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1 Quantum Spin Glasses, Quantum Annealing

and Probabilistic Information Processing

Jun-ichi Inoue

Graduate School of Information Science and Technology, Hokkaido University

Summary. We present several applications of quantum spin glasses (random field

Ising model, Sherrington-Kirkpatrick model, Ising spin glasses with p-body inter-

action in a transverse field) to probabilistic information processing, especially to

the problems of image restoration and error-correcting codes. As a related opti-

mization method, quantum annealing is also introduced to these research fields and

its performance is investigated by using the quantum Markov chain Monte Carlo

method. After a short review of the previous work [J. Inoue, Physical Review E

63, 046114 (2001)], we evaluate the performance of both the Maximum A Pri-

ori (MAP for short) and the Maximizer of Posterior Marginal (MPM for short)

image restorations which are purely driven by quantum fluctuation (without any

thermal fluctuation). The Nishimori-Wong condition, on which the best possible

performance of the quantum MPM estimation is achieved, is derived as a condi-

tion on the effective amplitude of the transverse field. We show the lowest values

of the bit-error rate for both the thermal and the quantum MPM estimations are

exactly same. We next discuss an extension of the Sourlas codes by means of Ising

spin glasses with p-body interactions in a transverse field. We investigate the toler-

ance of error-less (or quite low-error) ferromagnetic state to quantum uncertainties

in the prior distribution. We find that there exist some critical amplitudes of the

transverse field, and at the critical point the system changes from the low-error

state to the poor error-correction state as the second order (p = 2) and as the first

order (p ≥ 3) phase transitions. The relation between the amplitude of the trans-

verse field and the Shannon’s information bound is also discussed in the limit of

p → ∞ for a given effective amplitude of the transverse field. We show that in this

limit the Shannon’s bound is not violated by the quantum fluctuation in the prior.

In last part of this article, we apply quantum annealing, which is an optimization

method based on quantum fluctuations, to the problem of image restoration. We

compare the results of the thermal MAP and the quantum MAP estimations by

using the simulated (thermal) and the quantum annealings, respectively. We find

that a fine restoration of image is achieved by the quantum annealing and its per-

formance measured by the bit-error rate is slightly superior to that of the simulated

annealing.
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1.1 Introduction

Recently, problems of information processing were investigated from statisti-
cal mechanical point of view [1]. Among them, image restoration (see [2, 3, 4]
and references there in) and error-correcting codes [5] are most suitable sub-
jects. In the field of the error-correcting codes, Sourlas [5] showed that the
convolution codes can be constructed by infinite range spin-glasses Hamil-
tonian and the decoded message should correspond to the zero temperature
spin configuration of the Hamiltonian. Ruján [6] suggested that the error of
each bit can be suppressed if one uses finite temperature equilibrium states
(sign of the local magnetization) as the decoding result, what we call the
MPM (Maximizer of Posterior Marginal) estimate, instead of zero temper-
ature spin configurations, and this optimality of the retrieval quality at a
specific decoding temperature (this temperature is well known as the Nishi-
mori temperature in the field of spin glasses) is proved by Nishimori [7].

The next remarkable progress in this direction was done by Nishimori
and Wong [8]. They succeeded in giving a new procedure in order to com-
pare the performance of the zero temperature decoding (statisticians call
this strategy the MAP (Maximum A Posteriori) estimation) with that of the
finite temperature decoding, the MPM estimation. They introduced an infi-
nite range model of spin-glasses like the Sherrington-Kirkpatrick (SK) model
[9] as an exactly solvable example. Kabashima and Saad [10] succeeded in
constructing more practical codes, namely, low density parity check (LDPC)
codes by using the spin glass model with finite connectivities. In these de-
coding process, one of the most important problems is how one obtains the
minimum energy states of the effective Hamiltonian as quickly as possible.
Geman and Geman [11] used simulated annealing [12] in the context of image
restoration to obtain good recovering of the original image from its corrupted
version. Recently, Tanaka and Horiguchi [13, 2] introduced a quantum fluc-
tuation, instead of the thermal one, into the mean-field annealing algorithm
and showed that performance of the image recovery is improved by control-
ling the quantum fluctuation appropriately during its annealing process. The
attempt to use the quantum fluctuation to search the lowest energy states in
the context of annealings by Markov chain Monte Carlo methods, what we
call quantum annealing, is originally introduced by [14, 15] and its applica-
tion to the combinatorial optimization problems including the ground state
searching for several spin glass models was done by Kadowaki and Nishimori
[16] and Santoro et al [17]. However, these results are restricted to research
aided by computer simulations, although there exist some extensive studies
on the Landou-Zener’s model for the single spin problems [18, 19, 20].

Recently, the averaged case performance of the both MPM and MAP es-
timations for image restoration with quantum fluctuation was investigated
by the present author [21] for the mean-field model. He also carried out the
quantum Monte Carlo method to evaluate the performance for two dimen-
sional pictures and found that the quantum fluctuation suppress the error
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due to failing to set the hyperparameters effectively, however, the best possi-
ble value of the bit-error rate does not increases by the quantum fluctuation.
In this result the quantum and the thermal fluctuations are combined in the
MPM estimation (the effective temperature is unity). Therefore, it is impor-
tant for us to revisit this problem and investigate to what extent the MPM
estimation, which is based on pure quantum fluctuation and without any
thermal one, works effectively.

In this article, we make this point clear and show that the best possible
performance obtained by the MPM estimation, which is purely induced by
quantum fluctuations, is exactly same as the results by the thermal MPM
estimation. The Nishimori-Wong condition [7, 8] for the quantum fluctua-
tion, on which the best possible performance is achieved, is also discussed.
Moreover, we extend the Sourlas codes [5] by means of the spin glass model
with p-spin interaction in a transverse field [22, 23] and discuss the toler-
ance of error-less (or quite low-error) state to the quantum uncertainties in
the prior distribution. In last part of this article, we check the performance
of the MAP and MPM image restorations predicted by the analysis of the
mean-field infinite range model by using the quantum Markov chain Monte
Carlo method [24] and the quantum annealing [14, 15, 16, 17].

This article is organized as follows. In the next section 2 and following
section 3, we introduce our model system for image restoration and error-
correcting codes. We also explain the relation between Bayesian inference
and statistical mechanics. In section 4, we investigate the performance of the
MAP and MPM estimations for these two problems by using the analysis
of the infinite range model. In section 5, we carry out the quantum Markov
chain Monte Carlo method and the quantum annealing to check the results
we obtained from the analysis of the infinite range models. The final section
is summary.

1.2 Bayesian statistics and information processing

In the field of signal processing or information science, we need to estimate
the original message which is sent via email or fax. Usually, these massages
are degraded by some noise and we should retrieve the original messages,
and if possible, we send these messages not only as sequence of information
bits but as some redundant information like parity check. In such problems,
noise channels or statistical properties of the original message are specified by
some appropriate probabilistic models. In this section, we explain the general
definitions of our problems and how these problems link to statistical physics.

1.2.1 General definition of the model system

Let us suppose that the original information is represented by a configuration
of Ising spins {ξ} ≡ (ξ1, ξ2, · · · , ξN ) (ξi = ±1, i = 1, · · ·, N) with probability
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Fig. 1.1. A typical example of image data retrieval. From the left to the right, the
original {ξ}, the degraded {τ} and the recovering {σ} images. The above restored
image was obtained by quantum annealing. The detailed account of this method
will be explained and discussed in last part of this article.

P ({ξ}). Of course, if each message/pixel ξi is generated from independent
identical distribution (i.i.d.), the probability of the configuration {ξ} is writ-
ten by the product of the probability P (ξi), namely, P ({ξ}) =

∏N
i=1 P (ξi).

These messages/pixels {ξ} are sent through the noisy channel by not
only the form {ξi1 · · · ξip} ≡ {J0

i1···ip} for appropriately chosen set of indexes
{i1, · · ·, ip} (what we call parity check in the context of error-correcting codes)
but also sequence of the original messages/pixels itself {ξ}. Therefore, the
outputs of the noisy channel are exchange interactions {Ji1···ip} and fields
{τi}.

In the field of information theory, the noisy channel is specified by the
conditional probability like P ({τ}|{ξ}) or P ({J}|{J0}). If each message/pixel
ξi and parity check J0

i1·ip are affected by the channel noise independently, the
probability P ({τ}|{ξ}) or P ({J}|{J0}), namely, the probabilities of output
sequences {τ} ≡ (τ1, · · · , τ2) or {J} ≡ (J11···1p, · · · , JN1···Np) for given input
sequences {ξ} = (ξ1, · · · , ξN ) or {J0} = (J0

11···1p, · · · , J0
N1···Np) are written by

P ({τ}|{ξ}) =
N∏

i=1

P (τi|ξi), P ({J}|{J0}) =
N∏

i=1

P (Ji1···ip|J0
i1···ip), (1.1)

respectively.
In this chapter, we use the following two kinds of the noisy channel.

The first one is referred to as binary symmetric channel (BSC). In this
channel, each message/pixel ξi and parity check Ji1···jp change their sign
with probabilities pτ and pr, respectively. By introducing the parameters
βτ ≡ (1/2) log(1 − pτ/pτ ), βr ≡ (1/2) log(1 − pr/pr), the conditional proba-
bilities (1.1) are given by

P ({τ}|{ξ}) =
eβτ

∑
i
τiξi

[2 coshβτ ]N
, P ({J}|{J0}) =

eβr

∑
i1···ip

Ji1···ipJ0
i1···ip

[2 coshβr]NB
(1.2)
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where we defined N ≡∑i 1, NB ≡∑i1···ip 1.
Thus, the probability of the output sequences {J}, {τ} provided that the

corresponding input sequence of the original messages/pixels is {ξ} is ob-
tained by

∑
{J0} P ({J}|{J0})P ({J0}|{ξ})P ({τ}|{ξ}), that is to say,

P ({J}, {τ}|{ξ}) =
exp

(
βr

∑
i1,···,ip Ji1···ip ξi1· · ·ξip + βτ

∑
i τiξi

)
(2 coshβr)NB(2 coshβτ )N

(1.3)

where we used the following condition :

P ({J0}|{ξ}) =
N∏

i=1

δJ0
i1···ip

,ξi1···ξip
. (1.4)

The second type of the noisy channel is called as Gaussian channel (GC).
The above BSC (1.3) is simply extended to the GC as follows.

P ({J}, {τ}|{ξ}) =
e−

1
2J2

∑
i1,···,ip

(Ji1···ip−J0ξi1···ξip)2− 1
2a2

∑
i
(τi−a0ξi)

2

(
√

2πJ)NB(
√

2πa)N
. (1.5)

We should notice that these two channels can be treated within the single
form :

P ({J}, {τ}|{ξ}) =
∏

i1···ip
Fr(Ji1···ip)

∏
i

Fτ (τi)

× exp

⎛
⎝βr

∑
i1···ip

Ji1···ip ξi1 · · · ξip + βτ

∑
i

τiξi

⎞
⎠ (1.6)

with

Fr(Ji1...ip) =

∑
j=±1 δ(Ji1···ip − j)

2 coshβr
, Fτ (τi) =

∑
j=±1 δ(τi − j)
2 coshβτ

(1.7)

for the BSC and

Fr(Ji1···ip) =
exp

[− 1
2J2 (J2

i1···ip + J2
0 )
]

√
2πJ2

, Fτ (τi) =
exp

[− 1
2a2 (τ2

i + a2
0)
]

√
2πa2

(1.8)
for the GC. Therefore, it must be noted that there exist relations between
the parameters for both channels as

βr =
J0

J2
, βτ =

a0

a2
. (1.9)

Main purpose of signal processing we are dealing with in this article is to esti-
mate the original sequence of messages/pixels {ξ} from the outputs {J}, {τ}
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of the noisy channel. For this aim, it might be convenient for us to construct
the probability of the estimate {σ} for the original messages/pixels sequence
{ξ} provided that the outputs of the noisy channel are {J} and {τ}.

From the Bayes formula, the probability P ({σ}|{J}, {τ}) is written in
terms of the so-called likelihood : P ({J}, {τ}|{σ}) and the prior : Pm({σ})
as follows.

P ({σ}|{J}, {τ}) =
P ({J}, {τ}|{σ})Pm({σ})∑
{σ} P ({J}, {τ}|{σ})Pm({σ}) (1.10)

As the likelihood has a meaning of the probabilistic model of the noisy chan-
nel, we might choose it naturally as

P ({J}, {τ}|{σ}) =
exp

(
βJ

∑
i1···ip Ji1···ip σi1 · · ·σip + h

∑
i τiσi

)
(2 coshβJ )NB (2 coshh)N

(1.11)

for the BSC and

P ({J}, {τ}|{σ}) =
e−

βJ
2

∑
i1···ip

(Ji1···ip−σi1···σip)2−h
∑

i
(τi−σi)

2

(2π/βJ)NB/2(π/h)N/2
(1.12)

for the GC. Therefore, what we call the posterior P ({σ}|{J}, {τ}) which is
defined by (1.10) is rewritten in terms of the above likelihood as follows.

P ({σ}|{J}, {τ}) =
e−βHeff∑
{σ} e−βHeff

(1.13)

where we defined the inverse temperature β = 1/T and set T = 1 in the
above case. The effective Hamiltonian Heff is also defined by

Heff = −βJ

∑
i1···ip

Ji1···jp σi1 · · ·σip − h
∑

i

τiσi − logPm({σ}) (1.14)

for the BSC and

Heff = −βJ

2

∑
i1···ip

(Ji1···ip−σi1 · · ·σip)2−h
∑

i

(τi−σi)2− logPm({σ}) (1.15)

for the GC.

1.2.2 MAP estimation and simulated annealing

As we mentioned, the posterior P ({σ}|{J}, {τ}) is a useful quantity in order
to determine the estimate {σ} of the original messages/pixels sequence. As
the estimate of the original message/pixel sequence, we might choose a {σ}
which maximizes the posterior for a given set of the output sequence {J}, {τ}.
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Apparently, this estimate {σ} corresponds to the ground state of the effective
Hamiltonian Heff . In the context of Bayesian statistics, this type of estimate
{σ} is referred to as Maximum A posteriori (MAP) estimate.

From the view point of important sampling from the posterior as the
Gibbs distribution (Gibbs sampling), such a MAP estimate is obtained by
controlling the temperature T as T → 0 during the Markov chain Monte
Carlo steps. This kind of optimization method is well-known and is widely
used as simulated annealing (SA) [11, 12]. As the optimal scheduling of the
temperature T is T (t) = c/ log(1 + t), which was proved by using mathemat-
ically rigorous arguments [11].

1.2.3 MPM estimation and a link to statistical mechanics

From the posterior P ({σ}|{J}, {τ}), we can attempt to make another kind
of estimations. For this estimation, we construct the following marginal dis-
tribution for each pixel σi :

P (σi|{J}, {τ}) =
∑

{σ}�=σi

P ({σ}|{J}, {τ}). (1.16)

Then, we might choose the sign of the difference between P (1|{J}, {τ}) and
P (−1|{J}, {τ}) as the estimate of the i-th message/pixel, to put it another
way,

sgn

[∑
σi

σiP (σi|{J}, {τ})
]

= sgn

(∑
{σ} σi e−Heff∑
{σ} e−Heff

)
≡ sgn(〈σi〉1) (1.17)

where we defined the bracket 〈· · ·〉β as

〈· · ·〉β ≡
∑

{σ}(· · ·) e−βHeff∑
{σ} e−βHeff

. (1.18)

Therefore, the above estimate has a link to statistical mechanics through the
local magnetization 〈σi〉1 for the spin system that is described by Heff at
temperature T = 1. This estimate sgn(〈σi〉1) is referred to as Maximizer of
Posterior Marginal (MPM) estimate or Finite Temperature (FT) estimate
[6]. It is well-known that this estimate minimizes the following bit-error rate
:

p
(MPM)
b = P

(1)
b (βJ , h : Pm) =

1
2

[
1 −R(1)(βJ , h : Pm)

]
(1.19)

with the overlap between the original message/pixel ξi and its MPM estimate
sgn(〈σi〉) :

R(1)(βJ , h : Pm) =
∑

{ξ,J,τ}
P ({J}, {τ}, {ξ}) ξi sgn(〈σi〉1) (1.20)
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Obviously, the bit-error rate for the MAP estimate is given by

p
(MAP )
b = lim

β→∞
P (β)(βJ , h : Pm) =

1
2

[
1 − lim

β→∞
R(β)(βJ , h : Pm)

]
(1.21)

with

R(β)(βJ , h : Pm) =
∑

{ξ,J,τ}
P ({J}, {τ}, {ξ}) ξi sgn(〈σi〉β). (1.22)

In the next section, we compare p(MPM)
b with p(MAP )

b by using replica method
and show the former is smaller than the later.

1.2.4 The priors and corresponding spin systems

In the previous two subsections, we show the relation between Bayesian infer-
ence of the original messages/pixels under some noises and statistical physics
[1]. However, we do not yet mention about the choice of the prior distribution
Pm({σ}) in the effective Hamiltonian Heff . In the framework of the Bayesian
statistics, the choice of the prior is arbitrary, however, the quality of the
estimation for a given problem strongly depends on the choice.

Image restoration and random field Ising model

In image restoration, we might have an assumption that in the real world
two dimensional pictures, the nearest neighboring sites should be inclined to
be the same values, in other words, we assume that real picture should be
locally smooth (see Fig. 1.1). Taking this smoothness into account, then, it
seems reasonable to choose the prior for image restoration as

Pm({σ}) =
eβm

∑
<ij>

σiσj

Z(βm)
, Z(βm) =

∑
{σ}

eβm

∑
<ij>

σiσj . (1.23)

In conventional image restoration, we do not send any parity check and only
available information is the degraded sequence of the pixels {τ}. Thus, we
set βJ = 0 for this problem. Then, we obtain the effective Hamiltonian for
image restoration as

Heff = −βm

∑
<ij>

σiσj − h
∑

i

τiσi (1.24)

This Hamiltonian is identical to that of the random field Ising model in which
random field on each cite corresponds to each degraded pixel τi.
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Error-correcting codes and spin glasses with p-body interaction

In error-correcting codes, we usually use so-called uniform distribution be-
cause we do not have any idea about the properties of the original message
sequence {ξ} as we assumed smoothness for images. Thus, we set the prior
as Pm({σ}) = 2−N and substituting − logPm({σ}) = N log 2 = const. into
Heff (usually, we neglect the constant term).

In this case, we do not use any a priori information to estimate the orig-
inal message, however, in error-correcting codes, we compensate this lack of
information with extra redundant information as a form of ξi1 · · · ξip, be-
sides the original message sequence {ξ}. In information theory, it is well-
known that we can decode the original message {ξ} without any error when
the transmission rate R, which is defined by R = N/NB (N original mes-
sage length, NB : redundant message length), is smaller than the chan-
nel capacity C (see for example [26]). The channel capacity is given by
C = 1+p log2 p+(1−p) log2(1−p) for the BSC and p = (1/2) log2(1+J2

0/J
2)

for the GC. As we will mention in the next section, when we send NCr com-
binations of p bits among the original image {ξ}, as products ξi1 · · · ξip ,
error-less decoding might be achieved in the limit of p → ∞. We call this
type of code as Sourlas codes [5]. For this Sourlas codes, we obtain the fol-
lowing effective Hamiltonian.

Heff = −βJ

∑
i1···ip

Ji1···ip σi1 · · ·σip − h
∑

i

τiσi (1.25)

It is clear that this Hamiltonian is identical to that of the Ising spin glass
model with p-body interaction under some random fields on cites.

1.3 Quantum version of the model

In the previous sections, we explained the relation between the Bayesian
statistics and statistical mechanics. We found that there exists the effective
Hamiltonian for each problem of image restoration and error-correcting codes.
In order to extend the model systems to their quantum version, we add the
transverse field term : −Γ∑i σ

x
i into the effective Hamiltonian [22]. In this

expression, {σx} means the x-component of the Pauli matrix and Γ controls
the strength of quantum fluctuation. Each term Γσx

i appearing in the sum
might be understood as tunneling probability between the states σz

i = +1 and
σz

i = −1 intuitively. As the result, the quantum version of image restoration is
reduced to that of statistical mechanics for the following effective Hamiltonian

HQuantum
eff = −βm

∑
<ij>

σz
i σ

z
j − h

∑
i

τiσ
z
i − Γ

∑
i

σx
i . (1.26)

We also obtain the quantum version of the effective Hamiltonian for error-
correcting codes as
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HQuantum
eff = −βJ

∑
i1···ip

Ji1···ip σz
i1 · · ·σz

ip − h
∑

i

τiσ
z
i − Γ

∑
i

σx
i . (1.27)

We should keep in mind that in the context of the MAP estimation, it
might be useful for us to controlling the strength of the quantum fluctua-
tion, namely, the amplitude of the transverse field Γ as Γ → 0 during the
quantum Markov chain Monte Carlo steps. If this annealing process of Γ is
slow enough, at the end Γ = 0, we might obtain the ground states of the
classical spin systems described by the following Hamiltonian

Hclassical
eff = −βm

∑
<ij>

σz
i σ

z
j − h

∑
i

τiσ
z
i (1.28)

for image restoration and

Hclassical
eff = −βJ

∑
i1···ip

Ji1···ip σz
i1 · · ·σz

ip − h
∑

i

τiσ
z
i . (1.29)

for error-correcting codes. This is an essential idea of the quantum annealing.
Unfortunately, up to now, there are no mathematically rigorous arguments for
the optimal scheduling of Γ (t) corresponds to Geman and Geman’s proofs [11]
for the simulated annealing [12]. We will revisit this problem in last section
of this article. In this article, we investigate its averaged case performance
by analysis of the infinite range model and by caring out quantum Markov
chain Monte Carlo simulations.

1.4 Analysis of the infinite range model

In the previous section, we completely defined our two problems of informa-
tion processing, that is to say, image restoration and error-correcting codes as
the problems of statistical mechanics of random spin systems in a transverse
field. We found that there exist two possible candidates to determine the orig-
inal sequence of the messages/pixels. The first one is the MAP estimation and
the estimate is regarded as ground states of the effective Hamiltonian that
is defined as a minus of logarithm of the posterior distribution. As we men-
tioned, to carry out the optimization of the Hamiltonian, both the simulated
annealing and the quantum annealing are applicable. In order to construct
the quantum annealing, we should add the transverse field to the effective
Hamiltonian and control the amplitude of the field Γ during the quantum
Markov chain Monte Carlo steps. Therefore, the possible extension of the
classical spin systems to the corresponding quantum spin systems in terms
of the transverse field is essential idea of our work.

Besides the MAP estimate as a solution of the optimization problems, the
MPM estimate, which is given by the sign of the local magnetization of the
spin system, is also available. This estimate is well-known as the estimate
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that minimizes the bit-error rate. Performances of both the MAP and the
MPM estimations are evaluated through this bit-error rate.

In order to evaluate the performance, we first attempt to calculate the
bit-error rate analytically by using the mean-field infinite range model. As the
most famous example of solvable model, Sherrington-Kirkpatrick model [9] in
spin glasses, we also introduce the solvable models for both image restoration
and error-correcting codes. In this section, according to the previous work
by the present author [21], we first investigate the performance of image
restoration.

It is important to bear in mind that in our Hamiltonian, there exists two
types of terms, namely, A0 = −Hclassical

eff and A1 = −Γ∑i σ
x
i , and they do

not commute with each other. Therefore, it is impossible to calculate the par-
tition function directly. Then, we use the Suzuki-Trotter (ST) decomposition
[24, 25]

Zeff = lim
M→∞

tr
(
e

A0
M e

A1
M

)M

(1.30)

to cast the problem into an equivalent classical spin system. In following, we
calculate the macroscopic behavior of the model system with the assistance
of the ST formula [24, 25] and replica method [9] for the data {ξ, J, τ} average
[· · ·]data :

[logZeff ]data = lim
n→0

[Zn
eff ]data − 1

n
(1.31)

of the infinite range model.

1.4.1 Image restoration

In order to analyze the performance of the MAP and the MPM estimation
in image restoration, we suppose that the original image is generated by the
next probability distribution,

P ({ξ}) =
e

βs
N

∑
ij

ξiξj

Z(βs)
, Z(βs) =

∑
{ξ}

e
βs
N

∑
ij

ξiξj , (1.32)

namely, the Gibbs distribution of the ferromagnetic Ising model at the tem-
perature Ts = β−1

s . For this original image and under the Gaussian channel,
the macroscopic properties of the system like the bit-error rate are derived
from the data-averaged free energy [logZeff ]data. Using the ST formula and
the replica method, we write down the replicated partition function as follows.

[Zn
eff ]data =

∑
{ξ}

∫ ∞

−∞

∏
ij

dJij√
2πJ2/N

e−
N

2J2

∑
ij
(Jij−J0

N ξiξj)2

×
∫ ∞

−∞

∏
i

dτi√
2πa

e−
1

2a2

∑
i
(τi−a0ξi)

2×e(βs/N)
∑

ij
ξiξj

Z(βs)



12 1 QSG, QA and Probabilistic Information Processing

× tr{σ}
n∏

α=1

M∏
K=1

exp

[
βJ

M

∑
ij

Jijσ
α
iKσ

α
jK +

βm

MN

∑
ij

σα
iKσ

α
jK

+
h

M

∑
i

τiσ
α
iK +B

∑
i

σα
iKσ

α
i,K+1

]
(1.33)

where [· · ·]data means average over the quenched randomness, namely, over
the joint probability P ({J}, {τ}, {ξ}). We should keep in mind that these
quantities {ξ} and {J}, {τ} mean the data we send to the receiver and the
outputs of the channel the receiver obtain, respectively. Therefore, by calcu-
lating these averages [· · ·]data, we can evaluate the data-averaged case perfor-
mance of the image restoration [21]. We also defined the partition function

Z(βs) for the original images and B as Z(βs) ≡ ∑
{ξ} e(βs/N)

∑
ij

ξiξj , B ≡
(1/2) log coth(Γ/M). The standard replica calculation leads to the following
expressions of the free energy density :

[logZeff ]data =
[Zn

eff ]data − 1
nN

= −f
RS
0

n
− fRS (1.34)

fRS
0 =

1
2
βsm

2
0 − log 2 cosh(βsm0) (1.35)

fRS = − (βJJ)2

2
Q2 +

(βJJ)2

2
S2 +

βm

2
m2 +

βJJ0

2
t2

−
∑

ξ

M(ξ)
∫ ∞

−∞
Du log

∫ ∞

−∞
Dw 2 cosh

√
Φ2 + Γ 2 (1.36)

and the saddle point equations with respect to the order parameters.

[〈σα
iK 〉]data = m =

∑
ξ

M(ξ)
∫ ∞

−∞
Du

∫ ∞

−∞
Dω

(
Φ sinhΞ
ΞΩ

)
(1.37)

[ξi〈σα
iK 〉]data = t =

∑
ξ

ξM(ξ)
∫ ∞

−∞
Du

∫ ∞

−∞
Dω

(
Φ sinhΞ
ΞΩ

)
(1.38)

[〈(σα
iK)2〉]data = Q =

∑
ξ

M(ξ)
∫ ∞

−∞
Du

[∫ ∞

−∞
Dω

(
Φ sinhΞ
ΞΩ

)]2

(1.39)

[〈σα
iKσ

α
iL〉]data = S

=
∑

ξ

M(ξ)
∫ ∞

−∞

Du

Ω

∫ ∞

−∞

[(
Φ

Ξ

)2

coshΞ + Γ 2

(
sinhΞ
Ξ3

)]
(1.40)

with [ξi]data = m0 = tanh(βsm0) and M(ξ) = eβsm0ξ/2 cosh(βsm0). where
we used the replica symmetric and the static approximation, that is,
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tK = t, Sα(KL) =
{
S (K �= L)
1 (K = L) , Qαβ = Q (1.41)

and 〈· · ·〉 denotes the average over the posterior distribution and Φ, y and Ω
are defined as

Φ ≡ u
√

(ah)2 + (JβJ )2Q+ JβJω
√
S −Q+ (a0h+ J0βJ t)ξ

+ βmm (1.42)

Ξ ≡
√
Φ2 + Γ 2, Ω ≡

∫ ∞

−∞
Dω coshΞ. (1.43)

Then, the overlap R which is a measure of retrieval quality is calculated
explicitly as

[ξi sgn(〈σα
iK 〉)]data = R =

∑
ξ

ξM(ξ)
∫ ∞

−∞
Du

∫ ∞

−∞
Dw sgn(Φ), (1.44)

then, of course, the bit-error rate is given by pb = (1 −R)/2.

1.4.2 Image restoration at finite temperature

We first investigate the image restoration without parity check term βJ = 0.
For this case, the saddle point equations lead to the following much simpler
coupled equations :

m0 = tanh(βsm0), m =
∑

ξ

M(ξ)
∫ ∞

−∞
Du

Φ0 tanh
√
Φ2

0 + Γ 2√
Φ2

0 + Γ 2
(1.45)

with Φ0 ≡ mβm + a0hξ + ahu. Then, the overlap R is also reduced to

R =
∑

ξ

ξM(ξ)
∫ ∞

−∞
Du sgn(Φ0) = 1 − 2pb (1.46)

where R depends on Γ through m. In Fig. 1.2 (left), for the case of no parity
check βJ = 0, we plot the bit-error rate pb as a function of Tm = β−1

m . We
choose the temperature of the original image T−1

s = βs = 0.9 and noise rate
βτ = a0/a

2 = 1. We keep the ratio h/βm to its optimal value βτ/βs = 0.9 and
investigate Tm-dependence of pb. Then, the parameter Tm has a meaning of
temperature for simulated annealing. Obviously, p(MAP )

b = limTm→0 pb and
pb at Tm = Ts is the lowest value of p(MPM)

b for Γ = 0.
Let us stress again that in practice, the infinite range model is not useful

for realistic two dimensional image restoration because all pixels are neighbor
each other. In order to restore these two dimensional images, we should use
the prior P ({ξ}) for two dimension. In fact, let us think about the overlap r
between an original pixel ξi and corresponding degraded pixel τi, namely,
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Fig. 1.2. The bit-error rate pb = (1 − R)/2 without exchange term (βJ = 0) as a
function of temperature Tm = β−1

m (left). Keeping the ratio to h/βm = βτ/βs =
a0/a2βs = 0.9 (we set a0 = a = 1), we change the value of Tm. For the case of Γ = 0,
pb takes its minimum at Tm = Ts = 0.9. For finite Γ , the optimal temperature Tm

is not Ts, however, the minimum of pb does not change. The right panel shows the
optimal temperature T opt

m as a function of Γ .

r = [ξiτi]data =

∑
τ,ξ eβτξτ+βsm0ξ(ξτ)

4 cosh(βτ ) cosh(βsm0)
= tanh(βτ ). (1.47)

From this relation, the error probability pτ is given as pτ = (1 − r)/2 =
1/(1 + e2βτ ) = 0.119 < p

(MPM)
b for βτ = 1, and unfortunately, the restored

image becomes much worse than the degraded (see Fig. 1.2 (left)). This is
because any spacial structure is ignored in this artificial model. This result
might be understood as a situation in which we try to restore the finite
dimensional image with some structures by using the infinite range prior
without any structure (namely, the correlation length between pixels is also
infinite). However, the infinite range model is useful to predict the qualitative
behavior of macroscopic quantities like bit-error rate and we can grasp the
details of its hyperparameters (namely, Tm, h or Γ ) dependence and can also
compare the MAP with the MPM estimations. This is a reason why we
introduce this model to the analysis of image restoration problems. Of course,
if we use two dimensional structural priors, the both the MAP estimations
via simulated and quantum annealing and the MPM estimation by using
thermal and quantum fluctuations work well for realistic two dimensional
image restoration. In the next section, we will revisit this problem and find
it. It is also important for us to bear in mind that the quality of the restoration
depends on the macroscopic properties of the original image.
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In our choice of the original image, its macroscopic qualities are de-
termined by the temperature Ts and magnetization m0 as a solution of
m0 = tanh(βsm0). Although we chose the temperature Ts = 0.9 in Fig. 1.2
(left), it is important to check the retrieval quality for different temperatures
Ts. In Fig. 1.3 (right), we plot the bit-error rate for the case of Ts = 0.7. From
this panel, we find pb < pτ and the MPM estimation improves the quality of
the restoration.

For Γ > 0, the optimal temperature which gives the minimum of pb is not
Ts. In the right panel of Fig. 1.2, we plot the T opt

m as a function of Γ . In Fig. 1.3

Fig. 1.3. The bit-error rate pb is drawn for Tm = 0.01, 0.1 and Tm = 0.9 as a
function of Γ (left). The right panel is the same type of the plot as the right panel
in Fig. 1.2 for the case of Ts = 0.7.

(left), we plot the bit-error rate as a function of Γ for Tm = Ts = 0.9 setting
the ratio to its optimal value h/βm = βτ/βs = 0.9. From this figure, we find
that the MPM optimal estimate no longer exists by adding the transverse field
Γ > 0 and the bit-error rate pb increases as the amplitude of the transverse
field Γ becomes much stronger.

On the other hand, when we set the temperature Tm = 0.01, the Γ -
dependence of the bit-error rate is almost flat (see Fig. 1.3 (right)). We should
notice that pb at Γ = 0 for Tm = 0 corresponds to the performance of the
MAP estimation by quantum annealing. We discuss the performance of the
quantum annealing in the last part of this subsection.

We next consider the performance for the MAP and the MPM estimations
with parity check term (βJ �= 0). We plot the result in FIG. 1.4. As we
mentioned before, two body parity check term works very well to decrease
the bit-error rate pb. However, in this case, there does not exist the optimal
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Fig. 1.4. The bit-error rate pb as a function of βJ for Γ = 0, 1, 2 keeping the ration
constant h/βm = βτ/βs (left). In right panel, pb as a function of Γ is plotted for
the case of βJ = 0.5, 1, 2.0.

βJ which minimizes the bit-error rate for any finite values of Γ . As we see
the left panel in FIG. 1.4, for small value of βJ , the restoration by a finite Γ
is superior to that of absence of the transverse field (Γ = 0).

Hyperparameter estimation

In this subsection, we evaluated the performance of the MAP and the MPM
estimations in image restoration through the bit-error rate. In these results,
we found that the macroscopic parameters, βm, h and Γ -dependence of the
bit-error rate have important information to retrieve the original image. How-
ever, from the definition, (1.44)(1.46), as the bit-error rate contains the origi-
nal image {ξ}, it is impossible for us to use pb as a cost function to determine
the best choice of these parameters. In statistics, we usually use the marginal
likelihood [27] which is defined by the logarithm of the normalization constant
of tr{σ}P ({σ}|{τ})Pm({σ}), that is,

K(βm, h, Γ : {τ}) ≡ logZPos. − logZPri. − logZL (1.48)

where ZPos., ZPri and ZL are normalization constants for the posterior, the
prior and the likelihood, and which are given by

ZPos. = tr{σ}e
βm

∑
ij

σz
i σz

j +h
∑

i
τiσ

z
i +Γ

∑
i
σx

i (1.49)

ZPri. = tr{σ}e
βm

∑
ij

σz
i σz

j +Γ
∑

i
σx

i , ZL = tr{τ}e
h
∑

i
τiσ

z
i , (1.50)
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respectively. For simplicity, let us concentrate ourself to the case of no parity
check βJ = 0.

It must be noted that the marginal likelihood (1.48) is constructed by
using the observables {τ} and does not contain the original image {ξ} at all.
Therefore, in practice, the marginal likelihood has a lot of information to
determine the macroscopic parameters, what we call hyperparameters, before
we calculate the MAP and the MPM estimates.

In the infinite range model, it is possible for us to derive the data-averaged
marginal likelihood per pixel K(βJ , h, Γ ) = [K(βJ , h, Γ : {τ})]data/N explic-
itly. Here we first investigate the hyperparameter dependence of the marginal
likelihood. logZPri and [logZL]data = [log

∫∞
−∞

∏
i dτiFτ (τi)ehτiσ

z
i ]data per

pixel can be calculated as

logZPri

N
= −βmm

2
1

2
+ log 2 cosh

√
(βmm1)2 + Γ 2 (1.51)

[logZL]data

N
= −h

2

2

[( a0

ah

)2

− a2

]
(1.52)

and the data average of the first term of the right hand side of (1.48) is
identical to the free energy density for βJ = 0. Thus, we obtain the data-
averaged marginal likelihood as follows.

K(βm, h, Γ ) = −βmm
2

2
+
∑

ξ

M(ξ)
∫ ∞

−∞
Du log 2 cosh

√
Φ2

0 + Γ 2

+
βmm

2
1

2
− log 2 cosh

√
(βmm1)2 + Γ 2 +

h2

2

[( a0

ah

)2

− a2

]
(1.53)

where m1,m mean the magnetizations of the prior and the posterior, are
given by

m1 =
βmm1 tanh

√
(βmm1)2 + Γ 2√

(βmm1)2 + Γ 2
(1.54)

and (1.45), respectively. In Fig. 1.5 (left), we plot K(βm, h, Γ ). In this fig-
ure, we set Ts = 0.9, βτ = 1. We found that the data-averaged marginal
likelihood takes its maximum at Tm = Ts, h = βτ and Γ = 0. This result
might be naturally understood because the performance of both the MAP
and MPM estimation should be the best for setting the probabilistic mod-
els of the noise channel and the distribution of the original image to the
corresponding true probabilities. Therefore, it might seems that the trans-
verse field Γ has no meaning for restoration. However, when we attempt to
maximize the marginal likelihood via gradient descent, we need to solve the
following coupled equations.

cβm

dβm

dt
=

∂K

∂βm
= 〈
∑
ij

σz
i σ

z
j 〉Pos. − 〈

∑
ij

σz
i σ

z
j 〉Pri. (1.55)
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Fig. 1.5. The data-averaged marginal as a function of hyperparameters, βm, h and
Γ (left). The right panel shows the time development of the hyperparameter βm, h
and Γ via gradient descent of the marginal likelihood. We set the time constants
cβm = ch = cΓ = 1 and the values of true hyperparameters as Ts = β−1

s = 0.9, βτ =
1.

ch
dh

dt
=
∂K

∂h
= 〈
∑

i

τiσ
z
i 〉Pos. − 〈

∑
i

τiσ
z
i 〉Pri. − 〈

∑
i

τiσ
z
i 〉L (1.56)

cΓ
dΓ

dt
=
∂K

∂Γ
= 〈
∑

i

σx
i 〉Pos. − 〈

∑
i

σx
i 〉Pri. (1.57)

with the definitions of the brackets

〈· · ·〉Pos. =
tr{σ}(· · ·) eβm

∑
ij

σz
i σz

j +h
∑

i
τiσ

z
i +Γ

∑
i
σx

i

tr{σ}e
βm

∑
ij

σz
i
σz

j
+h
∑

i
τiσz

i
+Γ
∑

i
σx

i

(1.58)

〈· · ·〉Pri. =
tr{σ}(· · ·) eβm

∑
ij

σz
i σz

j +Γ
∑

i
σx

i

tr{σ}e
βm

∑
ij

σz
i
σz

j
+Γ
∑

i
σx

i

, 〈· · ·〉L =
tr{τ}(· · ·) eh

∑
i
τiσ

x
i

tr{τ}e
h
∑

i
τiσx

i

(1.59)
and time constants cβm , ch and cΓ . Thus, when we solve the above equa-
tions, we need to evaluate these expectations for every time steps by using
the quantum Markov chain Monte Carlo method. It is obvious that it takes
quite long time to obtain the solutions. From reasons mentioned above, it
is convenient for us to suppress the error of hyperparameter estimation by
introducing the transverse field. From figures, Fig. 1.2, Fig. 1.3, we actually
find these desirable properties.
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Incidentally, for the infinite range model, we derive these coupled equa-
tions explicitly. The results are given by

cβm

dβm

dt
=
m2

1 −m2

2
− βmm

2
1 tanh

√
(βmm1)2 + Γ 2√

(βmm1)2 + Γ 2

+ m
∑

ξ

M(ξ)
∫ ∞

−∞
Du

Φ0 tanh
√
Φ2

0 + Γ 2√
Φ2

0 + Γ 2
(1.60)

ch
dh

dt
= −a2h+

∑
ξ

M(ξ)
∫ ∞

−∞
Du

Φ0(a0ξ + au) tanh
√
Φ2

0 + Γ 2√
Φ2

0 + Γ 2
(1.61)

cΓ
dΓ

dt
= −Γ tanh

√
(βmm1)2 + Γ 2√

(βmm1)2 + Γ 2
+ Γ

∑
ξ

M(ξ)
∫ ∞

−∞
Du

tanh
√
Φ2

0 + Γ 2√
Φ2

0 + Γ 2

(1.62)
where m1 and m satisfy (1.45) and (1.54). We plot the results by solv-
ing the differential equations with respect to the hyperparameters, namely,
(1.60)(1.61)(1.62) numerically in Fig. 1.5. We find that each hyperparameter
converges to its optimal value.

1.4.3 Image restoration driven by pure quantum fluctuation

In the above discussion, we investigated mainly the MPM estimation at fi-
nite temperature Tm > 0 according to the reference [21]. However, it is worth
while for us to check the following limit : βm → ∞ keeping the effective
amplitude of transverse field Γeff = Γ/βm finite. In this limit, we investigate
pure effect of the quantum fluctuation without any thermal one. To evaluate
the performances of the MAP and the MPM estimations for this zero tem-
perature case, we set Φ0 = βm(m + h∗a0ξ + h∗au) = βmφ0, where h∗ is its
optimal value h∗ = βs/βτ , and consider the asymptotic form of the saddle
point equations with respect to m and m1 in the limit of βm → ∞. We easily
find

m1 =
√

1 − Γ 2
eff , m =

∑
ξ

M(ξ)
∫ ∞

−∞

φ0Du√
φ2

0 + Γ 2
eff

(1.63)

and the time evolution of Γeff as follows.

cΓeff

dΓeff

dt
= − Γeff√

m2
1 + Γ 2

eff

+
∑

ξ

M(ξ)
∫ ∞

−∞

ΓeffDu√
φ2

0 + Γ 2
eff

(1.64)

where cΓeff = βmcΓ . The bit-error rate is given by pb = (1 − m0)/2 +∑
ξ M(ξ)ξH(u∗), where u∗ = (a0h∗ξ + m)/ah∗. We fist plot the Γeff -

dependence of the bit-error rate at Tm = 0 in Fig. 1.6. In this figure, the
value at Γeff = 0 corresponds to the quantum MAP estimation which might
be realized by the quantum annealing. From this figure, we find that the
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Fig. 1.6. The bit-error rate for the quantum (Tm = 0) and the thermal (classical)
(Γ = 0) estimation (left). The right panel shows the time development of the
effective amplitude of the transverse field Γeff = Γ/βm. The inset means the time
dependence of the bit-error rate

performance of the quantum MPM estimation is superior to the MAP esti-
mation and there exists some finite value of the amplitude Γ at which the
bit-error rate takes its minimum. In the same figure, we also plot the Tm-
dependence of the bit-error rate for Γ = 0. We find that ,for both the quan-
tum and the thermal cases, the best possible values of both the MAP and
the MPM estimation is exactly the same. In Fig.1.6 (right), we plot the time
development of the effective amplitude of transverse field and the resultant
bit-error rate. From this figure, we notice that at the beginning of the gradi-
ent descent the bit-error rate decreases but as Γ decreases to zero, the error
converges to the best possible value for the quantum MAP estimation. The
speed of the convergence is exponentially fast. Actually, in the asymptotic
limit t → ∞, Γeff → 0, the equation (1.64) is solved as Γeff = Γeff(0) e−θΓeff t,
where θΓeff ≡ (1/cΓeff )(1 −∑ξ M(ξ)

∫∞
−∞Du/|φ0|). However, this fact does

not mean that it is possible for us to decrease the effective amplitude of the
transverse field to zero by using exponentially fast scheduling to realize the
best possible performance of the quantum MAP estimation. This is because
the time unit t appearing in (1.64) does not corresponds to the quantum
Monte Carlo step and the dynamics (1.64) requires the (equilibrium) magne-
tization m(Γeff) at each time step in the differential equation. As the result,
we need the information about m near Γeff → 0, namely, the asymptotic form
: m(t → ∞, Γeff → 0) to discuss the annealing schedule to obtain the MAP
estimation. Although we assume that each time step in (1.64), the system
obeys the equilibrium condition : m =

∑
ξ M(ξ)

∫∞
−∞ φ0Du/

√
φ2

0 + Γ 2
eff , we
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need the dynamics of m to discuss the optimal annealing scheduling about
Γeff . This point will be discussed in last section by means of the quantum
Markov chain Monte Carlo method.

The Nishimori-Wong condition on the effective transverse field

From Fig. 1.6 (left), we found that the lowest value of the bit-error rate
is same both for the thermal and the quantum MPM estimations. In the
thermal MPM estimation, Nishimori and Wong [8] found that the condition
on which the best performance is obtained, namely, what we call Nishimori-
Wong condition. They showed that the condition : (m/m0) = (h/βτ )(βs/βm)
should hold in order to obtain the lowest value of the bit-error rate. When we
set the hyperparameter h to its true value h = βτ , the condition is reduced
to the simple form : T opt

m = Ts. Therefore, it is important for us to derive
the same kind of condition which gives the best performance of the quantum
MPM estimation. Here we derive the condition and show the lowest values
of the pb for the thermal and the quantum MPM estimations are exactly the
same.

We first evaluate the condition, (∂pb/∂Γeff) = 0 for pb = (1 − m0)/2 +∑
ξ ξM(ξ)H(u∗). After some simple algebra, we obtain

m(Γ opt
eff )

∑
ξ

ξM(ξ) exp

[
−{a0h∗ξ +m(Γ opt

eff )}2

2a2h2∗

]
= 0. (1.65)

Taking into account that m(Γeff) �= 0 is needed for meaningful image restora-
tions, the Nishimori-Wong condition for the quantum MPM estimation is
written by

m0(βs)
m(Γ opt

eff )
=

a0

a2h∗βs
. (1.66)

As we chose h∗ = βτ/βs, βτ = a0/a
2, this condition is simply rewritten as

m0(βs) = m(Γeff).
Let us summarize the Nishimori-Wong condition for the MPM estimation

:

Thermal : T opt
m = Ts (Nishimori and Wong 1999)

Quantum : m0(βs) =
∑

ξ

M(ξ)
∫ ∞

−∞

φ0Du√
φ2

0 + (Γ opt
eff )2

In Fig.1.7, we plot the temperature of the original image Ts-dependence of
the optimal temperature T opt

m and the optimal amplitude of the transverse
field Γ opt

eff . In the right panel of this figure, the magnetizations m(T opt
m ) and

m(Γ opt
eff ) are plotted. The effective amplitude of the transverse field Γeff at

which the bit-error rate takes its minimum in Fig. 1.6 is consistent with the
Γ opt

eff (Ts = 0.9) 	 0.66 as shown in Fig. 1.7 (left).
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Fig. 1.7. The optimal temperature T opt
m and the optimal transverse field Γ opt

eff as a
function of the temperature Ts of the original image (left), respectively. The optimal
temperature for the thermal MPM estimation T opt

m is simply given by T opt
m = Ts

(Nishimori temperature). The right panel shows the magnetizations m(T opt
m ) and

m(Γ opt
eff ).

From these results, it is shown that the lowest values of the of the bit-error
rate for both the thermal and the quantum MPM estimations are exactly the
same and the value is given by

pb =
1 −m0

2
+
∑

ξ

ξM(ξ)H
(
a0h∗ξ +m0

ah∗

)
(1.67)

Therefore, we conclude that it is possible for us to construct the MPM es-
timation purely induced by the quantum fluctuation (without any thermal
fluctuation) and the best possible performance is exactly the same as that of
the thermal MPM estimation.

1.4.4 Error-correcting codes

In this subsection, we investigate the performance of the decoding in the so-
called Sourlas codes [5], in which uncertainties in the prior are introduced
as the quantum transverse field. Although we usually choose the prior in the
Sourlas codes as P ({σ}) = 2−N (the uniform prior), here we use P ({σ}) =∏

i e−Γσ̂x
i . Then, the effective Hamiltonian of the extended Sourlas codes

leads to

Heff = −βJ

∑
i1,···,ip

Ji1···ip σz
i1σ

z
i2· · ·σz

ip − h
∑

i

τiσ
z
i − Γ

∑
i

σx
i . (1.68)
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Hereafter, we call this type of error-correcting codes as Quantum Sourlas
codes. We first derive the Γ -dependence of the bit-error rate for a given p.
Then, the channel noise is specified by the next output distribution :

P ({J}, {τ}|{ξ}) =
e−

Np−1

J2p!

∑
i1,···,ip

(
Ji1···ip− J0p!

Np−1 ξi1···ξip

)2− 1
2τ2 (τi−a0ξi)

2

(J2πp!/Np−1)1/2
√

2πa
(1.69)

For a simplicity, we treat the case in which the original message sequence {ξ}
is generated by the following uniform distribution P ({ξ}) = 2−N . Then, the
moment of the effective partition function Zeff leads to

Zn
eff = exp

[
βJ

M

∑
i1,···,ip

n∑
α=1

M∑
t=1

Ji1···ip σα
i1(t)σ

α
i2(t)· · ·σα

ip(t)

+
h

M

∑
i

n∑
α=1

M∑
t=1

τiσ
α
i (t) +B

∑
i

M∑
t=1

σi(t)σi(t+ 1)

]
(1.70)

where α and t mean the indexes of the replica number and the Trotter
slice, respectively. We set B ≡ (1/2) log coth(Γ/M) and used the gauge
transform : Ji1···ip → Ji1···ip ξi1 · · · ξip, σip → ξipσ

z
ip. After averaging Zn

eff

over the quenched randomness [· · ·]data, namely, over the joint distribution
P ({J}, {τ}, {ξ}), we obtain the following data averaged effective partition
function :

[Zn
eff ]data =

∏
tt′

∏
αβ

∫ ∞

−∞
dQαβ(t, t

′
)
∫ ∞

−∞
dλαβ(t, t

′
)
∫ ∞

−∞
dmα(t)

∫ ∞

−∞
dm̂α(t)

× exp [−Nf(m, m̂,Q,λ)] (1.71)

with

f(m, m̂,Q,λ) = −βJJ0

M

∑
t,α

mp
α(t) − hτ0

M

∑
t,α

mα(t)

− (βJJ)2

4M 2

∑
tt′ ,αβ

Qp
αβ(t, t

′
) − (hτ)2

2M 2

∑
tt′ ,αβ

Qαβ(t, t
′
)

+
1
M

∑
t,α

m̂α(t)mα(t) +
1
M2

∑
tt′ ,αβ

λαβ(t, t
′
)Qαβ(t, t

′
)

− 1
M

∑
t,α

m̂α(t)σα(t) − 1
M2

∑
tt′ ,αβ

λαβ(t, t
′
)σα(t)σβ(t

′
)

− B
∑

t

σ(t)σ(t + 1) (1.72)

where we labeled each Trotter slice by index t. Using the replica symmetric
and the static approximations, namely,
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mα(t) = m, m̂α(t) = m̂ (1.73)

Qαβ(t, t
′
) =

{
χ (α = β)
q (α �= β) , λαβ(t, t

′
) =

{
λ1 (α = β)
λ2 (α �= β) , (1.74)

we obtain the free energy density fRS :

βJf
RS(m,χ, q) = (p− 1)βJJ0m

p +
1
4
(p− 1)(βJJ)2(χp − qp)

−
∫ ∞

−∞
Dw log

∫ ∞

−∞
Dz 2 coshΞ (1.75)

where we used the saddle point equations with respect to m̂, λ1, λ2, namely,
m̂ = pβJJ0m

p−1 + a0h and λ1 = p
2 (βJJ)2χp−1 + (ah)2, λ2 = p

2 (βJJ)2qp−1 +
(ah)2. Then, the saddle point equations are derived as follows :

m =
∫ ∞

−∞
Dω

∫ ∞

−∞
Dz

(
Φ sinhΞ
ΞΩ

)
(1.76)

χ =
∫ ∞

−∞

Dω

Ω

∫ ∞

−∞
Dz

[(
Φ

Ξ

)2

coshΞ + Γ 2

(
sinhΞ
Ξ3

)]
(1.77)

q =
∫ ∞

−∞
Dω

[∫ ∞

−∞
Dz

(
Φ sinhΞ
ΞΩ

)]2

(1.78)

where we defined

Φ = ω

√
p

2
(βJJ)2qp−1 + (ah)2 + z

√
p

2
(βJJ)2(χp−1 − qp−1)

+ pβJJ0m
p−1 + a0h (1.79)

and Ξ =
√
Φ2 + Γ 2, Ω =

∫∞
−∞Dz coshΞ. The resultant overlap leads to

R =
∫ ∞

−∞
Dω

∫ ∞

−∞
Dz sgn(Φ) = 1 − 2

∫ ∞

−∞
DwH(−z∗p) (1.80)

where we defined z∗p by

z∗p = − (pβJJ0m
p−1 + a0h) + w

√
p
2 (βJJ)2qp−1 + (ah)2√

p
2 (βJJ)2(χp−1 − qp−1)

(1.81)

and the error function H(x) defined as H(x) =
∫∞

x Dz. Thus, the bit-error
rate for the problem of error-correcting codes is given by pb = (1 − R)/2 =∫∞
−∞DwH(−z∗p). where the above bit-error rate pb depends on Γ through

the order parameters χ, q and m.

1.4.5 Analysis for finite p

We first evaluate the performance of the quantum Sourlas codes for the case
of finite p by solving the saddle point equations numerically.



1.4 Analysis of the infinite range model 25

Absence of the external field h = 0

In Fig. 1.8 (left), we first plot the Γ -dependence of the bit-error rate pb for
the case of p = 2 without magnetic field h = 0. In this plot, we choose
J = J0 = 1 and set βJ = 1. It must be noted that J0/J corresponds to the
signal to noise ratio (SN ratio). From this figure, we find that the bit error
rate gradually approaches to the random guess limit pb = 0.5 as Γ increases.
This transition is regarded as a second order phase transition between the
ferromagnetic and the paramagnetic phases. We plot the Γ -dependence of
the order parameters m,χ and q in the right panel of Fig. 1.8. We should
notice that in the classical limit Γ → 0, the order parameter χ should takes
1 and both magnetization m and spin glass order parameter q continuously
becomes zero at the transition point. Therefore, for the case of p = 2, the
increase of the quantum fluctuation breaks the error-less state gradually. On

Fig. 1.8. The Γ -dependence of the bit error-rate pb for the case of p = 2 without
magnetic field h = 0 (left) and and order parameters m, χ and q as a function of Γ
(right). We set βJ = 1, J = J0 = 1.

the other hand, in Fig. 1.9, we plot the Γ -dependence of the bit-error rate pb

for the case of p = 3. In this figure, we find that the bit-error rate suddenly
increases to 0.5 at the transition point Γ = Γc and the quality of the message-
retrieval becomes the same performance as the random guess. This first order
phase transition from the ferromagnetic error-less phase to the paramagnetic
random guess phase is observed in the right panel of Fig. 1.9.

We find that the system undergoes the first order phase transition for
p ≥ 3. In Fig. 1.10, we plot the Γ -dependence of the bit-error rate for p =
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Fig. 1.9. The Γ -dependence of the bit error-rate pb for the case of p = 3 without
magnetic field h = 0 (left) and and order parameters m, χ and q as a function of Γ
(right). We set βJ = 1, J = J0 = 1.

2, 3, · · · , 6 and p = 12. From this figure, we find that the transition for p ≥ 3
is first order and the bit-error rate changes its state from the ferro-magnetic
almost perfect information retrieval phase to the paramagnetic random guess
phase at Γ = Γc. The tolerance to the quantum fluctuation increases as the
number of degree p of the interaction increases.

Presence of the external field h �= 0

We next consider the case of h �= 0. This means that we send not only the
parity check {Ji1···ip} but also bit sequence {ξ} itself. We plot the bit-error
rate as a function of Γ in Fig. 1.11. From this figure, we find that the bit-
error rate goes to some finite value which is below the random guess limit
gradually. The right panel of this figure tells us that in this case there is
no sharp phase transition induced by the quantum fluctuation. In Fig. 1.12,
we plot the bit-error rate and corresponding order parameters as a function
of Γ . This figure tells us that the bit-error rate suddenly increases at some
critical length of the transverse field Γc. As we add the external field h, this
is not a ferro-para magnetic phase transition, however, there exist two stable
states, namely good retrieval phase and poor retrieval phase. In Fig. 1.13, we
plot the Γ -dependence of the bit-error rate for p = 3, · · · , 6 and p = 12 (left)
and for p = 6 and βJ = 0.2, · · · , 12 (right). From this right panel, interesting
properties are observed. For small Γ , the bit-error rate becomes small as we
increases p. On the other hand, for large Γ , the bit error rate becomes large
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Fig. 1.10. The Γ -dependence of the bit error-rate pb for p = 2, · · · , 6 and p = 12
without magnetic field h = 0 (left). We set βJ = 1, J = J0 = 1. The right panel
shows the TJ = β−1

J dependence of the bit-error rate for keeping the ratio : Γ/βJ ≡
Γeff to the values Γeff = 0.1, 1 and 1.5.

as p increases. Moreover, the bit-error rate for p = 6 takes its maximum at
some finite value of Γ .

1.4.6 Phase diagrams for p → ∞ and replica symmetry breaking

In this subsection, we investigate properties of the quantum Sourlas codes in
the limit of p → ∞. In this limit, we easily obtain several phase boundaries
analytically and draw the phase diagrams.

First of all, we consider the simplest case, namely, the case of J0 = 0, h =
0. For this choice of parameters, the ferromagnetic phase does not appear
and possible phases are paramagnetic phase and spin glass phase. The free
energy density we evaluate is now rewritten by

fRS = −1
4
(p−1)βJJ

2(qp−χp)−TJ

∫ ∞

−∞
Dw log

∫ ∞

−∞
Dz2 coshβJ

√
φ2

0 + Γ 2
eff

(1.82)
with φ0 = w

√
pJ2qp−1/2 + z

√
pJ2(χp−1 − qp−1)/2, where we defined Γeff =

Γ/βJ . In the paramagnetic phase, there is no spin glass ordering, namely,
q = 0. Thus, the free energy density in the paramagnetic phase leads to

fRS
para =

J2βJ

4
(p−1)χp−TJ log

∫ ∞

−∞
Dz2 coshβJ

√
Γ 2

eff +
p

2
J2χp−1z2. (1.83)

The saddle point equation with respect to χ is given by
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Fig. 1.11. The Γ -dependence of the bit error-rate pb for the case of p = 4 with
magnetic field h = 1 (left) and and order parameters m, χ and q as a function of Γ
(right). We set βJ = 1, J = J0 = 1 and a0 = a = 1.

χ =

∫∞
−∞Dz

{(
φ00

Γ 2
eff+φ00

)
coshβJ

√
Γ 2

eff + φ00 + Γ 2
effTJ

sinh βJ

√
Γ 2

eff+φ00√
Γ 2

eff+φ00
3

}
∫∞
−∞Dz coshβJ

√
Γ 2

eff + φ2
00

(1.84)
with φ00 = pJ2χp−1z2/2. In the limit of p → ∞, there are two possible
solutions of χ, that, is χp = 1 and χp = 0. The former is explicitly given from
(1.84) as χ 	 1 − 4Γ 2

effT
2
J/p

2J . Then, we obtain the free energy density for
this solution as fI = −J2/4TJ−TJ log 2 by substituting this χ into (1.83) and
evaluating the integral with respect to z at the saddle point in the limit of
p→ ∞. Let us call this phase as PI. The later solution is explicitly evaluated
as χ = (TJ/Γeff) tanh(Γeff/TJ) (< 1, thus, χp = 0) and corresponding free
energy density leads to fII = −TJ log 2 − TJ log cosh(Γeff/TJ). We call this
phase as PII.

Here we should not overlook the entropy in PI, namely, S = −(∂fI/∂T ) =
−J2/4T 2

J+log 2. Obviously, S becomes negative for T < (J/2
√

log 2)−1 and in
this region, the replica symmetry of the order parameters might be broken.
Therefore, in this low temperature region, we should construct the replica
symmetry breaking (RSB) solution. To obtain the RSB solution, we break
the symmetry of the matrices q and λ as

qlδ,l′δ′ =
{
q0 (l = l

′
)

q1 (l �= l
′
)
, λlδ,l′δ′ =

{
λ̂0 (l = l

′
)

λ̂1 (l �= l
′
)

(1.85)
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Fig. 1.12. The Γ -dependence of the bit error-rate pb for the case of p = 5 with
magnetic field h = 1 (left) and and order parameters m, χ and q as a function of Γ
(right). We set βJ = 1, J = J0 = 1 and a0 = a = 1.

for l = 1, · · · , n/x, δ = 1, · · · , x. Then, we obtain the free energy density for
one step RSB solution as

f1RSB = (p− 1)J0m
p +

βJJ
2

4
[xqp

1 + (1 − x)qp
0 ] +

βJJ
2

4
(p− 1)χp

− βJ

2
[xq1λ̂1 + (1 − x)q0λ̂0]

− TJ

x

∫ ∞

−∞
Dw log

∫ ∞

−∞
Dz

(∫ ∞

−∞
Dy2 coshβJ

√
φ̂2 + Γ 2

eff

)x

(1.86)

with φ̂ = w
√
λ̂1 + z

√
λ̂0 − λ̂1 + y

√
pJ2χp−1/2 − λ̂0 + pβJJ0m

p−1 + a0h. By

taking (∂f1RSB/∂q0) = (∂f1RSB/∂q1) = 0, we obtain λ̂1 = pJ2qp−1
1 /2, λ̂0 =

pJ2qp−1
0 /2.

Here we set the parameters J0, h again to J0 = h = 0. At low tem-
perature, we naturally assume q1 < 0 (λ̂1 = 0), q0 = 1 (λ̂0 = pJ2/2)
and χ = 1. Substituting these conditions into (1.86) and evaluating the
integral with respect to y at the saddle point in the limit of p → ∞,
we obtain the free energy density in this phase, which will be referred to
as SGI, as fSGI = −βJJ

2x/4 − log 2/(βJx). Substituting the solution of
(∂fSGI/∂x) = 0, namely, x = 2

√
log 2/(JTJ) into fSG, we obtain the free

energy density which specifies SGI as fSGI = −J√log 2.
Let us summarize :

PI (para) : fI = − J2

4TJ
− TJ log 2 (χ = 1, q = 0)
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Fig. 1.13. The Γ -dependence of the bit-error rate for p = 3, · · · , 6 and 12 (left).
For p = 6, the Γ -dependences of the bit-error rate for βJ = 0.2, · · · , 1.2 are shown
in the right panel.

PII (para) : fII = −TJ log 2 − TJ log cosh
(
Γeff

TJ

)
(χp = q = 0)

SGI (spin glass) : fSGI = −J
√

log 2 (χ = q = 1)

We illustrate the phase diagram in Fig.1.14 (left).
As the phase transitions between arbitrary two phases among these three

(PI,PII,SGI) are all first order, each phase boundary is obtained by balancing
of the free energy density. Namely, Γeff = TJ cosh−1(eJ2/4T 2

J ) (TJ > Tc) for
PI-PII, Γeff = TJ cosh−1(eJ

√
log 2/TJ/2) (TJ < Tc) for PII-SGI and TJ =

J/2
√

log 2 = Tc for SGI-PI.
We next consider the case of J0 �= 0. This case is much more impor-

tant in the context of error-correcting codes. For the case of absence of the
external field h = 0, the phase transition between the error-less phase and
the random guess phase is specified as the ferro-paramagnetic (or spin glass)
phase transition. From reasons we mentioned above, our main purpose here
is to determine the transition point (J0/J)c below which the ferromagnetic
phase is stable. The critical SN ratio (J0/J)c is important because as we
mentioned before, the error-less decoding is possible when the channel ca-
pacity C and the transmission rate R satisfy the inequality R ≤ C. The
channel capacity for the Gaussian channel we are dealing with is given by
C = (1/2) log2(1 + J2

0 /J
2) with J0 = J0p!/Np−1, J = J2p!/2N p−1, that is,

C 	 J2
0p!/(J2Np−1 log 2) in the limit of N → ∞ for a given p. On the other

hand, the transmission rate R is given as R = N/NB = N/NCp 	 p!/Np−1.
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Fig. 1.14. The phase diagrams in the limit of p → ∞. In the case of J0 = 0, there
exist three phases, namely, PI,PII and SGI. Below the critical point (TJ/J)c =
(1/2J

√
log 2), the replica symmetry is broken (the left panel). The right panel

shows the critical SN ratio (J0/J)c, above which (labeled FI in the panel) decoding
without errors is achieved, is given by

√
log 2.

Therefore, the error-less decoding is possible when the following inequality :

R

C
=
(
J

J0

)2

log 2 ≤ 1 (1.87)

holds and the question now arises, namely, it is important to ask whether the
above inequality is satisfied or not at the critical point (J/J0)c. In following,
we make this point clear.

We start from the saddle point equations which are derived from the
free energy density of the one step RSB (1.86). These equations are given
explicitly as

m =
∫ ∞

−∞
Dw

∫∞
−∞Dz

(∫∞
−∞Dy2 coshβJ Ξ̂

)x−1 ∫∞
−∞Dy

(
φ̂

Ξ̂

)
2 sinhβJ Ξ̂∫∞

−∞Dz
(∫∞

−∞Dy2 coshβJ Ξ̂
)x

q0 =
∫ ∞

−∞
Dw

∫∞
−∞Dz

(∫∞
−∞Dy2 coshβJ Ξ̂

)x−2 (∫∞
−∞Dy

(
φ̂

Ξ̂

)
2 sinhβJ Ξ̂

)2

∫∞
−∞Dz

(∫∞
−∞Dy2 coshβJ Ξ̂

)x

q1 =
∫ ∞

−∞
Dw

⎧⎨
⎩
∫∞
−∞Dz

(∫∞
−∞Dy

(
φ̂

Ξ̂

)
2 sinhβJ Ξ̂

)x

∫∞
−∞Dz

(∫∞
−∞Dy2 coshβJ Ξ̂

)x

⎫⎬
⎭

2

(1.88)
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χ =
∫ ∞

−∞
Dw

∫∞
−∞Dz

(∫∞
−∞Dy2 coshβJ Ξ̂

)x−1 ∫∞
−∞Dy

(
φ̂

Ξ̂

)2

2 sinhβJ Ξ̂∫∞
−∞Dz

(∫∞
−∞Dy2 coshβJ Ξ̂

)x

+ Γ 2
effTJ

∫ ∞

−∞
Dw

∫∞
−∞Dz

(∫∞
−∞Dy2 coshβJ Ξ̂

)x−1 ∫∞
−∞Dy

(
2 sinh βJ Ξ̂

Ξ̂3

)
∫∞
−∞Dz

(∫∞
−∞Dy2 coshβJ Ξ̂

)x

(1.89)

with

φ̂ = Jw

√
p

2
qp−1
1 + Jz

√
p

2
(qp−1

0 − qp−1
1 ) + Jy

√
p

2
(χp−1 − qp−1

0 ) + pJ0m
p−1

(1.90)

and Ξ̂ =
√
φ̂2 + Γ 2

eff . When the number of product p of the estimate of

the original bits is extremely large and J/J0,m is positive, φ̂ = pJ0m
p−1

and the solutions of the above saddle point equations lead to m = q0 =
q1 = 1 and χ = 1. Thus, the system is in the ferromagnetic phase and the
replica symmetry is not broken (q0 = q1). Substituting the replica symmetric
solution m = q = 1 into (1.75) and evaluating the integral with respect to
w at the saddle point in the limit of p → ∞, we obtain the free energy
density in this phase (let us call FI) as fFI = −J0. We should notice that
this free energy density does not depend on the effective amplitude of the
transverse field Γeff at all. From the argument of J0 = 0 case, the phase
specified χ = 1, TJ < Tc = (2

√
log 2) is spin glass phase. Therefore, the

condition (1.87) is satisfied and the ferromagnetic error-less phase exists for
(J0/J) ≥ (J0/J)c =

√
log 2, where (J0/J) is determined by balancing of the

free energy densities fFI = fSGI . As the result, we conclude that the error-
less decoding is achieved if the SN ratio (J0/J) is greater than the critical
value (J0/J)c =

√
log 2 and the condition is independent of Γeff . To put

it into another word, the Shannon’s bound is not violated by the quantum
uncertainties in the prior distribution in the limit of p→ ∞.

The details of the analysis, including the numerical RSB solutions for
finite p will be reported in the conference and in forth coming article [28].

1.5 Quantum Markov chain Monte Carlo simulation

In the previous section, we investigated the performance of the MAP and the
MPM estimations for the problems of image restoration and error-correcting
codes by using analysis of the mean-field infinite range model. In Sourlas
codes, the infinite range model is naturally accepted because we do not have
to consider any structure in the bit sequence {ξ}, and in that sense, the range
of interactions in the parity check {ξi1 · · · ξip} is infinite.
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On the other hand, in image restoration, there should exist some geomet-
rical structures in each pair in the sequence of the original image {ξ}. Then,
we should introduce appropriate two dimensional lattice on which each pixel
is located. Therefore, in this section, we carry out computer simulations for
the two dimensional model system to investigate the qualities of the MAP
and the MPM image restorations quantitatively.

1.5.1 Quantum Markov chain Monte Carlo method

Let us remind of readers that our effective Hamiltonian for image restoration
is described by Heff = −βm

∑
<ij> σ

z
i σ

z
j −h

∑
i τiσ

z
i −Γ

∑
i σ

x
i . In this section,

we suppose that each pixel σz
i is located on the two dimensional square lattice.

To evaluate the expectation value of arbitrary quantityA in the quantum spin
system

〈A〉 =
tr{σ} A e−βHeff

tr{σ} e−βHeff
, (1.91)

we use the following ST formula [24] to carry out the above trace in practice
as

exp(−βHeff) = lim
M→∞

(
e

A
M e

B
M

)
(1.92)

where we defined

A = β(βm

∑
<ij>

σz
i σ

z
j + h

∑
i

τiσ
z
i ) = −βHclassical

eff , B = βΓ
∑

i

σx
i . (1.93)

We should keep in mind that these two terms A and B are easily diagonalized.
Then, by inserting the complete set :

∑
{σjk} |{σjk}〉〈{σjk}| = 1, the par-

tition function ZM for a fixed Trotter size M leads to

ZM = tr{σ}
(
e

A
M e

B
M

)
=

∑
{σjk=±1}

〈{σj1}|e A
M |{σ′

j1}〉〈{σ
′
j1}|e

B
M |{σj2} × · · ·

× · · · × 〈{σjM}|e A
M |{σ′

jM} 〉〈{σ′
jM}|e B

M |{σj1}〉 (1.94)

where |{σjk}〉 is M -th product of eigenvectors {σ} and is explicitly given by
|{σjk}〉 = |σj1〉 ⊗ |σj2〉 ⊗ · · · ⊗ |σjM 〉.

By taking the limit of M → ∞, we obtain the effective partition function
Zeff of the quantum spin system with B = (1/2) log coth(βΓ/M) as follows.

Zeff ≡ lim
M→∞

ZM

= lim
M→∞

(aM )N
∑

{σjk}=±1

e
ββm

M

∑
ij,k

σk
i σk

j + βh
M

∑
i,k

τiσ
k
i +B

∑
i,k

σk
i σk+1

i

= lim
M→∞

(aM )N
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×
∑

{σjk=±1}
exp

⎡
⎣βeff

⎧⎨
⎩βm

∑
ij,k

σk
i σ

k
j + h

∑
i,k

τiσ
k
i +BM

∑
i,k

σk
i σ

k+1
i

⎫⎬
⎭
⎤
⎦
(1.95)

where we defined aM and BM as aM ≡ {(1/2) sinh(2βeffΓ )}1/2, BM ≡
(1/2βeff) log coth(βeffΓ ) and introduced the following effective inverse tem-
perature : βeff = β/M . Thus, this is the partition function of a (d + 1)-
dimensional classical system at the effective temperature Teff = β−1

eff .
Let us think about the limit of Γ → 0 in this expression. Then, the cou-

pling constant of the last term appearing in the argument of the exponential
becomes strong. As the result, copies of the original system, which are de-
scribed by the Hclassical

eff and located in the Trotter direction labeled by k,
have almost the same spin configurations. Thus, the partition function is now
reduced to that of the classical system at temperature T = β−1.

We should not overlook that when we describe the same quantum system
at T = 0 of the effective Hamiltonian HQuantum

eff by analysis of Schrödinger
equation : ih̄(∂|ψ(t)〉/∂t) = H(t)|ψ(t)〉 for the time dependent Hamiltonian :
H(t) = −βm

∑
<ij> σ

z
i σ

z
j − h

∑
i τiσ

z
i − Γ (t)

∑
i σ

x
i , the inverse temperature

β does not appear in the above expression. Therefore, we can not use β in
the quantum Monte Carlo method to simulate the quantum system at T = 0.

To realize the equilibrium state at the ground state T = 0 for a finite
amplitude of the quantum fluctuation Γ �= 0, we take the limit β → ∞,M →
∞ keeping the effective inverse temperature βeff = O(1). Namely, effective
parameters to simulate the pure quantum system by the quantum Monte
Carlo method are βeff and M , instead of β and M . This choice is quite
essential especially in the procedure of quantum annealing [16] because the
quantum annealing searches the globally minimum energy states by using
only the quantum fluctuation without any thermal fluctuation. Therefore, if
we set the effective inverse temperature βeff as of order 1 object in the limit
of M → ∞ (we can take into account the quantum effect correctly in this
limit) and β → ∞ (the thermal fluctuation is completely suppressed in this
limit), we simulate the quantum spin system at the ground state T = 0.

1.5.2 Quantum annealing and simulated annealing

According to the argument in the previous subsection, we construct the quan-
tum annealing algorithm to obtain the globally minimum energy states of our
effective Hamiltonian Hclassical

eff . To realize the algorithm, we control the am-
plitude of the transverse field as

Quantum Annealing (QA) : Γ → 0 for βeff = 1, M → ∞
We should notice that the simulated annealing (thermal annealing) is achieved
by controlling the parameter β as
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Simulated Annealing (SA) : β → ∞ for finite M and Γ = 0.

As we mentioned, the scheduling of T (t) and Γ (t) might be essential in the
simulated annealing and the quantum annealing. Although we know the op-
timal temperature scheduling T (t) ∼ (log t)−1, however, we do not yet obtain
any mathematically rigorous arguments for Γ (t) as in the simulated anneal-
ing. Therefore, in this section, we use the same scheduling for Γ (t) as that
of the simulated annealing, namely, T (t) = Γ (t). The justification of identi-
fication of Γ (t) and T (t) comes from the results we obtained in the previous
section, that is, the shape of the bit-error rate at T = 0 as a function of Γ
is almost same as the bit-error rate for the thermal one. Thus, we assume
that Γ and T might have the same kind of role to generate the equilibrium
states for a given Γ and T . However, the mathematical arguments on the
scheduling of Γ are quite important and should be made clear in near future.

1.5.3 Application to image restoration

We investigate the MAP and MPM estimations by the quantum Monte Carlo
method and the quantum annealing for the two dimensional pictures which

are generated by the Gibbs distribution : P ({ξ}) = eβs

∑
<ij>

ξiξj/Z(βs). It
must be noted that in the above sum

∑
<ij>(· · ·) should be carried out for

the nearest neighboring pixels located on the two dimensional square lattice.
A typical snapshot from this distribution is shown in Fig. 1.16.

Thermal MPM estimation versus quantum MPM estimation

Before we investigate the performance of the simulated annealing and the
quantum annealing, as a simple check for our simulations, we demonstrate the
thermal MPM estimation for the degraded image with pτ = 0.1 of the original
image generated at Ts = 2.15 by using the thermal and the quantum Markov
chain Monte Carlo methods. We show the result of the Tm-dependence of
the bit-error rate in Fig.1.15. We carried out 30-independent runs for system
size 100 × 100. We set h/βm = Tsβτ = (Ts/2) log(1 − pτ/pτ). From this
figure, we find that the best performance is achieved around the temperature
Tm = Ts = 2.15. In Fig.1.16, we show the original, the degraded and restored
images. From this figure, we found that the restored image at relatively low
temperature Tm = 0.6 is pained in even for the local structure of the original
images. On the other hand, at the optimal temperature Tm = 2.15, the local
structures of the original image are also restored.

We next investigate the quantum MPM estimation. In Fig.1.15, we plot
the bit-error rate for the quantum MPM estimation of the original image
generated by the Gibbs distribution for the two dimensional ferromagnetic
Ising model. We control the effective transverse field Γeff on condition that the
inverse temperature β is setting to β = βeffM , namely, the effective inverse
temperature βeff = 1. The hyperparameter β−1

m = Tm and h are fixed to their
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Fig. 1.15. The bit-error rate pb for the thermal MPM estimation as a function of
the temperature Tm (left). The plots were obtained from 30-independent runs for
the system size 100 × 100. We set the temperature of the original image Ts = 2.15
and the noise rate pτ = 0.1. The right panel shows the bit-error rate for the quantum
MPM estimation for the system size 50× 50, and the Trotter number M = 200 for
the same noise level pτ = 0.1 as the left panel. The error-bars are obtained from
50-independent runs.

Fig. 1.16. From the left to the right, the original, the degraded (pτ = 1), and the
restored at Tm = 0.6 and Tm = Ts = 2.15 pictures are displayed.

optimal values Tm = Ts = 2.15 and h = βτ = (1/2) log(1 − pτ/pτ). To draw
this figure, we carry out 50-independent runs for the system size 50 × 50 for
the Trotter size M = 200. The Monte Carlo Step (MCS) needed to obtain
the equilibrium state is chosen as t

′
= Mt, where t = 105 is the MCS for the

thermal MPM estimation. One Monte Carlo step in calculation the quantum
MPM estimate takes M times evaluations of spin flips than the calculation
of the thermal MPM estimate. Thus, we provide a reasonable definition of
the time t

′
of which the quantity is plotted and compared as a function as

t
′
= t (thermal) and t

′
= Mt (quantum).
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From this figure, we find that the lowest values of the bit-error rate for
the quantum and the thermal MPM estimations are almost the same value
as our analysis of the mean-field infinite range model predicted, however, the
Γ -dependence of the bit-error rate is almost flat. We display several typical
examples of restored images by the thermal and quantum MPM estimations
in Fig. 1.17 From this figure, we find that the performance of the quantum

Fig. 1.17. From the left to the right, 50×50 original image generated at Ts = 2.15,
degraded images (pτ = 0.1), and restored image by the thermal MPM estimation,
and the restored image by the quantum MPM estimation. Each bit-error rate is
pb = 0.06120 for the thermal MPM at Tm = Ts = 2.15 and pb = 0.06040 for the
quantum MPM estimation with Γ = 0.8 (at the nearest point form the solution of
m0 = m(Γ )), respectively.

MPM estimation is slightly superior to the thermal MPM.

Simulated annealing versus quantum annealing

In last part of this section, we investigate how effectively the quantum tunnel-
ing process possibly leads to the global minimum of the effective Hamiltonian
for the image restoration problem in comparison to temperature-driven pro-
cess used in the simulated annealing. It is important for us to bear in mind
that the observables we should check in the problem of image restoration are
not only the energy on time E but also the bit-error rate pb. As we men-
tioned, the globally minimum energy state of the classical Hamiltonian does
not always minimize the bit-error rate. Therefore, from the view point of im-
age restoration, the dynamics of the bit-error rate is also relevant quantity,
although, to evaluate the performance of the annealing procedure, the energy
on time is much more important measure. In this article, we investigate both
of these two measures.

In our simulations discussed below, we choose the temperature and the
amplitude of transverse scheduling as Γ (t) = T (t) = 3/

√
t according to

Kadowaki and Nishimori [16]. To suppress the thermal and the quantum
fluctuation at the final stage of the annealing procedure, we set Γ = T = 0
in last 10% of the MCS.
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In Fig. 1.18, we plot the time development of the bit-error rate and the
energy on time, namely, Et = −βm

∑
<ij> σ

z
i σ

z
j − h

∑
i τiσ

z
i , where we de-

fined σz
i = (1/M)

∑
k σ

k
i for the quantum annealing. As the MCS t

′
for

the quantum annealing is defined by t
′

= Mt for the MCS, where t is
the MCS for the SA, we should not overlook that the initial behavior of
the first M -th MCS in the quantum annealing is not shown in this fig-
ure. We carried out this simulation for system size 50 × 50 with Trotter
size M = 200. The noise rate is pτ = 0.1. We set β−1

m = Ts = 2.15 and
h = (1/2) log(1 − pτ/pτ ) = 1.1. From this figure, we find that the mean
value of the bit-error rate calculated by the quantum annealing is smaller
than that of the simulated annealing. However, the energy on time of the
simulated annealing is slightly lower than that of the quantum annealing.
Although this result is not enough to decide which annealing is superior, the
simulated annealing with temperature scheduling T (t) = 3/

√
t seems to be

much more effective than the quantum annealing with the same scheduling of
the amplitude of the transverse field for finding the minimum energy state.
Of course, we should check more carefully to choose the optimal or much
more effective scheduling of Γ . This might be one of the important future
problems. In Fig.1.19, we display the resultant restored images by the sim-

Fig. 1.18. The time dependence of the bit-error rate for the simulated annealing
(SA) and the quantum annealing (QA). The MCS t

′
for the quantum annealing is

defined by t
′

= Mt for the MCS, where t is the MCS for the SA. The right panel
indicates the dynamical process of the energy function by the SA and the QA. We
carried out this simulation for system size 50 × 50 with the Trotter size M = 200.
The noise rate is pτ = 0.1. The error-bars are calculated by 50-independent runs.
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ulated annealing and the quantum annealing. For this typical example, the
performance of the quantum annealing restoration measured by the bit-error
rate is better than that of the simulated annealing. The difference of the cor-
rect pixels is estimated as Δn = 50×50×Δpb = 2500×0.0084 = 21 (pixels),
where Δpb = pb(SA)− pb(QA). From reasons we mentioned above, the MAP
estimate obtained by the quantum annealing is not a correct MAP estimate,
however, the quality of the restoration is really fine.

Fig. 1.19. From the left to the right, the original image (Ts = 2.15), the degraded
image (pτ = 0.1), and typical restored images by the simulated annealing and the
quantum annealing. The resultant bit-error rates are pb = 0.066400 for the SA and
pb = 0.058000 for the QA.

1.6 Summary

In this article, we investigated the role of the quantum fluctuation intro-
duced by means of the transverse field extensively. From the analysis of the
infinite range model, we showed that the performances of the quantum MAP
and MPM estimations are exactly the same as those of the thermal one.
We derived the Nishimori-Wong condition on the effective amplitude of the
transverse field and this information might be useful to determine the opti-
mal amplitude of the transverse field for a given degraded image data. We
also investigated the tolerance of the Sourlas codes to the quantum uncer-
tainties in the prior distribution and discussed the condition on which the
error-less ferromagnetic phase exists. We found that the Shannon’s bound is
not violated by the quantum fluctuation in the limit of p→ ∞. The analytic
results of the image restoration were checked by the quantum Markov chain
Monte Carlo method. The results supported the analysis of the infinite range
model finely.

I hope that the present work provides some useful information for deep
understanding of the optimization method based on the quantum fluctuation
which is essentially different mechanism from the thermal hill-climbing.

The author thanks Prof. Bikas K. Chakrabarti and Dr. Arnab Das for
organizing the workshop Quantum Annealing and Other Optimization Meth-
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