Title	THE SENSITIZATION OF CULTURED MAMMALIAN CELLS TO X-RAYS BY N-OXYL
Author(s)	KUBO, Kihei
Citation	Japanese Journal of Veterinary Research, 24(3-4), 111-111
Issue Date	1976-10
Doc URL	http://hdl.handle.net/2115/2094
Туре	bulletin (article)
File Information	KJ00003407794.pdf

THE SENSITIZATION OF CULTURED MAMMALIAN CELLS TO X-RAYS BY N-OXYL

Kihei Kubo

Department of Experimental Radiobiology Faculty of Veterinary Medicine Hokkaido University, Sapporo, Japan

The sensitization of mouse L cells to X-rays by 2, 2, 5, 5-tetramethyl-3-carboxypyrroline-1-oxyl (N-oxyl) was investigated under an extremely hypoxic condition. The new techniques were developed to retain the extremely hypoxic condition in the cell suspension by using a degassing and irradiation apparatus of stainless steel. The survival curve for hypoxic cells was purely exponential and had no pronounced shoulder. The extrapolation number and the D_0 value were 1.05 and 570 rad, respectively. The survival curve for aerobic cells had a pronounced shoulder. The extrapolation number and D_0 value of the curve for aerobic cells were 4.20 and 160 rad, respectively. Oxygen seems to have a composite radioprotective and radiosensitizing effect.

The presence of $10^{-3}\,\mathrm{M}$ N-oxyl increased the radiosensitivity $(1/\mathrm{D_0})$ of hypoxic cells by a factor of 1.63. The survival curve had a pronounced shoulder, showing a extrapolation number of 1.8. These results suggest that N-Oxyl and oxygen have a similar action in influencing the radiation response of mammalian cells.

The presence of 10⁻⁴ M cysteamine did not alter the radiation response of hypoxic cells in either the presence or absence of 10⁻³ M N-oxyl. This observation suggests that the intracellular sulphydryl compound, which acts as the radioprotector, does not influence sensitization by N-oxyl. Therefore, it may be concluded that the target of sensitization by N-oxyl was not the intracellular sulphydryl compound.