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Even though the field of nonequilibrium thermodynamics has been popular and its importance has
been suggested by Demirel and Sandler@J. Phys. Chem. B108, 31 ~2004!#, there are only a few
investigations of reaction-diffusion systems from the aspect of thermodynamics. A possible reason
is that model equations are complicated and difficult to analyze because the corresponding chemical
reactions need to be reversible for thermodynamical calculations. Here, we introduce a simple
model for calculation of entropy production rate: a three-variable reversible Gray–Scott model. The
rate of entropy production in self-replicating pattern formation is calculated, and the results are
compared with those reported based on the Brusselator model in the context of biological cell
division. © 2004 American Institute of Physics.@DOI: 10.1063/1.1803531#

Many pattern formations in nonequilibrium systems, es-
pecially in reaction-diffusion systems have been
investigated.1–3 In these models for reaction-diffusion sys-
tems, backward chemical reactions are ordinarily neglected
because a nonequilibrium system is set so far away from
equilibrium that the rates of the forward chemical reactions
are much larger than those of the backward reactions. Thanks
to this assumption, nonlinear chemical reaction models be-
come relatively simple,4–7 and mathematical analyses and
simulation of pattern formations become easy to be
investigated.8–11 However, this assumption prevents us from
calculating the entropy production rates in the course of pat-
tern formation. Even though the existence of dissipative
structures was discussed theoretically by Nicolis and
Prigogine12 from the viewpoint of thermodynamics, and its
importance was suggested,13 this assumption prevents one
from investigating the thermodynamics of pattern formation.

However, in the early era in the history of nonequilib-
rium studies, there appeared some thermodynamical investi-
gations for chemical oscillations or pattern formations.14–17

In a reaction system that consists of the reversible Oregona-
tor model, Irvin and Ross14 reported that the entropy produc-

tion rate averaged over one cycle of oscillations is not always
higher than that of the stable steady state. In a reaction-
diffusion system, which consists of the reversible Brusselator
model, Hanson15 reported a discontinuous increase in the
entropy production rate in accordance with the discontinuous
transition of one-dimensional~1D! pattern configuration by
increasing the system size; he pointed out an entropic advan-
tage of biological cell division.

Recently, we proposed a concept of ‘‘self-organization of
hierarchy’’ after self-organization in biological systems.18

This concept deals with a self-organizing process of hierar-
chy in a system and emphasizes the importance of the mutual
assistance between self-assembly near equilibrium condi-
tions and dissipative-structure formation under the condi-
tions far from equilibrium. The dynamic interactions should
also be considered between the system and its
environment.19 In this framework, it is important to evaluate
how far from equilibrium the self-organization occurs. That
is, we need a quantitative measure that indicates the distance
of the system from the equilibrium state, such as the entropy
production rate in the steady state. But unfortunately, all re-
versible models proposed so far do not suit this purpose,
because the constants in the environment of an open system
cannot be constant anymore for describing the dynamics of
hierarchic systems, and consequently, the number of vari-
ables to be handled must increase. Therefore, we introduce
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here a simple model that does not need to increase the num-
ber of variables for hierarchic description and is convenient
for thermodynamic consideration.

A model we propose here is a reversible Gray–Scott
model. The reversible Gray–Scott model is an expansion of
the Gray–Scott model and is derived from a set of the fol-
lowing two reversible chemical reactions:

U12V�3V,
~1!

V�P.

The original Gray–Scott model corresponds to the two irre-
versible reactions, where the productP is an inert product.
So the original model has two variables,U andV. However,
we suppose that the product is not inert and the reactions are
reversible. Then the system has three variables:U, V, andP.
As in the original model,U is fed to the system and all
species are removed from the system by the flow. Only the
feeding terms depend on the external fields. Thus the model
equation becomes

dU

dt
52k1UV21 f ~12U !1k21V3,

dV

dt
5k1UV22~ f 1k2!V2k21V31k22P, ~2!

dP

dt
5k2V2k22P2 f P,

wheref is the feeding rate constant,k1 andk2 are the reac-
tion rate constants of the first and the second forward reac-
tions, respectively, andk21 andk22 are the rate constants of
the first and the second backward reactions, respectively. For
simplicity, we choose the constantk1 unity after the original
model:k151. Also, both the first and the second backward
reaction rates are equal and considered as the constant pa-
rameter:k215k22[k. Thus the system is governed by the
three parameters:k2 , f, andkr .

The system has a stable steady state (U,V,P)
5(1.0,0.0,0.0) for all positive parameters. This steady state
means that the system reaches the equilibrium state and the
concentrations of chemical species do not change by the
feeding. Since there appear neither patterns nor concentration
changes of components that change the entropy of the sys-
tem, we call this spatially homogeneous solution the equilib-
rium solution.

The dependence of the model on the three parameters
k2 , f, andkr is shown in the phase diagrams in Fig. 1. In this
phase diagram on thef -k2 plane @Fig. 1~a!#, the solid line
represents a saddle-node bifurcation line and the dashed one
represents a Hopf bifurcation line. The saddle-node bifurca-
tion line is given as a function of the feeding ratef and the
backward reaction ratekr :

k25F~ f ,kr !5~ f 1kr !F211
kr

2
1AS kr

2 D 2

1
1

4 f G ,
f .0, k2.0. ~3!

This line, given as a function off, has two extremal points
where it joins the Hopf line. On the left side of the saddle-
node bifurcation line@k2,F( f ,kr)#, the system has three
steady points: the equilibrium solution, a saddle point, and a
nonequilibrium steady point. The nonequilibrium steady
point is stable, and the system has two stable steady points.
However, in the region enclosed by the solid and the dotted
lines, the nonequilibrium steady point becomes unstable. To
the right of the solid line@k2.F( f ,kr)#, the system has only
the equilibrium solution. This diagram goes asymptotically
to that of the original Gray–Scott model when the backward
reaction ratekr goes to 0.0. On the other hand, the diagram
becomes different from the original one with an increase of
the backward reaction rate; the valuesf andk2 of the lower
extremal point increase with an increase of the backward
reaction rate and simultaneously the two extremal points be-

FIG. 1. ~a! A phase diagram when the backward reaction ratekr51.0
31023. The solid line is the saddle-node bifurcation line. The dashed line is
the Hoph bifurcation line. The inset shows the expansion near the extremal
point corresponding to the lowerf. The Hoph bifurcation line is connected to
the saddle-point at the extremal points.~b! Saddle-node bifurcation lines.
Dotted line: kr51.031024, solid line: kr51.031023, and dashed line:
kr51.031022. When kr51.031022, there is no Hoph bifurcation line.
All saddle-node bifurcation lines go asymptotic tof 50 ask2 goes to the
infinity.
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come closer. Finally, these extrema disappear whenkr

50.009 346. This annihilation makes the Hopf line disap-
pear, and only the saddle-node bifurcation line remains.

Numerically, the model equations are solved in a 1D
reaction-diffusion system by the 3rd-Runge-Kutta method
and the finite difference method for the linear diffusion
terms. The system consists of 431 sites and has the Neumann
boundary conditions. The system sizeN is 430dx52.15,
wheredx50.005 is the grid length.

Initially, all sites of the system are set to the equilibrium
solution (U,V,P)5(1.0,0.0,0.0). In order to produce a pat-
tern, we perturb 20 sites from the left boundary by setting
their initial values as (U,V,P)5(0.5,0.25,0.0). The space-
time plot of the 1D system is shown in Fig. 2. At the begin-
ning, one pulse is generated by the initial perturbations. After
a while, this pulse duplicates. The pulse at the left boundary
becomes stable and does not self-replicate anymore. The
other pulse self-replicates again. In this way, the number of
pulses increases one by one, and the domain is covered by
the pulses expanding toward the right vacant space. The
pulse remaining behind the front becomes stable immedi-

ately after self-replication with the same wavelength (L
50.215) as that of the stable pulse. We call this wavelength
a cozy wavelength and the pulse a cozy pulse. After the
system is filled by the cozy pulses, the pattern becomes
stable. Only a front pulse can self-replicate because of suffi-
cient supply of substrates from the vacant surroundings; a
general setting for this self-replicating dynamics is given
mathematically.20

The entropy production rate of the whole process of the
present 1D system is calculated as follows. The entropy pro-
duction rate of this reaction-diffusion system~s! is given by
the sum of space integration of two components:

s5schem1sdiff . ~4!

The first component on the right side of Eq.~4! is the space
integration of the entropy production rate per unit volume
due to chemical reactions

schem5E (
j

~v j
12v j

2!ln~v j
1/v j

2!dx, ~5!

wherev j
1 and v j

2 are the reaction rates in the forward and
the backward directions of thejth chemical reaction. When a
chemical reaction locally reaches equilibrium, the entropy
production rate of the chemical reaction at the local point

FIG. 2. A space-time plot of the one-dimensional system. The Gray level
shows the concentration ofU from 0.0 ~black! to 1.0 ~white!. The constant
parameters:kr51.031023, k250.06, andf 50.03. The time resolutiondt
50.1, the space resolutiondx50.005, and the diffusion coefficients:DU

52.031025, DV51.031025, andDP51.031026.

FIG. 3. ~a! The entropy production rate corresponding to Fig. 2.~b! The
entropy production rate of self-replicating front,s front : for its definition, see
Eq. ~7! and text.
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should be 0.0. The second component on the right side of Eq.
~4! is the spatial integral of the entropy production rate per
unit volume due to diffusion:

sdiff5E (
l

Dl S ] ln~G l !

]x D S ]G l

]x Ddx

5E (
l

Dl

G l
S ]G l

]x D 2

dx, ~6!

whereG l is the concentration of thelth chemical species. In
this report, we set the gas constantR unity for simplicity.

The time series of the entropy production rate of the 1D
system is plotted in Fig. 3~a!. Before the initial perturbations
are given to the system, the system is in an equilibrium state,
and the entropy production rate of the system is 0.0. At the
beginning of the simulation, the entropy production rate has
some finite value because of the perturbations. Then the en-
tropy production rate increases stepwise with time. The rapid
increase of this rate corresponds to the self-replication of the
pulse. Finally, the rate reaches a constant value when the
pattern reaches the steady state.

In order to discuss clearly the entropy production rate of
a self-replicating pulse, we introduce the following value that
is a measure of the entropy production rate of the self-
replicating front of the system:

s front5s2mscp, ~7!

wherem is the number of pulses in space that is counted by
the number of minima inU, andscp is the entropy produc-
tion rate of a cozy pulse. The entropy production rate of a
cozy pulse is defined by the values related to the final steady
state:

scp5~ the final entropy production rate of the whole

system!/~the final number of pulses!

50.231/1050.0231. ~8!

Thus,s front has such a physical meaning that shows the en-
tropy production rate of the self-replicating front relative to
the rate of a cozy pulse.

The value ofs front changes periodically in accordance
with the self-replicating process. During the process for the
front pulse to propagate toward the right, its entropy produc-
tion rate increases monotonously. The positive value ofs front

means that the entropy production rate of the front pulse
becomes larger than that of the cozy pulse. When the front
pulse duplicates, which is known by the splitting of the
minima in the pulse, there appears a discontinuity in the
value ofs front . At this moment,s front turns to negative, i.e.,
the entropy production rate of each replicated pulse is
smaller than that of the cozy pulse. These two pulses grow
gradually, and when the value ofs front becomes zero, these
pulses have almost the same entropy production rate as that
of the cozy pulse. As seen in Fig. 2, one of the two pulses
~the left one! becomes a stable cozy pulse immediately. Then
the contribution of this pulse to the value ofs front becomes

zero. On the other hand, the right pulse goes into the self-
replicating process again. This scenario is repeated until the
system is filled with the pulse pattern.

Now, we discuss the difference between Hanson’s
work15 and the present work as an example. He calculated
the entropy production rate of a reversible Brusselator dis-
tributed in a 1D space by increasing the system size and
found that the entropy production rate changes discontinu-
ously at a certain point where there appears a discontinuous
change in the wavy profile of the system. This observation
led him to point out a similarity concerning self-replication
between his system and a living cell and to suggest the fol-
lowing entropy hypothesis: just before this point of discon-
tinuity, the entropy production rate of the system~one cell!
might become greater than the sum of two halves—if so, ‘‘at
this point it would be energetically favorable for the cell to
divide because the resulting two-cell composite would dissi-
pate less energy.’’15 We checked this hypothesis in the
present system by changing the system size~Fig. 4!, similar
as in his work but using Neumann boundary conditions. A
single pulse can be stable when the system sizeN is 0.12
%N%0.25. The entropy production rate is an increasing
function of N and is 0.0175 and 0.0247 whenN50.12 and
0.25, respectively. So the entropy production rate of the larg-
est pulse is smaller than the twice of its half or of the mini-
mum pulse. Therefore, the entropy production rate of one
pulse cannot grow to twice that of any stable pulse. Actually,
as already shown in Fig. 3~b!, a front pulse in the 1D system
grows till the entropy production rate of the front pulses front

reaches 0.005 95, i.e., its entropy production rate is 0.029 05
~50.005 9510.0231!. This is the maximum entropy produc-
tion rate of a single pulse, and is considerably smaller than
twice the minimum of the stable pulse of 0.035~50.0175
32!. Therefore, at the moment the pulse duplicates, the en-
tropy production rate of the self-replicating pulse@Fig. 3~b!#

FIG. 4. The entropy production rate against the system size. When the
system sizeN,0.12, no pulse exists. When the system size 0.12%N
%0.25, a single stable pulse exists. When the system sizeN.0.25, two
stable pulses exist in the system.
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has the same feature that the pulse duplicates as increasing
the system size~Fig. 4!. So we conclude that the entropy
production rate of one pulse cannot grow to be twice that of
any stable pulse in the present self-replicating process. The
hypothesis of the entropy-driven self-replication is not gen-
eral but system-dependent; at least in the present system, the
entropy hypothesis is not satisfied.

In summary, we propose a different simple model: the
reversible Gray–Scott model to calculate the entropy produc-
tion rate of pattern formation processes. Its phase diagrams
are obtained, and the model is applied to the self-replicating
pulses. The pulse-replicating process at the peripheral region
is traced well by the entropy production rate. We believe that
the present model has two advantages. The first advantage is
the same as of the original Gray–Scott model; though so
simple, the system shows a number of patterns~lines, dots,
and chaotic patterns, etc., in 2D simulations21! depending on
the three parameters:k2 , f, and kr . It is therefore a good
model to compare and to discuss various pattern formation
processes from the aspect of thermodynamics. The second
advantage is that when constructing a nested system, the
present model needs to change the feed terms only in order
to take into account the interaction among nested sub-
systems. With these advantages, the three-variable Gray-
Scott model is expected to be a powerful tool for investigat-
ing the thermodynamics of pattern dynamics and of self-
organization of hierarchy in an open system.

ACKNOWLEDGMENT

H.M. and T.Y. thank Dr. J. A. Pojman and Dr. M. Men-
zinger for reading the manuscript.

1H. Guo, L. Li, H. Wang, and Q. Ouyang, Phys. Rev. E69, 056203~2004!.
2K. J. Lee, W. D. McCormick, Q. Ouyang, and H. L. Swinney, Science
261, 192 ~1993!.

3P. De Kepper, V. Castets, E. Dulos, and J. Boissonade, Physica D49, 161
~1991!.

4I. Prigogine and R. Lefever, J. Chem. Phys.48, 1695~1968!.
5R. J. Field and R. M. Noyes, J. Am. Chem. Soc.96, 2001~1974!.
6J. P. Keener and J. J. Tyson, Physica D21, 307 ~1986!.
7P. Gray and S. K. Scott, Chem. Eng. Sci.39, 1087~1984!.
8I. R. Epstein and J. A. Pojman,An Introduction to Nonlinear Chemical
Dynamics—Oscillations, Waves, Patterns and Chaos~Oxford University
Press, New York, 1998!.

9J. E. Pearson, Science261, 189 ~1993!.
10H. Mahara, T. Yamaguchi, and Y. Amagishi, Chem. Phys. Lett.317, 23

~2000!.
11Y. Nishiura and D. Ueyama, Physica D150, 137 ~2001!.
12G. Nicolis and I. Prigogine,Self-Organization in Non-Equilibrium System

~Wiley, New York, 1977!.
13Y. Demirel and S. I. Sandler, J. Phys. Chem. B108, 31 ~2004!.
14B. R. Irvin and J. Ross, J. Chem. Phys.89, 1064~1988!.
15M. P. Hanson, J. Chem. Phys.60, 3210~1974!.
16K. Lindgren and B. A. G. Mansson, Z. Naturforsch.41a, 1111~1986!.
17B. A. G. Mansson, Z. Naturforsch.40a, 877 ~1985!.
18T. Yamaguchi, N. J. Suematsu, and H. Mahara, ACS Symp. Ser.869, 16

~2004!.
19A. S. Mikhailov and V. Calenbuhr,From Cells to Societies: Models of

Complex Coherent Action~Springer, Berlin, 2002!.
20S. Ei, Y. Nishiura, and K. Ueda, Jpn. J. Ind. Appl. Math.18, 181 ~2001!.
21H. Maharaet al. ~unpublished!.

8972 J. Chem. Phys., Vol. 121, No. 18, 8 November 2004 Mahara et al.

Downloaded 28 Feb 2006 to 133.87.26.100. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


