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Formation of curvature singularity along vortex line in an axisymmetric,
swirling vortex sheet

Takashi Sakajoa)

Graduate School of Mathematics, Nagoya University, Furo-cho Chikusa-ku, Nagoya, Aichi 464-8602, Japan

~Received 12 September 2001; accepted 15 May 2002; published 3 July 2002!

We consider an axisymmetric, swirling vortex sheet in an inviscid and incompressible flow. Caflisch
et al. pointed out that the vortex sheet acquired a singularity in finite time, but the property of the
singularity was not revealed. In the present paper we show convincing numerical evidences of the
singularity formation by applying the same numerical methods as what was used in the study of a
two-dimensional ~2D! vortex sheet. We find that the radial and axial components of the
axisymmetric vortex sheet behave like the 2D singularity that has been observed in many
vortex-sheet motions, while the azimuthal component of the sheet behaves differently. Furthermore,
the singularity appears along the vortex line and the first derivative of the vortex sheet strength
forms a cusp, while the known singularities are associated with the curvature along curves
perpendicular to the vortex lines and the sheet strength has a cusp. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1491255#

I. INTRODUCTION

A vortex sheet is a discontinuous surface of velocity
field in an inviscid and incompressible flow. It is a simple
model that describes an early destabilization process of shear
flows at high-Reynolds number.

Singularity formation in vortex-sheet motions is impor-
tant; mathematically, it serves understanding of the well pos-
edness of the vortex-sheet problems. Physically, it is fol-
lowed by roll-up of the vortex sheet that results in strong
mixing and small-scale production in the flow. In real fluid
flows, the singularity would be eliminated by smoothing ef-
fects such as viscosity, finite thickness and surface tension,
but the influence of the singularity would remain.

A planar vortex sheet is a curve in two-dimensional flow
across which the tangential velocity is discontinuous. The
curve is represented by a complex-valued functionZ(G,t)
5x(G,t)1 iy(G,t), in which G is circulation parameter
along the sheet andt is time. Moore1,2 considered the evolu-
tion of the vortex sheet for the following initial condition
with a small periodic disturbance:

Z~G,0!5G1 i e sinG, 2`,G,`,

wheree!1. He obtained a solution with the following Fou-
rier form:

Z~G,t !5G12i (
n51

`

An~ t !sinnG, An~0!5
e

2
d1n ,

in which the asymptotic expression ofAn(t) for largen be-
comes

An~ t !;t21~2p!21~11 i !n2 5/2

3exp$n~11 1
2 t1 log1

4 et !%. ~1!

The exponential decay in~1! is lost att5tc , where

11
1

2
tc1 log tc5 logS 4

e D .

Consequently, sinceuAnu;n25/2 at t5tc , the vortex sheet
acquires a curvature singularity and behaves like the curve
y5uxu3/2 in the neighborhood ofG50. Subsequent numerical
studies by Meironet al.,3 Krasny4 and Shelley5 strongly sup-
ported the asymptotic analysis. Then, Caflischet al.6 and
Cowley et al.7 indicated that the Moore singularity was ge-
neric in 2D vortex-sheet motions. Thus the Moore singularity
is often referred as ‘‘the 2D~curvature! singularity’’ or ‘‘the
3
2 singularity.’’

Nie and Baker8 and Nitsche9 studied singularity forma-
tions for axisymmetric vortex sheets. Ishihara and
Kaneda10,11 and Brady and Pullin12 applied Moore’s
asymptotic analysis to planar 3D vortex sheets for certain
perturbations and observed the streamwise curvature singu-
larity. These singularities are associated with the 2D singu-
larity, since they appear along curves normal to the vortex
lines in the vortex sheets.

The purpose of our study is to find a singularity forma-
tion that differs from the 2D singularity. We consider the
following discontinuous steady swirling flow in the cylindri-
cal coordinates:

u~r ,u,z!5H S 0,
G1

2pr
, 0D for r ,R,

S 0,
G2

2pr
, 0D for r .R,

~2!

in which G1 and G2 represent the circulations inside and
outside the cylinder of radiusR, respectively. Thus the flowa!Electronic mail: sakajo@math.nagoya-u.ac.jp
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defines a cylindrical vortex sheet of radiusR and a vortex
line of circulationG1 at the center of the cylinder.

Since the cylindrical vortex sheet contains 2D circular
vortex sheets, the 2D curvature singularity certainly appears
in finite time. So we assume that the flow is axisymmetric in
order to remove the 2D singularity formation. Then the axi-
symmetric vortex sheet is represented by the cylindrical co-
ordinates (r (a,t),u(a,t),z(a,t)) of a vortex line on the
sheet, wheret is time anda is a Lagrangian parameter along
the vortex line. The vortex line of circulationG1 on the axis
of symmetry never moves due to the symmetry. The vortex
sheet evolves according to the following integrodifferential
equations~see Caflischet al.13,14 for the details!:

]z

]t
5

G22G1

2p2 PVE r 8ua8 S m

4rr 8D
3/2

3S r 82r

12m
E2

2r

m
~E2K ! Dda8, ~3!

]r

]t
5

G22G1

2p2 PVE r 8ua8 ~z2z8!S m

4rr 8D
3/2

3S 2

m
~E2K !1

E

12mDda8, ~4!

]u

]t
5

G21G1

4pr 2 , ~5!

in which r 8 and u8 denoter (a8) and u(a8) and so on,E
5E(m) and K5K(m) are the elliptic integrals of the first
kind, andm is given by

m5
4rr 8

~z2z8!21~r 1r 8!2 .

Since the integrands in~3! and ~4! are singular ata5a8,
they are interpreted in the sense of Cauchy’s principle value.

As a matter of fact, the axisymmetric vortex sheet has
been already studied by Caflischet al.13 Numerical compu-
tation of regularized equations of~3!, ~4!, and ~5! showed
that a vortex ring formed from the vortex sheet into the outer
fluid and the vortex sheet collapsed onto the axis of symme-
try. They also pointed out a singularity formation before
these nonlinear phenomena, and stated it was related to the
2D curvature singularity. However, since the 2D singularity
formation is eliminated by the axisymmetric assumption, it
must be an another singularity formation. We will investigate
the nontrivial singularity numerically in the present paper.

We follow the numerical methods that Caflischet al.13

used to compute the evolution of the vortex sheet. Moreover,
we adopt the spectral method that Shelley5 applied success-
fully to a 2D vortex sheet in order to determine the
asymptotic form of solution. The numerical methods are
briefly explained in Sec. II. In Sec. III, we show numerical
evidences indicating that a curvature singularity really forms,
and investigate properties of the singularity. Finally, we con-

clude the results and discuss the singularity formation in the
3D cylindrical vortex sheet defined by~2! in the last section.

II. NUMERICAL METHODS

We use the same numerical methods as Caflischet al.13

did, in order to compute the evolution of the axisymmetric
vortex sheet~3!, ~4!, and~5! except that the calculations are
performed in quadruple precision~29 digits!. In what fol-
lows, we outline the numerical methods. As for the detailed
description and analysis of the algorithm, refer to the papers
of Refs. 5, 13, 15, and 16.

We impose a periodic boundary condition on the vortex
sheet. That is, denotingz5 z̄1a, we assume thatr (a,t),
u(a,t), and z̄(a,t) are 1-periodic with respect toa. Then,
the integral in the right-hand side of~3! or ~4! over R, say
I (a), is approximated by the following symmetric trunca-
tion, I M(a):

I M~a!5PV E
a2~M1 1/2!

a1~M1 1/2!
f ~a,a8!da8,

where f (a,a8) symbolizes the singular integrand of~3! or
~4!, anda runs from20.5 to 0.5. As for the truncation pe-
riod, M54 is sufficient, since the convergence ofI M(a) to
I (a) is rapid in terms ofM as is discussed in Ref. 13.

We compute the truncated singular integral by an alter-
nate point quadrature; let us discretizea-interval
@20.5, 0.5# uniformly by evenN points. Then, we approxi-
mate the integralI M(a) by the summation

I M
h ~a!52h (

k52Ñ,k:odd

Ñ

f ~a,kh!,

where Ñ5(2M11)N11 and h5 1/N. The quadrature is
based on a generalization of the Euler–Maclaurin error ex-
pansion for the trapezoidal rule approximation to a singular
integral. The first use of the quadrature was reported by
Baker.15 According to the analysis of the quadrature by Sidi
and Israeli,16 it attains higher order approximation than the
usual trapezoidal rule as long as the integrandf (a,a8) is
periodic and sufficiently smooth. It was applied successfully
by Shelley5 to a 2D vortex sheet with spectral accuracy. Caf-
lisch et al.13 demonstrated that it was also applicable effec-
tively to the computation of the axisymmetric vortex sheet
with O(h3).

The derivative ofu with respect toa, i.e., ua in ~3! and
~4!, is obtained by differentiating the discrete Fourier series
of u. The fourth-order Runge–Kutta method is implemented
for the temporal integration. In addition, we use the Fourier
filtering technique in order to control rapid and spurious
growth of the round-off error, since the evolution of the axi-
symmetric vortex sheet is ill-posed in the sense of
Hadamard;13 every time step, representing the solution by
the discrete Fourier series, we adjust Fourier coefficients that
are less than a small preassigned threshold to zero. The tech-
nique was used by Krasny4 in the numerical computation of
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a 2D vortex sheet first and applied effectively to many nu-
merical computations of ill-posed problems.5,8,9,11,13,17We
provide the threshold value with 10225, since the computa-
tion is performed in quadruple precision. There are two other
possible causes of loss of accuracy in the present problem.
The first one arises from the stretching of vortex line, which
cannot happen in the 2D case4,5 and in the axisymmetric
case.8,9 The second one occurs when the vortex sheet ap-
proaches the axis of symmetry. In fact, Caflischet al.13 ob-
served that the vortex line was elongated greatly and col-
lapsed onto the axis of symmetry after long-time evolution.
However, no special procedure to avoid these loss of accu-
racy is required in the current computation, since the vortex
line is slightly deformed and stretched before the singularity
time. ~See a result in Sec. III A, which shows the overall
length of the vortex line is stretched by less than 10% until
the critical time.!

Now, we compare a computational result with a linear
stability analysis of the axisymmetric vortex sheet in order to
check if the numerical methods described above are correctly
implemented to the present problem. Caflischet al.13 showed
that the linear growth rates of the axisymmetric perturbation
with the kth mode became approximately

s56
1

2p
~G1

22G2
2!1/2Auku

for large wave numberk. Hence, whenG1
2.G2

2, the pertur-
bation is unstable and grows likeAuku. Figure 1 shows the
linear growth rate of the axisymmetric perturbation as a
function of modek computed by the numerical methods.
Initial condition of the vortex sheet and computational pa-
rameters are the same as those given in the next section. The
growth rate increases likeAuku. Hence, the numerical result
agrees with the linear stability analysis.

Next, we explain how to estimate the critical time. As-
sume that, for largek, the Fourier coefficients of the solu-
tions are represented asymptotically by

u r̂ k~ t !u5Crk
2pr exp~2d rk!, ~6!

uẑk~ t !u5Czk
2pz exp~2dzk!, ~7!

uûk~ t !u5Cuk2pu exp~2duk!, ~8!

whereCr , Cz , Cu , pr , pz , pu , d r , dz , anddu arek inde-
pendent variables, andr̂ k(t), ẑk(t), andûk(t) are defined by

r ~a,t !51.01 (
k52N/2

~N/2!21

r̂ k~ t !exp~2p ika!,

z~a,t !5a1 (
k52N/2

~N/2!21

ẑk~ t !exp~2p ika!,

u~a,t !5 (
k52N/2

~N/2!21

ûk~ t !exp~2p ika!.

At each time step, we compute the time-dependent variables
d r(t), dz(t), anddu(t) by a form fit of the spectrum to the
Ansatz~6!, ~7!, and~8!. Then, extrapolatingd r(t), dz(t), and
du(t), we estimate critical times when they vanish, at which
the Fourier coefficients~6!, ~7!, and ~8! decay at algebraic
orders. The form-fit method to trace singularities was pro-
posed by Sulem, Sulem, and Frisch18 for the first time.
Krasny4 used the least square method for the fit and Rich-
ardson extrapolation to estimate the critical time for a 2D
vortex sheet. Shelley5 fitted the spectrum to a refined
Moore’s asymptotic form by requiring that it holds pointwise
for consecutive spectral modes and estimated the critical
time by a simple extrapolation. In the study of the axisym-
metric vortex sheets by Nie and Baker8 and Nitsche,9 they
made use of the pointwise method. We also adopt the Shel-
ley’s pointwise method as well.

FIG. 1. Linear growth rate of the axisymmetric pertur-
bations with respect to the modek for the initial con-
figuration ~9!. G156 andG250.
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Note that since no asymptotic analysis like Moore’s is
available in this axisymmetric problem, the asymptotic forms
~6!, ~7!, and ~8! are given just formally. However, the nu-
merical results in the next section indicate that they describe
the nascent singularity formation properly.

III. NUMERICAL RESULTS

A. Singularity formation in the axisymmetric vortex
sheet

We consider the axisymmetric, swirling vortex sheet of
circulation G156 inside andG250 outside, in which the
axisymmetric perturbation is linearly unstable. Initial con-
figuration of the vortex sheet is given by

r ~a,0!51.01e cos 2pa,

z~a,0!5a1e cos 2pa,

u~a,0!5e cos 2pa. ~9!

The initial amplitude ise50.01. We discretize the vortex
line by N5256 points and the time step size for the Runge–
Kutta method isDt50.001.

Figure 2 shows logarithmic plot of the discrete Fourier
coefficientr̂ k(t) at t50.5, 1, 1.5, 1.7, 1.8, and 1.86 for posi-
tive wave numbers. The high wave number spectra grow
rapidly at later times.

First, we compute the variabled r(t) in the Ansatz~6!.
Figure 3 showsd r(t) versusk at t51.65, t51.7, 1.75, 1.8,
1.83, and 1.85. The value ofd r(t) is independent of wide
range of intermediate wave numbers, while it grows largely
for higher modes. We regard thek-independent value as a
proper value ford r(t). This is justified by Fig. 4~a!, in which
we plotd r(t) at t51.8 versusk whenN564, 128, and 256.
As N increases, the range of modes whered r(t) is uniform
expands. Besides, the uniform value has little dependence on
N. Therefore, asN→`, we rely on the uniform value for
d r(t) in the Ansatz~6!. Back in Fig. 3, the mode-independent

FIG. 2. Discrete Fourier coefficients of the solution
r̂ k(t) from t50.5 to 1.86.

FIG. 3. Plots ofd r(t) in the Ansatz~6! versusk from
t51.65 to 1.85. They are computed by the pointwise
method.
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FIG. 4. Plots of~a! d r(t) and ~b! pr(t) at t51.8 as
functions of mode. They are computed by the pointwise
method forN564, 128, and 256.

FIG. 5. Plot ofd r(t) from t51.65 to 1.85.
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d r(t) tends towards zero as time increases. Figure 5 shows
d r(t) for k530 from t51.65 to 1.85. It decreases linearly
toward zero. Extrapolating the plot by the least square fit to a
linear function, we obtain a singularity timet* such that
d r(t* )50, which ist* '1.864.

Next, we compute the index of algebraic decaypr(t) in
the Ansatz~6!. Figure 6 showspr(t) versusk from t51.65
to 1.85. They are near 2.5 for intermediate wave numbers
independently of time, although they change largely for the
higher wave numbers because of the cutoff error. We rely
again on the mode-independent valuepr as an appropriate
value for the index ofk. This is because, as we see in Fig.
4~b! that shows the value ofpr(t) at t51.8 for N564, 128,
and 256, the range of modes wherepr(t) is constant grows
asN increases. The index near 2.5 depends on time a little.
In fact, it is difficult to insist more than the third digit ofpr

from the accuracy of the present numerical computations.
However, the value of 2.5 is presumable in view of the ge-
neric form of the 2D curvature singularity~1!.

These observations indicate that the asymptotic form of
the discrete Fourier coefficientr̂ k(t) right before the singu-
larity time is represented asymptotically by

u r̂ k~ t !u;k22.5exp~2d r~ t !k!. ~10!

Thus the coefficient behaves likeu r̂ k(t* )u;k22.5 at t5t* ,
which suggests that the second derivative ofr with respect to
a becomes infinite at the critical time. Figures 7~a! and 7~b!
are plots of the second derivative and the first derivative ofr
with respect toa from t51.8 to 1.862, respectively. The
second derivativer aa(a,t) acquires a discontinuity neara
'0.25 as time approaches the critical time, while the first
derivative r a(a,t) is continuous. These figures support the
blow-up of the second derivative ofr (a,t) at the critical
time. On the other hand, because of the asymptotic forms
~10!, r is represented in the neighborhood of the singular
point a0 by

r ~a,t* !51.01Cua2a0u3/21 less singular term,

for some constantC. Thus the radial component of the vor-
tex sheet behaves like the32 singularity.

We apply the same numerical procedures successfully to
other variablesz(a,t) and u(a,t). We plot the variables
d r(t), dz(t), anddu(t) as functions of time in Fig. 8. Every
constant decreases linearly to zero. Hence, estimating the
critical time of z andu by the least square fit, we obtaintz*
'1.863 andtu* '1.864. It indicates thatr , z, andu blow up
at the same time. Then, we show the indices ofk for z andu,
i.e., pz(t) and pu(t), at t51.75, 1.8, and 1.85 in Fig. 9.
While the indexpz is near 2.5 for intermediate wave num-
bers regardless of time, the indexpu is always larger than 3
and increases slightly as time approaches the critical time.
This type of shift for the index was reported by Shelley5 in
the study of singularity formation in a planar vortex sheet.
He observed a transition of the algebraic decay fory com-
ponent of the vortex sheet from 2.5 to 3. Anyway, because of
the shift it is impossible to claim the second digit ofpu from
the accuracy of present numerical computations. Thus we
describe the asymptotic forms ofẑk(t) and ûk(r ) as

uẑk~ t !u;k22.5exp~2dz~ t !k!, ~11!

uûk~ t !u;k2pu exp~2du~ t !k!, ~12!

for pu.3. Note that accurate numerical computations with
higher resolutions and higher precision floating numbers are
required to claim higher digits of the indicespr , pz , andpu

right before the critical time. This is the future problem,
since such accurate computations are costly for the time be-
ing.

The asymptotic forms~10!, ~11!, and ~12! indicate that
the second derivative, that is to say, the curvature of the
vortex line blows up in finite time. However, it differs from
the 2D curvature singularity. This is because it occurs along
the vortex line itself, while the singularities associated with
the 2D curvature singularity1–12 appear along curves perpen-
dicular to the vortex lines. Furthermore, it is also different in
terms of the vortex sheet strength. According to Caflisch and

FIG. 6. Plots of index of algebraic decaypr(t) from t
51.65 to 1.85, which are computed by the pointwise
method.
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FIG. 7. ~a! The second derivative ofr (a,t) with re-
spect toa from t51.7 to 1.86.~b! The first derivative
of r (a,t) with respect toa near the singularity time.

FIG. 8. Plots ofd r(t), dz(t), anddu(t) from t51.7 to
1.85.
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Li,14 the vortex sheet strength vector in the vortex line,
k(a,t), is defined in the cylindrical coordinates by

k~a,t !5
G22G1

2prAr a
21za

2 ~r a ,rua ,za!.

Therefore, the vortex sheet strength is

uk~a,t !u5
uG22G1u

2pr
.

Figure 10 shows the first derivative of the vortex sheet
strengthduku/da from t51.83 to 1.862 in the neighborhood
of the singular pointa0'0.25. It develops a cusp form at the
singular point. Therefore, it is the first derivative of the vor-
tex sheet strength that forms a cusp at the singularity time in
the axisymmetric vortex sheet, while the sheet strength de-
velops a cusp in 2D vortex sheets. This fact plays an impor-

tant role in identifying singularity formations in the 3D cy-
lindrical vortex sheet, which is discussed in the last section.

One of the particular features of the present problem is
that the vortex line can evolve. Figure 11 shows the stretch-
ing rate of vortex linel (a,t), which is defined by

l~a,t !5

U ] l

]a
~a,t !U

U ] l

]a
~a,0!U , ~13!

from t51.7 to 1.86. The ratel(a,t) forms a cusp at the
point where the singularity occurs as time tends to the criti-
cal time, which supports the blow-up of the curvature. The
rate is less than one in the neighborhood of the singular point
a0 and more than one in the other range ofa. On the other
hand, Fig. 12 displays logarithmic plot of the overall length
of the vortex line. The vortex line is elongated more than

FIG. 9. Plots of indicespz(t) andpu(t) from t51.7 to
1.85, computed by the pointwise method.

FIG. 10. Plot of the first derivative of the vortex sheet
strength (duku/da) (a,t) from t51.83 to 1.862 in the
neighborhood of the singular pointa0'0.25. A cusp
forms near the singular point.
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exponentially but bounded. Consequently, the vortex line is
locally shortened near the singular point as time tends to the
critical time, although the vortex line as a whole is stretched.
Thus the singularity formation has little connection with the
rapid stretching of the vortex line. It seems to be inconsistent
with a conjecture by Beale, Kato, and Majda19 claiming that
it is the vorticity uvu that blows up in an initially smooth 3D
Euler flow, if it acquires a singularity. However, it does not
contradict to the conjecture because the initial condition of
the vorticity in the vortex sheet problem is given by a non-
smoothd function, which does not satisfy the assumption of
smoothness of the conjecture.

B. Blow-up and amplitude of perturbation

We study how the singularity formation changes as the
initial amplitudee varies. The same procedure to detect the
singularity is applicable to the other value ofe. Figure 13~a!
shows the critical timet* versus loge from e5531024 to

1.431022, which indicates that the blow-up time is simply
proportional to loge. The least square fit to these values
gives us the relation betweent* ande;

t* '20.676 loge21.255.

The linear relation is different from what was observed in a
2D vortex sheet. Indeed, according to the asymptotic analy-
sis by Moore1 and the numerical computation by Krasny,4

the relation between the singularity time of the vortex sheet,
tc , and the initial amplitudee was given by

11ptc1 logptc52 log 2pe

for a certain initial condition. This means that the blow-up
time tc is proportional to log(tce). To see the difference
clearly, we plott* versus log(t*e) in Fig. 13~b!, which shows
that numerical data deviates from a linear relation. This is an
another evidence to show the singularity formation in the
axisymmetric case differs from that in the 2D cases.

FIG. 11. Plot of the stretching rate of vortex line
l(a,t) from t51.7 to 1.86.

FIG. 12. Logarithmic plot of evolution of the overall
length of vortex line.
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FIG. 13. ~a! Estimated blow-up time ofr for initial
amplitudes of the perturbationt* (e) versus loge from
e5531024 to 1.431022. ~b! The blow-up timet* (e)
versus log(t*e).

FIG. 14. Plot of indexpr(t) at the time whend r(t)
'0.17 for e5731024, 231023, 531023, 831023,
and 1.231022.
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Figure 14 shows the index of algebraic decaypr(t) at
the time whend r(t) is about 0.17 fore5731024, 2
31023, 531023, 831023, and 1.231022. For all e, the
value of index is approximately 2.5 for intermediate wave
numbers, and it is independent of time. Therefore, the
asymptotic form~10! is valid regardless of the amplitude of
perturbation as long as it is small.

IV. CONCLUSION AND DISCUSSION

We verified numerically a singularity formation in an
axisymmetric vortex sheet in a swirling flow. We indicated
that the second derivative of the vortex line blowed up in
finite time and the singularity appeared regardless of the
stretching of vortex line at the singular point. The asymptotic
formulas of the discrete Fourier coefficientsr̂ k(t) and ẑk(t)
behave like the 2D singularity, while that ofûk(t) is differ-
ent. The relation between the initial amplitude of the distur-
bancee and the blow-up time was also different from the 2D
singularity. Furthermore, the present singularity occurred
along the vortex line and the first derivative of the vortex
sheet strength had a cusp-form in the neighborhood of the
singular point. This profile of the singularity is unlike the
known singularities,1–5,7–12 since they appear along curves
normal to the vortex lines and the vortex sheet strength, not
its first derivative, forms a cusp at the critical time.

The conclusion suggests that two types of singularities
are possible in the 3D cylindrical vortex sheet defined by~2!;
suppose that a surfaceC(j,h,t) represents the cylindrical
vortex sheet, wherej is the circulation parameter taken along
the direction perpendicular to the vortex lines andh is a
Lagrangian parameter that parametrizes the vortex line. If the
surface is assumed to be independent ofh, the motion is
equivalent to that of a two-dimensional circular vortex sheet.
Then, the 2D streamwise curvature singularity along the cir-
culation parameter, maxju]2C/]j2 u→`, appears in finite
time. The singularity exist continuously in a certain vortex
line, where the vortex sheet strength has a cusp profile. On
the other hand, if the surface is independent ofj, namely it is
axisymmetric, it follows from the present numerical compu-
tation that the second derivative along the vortex line, i.e.,
maxhu ]2C/]h2 u, becomes infinite at some finite time. In this
case, the singular points form a circular curve, where the first
derivative of the vortex sheet strength develops a cusp form.
In general, for an initial configuration without the symme-
tries, more complicated phenomenon are expected. Indeed,
Sakajo20 computed evolution of the 3D cylindrical vortex
sheet for a periodic perturbation and observed that genera-
tion of a secondary spanwise roll-up structure followed the
streamwise roll-up structure due to Kelvin–Helmholtz insta-
bility. The primary streamwise roll-up corresponds to the 2D
double branched spiral which is considered to be a solution
of the vortex-sheet motion after the 2D streamwise singular-
ity formation.21 He also observed the rapid growth of the
second derivative ofC along the vortex line just before the
secondary roll-up appeared. Actually, since the numerical
computation is regularized by the vortex-blob method, the

second derivative remains finite throughout the evolution.
However, the rapid growth is apparently related to the
present axisymmetric singularity formation.

Finally, we discuss the index of algebraic decay of vari-
able u. It was more than 3, not52, although the numerical
computations were too inaccurate to resolve the second digit
of the index. One of the open problems in singularity forma-
tion of 3D vortex sheets is to know if the algebraic decay rate
5
2 of Fourier modes is generic-like 2D vortex sheets. Shelley5

found thek23 decay of the Fourier spectrum in a 2D vortex
sheet, but Cowleyet al.7 and Caflischet al.6 revealed that it
was a degenerate case. If the index of algebraic decay is
more than three observed in the present study is generic for
3D vortex sheets, it is a new type of singularity. It is neces-
sary to check if the initial configuration~9! is a degenerate
one or not in the future.
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