding to t € P!. For a general t € P!, nIC : Ct———% P! is a

i
double cover with two ramification point Pt and Qt' This
correspondence from t to {Pt’ Qt} is extended to the map

P! —— ¢ , where ¥ is a symmetric product of two

MG I
. . . 1y.
projective lines. We denote [ C(Ply: Cdm ¢(S,H,Z))] by deg ¢S5
From now, we shall consider the case where S is obtained by

blowing-ups of P! x P! and ¥ is the pull back of |p%0(1)| on P! x P!l.
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For example, if we assume that every singular fibre is irreducible,
then we always have this case.

Let us identify the vector space H® (P! x P!, pTO(2)® ng(Z))
with €%.

Let T:= { (z,y)€e C°® x C° ; z = oy or ¥y = oz for some constant o
€ C3). Then T is a closed subset of C% x C°. Consider the C*-
action on €% .x €% such that for ¥ G'C*, Y@,y) = (yz,vy). Then T is
invariant under this action, and hence-we.haQe the following quotient

spaces with respect to this: action.

€% x C® —— P17
U U
C¢%xCS-T —s U

By the identification of €% with HO(P' x P!, pT0(2)® p30(2)), a
point (z,y) € €% x €C° - T corresponds to a pair (f,g) of sections of
pf@(2)® ng(Z). Since (z,¥)is not contained in T, (f,9) determines a

linear pencil Af + ug ; (x:u) € P!. Thus we have

(g LIC(F,9)1) € P! U

X

[(f,9)] € U
If we replace U by a suitable open set of U, then each linear pencil
P! x {u) ; 4 € U has eight base points in number, and the blow-up of
these points is a rational elliptic surface with sections Su. For'
this Su and the linear pencil 2 ( the pull back of |pf0(1)| on

P! x P!), the ramification map @y is defined. On a suitable open set

V ¢ U, there is a commutative diagram:
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lPl

xV — 5 ¢ x

\/

such that wlu = 9,

We can find,

deg wu 1, which shows tha

Indeed, since deg ¢ 1, £
Ug

a closed immersion at . O

at =, which implies that ¢

lemma. This shows that for

(2.6) Explicit description
(Tp:T1) X (Sp

= angS% +

:Sl) a

a2TgSOSI

N

f

36T0T1S%

2,2

= byT3Sg + bQTososl

2.2

b5TOT1S% + byT7{Sq

Consider the linear sy

are generally chosen, then

in number. Blowing up the b

surface with sections. Set

linear system of the ration

the ramification map ¢ wit

(505:S81) € PtL.
Put

F = ¢ A(a;55 + 2gS0S; +

{ 1(8453 + asdSgS; +

{ l(als% + aoS5pS; +

by (2.6) below,

v

at least one point ug€ V such that

t for a general point ¥ € V, deg wu 1.

or a general point  on P! x {ug} @, is
0

n the other hand, ¢ is a finite morphism

is a closed immersion at & by Nakayama’s

any point ¥ € V near Uy, deg wu 1.
of @

bi-homogenous coordinate of P! x P!

+ asT%S% + a4T0Tls% + asTgT 18087 +
+ agT2S0S, + agTisy
2.2 2
+ baTpS7 + baTegT1Sg + bsTeT1S0S; +
+ bgT2S5S; + boTiS2
stem Xf + pg (x:p) € P'. If als and bls

this linear system has eight base points

ase points, we have a rational elliptic

T o= |p§@(1)l. Then ¥ is regarded as a

al elliptic surface and we can consider

h respect to Z. X is parametrized‘by

2

+ bgS7y 2

395% ) o+ u(bvsg.+ bgSaSy )y TY

+ b5S%

+ b3S:

asS2 ) + w(b4S5 + bsSeS, )} TiTo +

2 2 2
azST ) + u(bySg + bySpS; )} Tg
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=¥, (x, u, a, b, Sa, S;) Ts + Wa(x, u, a, b, Sg, Sy) ToT, +

¥a(x, u, a, b, Sg, S;) T5
Taking the discriminant D(F), we write
2
Y5 = 4 g

= /\2 $,(a, So, St) + xu $-,(a, b, Sg, Si1) + IJ2 ¢5(b, Sp, Sy,

D(F)

it

where ¢,, ¢, and ¢35 are homogenous polynomials of deg 2 with respect
to (a, b)Y, and of deg 4 with respect to (Sg, Si).
Then ¢ is defined as follows:

@
{(Sp:8;) X (a, b - - = ( ¢1: 951 &3 ) X (a, b)

TN M
Pt x P17 A\\x &/////A P2 x P17
(a, b)

pL7
where we identify the symmetric product ¥ of two projective lines
with P2. I[f three polynomials ¢;, 9, and 95 have common factors for

a point ug = (ag, bO) € P!7, then @ is not a morphism above Ug ( @uo

can be regarded as a morphism fibrewisely ). This is the reason why
we shrink U to V in (2.5).

Fbr example if we put bg= (0, 0, 1/2, 1, 0, 1, 1, 0, 1/2) and
apg= (0, 1, 0, 0, 1, t, 0, 1, 1 ), then ¢ is a morphism above Uy =

(ap, bg) € P'7T. Moreover @,y is described on Ug:= ( Sg # 0 ) as
0

follows:
9, 1(8) — (g% - 283 + (lower trems), -2s® + (lower terms) ),
0
P [ |
S1/Sq Wo/Wo W,/ Wo

where (Wo:W;:W;,) is a homogenous coordinate of P2. Writing a(s) =
s - 233 + (lower terms) and B(s) = -28% + (lower terms) , we have

C¢(sy = €CC a(s), B(sY ). Hence we have deg wuo = 1.

By (2.5) and (2.6) we have
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Lemma(2.7) For a general triplet (S,n,%), deg 5 sy 1.
Remark(2.8) Since S is a rational elliptic surface with sections, 7
is detemined uniquely up to Aut(P!) for a fixed S. Thus the above

property is independent of the choice of m if we fix § and Z.

(2.9) Let (5, Z, m) and CS+, Z+, 2) be the same as above. We assume
(2.1) and (2.2). We employ the following notation.

X :=S xpls"

x: § — P! the morphism defined by X

g: ST— P! the morphism defined by "

p: X — & the first projection
q: X — s* the second projection
c:= ot 0 p
t:=$ 0 q

= P5,n,
4
¢ =Pt oA sh

Remark that general fibres of oo and 8 are isomorphic to P!, Let F =

a Lz (resp. FY = B—l(y) ) be a general member of ¥ (resp. % ). Then

0—1($) £, a_l(m) ~ P! is a nonsingular elliptic K3 surface, and
similarly for © v(y) —L 87L¢y) ~ P!, Let (P,, Py} € P! (resp.

{Q,, @} € P! ) be the ramification values with respect to nIF:F —
P! (resp. /\IF+:F+ — P,
Proposition(2.10) Assume that 1) Py = @; and P, = Q» , 2) (2.1) and
(2.2) holds. Then D = F x[PlF+ c S XP18+ = X consists of two
irreducible components D;, D, with the following properties:

a) D, and D, are nonsingular rational curves with (DI.DQ)O—I(m)

= 2, (D,. Dg)r_lty) = 2. Moreover D; intersects with D,

transversely.
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b) NDi/X ~ 0P1(_1) & @Pl(_l) or ®P1 ® Opl(—Z).

Moreover if we assume that deg ¢ = 1 or deg @+ = 1, then Di(l < i«
2) is an isolated rational curve.
Proof.

The proof of a) and b) is immediate from our assumption. Suppose

that D; moves in X. If'HD /x = 0(-1) @ O(~1), then D, is always
1
rigid, hence we may assume that ND /X = 0 ® 0(-2). Since D; moves,
1

the Hilbert scheme HiLbX is smooth at [Dy1. Let u: # — H be the

irreducible component of HiLbX passing through [D;1 and the

universal family over this component. # is irreducible and there is
a natural morphism from # to X. We can regard its image as a Weil
divisor on X. Since X is factorial by Remark preceeding Definition

(2.5), this is a Cartier divisor, which we denote by 2.

Then we have the following diagram:

2 c
o X T 19 1 1 o X T
G c P! x P! - —, ¥ X9
i ® X 9
, where G is the image of 92 under ¢ X T and @ (resp. Q+) is the

ramification map with respect to (5,mn,2) (resp. (S+,A,Z+)) defined in
§2. First, G is an irreducible curve because 9 is the image of # and
D1 is contained ina fibre of g X't . Next, for a general point

P e G, (6 x r‘)_l(P) is a singular fibre_of type I: (i.e. two
nonsingular rational curves intersecting at two points transversely).
This is shown as follows. A general fibre of o ( resp. T ) 1% an
elliptic K3 surface.r D, deforms to a section s of a general

fibre of ¢ , and s is, at the same time, a section of a general fibre
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of Tt . Assume that s € o_l(m’):general fibre and s € r_l(y’): general

fibre. Then o '(z’) -5 P! and B_l(y’)—iﬂ P! are double covers of P!,

respectively. Of course, both a_l(m’) and B_l(y’) are nonsingular -
rational curves by definition. Let (P}, P3ye P! (resp. { Q}, Q3} )
be the ramification value with respect to m ( resp. X ). If (P}, P3}
does not coincides with { @}, Q3%}, then a_l(m’) XP1 B_l(y’) =: 1t 1is
an irreducibe curve on o L (z’) and D It: t — o l(z’)c S is a double

cover. Since t contains a section s of p | 0_1($’)—%a_1($’),

o lzyt
this is a contradiction. Hence {P}, P%} coincides with { Q}, Q%}. In
this case, t is a union of two sections s and s’. s and s’ intersect
at two points which corresponds}%Pi Xp1 Qg1 , P2 Xp1 Q). Since
t? = 0, s = -2 and s’? = -2 on the elliptic K3 surface o lzy, s
and s’ intersect at these points transversely., Therefore, for a
general point P € G, (60 X T )_1(P) is a singular fibre of type I-.
Furthermore, from the abdve observation, we conclude that (¢ X @+)°i
factors through A Cc ¥ X &.

Let us show that 9 is a pull-back of a divisor on P! x P! by
¢ X Tt . Let P be a general point of G and let us write (0 X T )_1(P)
=y + Cp,. Then C; + £, is contained in a smooth fibre F of ¢ , and
@lF = al; + bls+ (effective divisors on F disjoint from €; and C»).
Since (a general fibre of ¢ x t . 2) = 0, we have (C;+ Cp. 9) = 0.
Here we recall that X has two canonical projection p: X — § and
q: X — S°. Then p(Ci)(resp. q(Ci)) coincides with a fibre of
« :S —Pl(resp. B : S*—> P!y for i = 1,2. On the other hand, by
(2.4), 0(9) =~ p*L @ q*M for an effective divisor L on S and an
effective divisor ¥ on S+, which implies that (2. C;) =2 0,

(9. C») 2 0 and consequently that (9. C1) = 0 and (2. Cy) = 0. Since

C;s are (~-2)-curves on the surface F, we have 9IF = (aC; + aC,; ; az=0)
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+ (effective divisors disjoint from C;s). It is easy to see

(9(@)|C1 s C, v Ocl + 0y Hence we have shown that except for finite

fibres of ¢ X Tt , the restriction of 0(92) fo fibres of ¢ X T are
trivial. By the see-saw lemma, 2 is a pull-back of a divisor by

0 X T in codimension one. Hence we have 0(2) =~ (0. X T ) 0(G). Let
us denote by p; (resp. py) fhe first projection (resp. the second
projection) of P! x P!'. wWrite L = 0C F and M = 05+C F" ).
Then we have (0 X < )*p? 0(1) = p*L and (o X r‘)*pg 0C1) = q*M.
Thus 0(G) = pi 6(m) ® p3 O(n) and 0¢2) = p L% & ¢*H®" for positive
integers m and n. Since (¢ X w+)°i factors through A c ¢ X ¥ and

deg ¢ or deg @ = 1, we have m = 1 or n = 1, and hence & ~ P!.

We have the following commutative diagram:

normalization

9 ——— 9
v
lg J.o ><'E|@
G SN G =~ P!
, where koj is the Stein factorization of 9 —— P!. Since a general

fibre of ¢ X <t I@ is of type I,, a general fibre of § is isomorphic
to P!. Hence we have deg X' = 2. Since every fibre of ¢ X T is
reduced, every fibre of ¢ X <t |@ is also reduced. Let f be an
arbitrary fibre of 0 X <t l@. Then a general point P € f is a smooth
point of f because f is reduced. Since ¢ X T I@ : 2 — P! is a flat
morphism, we conclude that 92 is smooth at P, which implies that the
normalization of 2 makes effect only on finite points of every fibre.
By Hurwitz formula, k is ramified over some points because G ~ P!.
Let P € P! be one of these points. Then (koj)—l(P) is a multiple

1 -1

divisor on 2. On the other hand (k°j)_1(P) =V "o (0 X T lﬁ) (P)

and the right side is not a multiple divisor by the above
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observation, which is a contradiction. Therefore, D; is isolated

under the assumption of the proposition. Q.E D.

PDefinition(2.11) Let C be an nonsingular rational curve on a 3-fold
X. Assume that X is smooth near C and that NC/X = Gpl(—l) @ @Pl(_l)'
Blowing up X along €, we can produce a Pl X Pl as a exceptional
divisor. Blowing down it to other directions, we have a threefold
bimeromorphic to X. This process is called a flop. TFor the

definition of a flop in more general situations, see [41,I81.

Definition(2.12) The Weiersirass model W(KT,a,b) over a surface 7T is

®
the divisor on PT(®T$ K?2$ KT3 } defined by the equation

Y27 - (X3 + aXZ? + bZ%), where X,Y and Z are natural injections

X2 Q2 893
7 T Op® Kpe Ky

d3 Q2 ®3
7 T 0p® Kp7e Ky

*2 3
r T Oy® KpTe Ky

K
K
0

- SQ—
, respectively, and where a and b are sections of KT 4 and KT 6,

respectively. Moreover we assume that 4a® + 27b? is not identically

zera. We shall denote W(K., a, b) simply by W¥.
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§ 3. Rational curves

i. In this paragraph, we shall define the birational map ¢ between
X =25 XPIS+ and a singular Weierstrass model pu: W — P! x P!,

Let m: S —— P! be a rational elliptic surface with sections.
We assume that all singular fibres are irreducible. Then S has the
representation as a nine points blow-up of P?2. Thus there are
(-1)-curves {i (1-€£ 1€ 10) with the following properties:

(1 £is (i # 8) are exceptional curves of the nine points
blow-up of P2.

(2) (Lg.Lq) = (ﬂlo.{g) = 1. (ti.£g) = 0 for other i.

The blow-down of £;,...,4g is isomorphic to P! x P!.

—_— W

B

A

R? .Ric 1o

Let A : ST—— P! be a rational elliptic surface with sections.
We assume that all singular fibres are irreducible. Pick up one
section m, C S* of x (which is a (-1)-curve on S*.).  The birational

map ¢ ( which depends on £ =(£.) and m,) is defined as follows.
f'sm-l 1 . .

Let 7 be the flop of the curves {i Xp1m1 (1< i £ 8). Then we
have the projective threefold X' birational to X = § XP18+' Let Ei
(1< i < 8) be the strict transform of £, X[P15+ (1< i < 8) by 7.

These Eis can be contracted to eight points and we obtain a singular

Weierstrass model p: W — P! x P1. We denote by ¢({ n.y this

y L1
birational map between X and W. The strict transform of S xlel by
® is the canonical section of u.

({,ml)
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2. We shall explain the basic situation. Let m: § —— P! and
X S+ —— P! be rational elliptic surfaces with sections. We assume
that every singular fibre of m and A is irreducible. We denote by £
and £’ (resp. m and m’) two (-1)-curves on S ( resp. S+) for which
(L. £’) =1 ( resp. (m, m’) = 1 ). Assume that
(3.1) generic fibre of m and X are not isogenous, and
(3.2) m(P) = A (Q), where P = &£ N £’ and Q = n N m’.
Let A be a small disk around 0 € €. Let f: 6 —— A x P! and
g: 6'—— A x P! be the deformation of n: S —— P! and x: S*—— P!

, respectively.

6 ——— Gy = S 6" —— Gy = S*
fl fol gl 901
A x P! « 0y x P! A x Pl « {0y x P!

Since € and £’ ( resp. m and m’) are stable submanifolds in S (resp.
+ .

S ), they are deformed to (-1)-curves ﬂt and £% on Gt (resp. g and
m% on 6; y; t € A - {0}, Here we impose the following general
condition:

(3.3) ft(Pt) = gt(Qt) for £ € A - {0}, where Pt:: £tf\ ﬂt and
Qt:z mtf\ my.

Figure 1.

X

Let us employ the following notation:
C:= ¢ Xpim < X =38 Xp15+
C’:= xplm’ c X
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C U G’ := the reduced subscheme of X whose support is C U C’

For t € A - {0},

+

X,:= 6 &)

£°7 %t Xty x Py Tt
Xz:= the threefold obtained from Xt by the flop Vi of t% xplm%
on Xt

X+:= the threefold obtained from X by the flop vy of £’ < X

D := the strict transform of C by v

F := the strict transform of ¢ XP15+ by Y

For t € A,

at:Gt —— P!, the morphism defined by the linear system
|2+ 2

Bt:GZ —— P!, the morﬁhism defined by the linear system
Im,+ m}l

, the first projection

, the second projection

-~
|

>3
o~

(o]

o
o

TS Bt 0 q,
Remark. General fibres of o, and Bt are isomorphic to P!, and

general fibres of ot and rt are elliptic K-3 surfaces.

; -+
Figure N X

the J[ln;’ uf C’

Lemma(3.4) The following implication holds.
a) C U €' is isolated in X.
—b) D c X' is an isolated (-2)-curve (i.e. ND/X+ ~ 0¢(-2) & 0 or

0(-1) & 0(-1))
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—c) D can be deformed to an isolated (-2)-curve Dt on X; (tea-{01)
Furthermore y%l iS an isomorphism in a neitghbourhood of Dt'
Proof.

a) — b) Suppose that D ¢ X' moves. 1f ND/X+ ~ 0(-1) & 0(-1),
then D is always isolated, which implies that ND/X+ ~ 0(-2) @ 0. Let
H be the germ of HiLbX+/€ at [D1. Then , since D moves in X+, dim H =
1 and H# is isomorphic to (C!',0). Denoting by % the universal family

on H, we obtain the following diagram:

01
#— X" x4 — x*

b |

H

In the above diagram pll% X — X+ is unramified at each point on
p;l([D]) because ND/X+ ~ 0(-2) & . Hence p;(X) is smooth in a
neighbourhood of D. Since hO(ND/E) = 0, p;(¥#) intersects with £
transversely, and pl(ﬁ)lE = D. Indeed if pl(%)lE = n) for n > 2,
then we have a non-trivial extension of D to the second order. This
contradicts the fact that hO(ND/E) = 0. Moreover p;{(#£) has the D as a
ruling. Let B be the strict transform of p, (#) by v 1. Then 3
contains C and €’ as (-1)-curves, which implies that C U C’ moves in
X. This contradicts the condition aj.
b) — ©) The first part of c¢) follows from §2 of [2]1. The latter
part of ¢) follows from the assumption (3.3). Q.E.D.
Remark. 1In c), Dt can be regarded as an isolated (-2)-curve on Xt
because Y‘l is an isomorphism near Dt’ Hence by Lemma(3.4) if a) is
satisfied, then we can find an isolated (-2)-curve on Xt'

Figure
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+

+ X,

E < /I/\ eltiphic K3 surface
L

>

We shall denote by 2 (resp. Z+) the linear system on S (resp.
S+) defined by £ + £’ (resp. m + m’). Then the argument in (2.5) is

applied to the triplet (5,mn,2) and (S+,k,2+).

Proposition(3.5h) Let S and S* be as above. Suppose that the triplet
(S,m,2) is generally chosen such that Lemma(2.7) holds. Then C U C’
18 isolated in X.
Proof.

Suppose that € U C’ moves in X. Let us denote by N, the
normal bundle NC U C'/ X and write P =C N C’, j: C — C U C’

and j': C’— C U €’. Then we have
0 — N — G e il — Cm® — o

» where N|, =~ 6(-1) ® 0 and N|,, ~ 0(-1) ® 0. Since ® : j _(N|,)® CP
- J WPy ® Gl et B e® and 00 2 wl0e T
— C(P)$2 are both isomorphisms, we have RON) < 1. Since C U C’
moves in X, HiLbX/C is smooth of dim 1 at [ C\U C’1. We note here
that X has two fibrations oo and Ty whose general fibres are

elliptic K3 surfaces.(See the notation above.) € \J €’ is contained
in sigular fibres of oo and Ty, respectively.

Since C Y €' does not move in these singular fibre, C U C’is
deformed to a section of a general fibre(an elliptic K3 surface) of
gg(resp. Tp). Let us denote by oot £ — H , the irreducible

component of HiLbX/<E passing through [ U €’1 and the universal

family over this component. Then a general fibre of oo is isomorphic
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to P!, which implies that # is irreducible. There is a natural
morphism from # to X, and we can.regard its image as a Weil divisor
on X. Since X is factorial by Remark in 82, this is a Cartier

divisor, which we denote by 2. Then we have the following diagram:

9 c
Oox 'Col@ l J’Oox to
G c P! x P! —, ¥ x¥
i P X @

, where G is the image of % under 0gX Tty and ¢ (resp. ¢+) is the
ramification map with respect to (§,m,Z) (resp. (S+,A,Z+)) defined in
§2. First, G is an irreducible curve because 2@ is the image of # and
€ U C’ is contained in a fibre of ogX tg. Next, for a general point
P e G, (oggx ro)—l(P) is a singular fibre of type I, (i.e. two
nonsingular rational curves intersecting at two points transversely).’
This is shown as follows. A general fibre.of og ( resp. Ttp ) is an
elliptic K3 surface. € U €’ deforms to a section s of a general
fibre of 0g, and s is, at the same time, a section of a general fibre
of tg. Hence we have the situation in the proof of
Proposition(2.10), and consequentb for a general point P € G,

(ggX to)—l(P) is a singular fibre of type I,. From this, we can use
the same argument of the proof of Proposition(2.10), which deduces .

the contradiction. Therefore, C U £’ is isolated in X. Q.E.D.

3. In the following we shall find four mutually disjoint, isolated
(-2)-curves Ci (1 < i < 4) on-a singular Weierstrass model
p: W — P! x P!, These curves will have the following intersection

numbers:
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<, cp =0 @rFoar, ¢y =1 @aFpiocy, ¢ =0
(2, €20 =0 Wpioy, €0 =0 w¥pr0C1), Cp) = 1
-0 (T, Ce» =1 wpToa, € =0 w¥pi0), € =1
(T, Co =1 wpiea), ¢ =1 @pioa), € =0,
-where p,(resp. p3) is the first(resp. second) projection of Pt x P!
and ¥ is the canonical section of Z.

Let m: S — P! be a rational elliptic surface with sectioﬁs
whose singular fibres are irreduciblé. S is a nine points blow-up of
P2 and a eight points blow-up of P! x P!. Let ti(l_s i < 10) be the
same as in 1. of this section, and let ii(i = 11, 12) be the
(-1)-curves on S for which (£;1.8g9) = (L1o.489) = (L11.87) = (L12.48)
=1, (€ll.£j) =0 (j # 7,9) and ((12.£j) = 0 (j # 6,9). | We write
a=42g0 £, b = 47N Ly, and ¢ = &g L15. 1t is easy to see the
existence of these curves.

Figure

Let Xx: S+———% P! be a rational surface with sections whose
singular curves are irreducible. Suppose that mi (1 < i £ 6) be the

(-1)-curves on S+ for which

(m,. m.) = 0 if (i,j) = (odd, odd) or (even, even)
rod with i # j
(my. myp) = (my. Mmy) = (M. mg) = 1
(3.7) _ - _
, (mz. me) =1 (mg. Mmyg) = (m3. mg) = 0
(mg. Mmo) = (Ms. Myg) = 0 - {ms. mng) = 1.

mi{Y mg and v = ms{\ mg we

Writing s = mo) ma, t = m N my, u

suppose one more condition:
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(3.8) Xx(s8) = a(i).

Figure

In order to construct ths S+ satisfying (3.6) and (3.7), we must
choose suitable eight points on P! x P! (which are, of course, the
base points of certain linear pencil on P! x P!) and blow up these

points. Let us look at the following figure.

| i
Figure Pxp

Here £ is a nonsingular elliptic curve which is a divisor of (2,2)
type in P! x P!. Let us denote by p;(resp. p,) the first (resp.
second) projection of P! x P!. C is a double cover of P! with
respect to p; and p,. Let P, be a ramification point of the double
cover pllC' Let f be the fibre of p, passing through P; and R a
intersection of 7 and C. If we choose C generally, then C intersects
with the fibre g of p; passing through R, transversely. Write C N g
= {R} P,}. Take five points {P3,..., P7} on € disjoint from

(P, P,, RY. Then the divisor of (2,2) type passing through

(P{,....P7} forms a linear pencil X2. Let (€, €’} be a basis of 2.
Then C N ¢’ = (P{,..., Py, Pg}, where Pg coincides with none of
tP{,..., Py}y. Blowing up {P;,..., Pg}, we have an elliptic fibration

A with sections. If we impose certain general conditions, then the
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elliptic fibration obtained has only irreducible fibres.

Figure W'X‘P
— | £ Ez [ .
: ! Py 4 e
09- s e fhre \ Pz? : 5
¢ . 6—" ! T .
'DASSIHS. ‘-—}“’\———\_L—_:_ g ?-‘. . F ra/]@;,;, ',rr_;.,n,\[ns»
Heaought p,\‘ : ‘ blow wp ‘-"6 2
. \ . . "
Fl- ‘i I i M ?FI, "'/Pg} ' l —E‘ ‘ 4 Edi ‘i/,-((g:f)f,lnl[\k
jl 9, 9, ] ‘ AWISCY g P{_
Then we may set.my = f’, mo = Ey, mg = g} , mq-= g2 , Ms = g3 and

s = E;.. We assume the following condition (3.1),(3.2*).

(3.1) Generic fibres of M and A are notit isogenous.

(3.2%) mca) = a(s)( = A(EY), (b)Y = x(w) and m(c) = A (V).
Remark. By replacing m by oent for a suitable ¢ € Aut(Ply, (3.2*) is

always satisfied.

Let f: 6 — A x P! and g: 6 — A x P! be the deformations of
: § — P! and 2: S'— P!, respectively, for which (3.3) holds.
Then Lemma(3.4) and Proposition(3.5) is applied for each
Dy = (9, 2) U (8, 3)
D, = (9, 4) U (8, 1)

Dy = (11, 6) U (7, 1)
Dy (12, 6) U (6, 5),

where (i, j) means £i XP1 mj. Since Di(l < i £ 4) are disjoint from
each other, we have mutually disjoint, isolated (-2)-curves
Di t(l < i £ 4) on Xt (t # 0). As is explained in (83, 1), there is

a birational map ¢(£ between Xt and a singular Weierstrass

g Mg
model W over P! x P!. But in a neighbourhood of each Di e 2

¢ is an isomorphism. Therefore we can find mutually

(fvt, mlt)
disjoint (-2)-curves on W; Ci: ¢(£t’ m1t)(Di,t) (1< i £ 4)Y. By the
construction we have (3.6). W cén be deformed to a nonsingular
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Weierstrass model over P! x P!, which we call W by abuse of language.
Then the four curves constructed above is also deformed to isolated
(-2)-curves on W ( one curve may split up into disjoint several
curves.). Hence we can find mutually disjoint, isolated (;2)—curves Ci
(1 £ i £ 4) on a nonsingular Weierstrass model W , and these curves

satisfy (3.6).

§4. Deformation of rational curves
Let W be a nonsingular Weierstrass model over P! x P!. Let C
denote one of the isolated (-2)-curves constructed above. If NC/W o
0(-2) @ 0, then we must deform (L, W) so that £ splits into a
disjoint union of (-1, -1)-curves to use Friedman’s argument. In

this section we observe the deformation of (C, W).

Lemma(4.1). Let W be a mounsingular Weiersirass model over Plx pl.
Then W is unobstructed, that is, the moduli number m(W) of W can be
defined and m(W) = h1 (W, 8).

Proof.

By the definition of a Weierstrass model, W is embedded in

_ ®2 ®3 \ .
P = PPleI(O & KP1XP1$ KPIXPI). We shall denote Kplxpl simply by K.
Let p denote the projection of P to Plx Pl. Taking cohomologies of

the exact sequence

O, > @w > eplw —3 OW(W) — 0,

we have the exact sequence

)

0 —— HOW, B o, 0.y 22— Hlw, 8,

Iy W
The injectivity of ¥ follows from the fact that hC(W, ew) = RO (W, Q@)

= hQ(W, @w) = 0. First we shall show that & is surjective. Since
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the Fuler number e(W) of W is equal to —Gch(Plx Pl) = -480 by
{6, Th(3.10)1 and A!, (W) = 3, we obtain R1(W, 8, = 243. Since

OP(W) = @P(3)® px(-6K), a direct calculation using the exact sequence

0 ? OP OP(W) — OW(W) — 0

shows that RO (W, OW(W)) = 334. Consider the following exact

sequences

(4.3) 0 o, pre le 0,(1) — 8p piy pily — O
, where £ = 0 @ K°%0 k3. By (4.2) we have ho(eplw) <
hO(BP/Plxw) + hO(p*elP1>< Pllw)' On the other hand,
RO (Bp piy pily) = ROP+E™'® 0,(1)) - 1 by (4.3).  An easy
computation shows that ho(eplw) < 91. As a consequence, & is

surjective.
Next we shall show that hl(Ow(W)) = 0. Noting that OW(W) =

OW(W) = Gw(3)® p*(-6K) and applying Leray spectral sequence, we have

(3)® 0(-6K)) —— HI (O, (W)

1
0 — H (p*c)w W

—_— HO(Rlp*Ow(3)® 0(-6K)).
But the first term and the last term of the sequence are shown to be
zZero. Thus we conclude that Hl(@w(W)) = 0. Since HI(GW(W)) =

1 _ . : : .
fH (NW/P) = 0, the Hilbert scheme HLLbP/ is smooth at [W1, where [W1]

kK
is the point on HiLbP/k which corresponds to W. This implies that
the universal family over Hilbp/k is complete near [W1 by [51]

because & is surjective. Therefore, we conclude . that m(W) =

hl(vw, ew). Q.E.D.

Let p: W — Plx pl be a general nonsingular Weierstrass model
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over Plx Pl, and let C be the same as above. Then u(C) is a ruling f
of P'x pl. If we write H = u_l(f), then C c H. In case NC/W o

0(-2) & 0, we shall use

Propositioncd.4). Let pu: W — Plx Pl as above, and % a canonical
section of u. Suppose that
1) C is a contractible rational curve with NC/W = 0(-2) & 0,

1(f), where f is a ruling of Plx Pl, and C 1is a

2) CcH=un
section of “IH — f.

3) (C, ) =0 or I.
Then W can be deformed so that C splits up into a disjoint union of
rational curves with normal bundles GPl(_j) ® @Pl(—f).
Proof.

According to [2,84(c) Cor.(4.11)1, it suffices to show that the
natural map Hl(Gw) o H}(Bwlc) is surjective. If this is shown,
then we can apply the same argument 0f»[2,§4(c)(4.11)] with the aid of

Lemma(4.1) to prove the existence of a desired deformation of W.

With the same notation of Lemma(4.1), we have

0 - 0

WV 9[P|w — GW(W) ——— 0.

Let IC denote the defining ideal of C in W. Then from the above

sequence we obtain

2 B 2
(4.5) H (9w® ]C) — H (81P|w® [C)
[ l

1 2 2
H' (0,0 — H? () — (Gl}’lw)

2 —
H (SIPIC) = 0

We have shown in the proof of Lemma(4.1) that Hl(Ow(W)) = 0. Since

—247—



dim & =1, HQ(@PIC) = 0. We shall show that Hiceplc) = 0. By
Serre duality, hl(eplc) = hO(Qé ® 0pi(-2)), where we identify C with

pl. Consider the following exact sequences:

O —_— p*Q[E')lxlpl > Ql[P E— Ql[P/IPlXIPl —_— O

1 - —_— —
0 —— 9 P/PIxP! —> p*xg B OP( 1) @P 0,

2 @3

where € = 0 © K - & K and p is the projection of P to Plx pl.

From the first sequence, we obtain
0 —— Ho(p*Qé1XP1® Op1(-2)) — HO(QlP.® Op1(-2))
0¢ol! . _

- 0 R _ - .
Since H (p*QPIXP1® ®P1( 2)) 0, in ordgr to show that
HO(le ® 0p;(-2)) = 0 it suffices to prove that

00! _ - CL .
7°(Q P/Ple1® GPl( 2)) 0. But by the second sequence, it is
enough to show that h9(pxg ® Op(-1) ® Op;(-2)) = 0. If we write
m = (C,%) = 0, then it follows from the assumption(2) that

D*E @ OP(~1) 124 OPI('Z) = @PI(—Bm—Z) @ @PI(—Bm—G) & @P1(~8m~8).
Thus h%(p*€ ® Op(-1) ® 0p;(-2)) = 0 follows, and consequently
-hl(ﬂplc) = 0 is obtained. To prove the surjectivity of the map
Hl(ew) — Hl(ewlc), we must show that o in (4.5) is injective.
But since hl(eplc) = 0, it is equivalent to show the injectivity of B.

Consider the following exact sequences:

0
H (?w(W))
(4.6) Ho(oc(w>)
. B
1 Y . g1 2 2
{oplye I —— HI(O a8l —— H (8@ [ —— H (6P1w® I
1
0

We may prove that y is surjective. Let us write
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-yt - 5o 0
L fH (GW(W)®IC) ‘ H (GC(W))/H (GW(W)). Then we have the

following commutative diagram:

0 -1 T 1
HC (pxg ® @C(l)) — f (BPIW® IC)
|’ |
HO(OC(W)) _— L

Here Oc(l) is the restriction of OP(I) to €, and T is the composition

1

of the three maps: HO(pxg "® 0,(1)) — HO(Bp pi pilp),

0 0 0 1
HOOp prypilp) —— HO(Bply) and HOBpl ) —— H' (Bl @ I). (See
(4.2) and (4.3).) J is the so called Jacobian map, and it is

defined as follows:
Let F = Y2Z - (X% + aXZ? + bZ%®) be the defining equation of W in

P.( See Definition.) We write

HO (pxg le 0p (1)) = HO(O (1))@ HO(@C(1)®p*K'2)e HO(OC(1)®p*K'3).

Then J is given by

(L1, €2, £3) ——— L (JF/PZ ) + {Q(GF/SX Y + £3(QF/9Y )
M
0
H (@C(W)),

where

£y € HO(OA (1)),

C

£, € HOOAC1)®p K 2y,

C

£s € HOO (1)®p*K'3).

C

First it follows that L 0 if (C, Z) = 0. For, we have

i

o= *_ *_ o
OW(W) = 0w(3) ® u (-6K) GW(QZ) ® p (-6K) and OC(Z) = OC. Thus we
have proved the proposition in this case. Next we consider the case
where (C, ) = 1. In the remainder we shall show that im J and

im HO(GW(W)) c HO° (O~ (W)) generate HO(OC(W)) in this case. Note that

c
C c Hc W, where H is the divisor in the assumption of the

proposition. In this situation, ¢ 9F/82|H = 0} is a divisor on H
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which has no intersections with ZIH. Here ZIH denotes the
restriction of £ to H. Hence { aF/ale = 0 } consists of 18 points
( which may contain multiple points.). Let V; denote the image of
HO(@C(I)) in HO(OCCW)) = H0(0P1<21)) under J. Then the linear
system defined by V; consists of 18 fixed points and 3 points which
move freely. In particular, dim V, = 4. On the other hand, we
have

{ 8F/8YIH =0} = 32|H + ( effective divisors which havé no
intersections with ZIH }.

Let V, denote the image of HO(OC(l) ® D*K_S) in H(0.(W)) under J.

C
Then dim V, = 10. Finally let V3 be the subspace of
im HO(OW(W)) c HO(OC(W)) which defines the linear system on C of the

following type:

QEIC + ( 12 points which move freely ).

We have dim V5 = 13. We shall consider the intersection of V., and
V. { 8F/8Y|C = 0 )} consists of 12 points; 32!0( one point with
multiplicity 3) and 9 points Ry, """, Rg, none of which lies on Z.

Hence every section s € V, c HO(OC(W)) must be zero at these 12
points. On the other hand, we deduce from the definition of V3 that
s" eV, c HO(GC(W)) must be zero at Elc and that its multiplicity is
at least 9. Therefore, we conclude that for every section

s € Vo NV, {( p€C ; s is zero at p} = 92|C + Ry + """+ Ry + others.
This implies that dim(V, N V3) < 4. Since dim V, = 10 and

dim V3 = 13, we have dim(V, + V3) = 19. But every section of
Vo + V53 must be zero at ZIC with the multiplicity = 3. Thus we
obtain dim (Vo + V3) < 19. Consequently, dim (Vo + V3) = 19 and

dim (V, Y Vg) = 4. Next we shall consider the intersection of V,

and (V, + Va). Every section in V; is zero at { aF/E)ZIC = 0} ( which
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consist of 18 points different from ZIC ). On the other hand,
every section in Vo + V4 is zero at ZIC with the multiplicity > 3.

Thus we conclude that dim VNV, + V4) = 1. From this we obtain

dim V{ + dim(V, + V3) - dimV; N (Vs +'V3))

dim(V, + V, + V)

4 + 19 - 1

= 22.

Since dim(V{ + Vo, + V3) = dim HO(@C(W)) = dim H0(®P1(21)) = 22,
Vi + Vo + V5 coincides with HO(OC(W)). This implies that im J and
im (HO(G)W(W)) c HO(OC(W)) generate HO(OC(W)). Therefore, ¥ in (4.6)

is surjective and the procof of the proposition is completed.

We are now in a position to state the following theorem.
Theorem. Let W be a general monsingular Weierstrass model over
Plx pl. Then there are mutually disjoint rational curves C;, " ",C4
on W with the following properties:

1) NCi/W = @P1(~Z) ® Opl(—z) for each 4.

2) Cy, " ,C4 span Hoy (W ; 7).
Moreover, if we denote by ¢:W —— W the contraction of C;s, then W

can be deformed to a compacl complex manifold Wt with bg(wt) = 0 and

Proof.

By 83, there are mutually disjoint,isolated (-2)-curves Ci
(1 =1 <4) onW. Let € be one of Cis. If £ is a (-2,0) - curve,
then by (4.1) and (4.4), there is a suitable deformation of (C, W) in
P = PPlXPl(O ® KP?iPIQ Kp?ipl) such that C splits up into
(-1,-1)-curves. Remark that a deformation of W in P is again a

Weierstrass model over P! x P!. This is shown as follows. Consider
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the following diagram:

T o A 0

where f is a flat deformation of W. We assume that T ié a disk
around f5. Since HQ(@W) = 0, the line bundle OW(Z) is a restriction
of a line bundle £ on ¥. Since R'(O,(E)) = h%(O,()) = 0 C ' =0
follows from the spectral sequence of Leray for w:W —~+.P1 x Pt and
h3 = 0 follows from Serre dualit& ), ho(ﬂt) and hg(ft) are constant
around fp by the invariance of x(ﬁt). In particular, Rof*ﬂ is a

locally free sheaf near ft,, which implies that a non-zero section of

Zt extends to a non-zero section of £, for a t near f{g. Hence Z
0

extends to a section Z, of p,: ¥, — P! x P, 1f ny has a reducible
fibre, then some component F of this fibrevdoes not intersect with Zt'
This implies that p(f,) > 4 because T,, ay pj0C1), u} p30(1) and
a divisor D with (D. F) # 0 span a subgroup of NS(Wt) of rank 4.
But since hl(@w) = h2(@w) = 0, the Picard number is invariant under
deformation, that is , p(Wt) = 3. This is a contradiction.
Therefdre, Wt has only irreducible fibres and é section,‘which
implies that ¥, is a Weierstrass model over Pt x Pt.

By the above observation, it follows from Proposition(4.4) that

there are mutually disjoint rational curves C;, "~ ,C4 with NC W
i

oPl(_l) & @Pl(_l) on a general Weierstrass model W over Pl X Pl.

Then we have
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2, €

(z ., C»
4.7)

(2, C3)

(=, C

Hence Ci, " ,C4 generate Ho (W ; Z)
‘we can show that for W

satisfied. Therefore %W is smoothable.

1

1

awptocy, ¢ =
wFptocy, ¢ =
wFpFocy, ¢y =

w¥pToy, ¢4 =

—253—

0

1

by Appendix.

uwFprocly, Cp
w¥erecy, oo
(wFpro 1y, Ca

w¥piecy, ¢

the assumption of Corollary(4.7)

Q.E.D.

Moreover

1
0.
using (4.7)

in [2] is



Appendix. = the calculation of Hy(W ; Z)

Let p: W —— P! x P! be a nonsingular Weiersirass model. We
shall show that Ho (W ; Z) is torsion free and make explicit the
generators of (W ; Z).

a) Let (Tg : T;) X (Sg : S;) be the homogenous coordinate of

P! x P'. Setn =12 and b = T7 8T+ 1§ sT+ 10 sf+ 2T S§. Then b = 0
defines a nonsingular curve C c P! x P!, Consider the Weierstrass
model ¥ defined by Y2Z = X%+ bZ®, which is nonsingular. Let p; be
the first projection of P! x P!. Then C is a n-cover of P!, and there
are 2n vramification points {P{,..., P2n} € C for which the
ramification index é(Pi) =n (1 <1< 2n)., Put o = py° u. Then o is
a K3 fibration with n singular fibres. A general (resp. singular)
fibre F (resp. F’) has an elliptic fibration o for which the singular

fibres are n X II (resp. 1 X II).
n

F—=— F

>

e . ?\\uﬁu\ax
PomT.
b) Let F be a general fibre of 0. Then we have
Hi(F Z) = 0
Ho(F 3 1) = 1e ® Ly ® ... & 1f, ., ®1lg ,

where the generators e and g are represented by the following

2-cycles on F.

e := a smooth fibre of a: F — P!, which is homeomorphic to
st x s!

g := the canonical section ZIF of o, which is homeomorphic to §2

72f, ® ... ® Zf2(n—2) is defined by two exact sequences:
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(1) 0 — Ker —. 8 W (s! x 8'; 2) — Hi(S' x 815 DD

n
ay,..., an) —»iglai
2y 00— 262 — Ker — ZIf, ® ... ® If 0
2(n-2)
a =t(a1, an) —(a, Aa,.., An_la)

A: monodoromy matrix for a singular fibre

1
The fibration « : /: —> IP@ X S\l has
S;haulﬂﬂ‘ fﬂ)k‘eﬁ Ovet { Qz, -, Gh}

2. .
Y. [0,1} —> S is a QAJe aNuMA Q;
with % (0>=R, % (1) =R

In the exact sequence (1), an element (aj,..., an) €

§ 1 Hi(S! x s'; Z> corresponds to a 2-chain Ci +...+ Cn ;

C. = {C. (L)} a, = C.(1) - C.(0) , where {C.(f)} is a
1 1 1 1 1 1

t € [0,11 7

l-cycle -in S! x §! =« a_l(yi(t)). Therefore an element in Ker is
a 2-chain which goes to zero by the boundary map ©°

Zf, ® ... ® 7 is the quotient of Ker by the equivalence

f2(n—2)
. + +

reltation ~ ; (by{,..., bn) ~ (byy.e., bn) “— (bi,..., bn) =

(bY,..., ) + (a, Aa,.., A" la) for a e H (st x st 5 D).
Let ¥ be a circle around Pi € PL. Then the monodoromy action Y*

for the singular fibre a_l(Pi) is described as follows.

(3)
Y*'Ze = id : Ze — Ze
Y*‘Zg = id lg — Ig
(aj,..., a 4, a) € Ker —— 1f, @ ® 2ty (n-2)
| l g
(Aa , Aa  _,,.., Aa) € Ker —— Zf; ® ... ® ZLf, .,
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c) Let F’ be a singular fibre of o. Then we have

Hi(F’; 7) = 0
HQ(F’i,Z) = Ze & 19 )
where
e := a smooth fibre of o: F’—— P!, which is homeomorphic to
st x st

g := the canonical section ZIF, 0of ®, which is homeomorphic to §7
d) Consider 0: W — P (C) =~ 52. $?2 is coverd by two open disks

U and V with the following properties: P.l € U (1 £1 £ 2n-1), P2n€ U

p vV , P, €V (1<ix<2n-1)andU NV P st x (0,1).

2ne homeo

Moreover U is coverd by (2n - 1) open sets Ui (1 < i £ 2n - 1) with
the following properties: I Pj € U.1 if and only if i = j. IT) For
i and j with i + 1 <3, U N U, # ¢ if and only if j = i + 1. 11D
Ui N Uj is contractible to a point. By Mayer Vietoris sequence for

o_l(Ui)’s,, we have

1

oo Yy 3 2y = 0 and Heo Y 3 1) = Ze ® Ig

where we use the same notation in b). Obviously,

H1(0~1(V) ; Z) = 0 and H2(0_1(V) ;s 1) = 1e & g

Again by the Mayer Vietoris sequence for o Uy and oﬁl(V), we have

1

Hool b 0 o7l 3 D — Hywo a5 D e ot 5 D

Yoy n o7l : 1) — 0

]
i

— HoW 3} 1) — Hi(o

In the above sequence, Hg(o_l(U) N a_l(V) i L) ~ Je ® Zg & (torsion)

®3 Since ¥ ~ P! x P!,

by (3) in b), which implies that Ho(W ; Z) =~ Z
2 has two rulings, one of which coincides with g. We denote by h

another one. Then Ho(W ; Z) ~ Ze & 7Zg & Zh , where e is a fibre of
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p: W— P! x P!,
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