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Nonlinear propagation analysis of few-optical-cycle pulses
for subfemtosecond compression and carrier envelope phase effect

Yo Mizuta,* Minoru Nagasawa, Morimasa Ohtani, and Mikio Yamashita
Department of Applied Physics, Faculty of Engineering, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo 060-8628, Japan

�Received 7 December 2004; revised manuscript received 24 August 2005; published 6 December 2005�

A numerical approach called Fourier direct method �FDM� is applied to nonlinear propagation of optical
pulses with the central wavelength 800 nm, the width 2.67–12.00 fs, and the peak power 25–6870 kW in a
fused-silica fiber. Bidirectional propagation, delayed Raman response, nonlinear dispersion �self-steepening,
core dispersion�, as well as correct linear dispersion are incorporated into “bidirectional propagation equations”
which are derived directly from Maxwell’s equations. These equations are solved for forward and backward
waves, instead of the electric-field envelope as in the nonlinear Schrödinger equation �NLSE�. They are
integrated as multidimensional simultaneous evolution equations evolved in space. We investigate, both theo-
retically and numerically, the validity and the limitation of assumptions and approximations used for deriving
the NLSE. Also, the accuracy and the efficiency of the FDM are compared quantitatively with those of the
finite-difference time-domain numerical approach. The time-domain size 500 fs and the number of grid points
in time 2048 are chosen to investigate numerically intensity spectra, spectral phases, and temporal electric-field
profiles up to the propagation distance 1.0 mm. On the intensity spectrum of a few-optical-cycle pulses, the
self-steepening, core dispersion, and the delayed Raman response appear as dominant, middle, and slight
effects, respectively. The delayed Raman response and the core dispersion reduce the effective nonlinearity.
Correct linear dispersion is important since it affects the intensity spectrum sensitively. For the compression of
femtosecond optical pulses by the complete phase compensation, the shortness and the pulse quality of com-
pressed pulses are remarkably improved by the intense initial peak power rather than by the short initial pulse
width or by the propagation distance longer than 0.1 mm. They will be compressed as short as 0.3 fs below the
damage threshold of fused-silica fiber 6 MW. It is demonstrated that the carrier envelope phase �CEP� causes
the difference on the temporal electric-field profile and the intensity spectrum for the initial peak power of the
order of megawatts. At the propagation distance longer than the coherence length for third-order harmonics, the
difference grows in the spectral components around the third-order and higher-order harmonics. The CEP can
be a sensitive marker to monitor the evolution of nonlinear optical process by a few-optical-cycle electric-field
wave-packet source.

DOI: 10.1103/PhysRevA.72.063802 PACS number�s�: 42.50.Nn, 42.65.�k, 42.65.Re, 42.81.�i

I. INTRODUCTION

For recent remarkable development in few-cycle photon-
ics, exact and practical analysis on extremely short optical
pulses propagating in nonlinear fibers is quite important. Elu-
cidation of complex nonlinear optical propagation in recently
developed group-delay-dispersion �GDD� controlled fibers—
photonic crystal fibers, tapered glass fibers, and so on—
facilitating ultrabroadband coherent light generation in low
power is an urgent problem. Correct and practical computa-
tional methods are necessary for the analysis of few-cycle
and/or ultrabroadband optical pulses with the carrier enve-
lope phase �CEP� effect, shorter than 2.8 fs which we have
realized recently in the visible region �1–3�.

For the analysis of nonlinear propagation of optical
pulses, the nonlinear Schrödinger equation �NLSE� for the
electric-field envelope has been used conventionally as well
as its modifications. The NLSE, composed of only the
lowest-order linear dispersion and the nonlinearity, originates
in Maxwell’s equations but is derived on assumptions or ap-
proximations such as �1� the unidirectional propagation ap-

proximation, �2� the restricted frequency range, �3� the in-
stantaneous or frequency-independent nonlinear response,
�4� the quadratic linear dispersion, and �5� the slowly-
varying-envelope approximation �SVEA� �4,5�. However,
the optical pulses considered in this paper have the width as
short as 2.67 fs and the peak power as large as 6.8
�103 kW. Then, the spectrum as wide as the carrier fre-
quency is broadened furthermore by nonlinear effects during
pulse propagation. In addition, separating the envelope from
the temporal electric-field profile becomes meaningless.
Thus, it is required to treat electromagnetic waves under
large nonlinear and dispersion effects rigorously which are
neglected in the NLSE.

To cope with this situation, there have been many works
on the realistic linear dispersion �6–8�, the delayed Raman
response �9,10�, and the core dispersion �11,12�. These ef-
fects are necessarily considered in all for realistic analysis,
however, the latter two were not considered, for example, in
�8�. Sometimes, the SVEA on the assumption of the envelope
varying slowly in space and time is felt too strict, and is
relaxed to the SEWA under the assumption where the group
velocity and the phase velocity are close �5�. Recently, the
simultaneous evolution equations such as the one-
dimensionalized Maxwell’s equations are solved by the*Electronic address: yomizuta@eng.hokudai.ac.jp
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finite-difference time-domain numerical approach �FDTD
method� �13–16�.

In this paper, we introduce a method called “Fourier direct
method �FDM�,” which originated in the split-step Fourier
method usually employed to solve the NLSE �17–20�. The
FDM has been extended so as to treat multidimensional evo-
lution equations or general nonlinear terms including differ-
entials or integrals. The FDM is based on “bidirectional
propagation equations” for forward and backward waves, in-
stead of the electric-field envelope in the NLSE. They are
derived, without approximations, from Maxwell’s equations
averaged over a cross section normal to the fiber in Sec. II B.
They include all realistic linear and nonlinear effects: correct
linear dispersion, the delayed Raman response, and nonlinear
dispersions �self-steepening, core dispersion�. As for the non-
linear polarization, it is assumed to be third order in the
electric field in the nonresonant frequency range. However,
the nonlinear polarization itself is not supposed to be small
in contrast to �9� where the unidirectional propagation equa-
tion is derived by the formal Taylor expansion. It is indis-
pensable to clarify systematically and quantitatively the rela-
tion with and the difference from other methods used
conventionally. For this purpose, we rederive the NLSE
straightforwardly from one of the bidirectional propagation
equations without the SVEA in Sec. II E, in contrast to the
conventional derivation.

The bidirectional propagation equations are multidimen-
sional simultaneous evolution equations. They are integrated
in space for the linear term and the nonlinear term alterna-
tively like the split-step Fourier method �Sec. III�. This FDM
is stable and accurate for long propagation distance under the
wide range of analytic parameter values. It is as efficient as
the FDTD method to obtain the same accuracy. The temporal
electric-field profile and the intensity spectrum are obtained
at each spatial position. Thus, they are directly compared
with experimental results free from additional data process-
ing. In addition, the cause of numerical troubles can be
traced easily.

We deal with the present FDM, developed for the nonlin-
ear propagation of femtosecond optical pulses in fused-silica
fibers, as follows.

�1� We clarify the relation between the bidirectional
propagation equations and the NLSE, to comprehend sys-
tematically and quantitatively the validity and the limitation
of the assumptions and approximations used in conventional
theoretical methods �Sec. II E�.

�2� We compare the results calculated by the FDM and the
NLSE, and clarify differences of the effects caused by the
above-mentioned assumptions and approximations �Sec. IV�.

�3� We point out a possibility of subfemtosecond pulse
compression using a conventional silica fiber under the prac-
tical condition �Sec. V B�.

�4� We demonstrate the effects generated by the CEP on
third-order and higher-order harmonic spectral components
of few-optical-cycle pulses in low power �Sec. VI�.

II. FOURIER DIRECT METHOD

A. Averaged Maxwell’s equation

In order to describe electromagnetic fields propagating in
fibers, we start with

� � E = −
�B

�t
, �1a�

� � H =
�D

�t
+ J , �1b�

in Maxwell’s equations as well as � ·D=� and � ·B=0,
where E and H are electric and magnetic fields, respectively,
and D and B are electric and magnetic flux densities. Due to
the absence of free charges in optical fibers, the charge den-
sity � and the electric current density J vanish. Among the
vacuum permittivity �0, vacuum permeability �0, and the
velocity of light in vacuum, �0�0=1/c2 holds. Furthermore,
B=�0H in nonmagnetic optical fibers.

Polarization-preserving fibers maintain the linear polar-
ization of the light launched with the polarization along one
of the principal axes of the fiber. We choose here the z di-
rection parallel to the fiber, the x direction along the axis of
polarization, and the y direction normal to both the x and z
directions. Since E and H have, in this case, only compo-
nents Ex and Hy, respectively, we derive a set of evolution
equations as

�E

�z
= −

�B

�t
, �2a�

−
�H

�z
=

�D

�t
, �2b�

after averaging Eq. �1� spatially over a cross section normal
to the fiber on the assumption that the fields vanish at infin-
ity. When this average �defined in �5� hereafter� is shown by
�¯�av, the quantities in �2� are defined as

E�z,t� � �Ex�x,y,z,t��av, �3a�

H�z,t� � �Hy�x,y,z,t��av, �3b�

B�z,t� � �By�x,y,z,t��av = �0H�z,t� , �3c�

D�z,t� � �Dx�x,y,z,t��av = �0E�z,t� + PL�z,t� + PN�z,t� ,

�3d�

where PL�z , t� and PN�z , t� are linear and nonlinear parts of
the induced polarization, respectively, which depends on
E�z , t�. Equation �2� is often solved by the FDTD method as
evolved in time. However, time-dependent results at fixed
positions are more favorable to experiments, and several dis-
persion effects are incorporated properly in the frequency
domain. Thus, we consider Eq. �2� in the frequency domain,
as evolved in space.

In the frequency domain, the Fourier transform of the

electric field Ex�x ,y ,z , t� is shown as F�x ,y ,��Ẽ�z ,��, to
separate the dependence on the transverse coordinates by
F�x ,y ,��. We stress here the importance of the frequency-
dependence of this function to discuss the core dispersion,
the change of the effective core area according to the fre-
quency of the field. If we denote the Fourier transform in
time by F,
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FE�z,t� = �
−�

�

dt ei�tE�z,t� = �F�x,y,��Ẽ�z,���av = Ẽ�z,�� ,

�4�

where the average is actually defined as

�¯�av �
1

A�2���� � � dx dyF�x,y,�� ¯ , �5a�

A�n���� � � � dx dy	F�x,y,��	n. �5b�

Equations in �2� are Fourier-transformed in time as

�Ẽ

�z
= −

i�

c
H̃ , �6a�

�H̃

�z
= −

i�

c

nL

2Ẽ + F
PN

�0
� , �6b�

to be solved for Ẽ�z ,��=FE�z , t� and H̃�z ,��=−c
�0FH�z , t�. The term including the linear refractive index
nL��� in Eq. �6� comes from the flux density in Eq. �2� as

F
D

�0
= F
E +

PL

�0
+

PN

�0
�

= F�E�z,t� + �
−�

t

dt1��1��t − t1�E�z,t1� +
PN

�0



= �nL����2Ẽ + F
PN

�0
, �7�

where nL���=nL
R���+ inL

I ��� is related to the linear dielectric
constant �L��� and the linear electric susceptibility �̃�1����
=F��1��t�, the Fourier-transformed linear response function
��1��t�, as �nL����2=�L���=1+ �̃�1����. This complex and
frequency-dependent refractive index includes the effects of
absorption and finite-time response at the linear stage, as-
suming the medium response isotropic and local. For the
nonlinear induced polarization, on the other hand, we use the
following expression which is third order in Ex�x ,y ,z , t� or
E�z , t�, and includes the delayed Raman response represented
by ��3�r�t�:

F
PN�z,t�

�0
= F���3�Ex�x,y,z,t��

−�

t

dt1r�t − t1�Ex
2�x,y,z,t1��

av

.

�8�

B. Bidirectional propagation equation

For successful analysis of high-power and ultrashort opti-
cal pulses propagating in a fiber, we need to scale the spatial
coordinate, the time, the frequency, and the fields in Eq. �6�
by the characteristic length Z, the characteristic time T, and
the peak power of the pulse P as follows:

	 = z/Z , �9a�


 = �t − z/v�/T , �9b�

�C = T� , �9c�


 Ẽ�z,��

H̃�z,��
� = Ep���
B1�	,�C�

B2�	,�C�
� , �9d�

where v is the velocity of the coordinate system moving
together with the pulse. As T, Z, and v, at present, we prop-
erly choose the half-width of the pulse at 1 /e-intensity point
�t1 /1.665 for the Gaussian profile where t1 is its full width at
half maximum �FWHM��, the dispersion length LLD �defined
below in �29a�� and the group velocity, respectively. We
scale electric and magnetic fields by Ep���
��P / �c�0nL

R���A�2����� referring to

P = maxt�c�0n0� � dx dy	E�x,y,z,t�	2� ,

where maxt�¯� means the maximum in time, and n0

�nL
R��0� at the central angular frequency �0. Then,

max
�	F−1B1�	 ,�C�	2� is O�1�, and Eq. �6� reduces to

�B1

�	
= − i�Z
B1

v
+

B2

c
� , �10a�

�B2

�	
= − i�Z
B2

v
+

nL
2B1

c
� + GN, �10b�

GN �
Z

Ep���

− i�

c
F

PN

�0
� . �10c�

Here we define A1,2 from B1,2, and express B1,2 by A1,2 in-
versely as follows:

A = 
A1

A2
� =

1

nL + nL
* 
nL

*B1 − B2

nLB1 + B2
� , �11a�

B = 
B1

B2
� = 
 A1 + A2

nL
*A2 − nLA1

� . �11b�

Using these A1,2, we diagonalize the linear terms in the right
side of Eqs. �10a� and �10b� as

�A1

�	
= FL1 − FN, FL1 � iZ
� −

�

v
�A1,

�A2

�	
= FL2 + FN, FL2 � iZ
− �* −

�

v
�A2,

�12a�

FN �
GN

nL + nL
* �

Z

2nL
R���Ep���


− i�

c
F

PN

�0
� , �12b�

���� �
�nL���

c
. �12c�

The refractive index nL���=nL
R���+ inL

I ���, and the propaga-
tion constant ���� are extended to complex numbers here to
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express the linear absorption by their imaginary part. This
extension modifies Eqs. �10a� and �10b� to

�B1

�	
= − i�Z
B1

v
+

B2

c
� , �13a�

�B2

�	
= − i�Z
B2

v
+

	nL	2B1

c
� + GN −

2nL
I �Z

c
B2 �13b�

with a new term proportional to nL
I causing the expense of

energy.
Without the nonlinear term FN, we integrate Eq. �12a� in 	

�accordingly z� for A1,2, and their inverse Fourier transforms


a1

a2
� = F−1
A1

A2
� =

1

2�
�

−�

�

dt
 G+���ei���−�/v�z−�t�

G−���ei��−�*−�/v�z−�t� �
�14�

show that a1 and a2 are the right-traveling forward wave and
the left-traveling backward wave, respectively. Thus, we see
from Eq. �11a� that the initial condition of only the forward

wave is given by A1=B1 and A2=0 that leads H̃�z ,��
=−nL���Ẽ�z ,�� at z=0 from Eq. �9d�. In addition, Eq. �14�
shows that each of a1 and a2 attenuates with z, since
Im ����
0.

We find that Eq. �12� describes even such a situation that
two extremely short pulses close to an optical cycle propa-
gate in opposite directions, collide with a strong interaction,
and leave far away from each other. Even if so, the term FN
describes not only the nonlinear self-interaction but also the
nonlinear interaction between two pulses during the colli-
sion. Therefore, we call Eq. �12a� “bidirectional propagation
equations.” This approach is more natural and general for
analyzing optical pulses in fibers, compared with �9� where
formal factorization and the Taylor expansion were em-
ployed.

The following equations derived from Eq. �12� describe
changes in spectral intensities of the forward wave, back-
ward wave, and the total wave along with propagation:

��A1A1
*�

�	
= − �ZA1A1

* − 2 Re A1
*FN, �15a�

��A2A2
*�

�	
= − �ZA2A2

* + 2 Re A2
*FN, �15b�

� 	A1 + A2	2

�	
= − �Z	A1 + A2	2. �15c�

In addition to the linear attenuation shown by ��2�nL
I /c,

intensities of the forward wave and the backward wave are
changed by −2 Re A1

*FN and 2 Re A2
*FN, respectively, includ-

ing both the self-interaction and the interaction between for-
ward and backward waves, as �15a� and �15b� show. By con-
trast, �15c� shows that the change in the intensity of the total
wave is irrespective of the nonlinear interaction. These con-
sequences are useful for checking the calculated results.

C. Linear term

Considering isotropic propagation accompanied by the at-
tenuation in both directions in a silica fiber, we adopt the
following modified Sellmeier equation for the linear refrac-
tive index �8�:

�nL����2 = 1 + �
j=1

N

Sj
 1

� j − i� j − �
+

1

� j + i� j + �
� ,

�16�

where N=2, and �1=0.21 rad/ fs, S1=0.06 fs−1, �1=3.77
�10−3rad/ fs, �2=18.9 rad/ fs, S2=10.2 fs−1, �2=0.00
rad/ fs.

This nL��� shows nL
*�−��=nL���, or nL

R�−��=nL
R���,

nL
I �−��=−nL

I ���, and �nL
I ��� /c=Im ����
0 as long as

nL
R���
0. At the wavelength �0=800 nm �the angular fre-

quency is �0=2.356 rad/ fs�, �16� gives nL
R��0�=1.446.

D. Nonlinear term

From Eqs. �8� and �12b�, the nonlinear term in the bidi-
rectional propagation equations �12a� is

FN =
− i�Z

c

��3�

2nL
R���Ep���

SB��� , �17a�

SB��� � �FEx�x,y,z,t��
−�

t

dt1r�t − t1��Ex�x,y,z,t1��2�
av

= �FEx�x,y,z,t�F−1R̃���F�Ex�x,y,z,t��2�av �17b�

by the convolution theorem, where F or F−1 operate on all on
the right of them, and Ex�x ,y ,z , t� is expressed by the scaled
electric field b1�	 ,
��F−1B1�	 ,�C� from Eq. �9d� as

Ex�x,y,z,t� = F−1F�x,y,��Ep���Fb1�	,
� . �18�

Furthermore, the nonlinear response function which is com-
posed of the instantaneous part and the delayed Raman part,
and its Fourier transform are �9�

r�t� = �1 − fR���t� + fRhR�t� , �19a�

R̃��� = Fr�t� = �1 − fR� + fRFhR�t� , �19b�

FhR�t� = H̃�� − �0� + H̃*�− � − �0� , �19c�

H̃��� = F

1

2 + 
2
2


1
2
2 e−t/
2 sin
 t


1
� =


1
2 + 
2

2


1
2�1 − i�
2�2 + 
2

2 .

�19d�

If we define �S,A as the frequency of the minimum and the

maximum of Im H̃��−�0�, and ���
2 /
1�2,

	�S,A − �0	 =
1


2

��� − 1� + 2��2 + � + 1

3
. �20�

In the following we define SA��� which is closely related
to SB��� in �17b�. In addition, we define ���� for measuring
the difference between SB��� and SA���:
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SA��� � ��F�x,y,��Ep����3Fb1�	,
�F−1R̃���F�b1�	,
��2�av

�21a�

=
A�4����
A�2����

�Ep����3Fb1�	,
�F−1R̃���F�b1�	,
��2, �21b�

���� � SB���/SA��� − 1. �21c�

In SA���, we average �F�x ,y ,���3 collected from
Ex�x ,y ,z , t�’s as �18� over the cross section of fiber in ad-
vance of F or F−1, to be A�4���� /A�2����. Then, FN is rewrit-
ten further as:

FN = i�FDM���Fb1�	,
�F−1R̃���F�b1�	,
��2, �22a�

�FDM��� �
�Z

c

��3�

2nL
R���

�Ẽp����2, �22b�

�Ẽp����2 �
P

c�0nL
R���Aeff���

, �22c�

Aeff��� �
�A�2�����2

A�4�����1 + �����
, �22d�

where Aeff��� is the effective core area. Equation �22a� is the
form of FN actually used for the present method instead of
Eq. �12b�.

Equation �22b� allows us to consider the frequency depen-
dence of the coefficient of the nonlinear term �FDM��� which
causes the “nonlinear dispersion” leading to such effects as
the asymmetry or self-steepening in the pulse. Instead of Eq.
�22b�, we can evaluate �FDM��� as

�FDM��� = �FDM��0�
�

�0
� nL

R���
nL

R��0�
−2� Aeff���
Aeff��0�
−1

�23�

from the value of �FDM��� at the central frequency �0,
and the behavior of nL

R��� and Aeff��� around this �0.
For the electric field in single-mode fibers, its intensity dis-
tribution in a cross section of the fiber is approximated
as axial-symmetric Gaussian, and F�x ,y ,��
=exp�−�x2+y2� / �w����2� is used with the frequency-
dependent effective core radius w���. On the other hand,
when F�x ,y ,��Ep��� depends on � weakly compared with
B1�	 ,�C�, then Ex�x ,y ,z , t��F�x ,y�Epb1�	 ,
� from Eq.
�18�, SB����SA���, and ���� almost vanishes even for
pulses with wide spectra. As a result, Aeff������w����2,
and Aeff��� /Aeff��0� is estimated as �w��� /w��0��2.

The value of the nonlinear susceptibility is obtained from

n2 = �3��3��/�8nL
R��0�� = 1.220 � 10−22�V/m�−2

�=40��0n2�esu�, n2�esu� = 1.097 � 10−13 esu�

for the fused-silica fiber �21�. In addition, 
1=12.2 fs, 
2
=32.0 fs and fR=0.30 are used in the nonlinear response
function r�t� referring to �9�. By these values, �S

=2.274 rad/ fs and �A=2.438 rad/ fs from Eq. �20�.

E. Relation with the nonlinear Schrödinger equation

When the pulse spectrum localizes around the central fre-
quency, we can separate clearly the envelope wave a±�	 ,
�
from each of the forward wave a1�	 ,
� and the backward
wave a2�	 ,
� as

a1�	,
� = �a+�	,
�ei��0C	−�0C
� + a+
*�	,
�ei�−�0C+�0C
��/2,

�24a�

a2�	,
� = �a−�	,
�ei��0C	+�0C
� + a−
*�	,
�ei�−�0C	−�0C
��/2,

�24b�

where �0C=T�0 and �0C=Z���0�=Z�0. They are Fourier
transformed as

A1�	,�C� = �A+�	,�C − �0C�ei�0C	

+ A+
*�	,− �C − �0C�e−i�0C	�/2, �25a�

A2�	,�C� = �A−�	,�C + �0C�ei�0C	

+ A−
*�	,− �C + �0C�e−i�0C	�/2, �25b�

where

A±�	,�C � �0C� = Fa±�	,
�e�i�0C
, �26a�

A±
*�	,− �C � �0C� = Fa±

*�	,
�e±i�0C
. �26b�

For simplicity, we define here the “envelope-wave transform
operator” E to take out the envelope wave from the forward
wave as Ea1�	 ,
�=a+�	 ,
�, EA1�	 ,�C�=A+�	 ,�C�, and
E��A1 /�	�=�A+ /�	+ i�0CA+.

Hereafter, we derive the NLSE for a+�	 ,
� which is com-
posed of the lowest-order linear dispersion and nonlinearity.
We begin with only the first of �12a� for the forward wave
with EF−1 operated on both sides:

EF−1�A1

�	
= EF−1�FL1 − FN� . �27�

While deriving the NLSE, we use the following assumptions
and approximations �see Appendix A for detail�.

�1� The quadratic linear dispersion: ���� is expanded into
the Taylor series around �0, and ����−���0���1��−�0�
+�2��−�0�2 /2, where �n���n���0�. This expansion is valid
only when the spectrum of the pulse is localized around �0.

�2� The restricted frequency range: The terms proportional
to e±3i�0t are dropped. This approximation is valid as far as
the spectrum of the pulse is confined sufficiently within the
range −2�0���2�0.

�3� A nearly instantaneous nonlinear response: Only terms
up to the first order in the Taylor series in �−�0 of
the Fourier transform of the nonlinear response function

in �19b� are left as R̃����1+ R̃�1���−�0�, where R̃�1�

��dR̃��� /d���=�0
.

�4� A weak nonlinear dispersion such as the self-
steepening or the core dispersion: Only terms up to the first
order in the Taylor series in �−�0 of the coefficient of the
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nonlinear term �22b� are left as �SPM�����3/4��FDM���
��SPM

�0� +�SPM
�1� ��−�0�, where �SPM

�0� ��SPM��0� and �SPM
�1�

��d�SPM��� /d���=�0
.

In addition,
�5� The unidirectional propagation approximation: Only the
forward wave A1 is considered throughout the propagation,
and B1�A1 ,b1�a1. This approximation is used only in FN.

Then, we derive the following extended NLSE with the
effect of the nonlinear dispersion and the Raman frequency
shift.

�a+

�	
= − 
�1C −

Z/T

v
� �a+

�

−

i�2C

2

�2a+

�
2 −
i�Z/T��0C

v
a+

+ i
�SPM
�0� +

i�SPM
�1�

T

�

�

�a+
1 −

TR

T

�

�

�	a+	2, �28�

where

�1C �
Z�1

T
, �2C �

Z�2

T2 =
Z

LLD
, LLD �

T2

�2
, �29a�

�SPM
�0� = Z

�0

c

3��3�

8n0
�Ẽp��0��2 =

Z

LN
, �29b�

LN � ��0

c

3��3�

8n0

P

c�0n0Aeff��0�
−1

, �29c�

TR �
1

i
R̃�1� = �

0

�

r�t�t dt =
2fR
1

2
2


1
2 + 
2

2 . �29d�

Here we define the dispersion length LLD and the nonlinear
length LN. When Z is chosen as LLD, �SPM

�0� =LLD/LN=N2 with
the soliton order N. According to Eq. �23�, �SPM

�1� is obtained
alternatively as follows:

�SPM
�1� = �SPM

�0� � 1

�0
− 2

w���0�
w��0�

− 2
nL���0�

n0

 . �30�

We obtain TR as Eq. �29d� by using r�t� in Eq. �19�, and
estimate TR=2.44 fs by the value of 
1, 
2, and fR at the end
of Sec. II D.

Under the conditions that �1� v is adjusted to the group
velocity 1/�1, �2� the phase factor e−i�0�1z independent of t is
separated from a+, and �3� terms with �SPM

�1� or TR are
dropped, Eq. �28� reduces to the usual NLSE:

�a+

�	
= −

i�2C

2

�2a+

�
2 + i�SPM
�0� 	a+	2a+. �31�

We used Eq. �28� to check numerically the correctness of
both the Fourier direct method and Eq. �28� by matching all
conditions in the FDM with those of Eq. �28�: only the for-
ward wave for the initial condition; the quadratic linear dis-
persion; the frequency range confined within the basic fre-
quency range for FN; and neither the nonlinear dispersion
nor the delayed Raman response.

In the conventional derivation of the extended NLSE �28�
or the usual NLSE �31�, furthermore, the SVEA is always
employed �4,5,20�. As discussed in Appendix A, the second-

differential wave propagation equation is transformed under
the assumption of infinitesimal �−�0, with the second de-
rivative of the envelope neglected. By contrast, the present
derivation starting with the first-differential equation for the
forward wave �27� uses the unidirectional propagation ap-
proximation instead of the SVEA. This derivation is much
more straightforward with less restrictions in the range of
validity.

III. NUMERICAL PROCEDURE

We have developed the present FDM from the split-step
Fourier method �17–20� to solve multidimensional simulta-
neous evolution equations such as Eq. �12a�. We describe
them here in the vector form as �A /�	=FL�A��C,	��
+FN�A��C,	��, where FL, FN, and A are the linear term
vector, nonlinear term vector, and the unknown vector, re-
spectively. They are quantities in the frequency domain ob-
tained at each spatial point 	=n�	, where n and �	 are the
step number and the spatial increment, respectively.

We obtain explicitly the unknown vector An+1 at the step
n+1 from the known vector An at the step n as evolved in
space. During �	, we integrate FL by �	 /2 twice before and
after the integration of FN by �	, as in the split-step Fourier
method. Since the linear term is diagonalized as FL�A�
=LA in the frequency domain, we integrate FL in the expo-
nential form which refines stability, accuracy, and efficiency
of computation. However, we cannot diagonalize FN includ-
ing differentials or integrals neither in the time domain nor in
the frequency domain. It is integrated by the corrected Euler
method �or by the Runge-Kutta method� which is more gen-
eral but may be less stable. This is another difference of the
FDM from the split-step Fourier method to solve the NLSE,
where the nonlinear term is diagonal in the time domain, and
it can be integrated in the exponential form. Thus, the pro-
cedures during �	 explained above are summarized as fol-
lows:

A�1� = exp�L�	/2�An,

F�1� = FN�A�1��, Ã = A�1� + F�1��	 ,

F�2� = FN�Ã�, A�2� = A�1� + �F�1� + F�2����	/2� ,

An+1 = exp�L�	/2�A�2�.

By the relation �11b�, A��C,	� obtained at the spatial point 	

is changed to B��C,	�, whose components are Ẽ�z ,�� and

H̃�z ,�� as shown in Eq. �9d�. The intensity spectrum I���
= 	Ẽ	2 is directly obtained from Ẽ where �=� /2�=c /�. The
phase continuation is used when the spectral phase ����
=arg Ẽ is shown. For calculating the nonlinear term or at

regular outputs of results, Ẽ�z ,�� is inversely Fourier-
transformed into the temporal electric-field profile E�t�. For
this purpose, the fast Fourier transform �FFT� is employed,
which saves a large amount of calculations. In addition, the
general framework of the FDM facilitates solving the ex-
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tended NLSE �28� simultaneously with �12a� and confirming
their reliability by comparing their solutions.

Since FL, FN, and A are quantities in the frequency do-
main, linear, and nonlinear frequency dispersions are natu-
rally incorporated, and the causes of numerical troubles are
easily traced. Since the temporal electric-field profile E�t�
and the intensity spectrum I��� are obtained at each spatial
point, they are directly compared with experimental results.

In comparison with the FDTD method, the FDM is stable
for long propagation distances under wide range of analytic
parameter values. We confirmed it by solving the same one-
dimensionalized Maxwell’s equations �2� under the same set
of conditions and parameter values, and by comparing their
relative errors and calculation times, as shown in Appendix
B.

In the following, conditions and parameter values for each
result are tabulated in Table I. Values replaced with “—” are
tabulated or explained elsewhere. Symbols A, B, C, etc., in
each figure and table mean cases of different conditions
whereas �a�, �b�, �c�, �d�, etc., just indicate subfigures or sub-
tables.

The central wavelength is limited around �0=800 nm, the
initial FWHM pulse width is t1=2.67–12.00 fs, and the ini-
tial peak power of pulse ranges widely as P=25–6870 kW,
which is below the damage threshold 6 MW for the input
pulse width shorter than 6 fs �22�. We chose these values
considering our current and future experimental conditions.
The temporal electric-field profile is initially Gaussian in
most cases, and sech �hyperbolic secant� or experimental
profiles are sometimes used for comparison.

IV. QUANTITATIVE INVESTIGATION
ON CONVENTIONAL ASSUMPTIONS

AND APPROXIMATIONS

Before showing main results by the FDM concerning few-
optical-cycle pulse propagation in a fused-silica fiber, we
summarize here some results obtained by preliminary calcu-
lations.

A. Size effect of the periodic time domain

Linear and nonlinear dispersions sometimes broaden tem-
poral electric-field profiles over the maximum time-domain
size tmax after long distance propagation. Since the Fourier
transform employs the periodic boundary condition, these
profiles overlap with themselves across the right and left
boundary. For the intense broad case of �P , t1�= �5725,
kW, 10.00 fs� and the medium case of �2290 kW, 5.00 fs�
corresponding to A and E of Fig. 3, below, we compared the
conditions used for I1��� with �tmax,Msam�= �1000 fs, 4096�
and I2��� with �500 fs, 2048�, where Msam is the number of
grid points in time.

From the difference of I1��� and I2���, we found that tmax

larger than 500 fs �and Msam larger than 2048� is necessary
for the intense broad case whereas we can use �tmax,Msam�
= �500 fs, 2048� as the sufficient size for the medium case.

B. Effect of the bidirectional propagation

Since the present FDM is based on the bidirectional
propagation, we can consider the interaction of forward and
backward waves, and the validity of the unidirectional propa-

TABLE I. List of all conditions and parameter values. Figs., figure number; Cs., case number �Sld, solid curve; Dsh, dashed curve; Dot,
dotted curve�; Mtd., method �FD, Fourier direct method; SG, nonlinear Schrödinger �SPM-GVD� equation�; Pro., propagation �1, unidirec-
tional; 2, bidirectional�; Rng., frequency range �B, basic; A, all�; Nres., nonlinear response �I, instantaneous; D, delayed Raman�; Ndis.,
nonlinear dispersion �S, self-steepening; F, flat core dispersion; T, theoretical core dispersion; E, experimental core dispersion�; Ldis., linear
dispersion �N, no dispersion; 2, second order; 3, third order; 4, fourth order; 5, fifth order; S, Sellmeier; Sm, modified Sellmeier with
absorption�; Ini., envelope and conditions for the initial temporal electric-field profile �G, Gaussian; S, sech; E, experimental�; �0, central
wavelength; P, initial peak power of pulse; Nsol, soliton order; t1, initial FWHM pulse width; tmax, maximum time-domain size; Msam,
number of grid points in time; LLD, dispersion length; LN, nonlinear length; LS, shock length; zmax, maximum fiber length; Mstp, maximum
step number. Values replaced with “—” are tabulated or explained elsewhere. The conditions for the initial temporal electric-field profile such
as the ratio of the initial backward wave to the forward wave B /F �Sec. IV B�, the initial coefficient related to the chirp C0 �Sec. IV E�, and
the initial phase of the envelop wave relative to the carrier wave �I �Sec. VI� are shown by 0.0 in the column “Ini.,” only in the case that
all of them are zero.

Figs. Cs. Mtd. Pro. Rng. Nres. Ndis. Ldis.
Ini . :�I

�rad/��
�0

�nm�
P

�kW�
Nsol t1

�fs�
tmax

�fs�
Msam LLD

�mm�
LN

�mm�
LS

�mm�
zmax

�mm�
Mstp

2 — FD 2 A D — Sm E :— 798 175 3.30 12.00 400 2048 1.427 0.131 0.868 2.500 30000

3 Sld FD 2 A D SE Sm G :0.0 800 — — — 500 2048 — — — 1.000 80000

3 Dsh SG 1 B I SF 2 G :0.0 800 — — — 500 2048 — — — 1.000 80000

3 Dot SG 1 B I F 2 G :0.0 800 — — — 500 2048 — — — 1.000 80000

5 — — — — — — — S :0.0 830 2290 4.78 5.00 500 2048 0.238 0.010 0.029 1.000 80000

7,8 — FD 2 A D SE Sm G :— 800 6870 5.87 3.40 500 2048 0.115 0.003 0.006 0.006 800

10 — FD 2 A I SF — G :0.0 800 — — — 500 2048 — — — — 20000

11 — FD 2 A — — Sm S :0.0 830 2290 4.78 5.00 500 2048 0.238 0.010 0.029 1.000 80000

12 — FD 2 A D — Sm G :0.0 800 2290 4.99 5.00 500 2048 0.249 0.010 0.028 1.000 80000
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gation approximation. From this standpoint, we compared
temporal profiles and intensity spectra of the forward wave
calculated with and without the unidirectional propagation
approximation, which is realized under FN of Eq. �22a�
where b1�	 ,
� is approximated by a1�	 ,
�. This means we
neglect the action of the backward wave on the forward
wave.

We compared the results for some values of the initial
amplitude ratio of the backward wave to the forward wave
B /F. In the case of B /F=0.0, we had expected that the back-
ward wave would be generated naturally after many periodic
overlaps with the forward wave in the periodic time domain.
However, the amplitude of the backward wave was less than
10−4 of that of the forward wave after propagation. In the
case of B /F=1.0, the backward wave propagates as if inde-
pendent of the forward wave, and the difference between the
intensity spectra with and without the unidirectional propa-
gation was slight.

When the backward wave leaves fast enough from the
forward wave as now, the interaction between forward and
backward waves is slight, and using the unidirectional propa-
gation approximation could be justified if desired. However,
in other cases with closer group velocities between the for-
ward wave and the backward wave, the FDM employing the
bidirectional propagation is certainly important.

C. Effect of the restricted frequency range

While deriving the NLSE, we neglected the spectral com-
ponents outside of the basic range −2�0���2�0. In the
numerical approach, this situation is retrieved by filtering the
spectral components of FN in �12a� only in the basic range.
The difference of the temporal electric-field profiles and the
intensity spectra between without and with such a filter is
slight as long as the initial width of the spectrum is narrow
and the initial peak power is low enough to confine the in-
tensity spectrum within the basic range after propagation.
Under the condition that this effect can be found, however,
the calculation itself breaks down. As the result, such a filter
is inappropriate.

D. Effect of the linear dispersion

A conventional treatment of the linear dispersion has been
approximating the propagation constant ���� by polynomi-
als in �−�0. However, in cases of broad frequency spectra
of pulses as of now, it is required to use the correct linear
dispersion as given by the modified Sellmeier equation �16�.
As for the intensity spectrum I��� and the spectral phase
����, we compared their aspects calculated without and with
this approximation for the linear dispersion under the same
soliton order 1.04 and 	=zmax/LLD=35.2, where zmax and
LLD are the maximum fiber length and the dispersion length
�Appendix C�.

The spectra I��� by the propagation constant which is
quadratic in �−�0 approximate rather better those in the
Sellmeier case whereas I��� by the higher-order dispersion
up to the fifth order are totally different. When the initial
peak power is high, a satellite appears in the lower frequency

range of I��� in the Sellmeier case. This satellite is consid-
ered to be the resonance line where the spectral phase ����
reaches an extremum, and the group velocity vanishes. It is
concluded that the propagation constant approximated by
polynomials in �−�0 cannot be used anymore, and the cor-
rect linear dispersion is indispensable. This is true especially
when optical pulses are intense and short, and their spectra
are broad, as now.

E. Effects of the delayed Raman response
and nonlinear dispersions

Figure 1 shows the Fourier transform of the delayed Ra-

man nonlinear response function R̃���. It is unity at the cen-
tral frequency �0, but approaches 1− fR outside of the Stokes
frequency �S=2.274 rad/ fs or the anti-Stokes frequency
�A=2.438 rad/ fs, reducing effective nonlinear effects. Ac-
cording to Eq. �29d�, the gradient of its imaginary part at �0
is TR=2.44 fs, which gives rise to the infinite Raman self-
frequency shift in the extended NLSE �28�.

To determine the core dispersion, we consulted the experi-
mental input spectrum Iin��� and the experimental output
spectrum Iout���, as shown by D and C in Fig. 2. These were
generated by launching optical pulses with �P , t1�
= �175 kW, 12.00 fs� and �0=798 nm into a polarization-
preserving single-mode fused-silica fiber �Newport, F-SP-V,
the length z=2.5 mm, the core radius a=1.35 �m, and the
numerical aperture NA=0.16� �23,24�. In the inset of Fig. 2,
A�B� shows the experimental �theoretical� scaled effective
core radius w��� /a as a function of the normalized fre-
quency V����NAa� /c. We modified B, the theoretical core
dispersion �25�, in various ways mainly in the range 1.5

FIG. 1. Fourier-transformed nonlinear Raman response function

R̃���, �a� real part and �b� imaginary part. The range −1.5 rad/ fs
���1.5 rad/ fs is omitted. A linear approximation to its imaginary
part around �0 is also shown. �S=2.274 rad/ fs, �0=2.356 rad/ fs,
�A=2.438 rad/ fs, and TR=2.44 fs.
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�V����2.0 �900 nm
�
680 nm�. With each of these
core dispersions, we calculated the output spectrum I��� at
z=2.5 mm, starting with the initial temporal electric-field

profile Ẽ�z=0,����Iin���exp�iC0��−�0�2�, where C0=
−12.0 rad fs2 is the coefficient related to the linear down-
chirp. Then, we chose the one which fits best to Iout���. As A
in Fig. 2 shows, I��� obtained in this way fits better than B
obtained by the theoretical core dispersion. The experimental
core dispersion used then is A in the inset. In the range
shorter than the central wavelength of I���, subpeaks appear
or disappear rather sensitively to the effective core radius
w���. In this range, w��� was determined to be neither too
large nor too small. When it is large and hence the nonlin-
earity is reduced, the spectrum is hard to change. When it is
small, on the other hand, spectral components pass through
this range too fast toward the higher frequency range and no
subpeaks appear. Further difference between I��� and Iout���
may be attributed to the axial asymmetry of the panda fiber
used for this experiment. In the low frequency range, how-
ever, the spectrum is rather insensitive to w���.

The combined effect of the delayed Raman response
and the core dispersion is investigated in Appendix D,
under the same set of conditions as Kalosha-Herrmann �here-
after K-H� �8�, �0=830 nm, �P , t1�= �2290 kW, 5.00 fs�, and
z=1.0 mm. The effect of the delayed Raman response is
small irrespective of the core dispersion. Under the present
condition of the broad initial spectrum and the short propa-
gation distance, only the slight deformation of the spectrum
arises instead of the self-frequency shift. In the nonlinear

dispersion, the self-steepening forms the basic structure of
the spectrum with a sharp peak and a broad wing. After the
core dispersion is introduced, furthermore, the satellite in the
lower frequency disappears, the main peak sharpens, the
shoulder in the higher frequency appears, and the wing
stretches. They are caused by the nonlinear effects decreased
in the lower frequency range, and increased in the higher
frequency range by the core dispersion. The spectral phase is
rather insensitive to these effects.

V. SUBFEMTOSECOND PULSE COMPRESSION

A. Analysis at different initial peak powers and pulse widths

Figure 3 shows the intensity spectra I���, spectral phases
����, and the temporal electric-field profiles E�t� at the
propagation distances z=0.1/0.5 mm which were calculated
under the initial peak power P=763/2290/5725 kW, and the
initial pulse width t1=10.00/5.00/2.67 fs. We compare here
results by the FDM �solid curve, Eq. �12�� with those by the
NLSE with the self-steepening �dashed curve, Eq. �28� with-
out the term of TR� and those by the NLSE without the
self-steepening �dotted curve, Eq. �31��. In some cases of
large P, the results by the NLSE with the self-steepening are
not shown due to the breakdown of calculation. As for E�t�,
only the results by the FDM are shown for simplicity. Part of
���� is sometimes omitted in the range where I��� is weak.

The nonlinear length LN, the shock length LS
=0.39LN�0t1 �the case of the Gaussian envelope of the tem-
poral electric-field profile E�t��, and the dispersion length
LLD are measures for nonlinear effects �SPM and self-
steepening� and the linear dispersion. These characteristic
lengths are directly calculated from the initial peak power P
and the initial FWHM pulse width t1. Figure 4�a� tabulates
LLD, LN, and LS for the cases in Fig. 3. Figure 4�b� shows
these lengths for t1=10.0 fs �LLD=0.995 mm� and P
=25/100/350/500 kW �LN=0.917/0.229/0.065/0.046 mm�
in addition. Theoretically, results by the NLSE agree with
those by the FDM at the propagation distance z below the
shortest among LLD, LN, and LS, which is actually the non-
linear length LN in all the cases shown. At the propagation
distance z=0.1 mm, it was confirmed that all of I���, ����,
and E�t� obtained by the NLSE and those by the FDM agree
well for P=25/100 kW since z�LN, and differ slightly for
P=350/500 kW since z�LN.

Nonlinear effects appear in all the cases in Fig. 3, because
P
500 kW and even z=0.1 mm satisfies z
LN
=0.030/0.010/0.004 mm �see Fig. 4�a��.

The propagation distance z=0.5 mm exceeds the shock
length LS=0.006–0.166 mm in all the cases, but z=0.1 mm
does not except for G, �P , t1�= �763 kW, 10.00 fs�.

The linear dispersion appears or does not appear depend-
ing on t1. The dispersion length is LLD=0.995/0.249/
0.071 mm for t1=10.00/5.00/2.67 fs �see Fig. 4�a��. Then, at
z=0.1/0.5 mm, the linear dispersion appears if t1=2.67 fs
�C, F, I in Fig. 3� since z
LLD=0.071 mm, but it does not if
t1=10.00 fs �A, D, G in Fig. 3� since z�LLD=0.995 mm.

Thus, the effects of the SPM, the self-steepening, and the
linear dispersion are expected to appear with propagation in

FIG. 2. Intensity spectra used for the investigation of the core
dispersion. A or B: Calculated spectrum under the experimental or
theoretical effective core radius as far as z=2.5 mm where B /F
=0.0, �1=0.0, and C0=−12.0 rad fs2. C: Output experimental spec-
trum Iout compared with A or B. D: Input experimental spectrum Iin

used as the initial condition. Inset: Variation of experimental or
theoretical �A, B� effective core radius w��� /a with the normalized
frequency V����NAa� /c.
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FIG. 3. Dependence of �a� intensity spectrum I���, �b� spectral phase ����, and �c� temporal electric-field profile E�t� on the initial peak
power and the pulse width at z=0.1 mm �left� and z=0.5 mm �right�. Those calculated by the FDM, NLSE with the self-steepening, and
NLSE without the self-steepening are shown by solid curves, dashed curves, and dotted curves, respectively.
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this order for the parameter values of P and t1 chosen here.
At z=0.1 mm, we observe differences in intensity spectra

I��� obtained by the FDM and those by the NLSE in all the
cases in Fig. 3, as expected from z
LN. In contrast to I���
obtained by the NLSE without the self-steepening, those ob-
tained by the FDM are asymmetric with respect to the central
frequency �0, and diminish in the lower frequency. They
have a sharp main peak just below �0 and a broad wing in the
higher frequency range. For larger P, such a structure stands
out more, but the shift of the main peak and the broadening
of the wing are reduced by the delayed Raman response and
the core dispersion, compared with I��� obtained by the
NLSE with the self-steepening. The main peak splits in the
frequency range where the core dispersion changes signifi-
cantly with the frequency �below �0 in the inset of Fig. 2�.

Among the spectral phases ���� obtained by the FDM,
and the NLSE with and without the self-steepening, those by
the FDM increase most significantly with increasing 	�−�0	.

In temporal electric-field profiles E�t�, we find a main
pulse with the front part steeper than the rear part, and fol-
lowing wave packets with small amplitude. The structure of

I��� with a sharp peak around �0 and a broad wing in the
higher frequency range explains these aspects of E�t� to-
gether with the central wavelength in the normal dispersion
region. Actually, nearly coherent long waves come around
the steeper front part, and random short waves compose the
rear part and the wave packets following the main pulse.

Between z=0.1 mm and z=0.5 mm, the change in I��� is
larger for higher P. Though the main peak just broadens for
lower P �G, H, and I in Fig. 3�, a hollow and a subpeak
develop, for higher P, between the main peak and the wing
due to the core dispersion �B, C, E, and F in Fig. 3�. In
addition, the split main peak merges and is sharpened, and
the wing grows by the self-steepening �B, C, E, and F in Fig.
3�. These changes are slower for the FDM than the NLSE
because of the nonlinearity reduced by the delayed Raman
response and the core dispersion.

Spectral phases ���� at z=0.5 mm have the similar as-
pects as those at z=0.1 mm. As for the change in ���� with
	�−�0	, it increases with propagation. Those by the FDM
increase most significantly with increasing 	�−�0	. In addi-
tion, their quadratic profile in 	�−�0	 is mainly attributed to
the linear dispersion which is shown in Fig. 10�b� of Appen-
dix C.

Even before z reaches LLD, the main pulse in E�t� is al-
ready broad enough. As the result, the following small wave
packets are involved in the main pulse. The intensity spec-
trum broadened by the nonlinearity induces the temporal dis-
persion combined with the fiber dispersion.

In I��� for a high P at z=1.0 mm, we found a third-order
harmonics around the frequency range higher than 2.6�0.
This third-order harmonics is attributed to the interaction of
the main peak and the subpeak. However, in the present case
if the delayed Raman response and the core dispersion re-
duce the nonlinearity, then its amplitude is much smaller than
that predicted by Kalosha-Herrmann �8�. At z=1.0 mm, the
changes in the spectral phases increase with propagation fur-
thermore.

B. Pulse compression by the complete phase compensation

Optical pulses are compressed below the initial width by
the complete phase compensation in addition to the spectral
broadening by the SPM. When the electric-field profile just
after propagated in a fiber is expressed as

Ẽ�zmax,�� = 	Ẽ�zmax,��	exp�i��zmax,��� ,

the field after the compressor is

Ẽc��� = 	Ẽ�zmax,��	exp�i��zmax,�� + i�c���� ,

with the phase compensated as ��zmax,��+�c���=0. The
temporal profile of the compressed pulse Ec�t� is the inverse

Fourier transform of Ẽc���, and the temporal intensity Ic�t� is
proportional to 	Ec�t�	2.

In Fig. 5�a�, we compare Ec�t� obtained by the FDM with
those by Kalosha-Herrmann �K-H� �8� and by the NLSE at
zmax=0.1/0.5/1.0 mm, under the same condition of �P , t1�
= �2290 kW, 5.00 fs�. Figure 5�c� shows the dependence of
the FWHM tc measured from Ic�t� on the fiber length.

FIG. 4. Nonlinear length LN, shock length LS, and dispersion
length LLD �full / half-full / empty circles� as functions of the initial
peak power P and the initial FWHM pulse width t1 �t1=10.0 fs for
�b��. Below LN, the NLSE is applicable as well as the FDM. Refer
to Table I for headings and abbreviations in �a�.
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In addition to tc obtained from Ic�t�, we define here tc
�e� as

the FWHM of the intensity obtained from the envelope of
Ec�t�. In contrast to tc

�e� which is short when I��� broadens, tc

is short when the mean frequency of I��� shifts toward the
higher frequency.

As far as tc
�e� is concerned, the pulse calculated by the

NLSE is shorter than that by the FDM, because I��� obtained
by the NLSE broadens wider than that by the FDM, as
shown in Fig. 3. However, tc calculated by the NLSE is
longer, and tc by K-H is shorter than tc=0.476 fs by the FDM
which is almost independent of zmax. In the NLSE without
the self-steepening, I��� broadens symmetrically toward the
lower frequency across �=0 as well as toward the higher
frequency. Then, the central frequency of I��� lowers, and tc

FIG. 6. Dependence of the parameters in the temporal intensity
of the compressed pulse Ic�t� and the intensity spectrum I��� of Fig.
3 on the initial peak power P �MW� and the initial pulse width t1.
�a� FWHM tc of Ic�t� �fs�. �b� Mean �1 of I��� �PHz�. �c� Height of
first lobe Rl relative to main peak in Ic�t�. �d� RMS �2 of I��� �PHz�.
Those for the initial pulse width t1=10.00, 5.00, and 2.67 fs are
shown by full circles, half-full circles, and empty circles, respec-
tively. They are fitted against P as tc=e�wP�w, �1=e�1P�1, Rl

=e�rP�r, and �2=e�2P�2 for t1=5.00 fs and zmax=0.1/0.5/1.0 mm.
Fit parameters are tabulated in �e�.

FIG. 5. �a� Temporal electric-field profile of the compressed
pulse Ec�t� for �P , t1�= �2290 kW, 5.00 fs� and zmax=0.1, 0.5, and
1.0 mm �left, center, right� calculated by FDM, K-H, and NLSE �A,
B, C�. �b� Refer to Table I for headings and abbreviations. �c� De-
pendence of tc, the FWHM of the temporal intensity Ic�t�� 	Ec�t�	2,
on the propagation distance. Ec�t� in �a� are used, and tc by FDM,
K-H, and NLSE are shown by full circles, half-full circles, and
empty circles, respectively.
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is longer than those obtained by the other numerical meth-
ods. Contrarily, in K-H’s results where neither the delayed
Raman response nor the core dispersion reduce the nonlin-
earity, the central frequency of I��� is kept higher, and tc is
shorter than that by the FDM.

We obtained temporal intensities of the compressed pulses
Ic�t�� 	Ec�t�	2 also from I��� in Fig. 3, and investigated their
dependence on P, t1, and zmax. Figure 6�a� shows tc measured
from Ic�t� for P=763/2290/5725 kW, t1=10.00/5.00/
2.67 fs, and zmax=0.1/0.5/1.0 mm. The dependence of tc on
P is remarkable compared with t1 and zmax. Its decrease with
P is fitted well as tc=e�wP�w with �w�−0.28. The mean
frequency

�1 � �
0

�

d� I������
0

�

d� I���

of I��� in Fig. 6�b�, changing as �1=e�1P�1 with �1�0.13, is
related with tc. The height of the first lobe R1 relative to the
main peak in Ic�t� is shown in Fig. 6�c�. It also depends on P
most remarkably, on t1 but more than tc in Fig. 6�a�, and
hardly on zmax. The root-mean-square

�2 ���
0

�

d� I����� − �1�2��
0

�

d� I���

describing the width of I��� is shown in Fig. 6�d�.
Shortness of the FWHM t1 diminishes R1, and refines the

pulse quality of the compressed pulse profile �Fig. 6�c��. But
it hardly contributes to the compression of the pulse itself
�Fig. 6�a��. Both tc and R1 are almost independent of zmax
after 0.1 mm much longer than LN. As we observed in Fig. 3,
���� to be compensated increases with zmax. Then, short zmax

is preferable if we consider the limited range of the phase to
be compensated by the compressor. Large P refines the
shortness and the pulse quality of the compressed pulse most
effectively. The pulse is compressed to as short as 0.3 fs at
P=6 MW.

VI. EFFECT OF THE CARRIER ENVELOPE PHASE

It is expected that the carrier envelope phase �CEP�, the
initial phase of the carrier wave relative to the envelope wave
of the electric field �26�, influences the propagation behavior
of few-optical-cycle pulses. We compare here propagation of
pulses with different initial conditions as

Ej�z = 0,t� = Re E+�z = 0,t�e−i��0t+�I
j�

composed of only the forward wave a1�	 ,
� in Eq. �24�,
where we discriminate the different cases of CEP �I

j =0, � /2,
and � by j=A, B, and C here. Instead of the direct difference
after propagation of a distance z, we use the function

Dj�z,�� � ei�F
j
Ẽj�z,�� − ei�F

A
ẼA�z,��

which clearly extracts the essential difference caused by dif-

ferent initial CEPs. In this equation, Ẽj�z ,��=FEj�z , t� from
Eq. �4� and the value of the restoration phase �F

j is �I
j ��


0� or −�I
j ���0�. We observe the difference between two

cases j=A and j�A by the temporal electric-field profile
difference �E�t�=F−1Dj�z ,�� and the spectral intensity dif-
ference �I���= 	Dj�z ,��	2.

In �b�, �c�, and �d� of Fig. 7, we compare E�t�, ����, and
I��� of pulses with different �I

j respectively, where the initial
E�t� is shown in �a�. In �b�� and �d��, �E�t� and �I��� are
shown, respectively. The condition of �P , t1�= �6870 kW,
3.40 fs� and the propagation distance z=10.0� are same
where �=�0 /nL

R��0� is the wavelength in the fiber. Though
the generation of the third-order harmonics is observed by a
small wave packet composed of short waves in the rear part
of E�t� �Fig. 7�b��, the difference by the CEP is hard to
observe. By contrast, �E�t� and �I��� clearly show the dif-
ferences between A–B and A–C. We find no differences
between A and C because they are just the sign inversion of
the other concerning the electric field in the envelope wave.
Then, we concentrate on the differences between A and B.

Figure 8 shows the evolution of �E�t� and �I��� between
�I

A=0 and �I
B=� /2 at propagation distances between z /�

=0.0 and 10.0. This result was confirmed to be independent
of the analytic conditions such as the change from
�tmax, Msam�= �500 fs, 2048� to �tmax, Msam�= �1000 fs,
4096�. Before z /�=3.0, a single wave packet in �E�t� and a
peak around 3.0�0 in �I��� grow gradually with the propa-

FIG. 7. Effect of the carrier envelope phase �CEP� for �I=0,
� /2, and � �A, B, and C�. �a� Initial temporal electric-field profile.
�b� Temporal electric-field profile after propagation. �b�� Temporal
electric-field profile difference �E�t�. �c� Spectral phase. �d� Inten-
sity spectrum. �d�� Intensity spectrum difference �I���. In all
cases, �P , t1�= �6870 kW, 3.40 fs�, z=10�, B /F=0.0, and C0

=0.0 rad fs2, respectively.
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gation. We can attribute them to the third-order harmonics,
because they do not appear when �F

j is modified as
3�I

j �2�0���4�0� or −3�I
j �−4�0���−2�0� in addition

to �I
j ��
0� or −�I

j ���0� to remove the difference in the
range of the third-order harmonics. After z /�=3.0, �E�t�
tends to split into two wave packets, the faster of which has
the longer oscillation period than the slower. In �I���, com-
ponents higher than the third-order harmonics appear, and
two peaks around 3.0�0 and 3.8�0 change their height alter-
nately distance by distance. Above z /�=10.0, �E�t� dis-
perses. In �I���, the peak around 3.0�0 splits into many low

peaks while the one at 3.8�0 remains unspread as far as
z /�=1000.0. These results clearly show that the CEP can be
used as a tool to monitor the evolution of the nonlinear pro-
cess.

Though the present numerical analysis takes into account
the broad spectrum as well as the delayed Raman response
and the core dispersion, we try to consider newly observed
results of Fig. 8 here simply on the basis of the coherence
length lc=� / ���3�0�−3���0��, derived for the third-order
nonlinear interaction of coherent waves. By use of the modi-
fied Sellmeier equation, lc /�=n��0� /6�n�3�0�−n��0�� is
evaluated to be 4.3711. Even if the wave generated by the
nonlinear process under consideration is coherent at the
propagation distance below lc, it diminishes above lc by the
phase mixing. Figure 8 shows the generation of the third-
order harmonics from the initial wave around �0 below z /�
=3.0. Above this distance, the wave around 3.8�0, which is
considered to be generated from the initial wave and the
third-order harmonics, begins to grow. Thus, the coherence
length can be a measure of the distance for the generation of
the higher-order harmonics also in the present analysis,
though its estimation is rough due to the presence of the
spectral components distributed continuously around �0 in
the initial I���.

To verify the above-found CEP effect, the following ex-
periment is proposed. The beam from a few-optical-cycle
source which we developed �1,2� is split into two, and the
CEP and the temporal delay is given to one of them. They
are launched into an extremely short fiber with the time dif-
ference to avoid the interaction between them in the fiber.
After the propagation in the fiber, the CEP and the temporal
delay of these beams are restored, and their interference is
observed. The broad spectral range up to the higher-order
harmonics requires some attention to avoid the dispersion of
the air and the resonance of the fiber material, and to cali-
brate the frequency-dependent characteristics of optical de-
tectors. The fiber that is as short as some times of the wave-
length of the pulse is also necessary. This new simple
technique to measure and control the CEP will be valuable
for upgrading the few-optical-cycle electric-field wave-
packet source used for experiments.

VII. CONCLUSION

For the nonlinear propagation analysis of monocycle op-
tical pulses, the FDM was extended from the split-step Fou-
rier method. The FDM is based on bidirectional propagation
equations for forward and backward waves, which were de-
rived directly from Maxwell’s equations. The delayed Raman
response and nonlinear dispersions �self-steepening, core dis-
persion� are naturally incorporated as well as the arbitrary
linear dispersion. From one of the bidirectional propagation
equations, the NLSE is shown to be derived straightfor-
wardly, in contrast to the conventional derivation from the
second-differential wave propagation equation by excessive
approximations such as the SVEA. Furthermore, the initial
condition of the unidirectional propagation is reasonably
given.

We integrated the bidirectional propagation equations as
multidimensional simultaneous equations evolved in space.

FIG. 8. Difference caused by the CEP between �I=0 and �I

=� /2 for the respective propagation distances z. Left: temporal
electric-field profile difference �E�t�. Right: spectral intensity dif-
ference �I���.
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We employed the exponential integral for the linear force
whereas a more general method for the nonlinear force. The
temporal electric-field profile and the intensity spectrum ob-
tained at each spatial point are directly compared with ex-
perimental results. The present FDM was confirmed to be
stable and accurate for long propagation distance under the
wide range of analytic parameter values, in comparison with
the FDTD method.

Influences and limitations of assumptions or approxima-
tions used to derive the NLSE were investigated: the re-
stricted size of the time domain and the frequency domain,
the unidirectional propagation approximation, the quadratic
linear dispersion, the instantaneous response, and the ne-
glected nonlinear dispersion. In the present analysis, not only
the intensity spectrum but also the temporal electric-field
profile sometimes broaden wide. The size of the time domain
with the periodic boundary condition must cover wholly the
broad pulse to avoid its overlap with itself across the bound-
aries. The size of the frequency domain, inversely propor-
tional to the time-domain size, must be much broader than
the basic frequency range −2�0���2�0 to avoid the nu-
merical breakdown. To satisfy these contradictory require-
ments, the time-domain size tmax=500 fs and the number of
grid points in time Msam=2048 were chosen, which cover the
frequency domain broader than ±5�0. The unidirectional
propagation approximation can be used instead of the bidi-
rectional propagation, when the backward wave leaves from
the forward wave fast enough.

The linear dispersion sensitively affects the widespread
intensity spectrum of few-optical-cycle pulses as well as
nonlinear effects �self-steepening, core dispersion, and de-
layed Raman response�. A correct refractive index as given
by the modified Sellmeier equation is important, since this
index predicts a satellite caused by the vanishing group ve-
locity in the low frequency range in contrast to the quadratic
dispersion. The self-steepening forms the basic structure of
the spectrum with a sharp peak around �0 and a broad wing
in the higher frequency range. The core dispersion increases
the nonlinear effects in the higher frequency range, and de-
creases them in the lower frequency range. The delayed Ra-
man response reduces the nonlinear effects and just modifies
the spectrum.

Intensity spectra, spectral phases, and temporal electric-
field profiles obtained by the FDM and those by the usual or
extended NLSE were compared for the initial peak power
763 kW, 2290 kW, 5725 kW �LN=0.030 mm, 0.010 mm,
0.004 mm� and the initial pulse width 10.00 fs, 5.00 fs, and
2.67 fs �LLD= 0.995 mm, 0.249 mm, 0.071 mm� up to the
propagation distance z=1.0 mm. For the parameter values as
chosen above, the self-steepening, core dispersion, and the
delayed Raman response appear as dominant, middle, and
slight effects, respectively, on the intensity spectrum. Basic
structure formed by the self-steepening stands out for the
initial peak power larger than 2290 kW. The core dispersion
generates a subpeak in the frequency range higher than the
main peak. In the FDM, the delayed Raman response and the
core dispersion reduce the nonlinearity compared with the
NLSE. As a result, the change of the intensity spectrum with
the propagation such as the broadening of the main peak
slows down.

In the temporal electric-field profile, we found a main
pulse with the front part steeper than the rear part, and wave
packets with a small amplitude following the main pulse.
Nearly coherent long waves come around the steep front part
of the main pulse, and random short waves compose its rear
part and the wave packets because of the spectral structure
and the central wavelength in the normal dispersion region.
The main pulse broadens wide due to the dispersion induced
by the nonlinear broadening of the spectrum even before z
reaches the linear dispersion length, and involves the small
wave packets.

After the intensity spectrum is sufficiently broadened, op-
tical pulses are compressed by the complete phase compen-
sation. By choosing the initial peak power suitably, the
FWHM tc of the temporal intensity of the compressed pulse
is remarkably shortened, and its pulse quality is improved.
By contrast, they are hardly changed by the initial pulse
width, or by the propagation distance that is longer than 0.1
mm. Among numerical methods, tc obtained by the FDM is
shorter than that by the NLSE but a little longer than that by
Kalosha-Herrmann �8�.

It was demonstrated that the CEP does generate the dif-
ference in the temporal electric-field profile and the intensity
spectrum, at the initial peak power of the order of mega-
watts. With increasing propagation distance, the difference
appears in the third-order harmonics first, and grows in the
higher-order harmonics range later, in parallel with the gen-
eration of higher-order harmonics induced by the nonlinear
polarization. Experimental observation of the CEP will be
achieved by mixing two beams of different CEPs and tem-
poral delays with interference.

In Sec. II E, we clarified how the present FDM is reduced
to the NLSE under some assumptions and approximations
except for the SVEA. Furthermore, we confirmed the differ-
ence of the results obtained by both methods in Sec. V A, for
several initial peak powers, initial pulse widths, and propa-
gation distances. Such comparisons were quite efficient for
developing the present FDM.

The FDM predicts that the femtosecond optical pulses
propagated in conventional silica fibers will be compressed
as short as 0.3 fs at the damage threshold P=6 MW. For the
compression, larger initial peak power is more effective than
shorter initial pulse width or longer fiber length. Then, the
initial pulse need not be extremely short, and the fiber length
is preferably short if we consider the spectral phase increas-
ing over the limited dynamic range of the phase compensa-
tor.

The techniques to measure and control the CEP will serve
for monitoring the evolution of nonlinear process as well as
upgrading the few-optical-cycle electric-field wave packet
source used for experiments. The importance of this FDM
lies in the ability to investigate the significances, effects, and
the limitations of the methods used for theories. Further-
more, it can predict phenomena or propose conditions for
experiments on femtosecond optical pulses under the current
or future extreme conditions, such as the coherent ultrawide-
band light generation in low power.
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APPENDIX A: DIRECT DERIVATION
OF THE NONLINEAR SCHRÖDINGER EQUATION

FROM BIDIRECTIONAL PROPAGATION EQUATIONS

As seen from the second line of �12a�, the backward wave
A2 can be generated from A1 through FN even if A2 is absent
initially. However, we can derive the NLSE only from the
first line of �12a� for the forward wave with EF−1 operated
on both sides:

EF−1�A1

�	
= EF−1�FL1 − FN� , �A1a�

FL1 � Z
i� −
i�

v
�A1, �A1b�

FN = − i�FDM���Fb1�	,
�F−1R̃���F�b1�	,
��2, �A1c�

�FDM��� =
�Z

c

��3�

2nL
R���

P

c�0nL
R���Aeff���

. �A1d�

From Eq. �24a�, the left side is

EF−1�A1

�	
= F−1Z
 �A+

�z
+ i�0A+� =

�a+

�	
+ i�0Ca+. �A2�

The propagation constant ���� in Eq. �A1b� is expanded into
the Taylor series around �0 as

���� = �
n=0

�
�n

n!
�� − �0�n, �n � ��n���0� . �A3�

Such an expansion is valid as long as the spectrum of the
pulse is localized around �0. When A1 is Fourier-transformed
inversely together with −i�,

EF−1�− i��A1 =
1

T
E

�a1

�

=

1

T

 �a+

�

− i�0Ca+� �A4�

from Eq. �24a�. After transposing the second term on the
right side and extending the equation to the higher-order dif-
ferentiation, we rewrite this relation as

EF−1�� − �0�nA1 = 
 i

T

�

�

�n

a+. �A5�

Then, the linear term �A1b� becomes

EF−1FL1 = F−1Z�i� − i�/v�A+

= ZEF−1�i�
n=0

�
�n

n!
�� − �0�n −

i�

v 
A1

= Z�i�
n=0

�
�n

n!

 i

T

�

�

�n

a+ +
1

vT

 �a+

�

− i�0Ca+�


� − 
�1C −
Z/T

v
� �a+

�

−

i�2C

2

�2a+

�
2

−
i�Z/T��0C

v
a+ + i�0Ca+, �A6�

where higher-order terms than the second order in �−�0 are
neglected in the last equation, and �0C�Z�0, �1C�Z�1 /T,
�2C�Z�2 /T2=Z /LLD, and the dispersion length
LLD�T2 /�2 are defined.

When the nonlinear response is almost instantaneous,

R̃��� is approximated, by the use of Eq. �A5�, as

F−1R̃���F � F−1�1 + R̃�1��� − �0��F = 1 −
TR

T

�

�

,

�A7a�

TR �
1

i
R̃�1� = �

0

�

r�t�t dt =
2fR
1

2
2


1
2 + 
2

2 , �A7b�

where only terms up to the first order in �−�0 are left in Eq.

�A7a�, and R̃�1���dR̃��� /d���=�0
.

Furthermore, we assume that the nonlinear dispersion is
weak. Then, we expand �SPM�����3/4��FDM��� into the
Taylor series in �−�0, and leave only terms up to the first
order as

F−1�SPM���F � F−1��SPM
�0� + �SPM

�1� �� − �0��F

= �SPM
�0� +

i�SPM
�1�

T

�

�

, �A8a�

�SPM
�0� � �SPM��0� = Z

�0

c

3��3�

8n0
�Ẽp��0��2 =

Z

LN
, �A8b�

LN � ��0

c

3��3�

8n0

P

c�0n0Aeff��0�
−1

, �A8c�

�SPM
�1� � �d�SPM���

d�



�=�0

, �A8d�

where LN is the nonlinear length. In the case of the unidirec-
tional propagation approximation, B1�A1 and b1�a1. In ad-
dition, we drop terms proportional to e±3i�0C
 while using Eq.
�24a�, which restricts the frequency for FN in the basic range
−2�0���2�0. After all these approximations, the nonlin-
ear term �A1c� is rewritten as

EF−1�− FN� = iEF−1�FDM���Fb1�	,
�F−1R̃���F�b1�	,
��2

�A9a�

�iEF−1�FDM���F

�
3
8 �a+�	,
�ei��0C	−�0C
�F−1R̃���F	a+�	,
�	2

+ a+
*�	,
�ei�−�0C	+�0C
�F−1R̃���F	a+�	,
�	2�

�A9b�

�iF−1�SPM���Fa+�	,
�F−1R̃���F	a+�	,
�	2

�A9c�
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�i
�SPM
�0� +

i�SPM
�1�

T

�

�

�

� a+�	,
�
1 −
TR

T

�

�

�	a+�	,
�	2. �A9d�

We use Eqs. �A2�, �A6�, and �A9d� in Eq. �A1a�. Then,
we derive the extended NLSE �28� and the usual NLSE �31�.

Conventional derivation of the nonlinear Schrödinger
equation usually begins with the wave propagation equation

�2Ẽ

�z2 + �2Ẽ = −
�2

c2 F
PN

�0
= −

2i�Ep

Z
FN �A10�

with the nonlinear term expressed by �12b�, which is derived

by eliminating H̃�z ,�� between the equations in �6�. The

Fourier transform of the electric field Ẽ�z ,�� in the left side
of Eq. �A10� is expressed as

Ẽ�z,�� = Ep���B1�	,�C� = Ep����A1�	,�C� + A2�	,�C��

=
Ep���

2
��A+�	,�C − �0C� + A−�	,�C + �0C��ei�0C	

+ �A+
*�	,− �C − �0C� + A−

*�	,− �C + �0C��e−i�0C	�

�
Ep���

2
�B+�z,��ei�0z + B−�z,��e−i�0z� �A11�

by �9d�, �11b�, and �25�. Accordingly, B+ is the Fourier-
transformed envelope of the scaled electric field, and EB1
=B+ and E��B1 /�z�=�B+ /�z+ i�0B+ hold.

We operate EF−1Z / �2i�Ep� on all sides of �A10�. The
third side of Eq. �A10� becomes EF−1�−FN�. This is no other
than �A9� leading to the nonlinear terms in the extended
NLSE �28�. On the other hand, the first side of Eq. �A10�
becomes rigorously as follows:

EF−1 Z

2i�Ep

 �2Ẽ

�z2 + �2Ẽ�
= EF−1 Z

2i�

 �2B1

�z2 + �2B1�
= EF−1 Z

2i�
�2i�
 �

�z
− i��B1 + 
 �

�z
− i��2

B1

= F−1Z�� �

�z
− i�� − �0�
B+ +

1

2i�
R� , �A12�

where the residual term R is defined as follows:

R � E
 �

�z
− i��2

B1 = �ei��−�0�z �

�z
e−i��−�0�z
2

B+.

�A13�

Under the assumption of infinitesimal �−�0, the residual
term R approximately equals to �2B+ /�z2. In comparison
with the first term in �A12�, R is neglected in agreement
with the SVEA. Then, Eq. �A12� agrees with the difference
between �A2� and �A6� which leads to the linear terms in the

extended NLSE �28�, if B+ is set equal to A+ by the unidi-
rectional propagation approximation A−�0.

APPENDIX B: ACCURACY AND EFFICIENCY
OF THE FDM COMPARED WITH THE FDTD METHOD

We compare here the accuracy and the efficiency of the
Fourier direct method and the FDTD method, by solving the
one-dimensionalized Maxwell’s equations �2� under the
same set of conditions and parameter values.

The essential difference of these methods lies in the treat-
ment of linear terms either by the Fourier transform or by the
finite difference. Furthermore, the FDTD method treats the
linear dispersion and the nonlinear term in a way rather spe-
cialized to the model �13�. Thus we neglect these effects
here. We put ����=�1� or nL=c�1, omit PN in Eq. �6�, and
we move on to the moving coordinate system by �9b�. Then,
we obtain

�E

�z
=

1

v

�E

�t
+

1

c

�H

�t
, �B1a�

�H

�z
=

1

v

�H

�t
+

nL
2

c

�E

�t
, �B1b�

where −c�0H is replaced with H.
Equation �B1� is no other than the inverse Fourier trans-

form of Eqs. �10a� and �10b� when nL is replaced with c�1,
and GN is neglected. Instead of Eq. �12a� in the FDM, �B1� is
rigorously solved for E as

Erig�z,t� = g+�t + 
1

v
−

nL

c
�z
 + g−�t + 
1

v
+

nL

c
�z
 ,

�B2�

where g+�t� and g−�t� are initial profiles of the forward wave
and the backward wave, respectively. On the other hand,
�B1� is discretized as

Hi+1/2
n+1/2 = Hi+1/2

n−1/2 +
�z

v�t
�Hi+1

n−1/2 − Hi
n−1/2� +

nL
2�z

c�t
�Ei+1

n − Ei
n� ,

�B3a�

Ei
n+1 = Ei

n +
�z

v�t
�Ei+1/2

n − Ei−1/2
n � +

�z

c�t
�Hi+1/2

n+1/2 − Hi−1/2
n+1/2�

�B3b�

to obtain Ei
n+1 at the temporal point i�t and the spatial point

�n+1��z by the FDTD method, where interpolated quantities
are used to calculate the terms proportional to �z /v�t.

Under the same set of parameter values used for B in Fig.
3, we calculated E�z , t� of �B1� by the FDM and the FDTD
method as far as zmax/100 measuring the calculation time.
Then, we compared both results with Erig�z , t� in �B2�. Figure
9�a� shows the relative error between E�z , t� and Erig�z , t�
defined by
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� � �
−�

�

dt�E�z,t� − Erig�z,t��2��
−�

�

dt�Erig�z,t��2.

�B4�

At �Msam, Mstp�= �2048, 80 000� used in Fig. 3, the FDM
�A� already achieves the relative error as low as the
rounding-off error. This error is almost independent of Mstp
when it is larger than 80 000. By contrast, the relative error
of the FDTD method �C� is extremely large there because of
the instability growing rapidly with the propagation distance.
It decreases with Mstp, however, and reaches the level of the
FDM around Mstp=400 000.

At the same Mstp, the FDM spends about five times as
much calculation time as the FDTD method �Fig. 9�b��,
which is mainly attributed to the exponential integral for
attaining the stability. However, at the same error level, the
calculation time of both methods almost balance after all.

In contrast to the FDM �A, B of Fig. 9�a��, � of the FDTD
method �C, D� depends on Msam considerably. This is larger
for larger Msam=2048, and this error increases with the
propagation distance even at �Msam,Mstop�= �2048,400 000�.
This tendency is relaxed for smaller Msam, but the maximum
size of the frequency domain by Msam=1024 is too small to
cover the whole intensity spectrum broadened by the nonlin-
earity as much as in the present case.

It is concluded that the FDM using �Msam, Mstp�
= �2048,80 000� is sufficiently stable, accurate, and efficient.

FIG. 9. Dependence of �a� relative error and �b� calculation time
on the maximum step number Mstp to obtain E�z , t� at zmax/100
from a set of one-dimensionalized Maxwell’s equations with neither
the linear dispersion nor the nonlinear term: A, by the FDM with
Msam=2048; B, by the FDM with Msam=1024; C, by the FDTD
method with Msam=2048; and D, by the FDTD method with
Msam=1024. In all cases, tmax=500 fs and zmax=1.0 mm.

FIG. 10. Effect of the linear dispersion keeping the soliton order
1.04 and 	=z /LLD=35.2 the same: a, by the modified Sellmeier
equation �8� �Ldis. =S�; b or c, by the propagation constant ����
approximated up to the fifth order or the second order in �−�0

�Ldis. =2345 or 2�. �a� Linear refractive index nL
R���. �b� Difference

of the propagation constant �����=����−���0�. �c� Intensity spec-
trum �dotted curves in A, D, and G are initial intensity spectra�. �d�
Spectral phase. �e� Refer to Table I for headings and abbreviations.
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APPENDIX C: EFFECT OF THE LINEAR DISPERSION

We observe here how the linear dispersion affects the in-
tensity spectrum I��� and the spectral phase ����. Figure
10�a� shows the linear refractive index nL

R��� �accordingly
nL

R���� calculated from the modified Sellmeier equation �16�
proposed by Kalosha and Herrmann �8� �a, solid line�, or
from the propagation constant ���� �accordingly ����� ap-
proximated up to the fifth order �b, dashed line� or to the
second order �c, dotted line� in �−�0. Figure 10�b� shows
the difference of the propagation constant from its value at
the central frequency �����=����−���0�. Equation �12c�
relates nL��� and ����.

Figures 10�c� and 10�d� show the intensity spectra I���
and the spectral phases ���� by different linear dispersions
and peak powers. As seen from Table I and Fig. 10�e�, the
central wavelength is commonly �0=800 nm, the envelope
of the initial temporal electric-field profile is Gaussian, and
we assume the nonlinearity which is instantaneous and has
only the self-steepening as the dispersion, to keep the condi-
tions other than the linear dispersion simple. The initial peak
power, initial pulse width, and the maximum fiber length
range P=25–350 kW, t1=2.67–10.00 fs, and zmax=2.5–
35 mm, respectively, keeping the soliton order 1.04 and 	
=zmax/LLD=35.2 the same, where zmax and LLD are the maxi-
mum fiber length and the dispersion length. Thus, A, B, and
C are the cases of intense initial peak power, short initial
pulse width, and short fiber length.

The intensity spectra obtained by the higher-order disper-
sion up to the fifth order �b, center� are totally different from
those in the Sellmeier case �a, left� and those obtained by the
quadratic dispersion �c, right�. The main peak splits into
sharp subpeaks without the growth of wings. On the other
hand, the intensity spectra in c approximate those in a rather
better than those in b.

Though 	 are kept same and the nonlinearity and the lin-
ear dispersion almost balance in all cases, we observe
broader I��� in A, B, and C than those in G, H, and I �Fig.
10�c��. On the other hand, ���� changes with increasing
	�−�0	 more remarkably in G, H, and I �Fig. 10�d��. Thus,
I��� seems to be influenced by the nonlinearity rather than by
the linear dispersion and the long propagation distance, and
vice versa for ����. The nonlinear effect other than the SPM,
the self-steepening now, possibly affects this difference.

In Fig. 10�d�, ����, which are obtained by different �, are
similar close to the central frequency �0, and almost symmet-
ric with respect to �0. But far from �0, they are asymmetric
other than ���� obtained by � with the second-order disper-
sion �c, right�, and ���� by � up to the fifth order �b, center�
is totally different from the others. In the lower frequency
range, the spectral phase ���� by the modified Sellmeier
equation �a, left� reaches an extremum, where the group ve-
locity vanishes. As the result of the resonance, a satellite

FIG. 11. Combined effects of the delayed Raman response �D�,
instantaneous response �I�, core dispersion �SE�, and the flat core
dispersion �SF� shown by intensity spectrum �left� and spectral
phase �right� at z=1.0 mm under the condition of �8�: A, by �D�-
�SE�; B, by �I�-�SE�; C, by �D�-�SF�; and D, by �I�-�SF�. The dotted
curve with D shows the initial spectrum.

FIG. 12. Effects of nonlinear dispersions �self-steepening, core
dispersion� shown by intensity spectrum �left� and spectral phase
�right� at z=1.0 mm: A, by the experimental core dispersion and the
self-steepening �SE�; B, by the theoretical core dispersion and the
self-steepening �ST�; C, by the flat core dispersion and only the
self-steepening �SF�; and D, by neither the core dispersion nor the
self-steepening �F�. The dotted curve with D shows the initial
spectrum.
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appears at this frequency on I��� if I��� is high enough there,
as in the case of A.

For short pulses we consider now, it is inappropriate to
use the propagation constant ���� approximated by a poly-
nomial in �−�0. Within the width of the spectrum, it leaves
far away from the correct linear dispersion.

APPENDIX D: COMBINED EFFECTS OF THE DELAYED
RAMAN RESPONSE AND NONLINEAR DISPERSIONS

Combined effects of the delayed Raman response and the
core dispersion are investigated in Fig. 11, under the same
set of quantitative conditions as Kalosha-Herrmann �hereaf-
ter K-H� �8�, �0=830 nm, �P , t1�= �2290 kW, 5.00 fs�, and
z=1.0 mm. The spectrum I��� of D corresponds to that ob-
tained in �8� with the instantaneous response and the flat core
dispersion. Comparisons between the delayed Raman re-
sponse and the instantaneous response—A and B or C and D
of Fig. 11—show that the effect of the delayed Raman re-
sponse is small whether with or without the experimental
core dispersion. As seen from Fig. 1�b�, the imaginary part of

R̃��� causing the effect of the delayed Raman response al-
most vanishes outside of the narrow range between �S and
�A. Thus, only the slight deformation of the spectrum is
observed instead of the self-frequency shift under the present
condition of the broad initial spectrum and the short propa-
gation distance. On the other hand, after the core dispersion
is introduced �A, B�, the satellite in the lower frequency dis-

appears, the main peak sharpens, the subpeak in the higher
frequency appears, and the wing stretches. These effects are
caused by the nonlinear effects decreased in the lower fre-
quency range and increased in the higher frequency range by
the core dispersion. On the other hand, the spectral phase on
the right side of Fig. 11 is rather insensitive to these effects.

Figure 12 compares I��� for different nonlinear disper-
sions �self-steepening, core dispersion�. The delayed Raman
response is taken into account in all of them. In D with no
nonlinear dispersion, there are three peaks around 0.12, 0.43,
and 0.54 PHz �D1, D2, and D3�, among which D2 and D3 are
above �0. From D to C, only the self-steepening increasing
proportionally to the frequency is added. Then, D1 becomes
a broad satellite around 0.19 PHz �C1�, and D2, D3 merge
into one peak around 0.35 PHz �C2� with a broad wing in the
high frequency range. From C to B, the theoretical core dis-
persion is introduced, which weakens the nonlinearity in the
lower frequency range and strengthens it in the higher fre-
quency range more. Owing to this, C1 vanishes, C2 sharpens
into a main peak �B1� without the shift of the position, and a
gentle shoulder appears around 0.43 PHz �B2�. From B to A,
the core dispersion is replaced with the experimental one,
where the core radius above �0 is slightly larger �below �0 in
the inset in Fig. 2�. Then, B2 is recognized as a subpeak
caused by the relaxed flow of the spectral components from
�0 toward the higher frequency range. In the nonlinear dis-
persions, the self-steepening forms the basic structure of
I���, and the core dispersion reforms it.
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