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Formation of curvature singularity along vortex line in an axisymmetric,
swirling vortex sheet

Takashi Sakajo®
Graduate School of Mathematics, Nagoya University, Furo-cho Chikusa-ku, Nagoya, Aichi 464-8602, Japan

(Received 12 September 2001; accepted 15 May 2002; published 3 July 2002

We consider an axisymmetric, swirling vortex sheet in an inviscid and incompressible flow. Caflisch
et al. pointed out that the vortex sheet acquired a singularity in finite time, but the property of the
singularity was not revealed. In the present paper we show convincing numerical evidences of the
singularity formation by applying the same numerical methods as what was used in the study of a
two-dimensional (2D) vortex sheet. We find that the radial and axial components of the
axisymmetric vortex sheet behave like the 2D singularity that has been observed in many
vortex-sheet motions, while the azimuthal component of the sheet behaves differently. Furthermore,
the singularity appears along the vortex line and the first derivative of the vortex sheet strength
forms a cusp, while the known singularities are associated with the curvature along curves
perpendicular to the vortex lines and the sheet strength has a cu@00®American Institute of
Physics. [DOI: 10.1063/1.1491255

I. INTRODUCTION The exponential decay ifl) is lost att=t., where

A vortex sheet is a discontinuous surface of velocity
field in an inviscid and incompressible flow. It is a simple 1+ lt +logt =|og(f).
model that describes an early destabilization process of shear 2° ¢ €
flows at high-Reynolds number.

Singularity formation in vortex-sheet motions is impor- Consequently, sincb«n|~n‘5/2 at t=t,, the vortex sheet
tant; mathematically, it serves understanding of the well posacquires a curvature singularity and behaves like the curve
edness of the vortex-sheet problems. Physically, it is f0|y=|x|3’2inthe neighborhood df = 0. Subsequent numerical
lowed by roll-up of the vortex sheet that results in strongstudies by Meiroret al.® Krasny* and Shelley strongly sup-
mixing and small-scale production in the flow. In real fluid ported the asymptotic analysis. Then, Caflisthal® and
flows, the singularity would be eliminated by smoothing ef- Cowley et al’ indicated that the Moore singularity was ge-
fects such as viscosity, finite thickness and surface tensiomeric in 2D vortex-sheet motions. Thus the Moore singularity
but the influence of the singularity would remain. is often referred as “the 2[Mcurvaturé singularity” or “the

A planar vortex sheet is a curve in two-dimensional flow 2 singularity.”
across which the tangential velocity is discontinuous. The  Nie and Baket and Nitsch@ studied singularity forma-
curve is represented by a complex-valued functiii’,t)  tions for axisymmetric vortex sheets. Ishihara and
=x(I',t) +iy(T',t), in which ' is circulation parameter Kanedd®'' and Brady and Pullff applied Moore’s
along the sheet artdis time. Mooré-? considered the evolu- asymptotic analysis to planar 3D vortex sheets for certain
tion of the vortex sheet for the following initial condition perturbations and observed the streamwise curvature singu-
with a small periodic disturbance: larity. These singularities are associated with the 2D singu-

Z(T,0)=T+iesinl, —wo<I'<o, Igrity,.since they appear along curves normal to the vortex

lines in the vortex sheets.
wheree<1. He obtained a solution with the following Fou- The purpose of our study is to find a singularity forma-
rier form: tion that differs from the 2D singularity. We consider the
following discontinuous steady swirling flow in the cylindri-
cal coordinates:

©

Z(T)=T+2i’S A (t)sinnr, An(0)=§5m,
n=1

in which the asymptotic expression &f,(t) for largen be- 0 I 0) for r<R,
comes ‘2’
u(r,0,z)= r 2
An(D) 2 (2m) "X (1+i)n 5 (o T o) for r>R
‘21’ '
X exp[n(1+ 3t+logs et)}. (1)
in which T'y and I', represent the circulations inside and
dElectronic mail: sakajo@math.nagoya-u.ac.jp outside the cylinder of radiuR, respectively. Thus the flow
1070-6631/2002/14(8)/2886/12/$19.00 2886 © 2002 American Institute of Physics

Downloaded 01 Mar 2006 to 133.87.26.100. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 14, No. 8, August 2002 Formation of curvature singularity 2887

defines a cylindrical vortex sheet of radilsand a vortex clude the results and discuss the singularity formation in the

line of circulationI'; at the center of the cylinder. 3D cylindrical vortex sheet defined Kg) in the last section.
Since the cylindrical vortex sheet contains 2D circular

vortex sheets, the 2D curvature singularity certainly appears

in finite time. So we assume that the flow is axisymmetric in

order to remove the 2D singularity formation. Then the axi-

symmetric vortex sheet is represented by the cylindrical co-  \We use the same numerical methods as Cafltci 13

ordinates ((«,t),6(a,t),z(a,t)) of a vortex line on the did, in order to compute the evolution of the axisymmetric

sheet, wher¢ is time anda is a Lagrangian parameter along vortex sheet3), (4), and(5) except that the calculations are

the vortex line. The vortex line of circulation; on the axis  performed in quadruple precisio29 digits. In what fol-

of symmetry never moves due to the symmetry. The vorteXows, we outline the numerical methods. As for the detailed

sheet evolves according to the following integrodifferentialdescription and analysis of the algorithm, refer to the papers

II. NUMERICAL METHODS

equationgsee Caflisctet all**for the detail$: of Refs. 5, 13, 15, and 16.

We impose a periodic boundary condition on the vortex
gz T,—T, C o m 812 sheet. That is, denoting=Z+ «, we assume that(a,t),
T 2.2 PVJ A rery 6(a,t), andz{a,t) are 1-periodic with respect ta. Then,

the integral in the right-hand side ¢8) or (4) over R, say
r'—r 2r , I(a), is approximated by the following symmetric trunca-
a+(M+ 1/2)
gr Tp=T N IM(a)=PVJ f(a,a')da’,
5=WPVJ r'o (z—z )(W) a—(M+ 1/2)
2 E wheref(a,a’) symbolizes the singular integrand (8) or
X E(E_ K)+ m)da', (4) (4, anda runs from—0.5 to 0.5. As for the truncation pe-
riod, M =4 is sufficient, since the convergencelg@f(«) to
I () is rapid in terms oM as is discussed in Ref. 13.
0_9: [+l 5) We compute the truncated singular integral by an alter-
at Agr? nate point quadrature; let us discretize-interval

[—0.5, 0.5 uniformly by evenN points. Then, we approxi-
in which r’ and ' denoter(a') and 6(a’) and so ong  Mate the integralyy(a) by the summation
=E(m) and K=K(m) are the elliptic integrals of the first
kind, andm is given by

N
Ih(@)=2h >, f(akh),

, k=—N,k:odd
4rr
m= 12 YA ~ ;
(z=2")"+(r+r’) where N=(2M+1)N+1 andh= 1/N. The quadrature is
based on a generalization of the Euler—Maclaurin error ex-
Since the integrands if8) and (4) are singular atv=a', pansion for the trapezoidal rule approximation to a singular

they are interpreted in the sense of Cauchy'’s principle valueintegral. The first use of the quadrature was reported by
As a matter of fact, the axisymmetric vortex sheet hasBaker® According to the analysis of the quadrature by Sidi
been already studied by Cafliseit al* Numerical compu- and Israel® it attains higher order approximation than the
tation of regularized equations @8), (4), and (5) showed usual trapezoidal rule as long as the integrdifd,«’) is
that a vortex ring formed from the vortex sheet into the outemperiodic and sufficiently smooth. It was applied successfully
fluid and the vortex sheet collapsed onto the axis of symmeby Shelley to a 2D vortex sheet with spectral accuracy. Caf-
try. They also pointed out a singularity formation beforelisch et al!® demonstrated that it was also applicable effec-
these nonlinear phenomena, and stated it was related to thigely to the computation of the axisymmetric vortex sheet
2D curvature singularity. However, since the 2D singularitywith O(h®).
formation is eliminated by the axisymmetric assumption, it  The derivative off with respect tow, i.e., 6, in (3) and
must be an another singularity formation. We will investigate(4), is obtained by differentiating the discrete Fourier series
the nontrivial singularity numerically in the present paper. of 6. The fourth-order Runge—Kutta method is implemented
We follow the numerical methods that Caflisehal'®  for the temporal integration. In addition, we use the Fourier
used to compute the evolution of the vortex sheet. Moreoveffjltering technique in order to control rapid and spurious
we adopt the spectral method that Shellapplied success- growth of the round-off error, since the evolution of the axi-
fully to a 2D vortex sheet in order to determine the symmetric vortex sheet is ill-posed in the sense of
asymptotic form of solution. The numerical methods areHadamard:® every time step, representing the solution by
briefly explained in Sec. Il. In Sec. IIl, we show numerical the discrete Fourier series, we adjust Fourier coefficients that
evidences indicating that a curvature singularity really formsare less than a small preassigned threshold to zero. The tech-
and investigate properties of the singularity. Finally, we con-nique was used by Krasfyn the numerical computation of
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FIG. 1. Linear growth rate of the axisymmetric pertur-
bation o with respect to the modk for the initial con-
figuration(9). I'y=6 andI',=0.

linear growth rate
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a 2D vortex sheet first and applied effectively to many nu- P (t)|=C k™ Prexp(— 8,k), (6)

merical computations of ill-posed problem&®11317\we

provide the threshold value with 16 since the computa-

tion is performed in quadruple precision. There are two other  |2(t)[=CK ™ Pzexp(— 6,k), (7)

possible causes of loss of accuracy in the present problem.

The first one arises from the stretching of vortex line, which - B

cannot happen in the 2D c4Seand in the axisymmetric | B(0)]= C k™ Prexp(— 55k), ®)

case®® The second one occurs when the vortex sheet ap-

proaches the axis of symmetry. In fact, Caflistel® ob-  whereC,, C,, C,, p,, Py, Py, 8, 8,, ands, arek inde-

served that the vortex line was elongated greatly and col

lapsed onto the axis of symmetry after long-time evolution.

However, no special procedure to avoid these loss of accu- (NI2)—1

racy is required in the current computation, since the vortex r(a,t)=1.0+ 2 P (t)exp2mika),

line is slightly deformed and stretched before the singularity k=—N/2

time. (See a result in Sec. Il A, which shows the overall

length of the vortex line is stretched by less than 10% until (N/2)-1

the critical time) Z(at)=at+ D z(t)exp2mika),
Now, we compare a computational result with a linear k=-N2

stability analysis of the axisymmetric vortex sheet in order to

check if the numerical methods described above are correctly - .

implemented to the present problem. Caflistkal * showed 0(“’t):k=ZN/2 (D) exp2mika).

that the linear growth rate of the axisymmetric perturbation

with the kth mode became approximately

pendent variables, arig(t), z(t), andAek(t) are defined by

(N/2)—1

At each time step, we compute the time-dependent variables
5, (1), 8,(1), and dy(t) by a form fit of the spectrum to the
ii(rz_rz)l/z\/m Ansatz(6), (7)_, and(8)._ '_I'hen_, extrapolating, (t), 5_Z(t), and _
2m b 2 Sy(1), we estimate critical times when they vanish, at which
the Fourier coefficient$6), (7), and (8) decay at algebraic
for large wave numbek. Hence, wherf§>1“2, the pertur-  orders. The form-fit method to trace singularities was pro-
bation is unstable and grows likdk|. Figure 1 shows the posed by Sulem, Sulem, and Frid&Hor the first time.
linear growth rate of the axisymmetric perturbation as aKrasny' used the least square method for the fit and Rich-
function of modek computed by the numerical methods. ardson extrapolation to estimate the critical time for a 2D
Initial condition of the vortex sheet and computational pa-vortex sheet. Shell@yfitted the spectrum to a refined
rameters are the same as those given in the next section. TMoore’s asymptotic form by requiring that it holds pointwise
growth rate increases likg|k|. Hence, the numerical result for consecutive spectral modes and estimated the critical
agrees with the linear stability analysis. time by a simple extrapolation. In the study of the axisym-
Next, we explain how to estimate the critical time. As- metric vortex sheets by Nie and Bakemd Nitsche, they
sume that, for largé, the Fourier coefficients of the solu- made use of the pointwise method. We also adopt the Shel-
tions are represented asymptotically by ley’s pointwise method as well.

(o
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FIG. 2. Discrete Fourier coefficients of the solution

fi(t) fromt=0.5 to 1.86.
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Note that since no asymptotic analysis like Moore’s isThe initial amplitude ise=0.01. We discretize the vortex
available in this axisymmetric problem, the asymptotic formsline by N= 256 points and the time step size for the Runge—
(6), (7), and(8) are given just formally. However, the nu- Kutta method isAt=0.001.
merical results in the next section indicate that they describe Figure 2 shows logarithmic plot of the discrete Fourier

the nascent singularity formation properly. coefficient?(t) att=0.5, 1, 1.5, 1.7, 1.8, and 1.86 for posi-
tive wave numbers. The high wave number spectra grow
Ill. NUMERICAL RESULTS rapidly at later times.

First, we compute the variablé(t) in the Ansatz(6).
Figure 3 showss,(t) versusk att=1.65,t=1.7, 1.75, 1.8,
1.83, and 1.85. The value df(t) is independent of wide

~ We consider the axisymmetric, swirling vortex sheet of ange of intermediate wave numbers, while it grows largely
circulationI'; =6 inside andI'’;=0 outside, in which the ¢, higher modes. We regard theindependent value as a
a_lxisyrr)metric perturbation is _Iine_arly unstable. Initial con- proper value fo, (t). This is justified by Fig. &), in which
figuration of the vortex sheet is given by we plot 5,(t) att=1.8 versuk whenN=64, 128, and 256.
r(a,0)=1.0+ €cos 2ra, As N increases, the range of modes whéfé&t) is uniform
expands. Besides, the uniform value has little dependence on
N. Therefore, alN—«, we rely on the uniform value for
0(«,0)=€cos 2rra. (9 &,(1) in the AnsatZ6). Back in Fig. 3, the mode-independent

A. Singularity formation in the axisymmetric vortex
sheet

Z(a,0)=a+ecos 2ra,

FIG. 3. Plots ofs,(t) in the Ansatz(6) versusk from
t=1.65 to 1.85. They are computed by the pointwise
method.

delta_r(t)

o1 b J— /7 |

0.05 [ i
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FIG. 6. Plots of index of algebraic decay(t) fromt

=1.65 to 1.85, which are computed by the pointwise
i method.

20 40 60 80 100 120
mode

5,(t) tends towards zero as time increases. Figure 5 show®r some constant. Thus the radial component of the vor-

5,(t) for k=30 fromt=1.65 to 1.85. It decreases linearly tex sheet behaves like tHesingularity.

toward zero. Extrapolating the plot by the least square fittoa We apply the same numerical procedures successfully to

linear function, we obtain a singularity tim& such that other variablesz(«,t) and 6(«,t). We plot the variables

8,(t*)=0, which ist* ~1.864. 6,(1), 85(t), andby(t) as functions of time in Fig. 8. Every
Next, we compute the index of algebraic deggyt) in constant decreases linearly to zero. Hence, estimating the

the Ansatz(6). Figure 6 showy,(t) versusk from t=1.65 critical time of z and 6 by the least square fit, we obtatf

to 1.85. They are near 2.5 for intermediate wave numbers-1.863 and, ~1.864. It indicates that, z, and 6 blow up

independently of time, although they change largely for theat the same time. Then, we show the indicek &r z and 6,

higher wave numbers because of the cutoff error. We rely.e., p,(t) and p,(t), att=1.75, 1.8, and 1.85 in Fig. 9.

again on the mode-independent valpeas an appropriate  While the indexp, is near 2.5 for intermediate wave num-

value for the index ok. This is because, as we see in Fig. bers regardless of time, the indpy is always larger than 3

4(b) that shows the value qf,(t) att=1.8 forN=64, 128, and increases slightly as time approaches the critical time.

and 256, the range of modes wheggt) is constant grows This type of shift for the index was reported by Shetllay

asN increases. The index near 2.5 depends on time a littlethe study of singularity formation in a planar vortex sheet.

In fact, it is difficult to insist more than the third digit qf, He observed a transition of the algebraic decayyfarom-

from the accuracy of the present numerical computationsponent of the vortex sheet from 2.5 to 3. Anyway, because of

However, the value of 2.5 is presumable in view of the ge-the shift it is impossible to claim the second digitmf from

neric form of the 2D curvature singularitit). the accuracy of present numerical computations. Thus we

These observations indicate that the asymptotic form ofjescribe the asymptotic forms of(t) and 6,(r) as
the discrete Fourier coefficiefif(t) right before the singu-

larity time is represented asymptotically by |2(t)| ~ k™ exp(— 5(t)k), (11
|7 ()|~ k™ 2%exp — &,(1)k). (10) |5 ()] ~ Kk~ Poexp — S4(1)k), (12)

Thus the coefficient behaves lik& (t*)|~k 2% at t=t*, for p,>3. Note that accurate numerical computations with
which suggests that the second derivative wfith respect to higher resolutions and higher precision floating numbers are
a becomes infinite at the critical time. Figure@7and 7b) ~ required to claim higher digits of the indices, p,, andp,

are plots of the second derivative and the first derivative of fight before the critical time. This is the future problem,
with respect toa from t=1.8 to 1.862, respectively. The Since such accurate computations are costly for the time be-
second derivative ,,(«,t) acquires a discontinuity near N9 _ o

~0.25 as time approaches the critical time, while the first ~ The asymptotic formg10), (11), and(12) indicate that
derivativer ,(a,t) is continuous. These figures support thethe second derivative, that is to say, the curvature of the
blow-up of the second derivative of(a,t) at the critical  vortex line blows up in finite time. However, it differs from
time. On the other hand, because of the asymptotic form{1e 2D curvature singularity. This is because it occurs along
(10), r is represented in the neighborhood of the singularthe vortex line itself, while the singularities associated with

point a by the 2D curvature singularity'? appear along curves perpen-
dicular to the vortex lines. Furthermore, it is also different in
r(a,t*)=1.0+Cla— a0|3’2+ less singular term, terms of the vortex sheet strength. According to Caflisch and
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2nd derivative of ¢

6 L i
'8 1 1 1 1 1 1 1 1 1
0.5 0.4 -0.3 02 0.1 0 0.1 02 0.3 04 05
alpha FIG. 7. (8 The second derivative af(a,t) with re-
spect toa from t=1.7 to 1.86.(b) The first derivative
08 ' ' T ' ' ' ' s — of r(a,t) with respect tox near the singularity time.

Ist derivative of r
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7 FIG. 8. Plots of5,(t), 8,(t), andd,(t) fromt=1.7 to
1.85.

0.1

0.05

0
1.68 1.7 1.72 1.74 1.76 1.78 1.8 1.82 1.84 1.86

Downloaded 01 Mar 2006 to 133.87.26.100. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 14, No. 8, August 2002

Pp_z(t) and p_theta(t)

20 40 60

mode

Li,** the vortex sheet strength vector in the vortex

k(a,t), is defined in the cylindrical coordinates by

-1y

— (1,1 0,,2,).
2mryri+z2

Therefore, the vortex sheet strength is

k(a,t)=

|To— T4

(@ t)]=——

120
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FIG. 9. Plots of indicep,(t) andp,(t) fromt=1.7 to
1.85, computed by the pointwise method.

line,tant role in identifying singularity formations in the 3D cy-
lindrical vortex sheet, which is discussed in the last section.
One of the particular features of the present problem is
that the vortex line can evolve. Figure 11 shows the stretch-
ing rate of vortex lind («,t), which is defined by

- m—‘ 13

Figure 10 shows the first derivative of the vortex sheetfrom t=1.7 to 1.86. The rata\(«,t) forms a cusp at the
strengthd|x|/da from t=1.83 to 1.862 in the neighborhood point where the singularity occurs as time tends to the criti-
of the singular pointrg=~0.25. It develops a cusp form at the cal time, which supports the blow-up of the curvature. The
singular point. Therefore, it is the first derivative of the vor- rate is less than one in the neighborhood of the singular point
tex sheet strength that forms a cusp at the singularity time imyg and more than one in the other rangeaofOn the other
the axisymmetric vortex sheet, while the sheet strength dehand, Fig. 12 displays logarithmic plot of the overall length
velops a cusp in 2D vortex sheets. This fact plays an imporef the vortex line. The vortex line is elongated more than

sheet strength

.07 1 1 1

0.2 0.22 0.24 0.26
alpha

0.28

0.3

FIG. 10. Plot of the first derivative of the vortex sheet
strength (| x|/da) («,t) from t=1.83 to 1.862 in the
neighborhood of the singular poinrty~0.25. A cusp
forms near the singular point.
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FIG. 11. Plot of the stretching rate of vortex line
M a,t) fromt=1.7 to 1.86.

stretch rate of vorticity

0.9 1 ! ! 1 . 1

exponentially but bounded. Consequently, the vortex line isl.4x 10" 2, which indicates that the blow-up time is simply
locally shortened near the singular point as time tends to thproportional to log. The least square fit to these values
critical time, although the vortex line as a whole is stretchedgives us the relation betweet ande;

Thus the singularity formation has little connection with the N

rapid stretching of the vortex line. It seems to be inconsistent t*~—0.676loge—1.255.

with a conjecture by Beale, Kato, and Maj8ialaiming that  The linear relation is different from what was observed in a
it is the vorticity || that blows up in an initially smooth 3D 2D vortex sheet. Indeed, according to the asymptotic analy-
Euler ﬂOW, if it acquires a Singularity. HOWeVer, it does not Sis by Mooré and the numerical Computation by Kragny'

contradict to the Conjecture because the initial condition Ofthe relation between the Singu'arity time of the vortex Sheet'
the vorticity in the vortex sheet problem is given by a non-t_ and the initial amplitude: was given by

smoothé function, which does not satisfy the assumption of
smoothness of the conjecture. 1+ mte+log mt.= —log 2me

for a certain initial condition. This means that the blow-up
time t. is proportional to logte). To see the difference

We study how the singularity formation changes as theclearly, we plot* versus logi* €) in Fig. 13b), which shows
initial amplitude € varies. The same procedure to detect thethat numerical data deviates from a linear relation. This is an
singularity is applicable to the other value ©fFigure 13a) another evidence to show the singularity formation in the
shows the critical time* versus logs from e=5x10 *to  axisymmetric case differs from that in the 2D cases.

B. Blow-up and amplitude of perturbation

1.1 T T T T T T T T T

FIG. 12. Logarithmic plot of evolution of the overall
length of vortex line.

Log of IL(®)!
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FIG. 13. (a) Estimated blow-up time of for initial
amplitudes of the perturbatiarf (e) versus loge from
€=5X10"*t0 1.4x10"2. (b) The blow-up timet* ()
versus log* e).

FIG. 14. Plot of indexp,(t) at the time whens,(t)
~0.17 fore=7x10"%, 2x 1072, 5x10°%, 8x10 3,
and 1.210°2.
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Figure 14 shows the index of algebraic deqayt) at  second derivative remains finite throughout the evolution.
the time whend,(t) is about 0.17 fore=7x10"%, 2 However, the rapid growth is apparently related to the
X103, 5x10°3, 8x10 3 and 1.2 10 2. For all ¢, the  present axisymmetric singularity formation.
value of index is approximately 2.5 for intermediate wave  Finally, we discuss the index of algebraic decay of vari-
numbers, and it is independent of time. Therefore, theable 6. It was more than 3, no}, although the numerical
asymptotic form(10) is valid regardless of the amplitude of computations were too inaccurate to resolve the second digit
perturbation as long as it is small. of the index. One of the open problems in singularity forma-

tion of 3D vortex sheets is to know if the algebraic decay rate
2 of Fourier modes is generic-like 2D vortex sheets. Shelley
found thek 2 decay of the Fourier spectrum in a 2D vortex
IV. CONCLUSION AND DISCUSSION sheet, but Cowlet al’ and Cafliscret al® revealed that it
was a degenerate case. If the index of algebraic decay is

We verified numerically a singularity formation in an more than three observed in the present study is generic for
axisymmetric vortex sheet in a swirling flow. We indicated 3D vortex sheets, it is a new type of singularity. It is neces-
that the second derivative of the vortex line blowed up insary to check if the initial configuratio(®) is a degenerate
finite time and the singularity appeared regardless of th@ne or not in the future.
stretching of vortex line at the singular point. The asymptotic
formulas of the discrete Fourier coefficieritgt) andz(t)

behave like the 2D singularity, while that @f(t) is differ-
ent. The relation between the initial amplitude of the distur-rACKNOWLEDGMENTS
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singularity. Furthermore, the present singularity occurreo|<
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