“§') HOKKAIDO UNIVERSITY
Y X7
Title COE Symposium Nonlinear Dispersive Equations
Author(s) Ozawa, T.; Tsutsumi, Y.
Citation Hokkaido University technical report series in mathematics, 87, 1
Issue Date 2004-01-01
DOl 10.14943/646
Doc URL http://hdl.handle.net/2115/704; http://eprints3.math.sci.hokudai.ac.jp/0507/
Type bulletin (article)
File Information tn87.pdf

®

Instructions for use

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP


https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

21st Century COE Program:

Mathematics of Nonlinear Structure via Singularity

COE Symposium
Nonlinear Dispersive Equations

Edited by

T. Ozawa and Y. Tsutsumi

Sapporo, 2004

Partially supported by JSPS

e Grant-in-Aid for formation of COE
“Mathematics of Nonlinear Structure via Singularities”
e Grant-in-Aid for Scientific Research
S(2) #16104002 (T. Ozawa)
A(2) #15204008 (Y. Tsutsumi)



Dedicated to Professor Masayoshi Tsutsumi
on the occasion of his sixtieth birthday



PREFACE

This volume is intended as the proceedings of COE Symposium
“Nonlinear Dispersive Equations,” held on the 23rd and 24th of September
in 2004 at Sapporo Convention Center.

COE Symposium “Nonlinear Dispersive Equations” is meant for a forum
for exchanging views and ideas on the latest developments of mathematical
analysis on nonlinear evolution equations related to wave propagation in
various nonlinear media with emphasis on dispersive effects.
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We wish to dedicade this volume to Professor Masayoshi Tsutsumi in
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Long range scattering for

some Schrodinger related non linear systems

J. Ginibre
Laboratoire de Physique Théorique*
Université de Paris XI, Batiment 210, F-91405 ORSAY Cedex, France

This lecture is devoted to the theory of scattering in long range cases for some non
linear equations and systems based on the Schrodinger equation, and principally for
the Wave-Schrédinger system (WS)3 and for the Maxwell-Schrodinger system (MS)3
in space dimension 3. In order to put the subject in perspective, I first list a few
equations and systems which can be considered along similar lines.

Linear Schrodinger equation :
iou = —(1/2)Au+Vu (LS)n
Nonlinear Schrédinger equation :
i0u = —(1/2)Au+ klufP~u (NLS),
Hartree equation :
0 = —(1/2)Au+ (V x |ul*)u (R3)n

Klein-Gordon-Schrodinger system :

iou = —(1/2)Au + Au
(KGS)x
O+ 1)A=—|ul?

Wave-Schrodinger system :

i0u = —(1/2)Au + Au

OA = —|ul?
*Unité Mixte de Recherche (CNRS) UMR, 8627
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Zakharov system :
i0u = —(1/2)Au + Au

(Z)n
0A = Alul?

Maxwell-Schrédinger system (in space dimension n = 3 and in the Coulomb
gauge) :
i0u = —(1/2)Aqu + g(|u*)u
(MS)s
OA=PImuVsu, V-A=0,
with g(|ul?) = (4r|z|)~t * |ul’

Here space time is IR"™, with n the space dimension, « : IR""™" — @, V : IR" —
IR is a given potential, x € IR, p > 1, A : IR"™" — IR except for (MS); where
A IR - IR?, 0 = 0? — A and (for (MS)3) V4 =V —iAd, Ay = V% (covariant
Laplacian) and P = 1 — VA™!'V (projector on divergence free vector fields).

We shall regard scattering theory as a method to study the asymptotic behaviour
in time of the global solutions of the above systems and hopefully to classify those
solutions by their asymptotic behaviour. The first step is the construction of the
wave operators and for that purpose one has to solve the local Cauchy problem
at infinity, namely construct solutions with prescribed asymptotic behaviour u, or
(g, A,) parametrized by asymptotic data u, or (uy,A,,A,). In this lecture I
concentrate on that problem. One has to distinguish the short range case, where u,

can be taken as a solution of the free Schrodinger equation
u, = U(t) uy = exp(i(t/2)A)uy (1)

where “ordinary” wave operators do exist, from the long range case where (1) is
inadequate and has to be modified by a suitable phase, thereby leading to “modi-
fied” wave operators. In that respect (LS), and (R3), with V(z) = |z|~7 are short
(resp. long) range for v > 1 (resp. v < 1), (NLS), is short (resp. long) range
for p —1 > 2/n (resp. p—1 < 2/n), (WS); and (MS); are borderline long range
(corresponding to v = 1), (Z)s is short range, and (Z), and (KGS)2, although short
range (no phase needed), exhibit technical difficulties typical of the long range cases.
The Cauchy problem at infinity for the previous equations and systems has been
treated in the long range cases by two methods, of which I shall consider only the
first one, initiated in [O] for (NLS); and subsequently applied to (NLS)s 3, (R3)n,
(KGS)s, (WS)3, (Z); and (MS)3 (see the references). That method is intrinsically

restricted to small Schrodinger data and to the borderline long range case v = 1.
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Early applications to the (KGS)s and (MS); systems required in addition a support
condition on the asymptotic Schrédinger data to take into account the difference in
propagation properties of the Schrodinger equation and of the wave or KG equa-
tion, and a smallness condition of the A-field [OT] [T]. The latter restrictions were
subsequently removed in recent works [GV] [Sh]. In this lecture (based on [GV]) I
shall explain the method on the example of (WS); and quote some of the results for
other systems, in particular for (MS);.

We first consider (WS)s. The method proceeds in two steps.

Step 1. One looks for (u, A) in the form (u, A) = (uq + v, A, + B). The system
satisfied by (v, B) is

i0w = —(1/2)Av + Av + Bu, — R,
(2)
OB = —(Jv|*+ 2 Re U,v) — Ry

where the remainders R;, R, are defined by

R1 = iatua + (1/2)Aua — Aaua
(3)

R2 = |:|Aa + |U,a|2 .

The first step consists in solving the auxiliary system (2) for (v, B) tending to zero
at infinity under assumptions on (u,, A,) of a general nature, the most important
of which being decay assumptions of the remainders. That can be done by a partial
linearization of the system (2) followed by a contraction argument in a suitable space
X (I) of functions defined in a time interval I = [T, 00) with T sufficiently large and

with sufficient time decay at infinity.

Step 2. The second step consists in constructing approximate solutions (u,, A,) of

the given system (here (WS)3) satisfying the assumptions needed for Step 1.

We come back to Step 1. The main problem is to choose X (I). We look for X (I)
as large as possible, in order to accomodate the largest possible set of asymptotic
data, and in particular with the weakest possible time decay, in order to accomodate
the simplest possible (and therefore not accurate) asymptotic forms (u,, A,). The

choice of the regularity of the functions is dictated by the available estimates, namely



Energy (L?) estimates. From (2) it follows formally that

Ol vlla <l Bualla + | Bz (4)

Strichartz estimates for the Schrodinger equation (n = 3).
Let 0<2/¢; =3/2—3/r; <1,i=1,2 and let u satisfy

i0u=—(1/2)Au+ f
in some interval I with u(tg) = u, for some tq € I. Then
la; (T, L) [ < C([uy s + | f22(1,27) |)) (5)

with C' a constant independent of I, and with 1/p+1/p = 1.

Strichartz estimates for the Wave equation (n = 3, special cases).
Let w = (—A)Y2 and let A satisfy

04 = f
in some interval I with (A4, d,A4)(t,) = (A4, A,) for some t; € I. Then

I AZNLLY | < O( e Ar s + o PAs o + || LV L)), (6)

I VA L®(LL2Y) || + |04 L2 L) || < C([| VAL |l + || Ay [l2
+ | HIN ) ) (7)

We shall say that solutions of the Schrédinger (resp. Wave) equation with initial
data u, (resp. (Ay, A,)) in H* (resp. in H @ H ') are of level k (resp. ). Thus
(5) is of level 0 while (6) (7) are of level 1/2 and 1 respectively. The joint level
(k,0) = (1,1) is the energy level.

The time decay included in the choice of X (-) will be characterized by a function
h € C([1,00), IRT) such that h(t) = t*h(t) be nonincreasing and tend to zero as
t — oo, for some A\ > 0 to be chosen appropriately.

The simplest (largest simple) choice of X (I) where Step 1 can be performed for
(WS)3 is then

X(I) = {(U,B) v eC(L L), (v,B); X(I) || = stlel}) h(t)™
(v e + 1w L¥3([t,00), LYY || + || B L*([t,00), L) || ) < o0} (8)
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with A = 3/8 and the result is as follows.

Proposition 1. Let X (-) be defined by (8) with A = 3/8. Let u,, As, Ri, Ry satisfy
the estimates
[ ua(t) [la < eq 872

I Aa®) loo < a 't
I Ris L ([t,00), L) || < 1 h(t)
| Ro; L*3([t, 00), LY?) || < o h(2)

for some constants ¢y, a, 1, ro with ¢4 sufficiently small and for all t > 1. Then

there exists T, 1 < T < oo, and there exists a unique solution (v, B) of the system

(2) in X (|T,0)).

Note that there is an absolute smallness condition on u, (through ¢,), but none
other. In particular A, can be arbitrarily large.

We now turn to Step 2. With the weak (A = 3/8) decay allowed by Proposition
1, the simplest choice of (u,, A,) will suffice. We recall that

U(t) = exp(i(t/2) A) =M D F M ,
where
M = exp(iz®/2t) , D= D(t) = (it)**Dy(t) , (Do(t)f)(x) = f(z/t)

and F' is the Fourier transform. We choose

ug =M Dexp(—zgo)w+ ;o wy = Fuy, (9)
Aa = AU + Al with DAa = DAI = —|U,a|2 (10)

namely
Ao(t) = coswt Ay +w ™ sinwt A, (11)
Al(t) - t_lDo(t)gl (]_2)
A= /°° dv v w tsin(w(v — 1)) Do(v)|w, |? (13)

1
and

o=(nt) A . (14)



With that choice, Ry = 0 and
Ry = (2t*)™'M D Aexp(—ip)w, — A uq . (15)

One can then state the final result as follows.

Proposition 2. Let h(t) = t /2. Let (u,, A,) be defined as above. Let w, =
Fu, € H? with ¢, =|| wy ||s sufficiently small. Let A,, w ‘A, € L? and V2A,,
VA+ € L'. Then there exists T, 1 < T < oo and there exists a unique solution
(u, A) of the system (WS)s such that (v, B) = (u — u., A — A,) € X ([T, 0)).

We have treated the (WS); system at the level (k,¢) = (0,1/2) for (v, B). It
is easy to treat the same system at higher levels of regularity, for instance at the
energy level (k,¢) = (1,1). As a slightly more regular example, we now state the
result at the level (k,¢) = (2,1). It seems to be a general feature of the method
that no additional smallness condition is needed beyond that of Propositions 1 and
2, and that the time decay (namely A = 3/8 in Proposition 1) remains the same.
We use the notation W for the usual Sobolev spaces (derivatives of order up to k
in L") and H** for the weighted spaces

Hk’s:{v: | v Ho || = ||< 2 >* <w>F o, <oo}
where < - >= (1 + |- |?)"/2. The relevant function space can be taken as

Xo(I) = {(v,B) v € C(I,H)NC"(I,L*),VB,8,B € C(I, L?),
| (v, B); Xo(I) || = Stlelp W) (@) H | + | 0w (D) |l»

+ o L[t 00), W) I+ 1] §vs LY3([t,00), LY) || + || B; L*([t, 00), L) |
+ VB [l + | 2:B() |2 ) < oo} . (16)

The result of Step 1 takes the following form :

Proposition 3. Let Xy(-) be defined by (16) with N = 3/8. Let u,, Aa, R, Ry

satisfy the assumptions of Proposition 1 and in addition
lua(®) oo < ¢t || Qualt) fla < et/
| 0iAa | < @ ¢
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I 9eRi; L ([t, 00), L) || < 1 h(t)
| Ry; L8([t, 00), LY) || < 11 h(D)
| Ro; LH([t,00), L2) || < ot 12 (D)

for some constants cy, ¢, a, 1, 1o with ¢4 sufficiently small and for allt > 1. Then
there ezists T, 1 < T < oo and there erists a unique solution (v, B) of the system
(2) in Xo(|T,0)). Furthermore B satisfies the estimate

IVB@) [l v [ 9B(@0) 2 < C (1777 + 1" h(1)) h(1)

forallt>T.
Using the same (u,, A,) as before, we obtain the following final result.

Proposition 4. Let h(t) = t™Y2. Let (u,, A,) be defined by (9)-(14). Let u, €
H'Y3 N H*? with ¢y =|| Fuy ||4 sufficiently small. Let Ay, w'A, € H' and V?A,,
VA+ € W{. Then there erists T, 1 < T < oo, and there exists a unique solution
(u, A) of the system (WS)s such that (v,B) = (u — uq, A — A,) € Xo([T,0)).

Furthermore B satisfies the estimate
IVB@) [l v [ 3:B@) [, < C ¢

forallt>T.

Remark. By using the correction of the asymptotic u, given in [Sh 1], one can
obtain a faster rate of convergence, namely h(t) = t~'(2+ ¢n t)? on a subset of more

regular and decaying asymptotic data.

We now turn to the (MS); system. The method is exactly the same and the
results are similar. In particular Step 1 requires the same time decay, namely A =

3/8. We only state the results. The auxiliary system satisfied by (v, B) is now
0w = —(1/2)Asv + g(Jul*)v + Gy — Ry

(17)
OB = G2 — R2
where GG; and G4 are defined by
G =iB -V ,u, + (1/2)B?uq + g ([v)*> + 2 Re Uav) ug
(18)

Gy = P Im (vV 4v + 20V 4u,) — P Blu,l|?

7



and the remainders are defined by
Ry = i0uq + (1/2) A, ua = g (|ta]?) ua
{ Ry =0A, — P Im w,Va,u, .
The relevant function space can be taken as
X(I)={(v,B):vec(,H)NC(I,L?),
I (v, B); X (1) || = Sup R (I o@; B |+ 1l do(e) [l

+ [ v L¥3([t, 00), W) || + || B; L*([t, 00), W) ||
+ || 8B; L*([t,00), L") || ) < oo} . (20)

The result of Step 1 takes the following form.

Proposition 5. Let X(-) be defined by (20) with A\ = 3/8. Let u,, Aq, R1 and Ry
satisfy the estimates

| 0/ V uq(t) ||, < ¢t G23M  for2<r < oo

and in particular

lualls <es t™2 || Vg [l S ea t71

| V2ua(t) lls V1| 8:Vua(t) fla < e t™1,
1OV*Au(t) [l Sat™,
191V  Ry; LH([t, 00), L*) || <m0 A(2)
| Ra; L*3([t, 00), Wiigs) || < 72 h(t) |

for 0 < j+k < 1, for some constants c, c3, ¢4, a, r1 and ro with c3 and ¢4 sufficiently
small and for all t > 1. Then there exists T, 1 < T < oo and there exists a unique
solution (v, B) of the system (17) in X ([T, 0)). If in addition

I Ro; LN([T, 00), L) || <72 #7172 h(t)
then VB, 8,B € C([T, ), L*) and B satisfies the estimate

IVB@E) [l v [ 9B(0) [l < C (572 + 81" h(t)) ht)



for some constant C' and for allt > T.

With the weak time decay (A = 3/8) allowed by Proposition 5, the simplest choice
of (ug,A,) is again sufficient. Thus we define again u, by (9) and A, = Ay + 4,
with Ay and A; defined by (11) (12) where now however A; is given by

A = /IOO dv v w tsin(w(v —1))Dy(v) P x|w, |*, (21)
and we take
o= (tn 1) (g(jwsl) - Ay) . (22)

The final result can then be stated as follows.

Proposition 6. Let h(t) = t7'(2 + ¢n t)?. Let (uq, As) be defined as above. Let
uy € H¥ N HY with || zwy ||4 and || wy ||3 sufficiently small, where w, = Fu,.
Let V2A,, VA, VX(z-A) and V(z - Ay) € W} with Ay, ©- A, € L? and A,,
z-Ay e L3 and et V-A, =V - A, =0.

Then there exists T, 1 < T < oo and there exists a unique solution (u, A) of the
system (MS)s such that (v, B) = (u — uq, A — A,) € X([T,00)). Furthermore VB,
OB € C([T, <), L?) and B satisfies the estimate

| VB() |l2 V || &B(t) [|s < C t ¥2(2+ tn t)?

for some constant C' depending on (uy, A, A+) and for allt > T.

Remark. The only smallness conditions bear on || zw, ||4 and on || wy [|3 and are
required by the magnetic interaction and the Hartree interaction respectively. In

particular there is no smallness condition on (A, A,).
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MODIFIED WAVE OPERATORS FOR NONLINEAR
SCHRODINGER EQUATIONS WITH STARK EFFECTS

Akihiro SHIMOMURA
Department of Mathematics, Faculty of Science,

Gakushuin University
1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan

1. INTRODUCTION

We study the global existence and large time behavior of solutions
for the nonlinear Schrodinger equation with the Stark effect in one or
two space dimensions:

1 -
10 = —QAu+(E~x)u+Fn(u), (t,x) e R x R", (1.1)

where n = 1,2 and u is a complex valued unknown function of (¢, ).

Here ﬁn(u) and E - x are a nonlinearity and a linear potential, respec-
tively. The nonlinearity is

Fo(u) = G(u) + Ny(u),
G (1) = No|u|*™u, (1.2)
]Vl(u) = \u 4+ X\w®, whenn =1,
Ng(u) = \u? 4+ X\ + N\qut, when n = 2,

where A\g € R, A\, A2, A3 € C and E € R"\ {0}. We remark that the
cubic nonlinearity u? is excluded in one dimensional case. F}, is a sum-
mation of the gauge invariant nonlinearity G,(u) and the non-gauge
invariant one N,(u), and it is a critical power nonlinearity between
the short range case and the long range one in n space dimensions
(n = 1,2). The above potential E - x is called the Stark potential
with a constant electric field E. In this talk, we prove the existence of
modified wave operators to the equation (1.1) for small final states.
Let U(t) be the free Schrodinger group, that is,

U(t) = 8/,

The Schrodinger operator —(1/2)A + E - z is essentially self-adjoint
on C°(R™). Hp denotes the self-adjoint realization of that operator

This is a joint work with Satoshi Tonegawa (Nihon University).
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defined on C§°(R™) and we define the unitary group Ug generated by
HE'S

UE(t) = eiitHE.

ﬁn(u) is a critical power nonlinearity between the short range scatter-

ing and the long range one. The modified wave operator W, for the
equation (1.1) is defined as follows. Let ¢ be a final state. Modifying
the solution Ug(t)¢ for the linear Schrodinger equation with the Stark
potential, we construct a suitable modified free dynamics A, which de-
pends on ¢, and we show the existence of a unique solution u for the
equation (1.1) which approaches A in L? as t — co. The mapping

W, : ¢ — u(0)

is called a modified wave operator. In this talk, we prove the existence
of modified wave operators for the equation (1.1).

The theory of scattering for the ordinary nonlinear Schrédinger equa-
tions with critical power nonlinearities was studied, e.g., in [3, 4, 5, 6,
7, 8].

Before stating our main results, we introduce several notations.

Notation. We denote the Schwartz space on R™ by S. Let S’ be the
set of tempered distributions on R™. For w € &', we denote the Fourier
transform of w by w. For w € L'(R"), w is represented as

w() = (27r)"/2/ w(x)e ™ dr.

n

For s,m € R, we introduce the weighted Sobolev spaces H*™ corre-
sponding to the Lebesgue space L? as follows:

H™ = {6 € 8 [ollem = [I(1+ [P)™2(1 = A2l 12 < oo},

Our result is as follows.

Theorem 1.1. Assume that ¢ € H?> N H* and that ||} gznmoz is
sufficiently small. Then the equation (1.1) has a unique solution u for
satisfying

u € C([0,00); L?),

sup(thu(t) — UE(t)e’”"Q/Zte’iS(t”N)¢HLz) < 0,

t>1

t>1

00 1/4
swk(/HWﬂ%ewmww“W%W&mw&w)]<w,

where

S(t,x) = \o|p(2)|?" logt,
2



d is a constant satisfying n/4 < d < 1,Y; = L% and Yo = LL. Fur-
thermore the modified wave operator

W.: ¢ — u(0)
1s well-defined.

A similar result holds for negative time.

Remark 1.1. Since the multiplication operator e~M*/2t appraoches

the identity in L? as t — oo, the solution obtained in Theorem 1.1
approaches Ug(t)e ™ *~"V)¢ in L?. Noting the phase correction S de-
pends only on the gauge invariant nonlinearity G,,(u), we see that the
contribution of the non-gauge invariant term Nn(u) is a short range
interaction. that is, it is negligible as ¢ — oo, under our assumptions.
We also note that the assumption ¢ € H? is needed only if N, (u) # 0.

Remark 1.2. If we consider the asymptotic behavior of solutions to
the Cauchy problem for equation (1.1) with initial data «(0, x) = ¢o(z),
z € R", then we see from Theorem 1.1 that for any initial data ¢o be-
longing to the range of the modified wave operator W, there exists
a unique global solution u € C([0,00); L?) of the Cauchy problem for
equation (1.1) which has the modified free profile Up(t)e =" */2te=15(t:=iV) ¢
More precisely, u satisfies the asymptotic formula of Theorem 1.1. How-
ever it is not clear how to describe the initial data belonging to the

range of the operator W, .
2. THE STRATEGY OF THE PROOF

The idea of the proof of Theorem 1.1 is as follows. We reduce our
problem to the following non-autonomous nonlinear Schrodinger equa-
tion without a potential

0 = —3 At Foft0), (17) €RXR, (2.1)
where n =1, 2,
Ey(t,v) = Ga(v) + Na(t, 0),
Ni(t,v) = Apie 2B e IBR[3) L\ g3 At e |B/3)
Ny(t,v) =Avle {E=LIEP/3) o ) 52e3itEa—t|E/3)
+ AgupetE o=t IER/3),

Gn(v) is defined by (1.2). By the change of variables
2
o(tz) = u [t — S E ) eitBatIBR/3)
) y 9 ,

our problem is equivalent to constructing modified wave operators for
the equation (2.1) (see, e.g., Cycon-Froese-Kirsch-Simon [2]). In or-

der to overcome difficulty caused by the gauge invariant nonlinearity
3



G, (v) which is a long range interaction (see Barab [1]), we introduce a
modified free dynamics of the form

valt, @) =(U()e 120V g) ()

L BN e ais(ea )
=Y ()¢ :

with the phase shift S(t,x) = Ao|d(x)[¥"logt so that Lv, — Gn(va)

decays faster than G(v,), where £ =0, + (1/2)A. This modified free

dynamics v, was introduced by Ozawa [7] for the ordinary nonlinear

Schrodinger equation with a nonlinearity A|u|*u in one space dimension.

In order to treat the non-gauge invariant nonlinearity N, (¢, v), we show

that
’ /too U(t = 5)Nu(s, va(s)) ds

which appears in the associate integral equation, is integrable over the
interval [1,00). More precisely, it decays suitably in time. Hence we
see that

Y
2
Lz

/to" U(t — 5)(Lvg(s) — Fo(s,v4(8))) ds

decays suitably in time and we can directly construct a unique solution
u which approaches the asymptotic profile v,.

L3
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GLOBAL SOLUTIONS FOR QUASILINEAR WAVE EQUATIONS
IN THREE SPACE DIMENSIONS

MAKOTO NAKAMURA (GSIS TOHOKU UNIVERSITY)

1. Introduction.

The goal of this paper is to prove global existence of solutions to quadratic quasilinear Dirichlet-wave
equations exterior to a class of compact obstacles. As in Metcalfe-Sogge [23], the main condition that we
require for our class of obstacles is exponential local energy decay. Our result improves upon the earlier
one of Metcalfe-Sogge [23] by allowing a more general null condition which only puts restrictions on the
self-interaction of each wave family. In Minkowski space, such equations were studied and shown to have
global solutions by Sideris-Tu [30], Agemi-Yokoyama [1], and Kubota-Yokoyama [18].

We use Klainerman’s commuting vector fields method [16]:

30:&, Qij:xiaj—xjé)i, 1§Z7é]§3, L:tat—l— Z .’Ejaj.

1<5<3

L is called the scaling operator. We denote {9; }o<;<3 by 0, {€; h1<izj<s by Q, {0,Q} by Z, and {L, Z}
by I'. For functions u, u’ denotes du. These operators have the commuting relations with d’Alembertian
0

(1.1) 0Q;, =Q,;,0, OL=(L+2)0, LOQ;=Q,;L 0,L=(L+1)0,.
Using Z, we can earn one weight by Klainerman-Sobolev inequality :
Lemma 1.1. [16] [13, Lemma 2.4] [28, Lemma 3.3] Suppose that h € C>°(R3). Then, for R > 2,

(1.2) || Lo (Rl <re1) < CRT! Z 1908 1| 12 (R-1< || < R42)-
[a|+]B]<2

We describe our assumptions on our obstacles K C R3. We shall assume that K is smooth and compact,

but not necessarily connected. By scaling, without loss of generality, we may assume
Kc{zeR?®: |z| <1}, 0€ K\OK.

The only additional assumption states that there is exponential local energy decay with a possible loss

of regularity. That is, if u is a solution to
Ou(t,x) =0, (t,z) € Ry x R3\K
(1.3) u(t,-)ox =0
U(O, ) = fa atu(ov ) =9, supp f Usupp g C {RS\IC7 |ZL‘| < 4}7

LA personal note on the joint work with Jason Metcalfe and Christopher D. Sogge [22]
1
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then there must be constants ¢, C' > 0 so that

(1.4) [/ (t, )| L2 (wero i o) <a) < Ce™ Z |05 (0, )2

ler|<1
Throughout this paper, we assume this local energy decay estimate for .

Lax, Morawetz and Phillips have shown (1.4) without a loss of regularity, namely |«| = 0 in the RHS,
when K is star-shaped in [19] (see also [20, Theorem 3.2]).

Morawetz, Ralston and Strauss have shown (1.4) without a loss of regularity (Ja] = 0) when K
is bounded connected and nontrapping in [25, (3.1)]. Here if the lengths of all rays in B1(0)\K are
bounded, then waves are not trapped and (1.4) holds without a loss of regularity. They also treat the
multi-dimensional cases. See Melrose [21] for further results. Ralston [26] has shown that (1.4) could not

hold without a loss of regularity when there are trapped rays..

Tkawa has shown (1.4) with an additional loss of regularity, namely |o| < ¢ with £ > 1 in the RHS,
when K is trapping. He has shown (1.4) with £ = 6 when /X consists of two disjoint strictly convex bodies
in [9], and (1.4) with £ = 2 when K consists of sufficiently separated several disjoint strictly convex bodies

n [10]. Since we have the standard energy preservation

[/ (8, M 22 @aviey = 100, )] 2 msvk)

(see (3.3) with v = 0), we can reduce the estimate (1.4) with an additional regularity, £ > 1, to the
estimate for ¢ = 1 with different constants ¢ and C' by the interpolation. Therefore we can treat the

above obstacles by the condition (1.4).

We note that we do not require exponential decay; in fact, O((1 4 ¢)~'=9=™) with § > 0 and m > 0
may be sufficient with a tighter argument, where we need 1 + 0 for the integral ability and m is the
number of L we need in our argument (see the argument below (4.4) to bound t#e~¢/2). Currently, the
authors are not aware of any 3-dimensional example that involves polynomial decay, but does not have

exponential decay.

We consider quadratic, quasilinear systems of the form

Ou = F(du, 8%u), (t,z) € Ry x R3\K
(1.5) u(t, - )lox =0
U(O,):f, atu(oa'):g~

Here [0 denotes a vector-valued multiple speed d’Alembertian :

F:(Fla"'vFD)7 DZL

(16) D’U,: (D01u1?D02u27"'aD uD)

cp ;

where

O, =07 —ctA, 1<I<D.
We assume that the wave speeds c; are positive and distinct:

0<c<---<ecep.
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Straightforward modifications of the argument give the more general case where the various components

are allowed to have the same speed.

We shall assume that F(Qu,9%u) is of the form

. u, u) = : iU Jgu ; iu- o, SIS .
1.7 F!(0u,0” ALTE Ou” Opu” + Bl oju’ oo™, 1<1<D
1<J,K<D 0<4,k,1<3
0<4,k<3 1<J,K<D
For the energy estimates, we require the symmetry condition:

BIJK _ gKJI IJK
ki = Djkl jlk -

To obtain global existence, we also require that the equations satisfy the following null condition which

only involves the self-interactions of each wave family :

(1.8) > A& =0 whenever & =ci(§+&+&), I=1,....D,
0<j,k<3

(1.9) > Bil&&& =0 whenever & =cj(+&+&), I=1,...,D.
0<j,k,1<3

The terms which satisfy the above null conditions are treated by the following estimates :

Lemma 1.2. [30, 33] If the semilinear null condition (1.8) holds, then

|Tu||Ov] + |Ou||Tv] (ert —r)
(1.10) ‘ AU@-uakv‘ <C e ENEE
0;;9 ik (r) t+r)
Suppose that the quasilinear null condition (1.9) holds. Then,
Tul|0? Oul|oT t—
(111) ’ Z Bj]ﬁ{alua]akv‘ §C| U|| ’U|+| 'LL|| 'U| +C<CI 7’>‘au||82v|
0<j,k1<3 (r) {t+r)

We refer to compatibility conditions. For the solution u of (1.5), the functions {87 u(0,2)};>0 are
called compatible functions. The compatible functions are functions of spatial variables and 87 u(0, z)
are expressed by {9 f}|a<; and {059} aj<j—1- We say that the compatibility conditions of order s
are satisfied if 8/u(0,2)|ox = 0 for all 0 < j < s (See [12, Definition 9.2]). Additionally, we say that
(f,g) € C= satisfies the compatibility conditions to infinite order if the compatibility conditions are

satisfied to any order s > 0.
We can now state our main result:
Theorem 1.3. Let K be a fized compact obstacle with smooth boundary that satisfies (1.4). Assume that

F(0u,d?u) and O are as above and that (f,g) € C=(R3\K) satisfy the compatibility conditions to infinite

order. Then there is a constant g > 0, and an integer N > 0 so that for all € < g, if

(1.12) Yo @ agfllz+ Y0 @) Hloggll < e

lal<N lal<N—1

then (1.5) has a unique solution u € C*(]0,00) x R3\K).
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This paper is organized as follows. In the next section, we will collect some preliminary results which
are frequently used in this paper. We put several sections for energy estimates, L? estimates in space

and time, and Sobolev embeddings, respectively.

2. Preliminaries.

We use the following Poincaré inequalities to bound u by v’ near the obstacle:

(2.1) lull 2 ®e\x 1< r) < CrIIVullL2@®s\ic 21<r) i ulox =0,

where Cp is a constant dependent on R > 1 (cf. [4, (7.44)]).

We also use the following elliptic regularity : for any fixed M > 0

(2.2) > loull @i gei<r) < Cr( Y 1109Vl L2@s\x o< re1)
2<|a|<M+2 la|<M

+ ) 1109 Aul| L2 ok o< R41)
lal<M

if u|lpic = 0 (cf. [4, Theorem 8.13]).

Here we briefly sketch the elementary method to treat the nonlinearity.

Lemma 2.1. Let u € C*((0,00) x R3\K). Suppose u has the bound

CQ€
1+4+¢

(2.3) > l1Zou (@) e <

|a|<Mo

for some constants My > 0 and Cy > 0. Then for any M > 0 and pg > 0, there exists a constant C such

that we have

Coe
o, 1\2 0 o,/
24) D LW ()2 < 1Tt > I ()l
ptla|<M pt|o| <M
1< Ho H<po
+C > () =122 (t)| 2 > ()= 20%' (t)]| 2
Mo+1<|a|<M—Mo+1 Mo+1<]a|<M—Mo—1
+C > )2z () Y )~ 20% (1)1
ptla| <M —Mo+1 la|<M-1

1<p<po
+C Y @)Lz ) Y )T PLE 0 (1) 2

ptlal<M/2+2 ptlal<M—1
1<p<po—1 1<p<po—1

Here O can be replaced by Z in the above inequality.
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Proof of Lemma 2.1 : We use the following estimates:

D P2 A OV R [PS > |LF 0% LY 9% ||
ptla|<M pt|al+v+|BI<M
n<po pt+v<po
(2.5) SO e D 0%l + > [0%u' 0P |2
pt|a| <M |B]< Mo Mo+1<|a|<M—~Mo—1
n<po Mo+1<|B|<M—Mo—1

+ > S It o% ||

ple| <M —Mo—1 Mo+1<|8|<M -1
1<p<po

+ ST Lo LYoo,
ptlal <M /2 v+ <M ~1
1<p<po—1 1<v<po—1
Since we have by (1.2)
|LFo%d (t,z)| S (x) ! 2: 127 L0/ (t, @) || L2 (2] - 1<y < |2 +1)
1B1<2

S @Y )PP,
v 18It lo 42

we obtain the required result using (2.3). O

3. Energy Estimates.

Since we are considering the quasilinear wave equation, we need associated energy estimates as follows.
Let v = {y!79*¥}1 <1 j<po<jk<s be any smooth functions on [0,00) x R3\K. We consider [J,, which is
defined by

D 3
(O,u)! (t,2) = (0F — AW (t,2) + Z Z ARt 2)000u” (t, ), 1<T<D.

J=1j,k=0

And we define the energy form associated with O, as follows :

D 3
,YIJ,OkaOuIakuJ _ E § ,YIJ,jkaquakuJ
0 J=1j,k=0

Mo
Mw

3
(3.1) el(w) = (Gou’)? + Zc? (Opul)? + 2
k=1

<
Il

1

=
Il

60—60 E 60

We define the other components of the energy—momenturn vector. For I =1,2,---,D, and k = 1,2,3,
let

D 3
ef = el (u) = —2c20pu’ Opu’ + 2 Z Zvl‘l’jkaoulﬁju‘j

J=1j=0

D 3
Ré(u) =2 Z Z(a ’YIJOk 80u13ku Z Z IJ’]k 8 ulaku
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Then we have the following most fundamental energy estimates :

Lemma 3.1. Suppose that the functions /7%

satisfy the symmetry conditions
(3.2) yIik — A Lak — A ITkT for 1< T J< D, 0<jk<S3.
For any function u in C%((0,00) x R}\K), the following equation holds:

(33) ateo + diV(@l7 €2, 63) = 28tu . D’YU‘ + R(u)

Proof of Lemma 8.1: By direct computation, we have

3 D 3
(3.4) 806(1) = 2801/831/ +2 Z c?@kujaoakul + 200u’ Z ny”’m@o@ku‘]

k=1 J=1k=0
D 3 D 3
+2) > AR o =Y > IR (000u du” + ju” dodku’) + R
J=1k=0 J=1j,k=0

and

3 3
(3.5) Z 8ke£. = —200ul 2 Aul —2 Z 2 opul 9p0pu’
k=1

k=1
D 3 3 D 3 3 3
+200u" >N S ARG 0T +23 0 Sy R apoku 9;u” + ) Ry
J=1;j=0k=1 J=1;=0k=1 k=1
We obtain the required result using the symmetry condition (3.2). g

We use (3.3) to show the energy estimates for L*Z*u. However, direct application causes derivative
losses from div(ey, eq, e3) since L, Q, 9, don’t preserve the Dirichlet condition. To avoid it, we cut L near
the obstacle and construct the energy estimates for &/u. Let 7 € C™(R3) be a smooth function with
n(x) =0 for |z| <1 and n(z) = 1 for |z| > 2. We define L by L = td; 4+ nrd,. By simple calculation, we
have for any p > 0
(3.6) LM = LM+ Z ChjiaXpjia (@) L7020, Xpja € CF(R?), supp Xu.ja C Ba2(0),

Jtlal<p—1

where {C), j o} are constants dependent on lower indices.

Our first task is to show the energy estimates for i”@g u. We put

Entuo(t) = Bapuo (W) (t) = [ Y eo(L*0fu)(t,z) da.
ptj<M
H<Ho

The estimate for Eas,,(f) is given by the following lemma. And the energy estimates for L*0%u

follows from it due to the elliptic regularity :
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Lemma 3.2. Assume that the perturbation terms v!7% satisfy (3.2) and the size condition

D 3
(37) Z Z H'VIJ’]k(t’x>||L:,C;eR3\)C < )

1,J=14,k=0
for ¢ sufficiently small. Then for any M > 0 and po > 0, there exists a constant C = C(M, po, K) so
that for any smooth function u in [0,00) x R3\K with u(t,z)|scoc = 0, and u(t,z) = 0 for large = for

every t, the following estimate holds.

(3.8) ST Lot )l < CEVE +C D L0 0u(t, ).
ptlal <M ptlal <M -1
n<po H<po
1/2 =t y 1/2
(3.9) OBy, (1) < C S 0, Lrfult, )l + CIY (E oo Erp o (t)
utj<M
H<Ho
L 1/2
< ¢ Y Lo 0yult, Hla+ Ol (¢ )l By, (1)
ptlal<M
H< po
+C > (L 0%y (t, ) (L 2220 (¢, ) 1o
p1tlar |+pe+|az| <M
H1t+p2<po

pio+|aa[<M—1

+C Z | LFO%u' (t, ) || L2 (2| <2)-
ptlal<M
p<po—1

When we apply Gronwall’s inequality to (3.9), we need the following lemma to bound the last term in
(3.9).

Lemma 3.3. For any M > 0 and g, there exists a constant C = C(M, po, KC) such that for any smooth
function u in [0,00) x R3\K with the Dirichlet condition u(t,z)|zcorc = 0 the following estimate holds.

(310) Y / 1ER0% (5,2) |1t enyds < C 3 @) (L20%u)(0, )

ptji<M 45 <MA+2
n<po IS
t s
(e}
o // IL#O“G(T, )l L2(ly|—(s—r)|<10)dTds
ptlal<m+170 70
n<po

t
_ /||L“8“Du(s7y)||Lz(‘y|<4)ds.

ptlal<M+1 70
p<po

For the energy estimates for L*Z%u, we need the following estimates. Begin by setting

(3.11) Yr,u,(t) = E eo(L* Z%u)(t, z) du.
la|+p<M
n<po

We, then, have the following lemma which shows how the energy estimates for L*Z“u can be obtained

from the ones involving L*0%u.
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Lemma 3.4. Assume (3.2), (3.7) and

D 3
(3.12) IV e = Y Do 105, )l <6

I,J=1j,k,1=0
for sufficiently small 6. Then,
(3.13) OVip < CYilhy D7 15,1 Z%ult, )]l
o] +p< M
n<po
FCIY (8 MooYaru +C D> IL#0™U (s, )72 (uj<2)
o] +p< M+1
n<po
1/2 fe%
< oYl Y I Ze0u, e
la|+p<M
1< Ho
+ > [(LF Zory) (L2 202 0% )2}
p1t|on |Fpe+|az| <M
H1t+p2<po

pat|og|<M -1

+CIIY (s ooVt +C D IIE#O*U (5, )72 (aj<2)
|| +p<M+1
n<po

4. Local energy estimates and L? estimates in space and time.

First we derive local energy estimates for inhomogeneous wave equations near the obstacle.

Lemma 4.1. Let K satisfy the local energy decay (1.4). Let u be the solution of

Ou=F, supp,F(t,x) C B4(0)
(4.1) ulox = 0

w(0) = f, dyu(0) =g, supp fUsupp g C By(0).
Then for any M > 0 and po > 0, the following estimates holds :

42) Y L0 (@)l a(ai<ay < CemP DT (10U (0,2) | b2 (jaf<a)

ptla|<M la]<M+1
H<po

t
+C/ e—c(t—s)/2 Z | L*O“F (s, -)||2ds + Z |LFOYF(t, ).
0

pt|a|<M+1 ptla|<M—1
n<po H< o
Proof of Lemma 4.1 : First we show (4.2) for pg = 0 using induction. The estimate for M = 0 follows
from (1.4) and the Duhamel priciple. Let’s assume that the estimate for M > 0, and we consider the
case M + 1. We have

43) D N0V 2(aieny S D 10U NL2qaicay + D> 10705 ull L2 (el <a)
la| <M1 la|<M FHlalM+2
j=>1

+ Z 10z ull L2 () <a)-

|a|=M+2
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Ther first two terms in the RHS are treated by induction since Oyu satisfies the Dirichlet condition.
Applying (2.1) and (2.2) to the last term, we have

> losu®)lzzaj<ay S I lz2(ai<s) + >, 10807ullL2(aiesy + > 10900 2(ja|<s)-
la|=M+2 || <M loo| <M
Again by induction, we obtain the required estimate for M + 1. Here we can replace ¢/2 with ¢ in (4.2)

when pp = 0.

Next we show (4.2) for po > 1 by induction. Let’s assume that (4.2) holds for M and po. We consider

the case o + 1. Since we have

(44) Z ||L“80¢u/||L2(|x|<4) f/ Z ||L”aau/||L2(‘$‘<4) —+ Z t“||afaau’”L2(|x|<4),
pt|al <M pt|al <M pt|a|<M
n<po+1 H<po 1<p<po+1

it suffices by induction to show the last term in the RHS is bounded by the RHS in (4.2). If we use (4.2)
for pio = 0 for /u which satisfies the Dirichlet condition, and we use that t*e~°*/2 is bounded, then we

obtain the required estimate. ]

We need weighted L? estimates. Put
St = {[0,T] x R®\K}
to denote the time strip of height 7" in R, x R3\K.

Lemma 4.2. (1) (Boundaryless case [13, Proposition 2.1]) There exists a constant C > 0 so that for

any function u in [0,00) x R3, the following estimate holds.

T
(4.5) (log(2 + 1))~ 2|(z) ™ /*u/|| L2(jo. 1) xr2) < C Z l0%u(0, -)|l2 + C/ Ou(t, -)||2 dt.
laf<1 0

(2) (Exterior domain case [14, (6.8), (6.9)]) There exists a constant C so that for any function u in
[0, 00) x R3\K with the Dirichlet condition u(t,z)|.cox = 0, the following estimate holds. For any M > 0
and po >0

(4.6) (log2+T) 7% Y [la) VPLr Y | agsy <C Y (LFO*w)(0, )]

|a|+p<M lal+p<M+2
r< o M=t
T
+c/ S Irrovoult, )l dt+C Y [ILH0Cul| sy
O JaltusM+1 ol +u<M
n<po K< po

and

47 (Qog2+T))"* Y |(2) VPLrZ% |l pasry <C Y LM Z%(0,2) |12

la|+p<M la|+p<M+2
n<po 1<Ho
T
+C > BLrzoult, lladt+C Y |BLFZ% Lasy
O Jal+u<M+1 | +p<M

n<po H<Ho
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5. Pointwise Estimates.

‘We consider pointwise estimates in this section.

Lemma 5.1. Let F, f and g be any functions.
(1) (Boundaryless case) Let u be a solution to
(02 — A)u(t,x) = F(t,x), (t,z)€[0,00) x R3
{ u(0,x) = f(z), Owu(0,z) = g(x).
Then

(5.1) A+t+|zDut2) <C Y (@) L Z%u)(0,2)| 2

pt|a|<3
p<l1,j<1

K o dy ds
+c/0 /R > |LFZOF(s,y)l o

ptlol<3
pu<1

(2) (Esterior domain case) Let u be a solution to
(02 — Ayu(t,x) = F(t,z), (t,x) € [0,00) x R3\K
u(t, z)|zeoxc = 0
w(0,2) = f(x), Owu(0,z) = g(x).
Then for any M >0 and pug > 0

(5:2) (A+ttla) Do IFZ%ta)<C Y (@) o L Z%u)(0,2)] sz

[a|+p<M J+ptla|<M+8
n<po p<po+2, j<1
¢ dy ds
+C// S ILrzeF(s,y)) f‘
0 JRAK |4 u<M 47 Y
p<pot+l

t

so [ ey ds
O Jal+u<M+4
p<po+1

Here and throughout {|y| < 4} is understood to mean {y € R3\K : |y| < 4}.

The proof of the above lemma for vanishing Cauchy data has been shown by Keel-Smith-Sogge in [14,
(2.3), (2.4) and (4.2)] and Metcalfe-Sogge in [23, (3.2)].

The following estimates are the special version to treat the inhomogeneity F' near the light cones,

which follows from the Huygens principle.

Lemma 5.2. Let F be any function.
(1) (Boundaryless case) Let u be a solution to

(02 — 2A)u(t,z) = F(t,x), (t,z)€[0,00) x R?
u(0,-) =0, Jwu(0,:) =
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Assume
t
suppF C {(t,z);t > 1, % < |z| < 10¢pt}.
Then
(5.3) sup (1 +¢)|u(t,z)] < C sup / Z |LFZYF(s,y)|dy.
lz|<eit/2 0<s<t +‘a|<3
pn<1

(2) (Exterior domain case) Let u be a solution to

(07 — I A)u(t,z) = F(t,z), (t,z)€[0,00) x RA\K
u(t,z)|zcox =0

u(t,:) =0 for t<0.

Assume

6 cat
suppF C {(t,z);t > 1V —, 1—10 < |z| < 10cpt}.
1

Then for any M >0 and pug > 0

Go) sp (04n) Y |zue<C s [ 1L 2% F (s, ) ldy
|z|<cit/2 ptlal<M Oss<t JRIK \oz|+,u<M+7
w<po u<po+1
+ sup (L+s) Y [LFO*F(s,9)ll L2y <a)-
Ossst la|+p<M+3
H<po

We also need the following L> — L* estimates to treat the inhomogeneity away from the light cones,
which are special (more elementary) version of Kubota-Yokoyama estimates (see Kubota-Yokoyama [18,

Theorem 3.4] for the boundaryless case).

Lemma 5.3. Let F, f and g be any functions.

(1) (Boundaryless case) Let u be a solution to

{@Lw%)@@—me,w@emeR3
(0,2) = f(z), Bu(0,2) = g(x).

Assume
t
(5.5) suppF C {(t,2);0 <t <2, |z| <2} U{(t,x);|z| < % or |z| > 5ert }.

Then for any 6 > 0, there exists a constant C' = C(0) such that

(5.6) sup (1+8)|u(t,z)| <C Z Ja’ L1 Z%u)(0,2)| 2
|z|<ert/2 ,u,+|a\§3
pu<1,j<1

+C sup W (14 s+ [y) 0 F (s, p)].
yG_JR3



12 MAKOTO NAKAMURA (GSIS TOHOKU UNIVERSITY)

(2) (Exterior domain case) Let u be a solution to

(02 — 2A)u(t,z) = F(t,x), (t,z)€[0,00) x R3\K

u(t, r)|zeac =0

u(0,z) = f(z), Ou(0,z)=g(x).
Assume (5.5). Then for any 8 >0, M > 0 and puo > 0, there exists a constant C = C(0, M, g, K) such
that

(5.7 sup (L+t) Yo [LZ%u(ta)| <C Y (@9 LrZu)(0,2)l|

|wlsert/2 ptlal<M il <M+8
H<po u<po+2, j<1
+C sup W (L +s+y)'™ D [LHZF(s,y)l
+C sup () L+ s+ [y > LMV F(s,y)l-
yeR\K o

6. Sobolev-type Estimates.

We need the following Sobolev inequalities. The first inequality is due to Klainerman-Sideris [17],

Sideris [28], and Hidano-Yokoyama [6]. The second one is the exterior domain analog of the first one.

Lemma 6.1. Let ¢ >0, 0 <0 <1/2 be any constants.

(1) (Boundaryless case) For any function u € C§°((0,00) x R3)

(6.1) (@) /2H0(ct — |z O (t2) < C > |[LM 2 ()2 +C Y I+ J2l) 20 Deu(t, o) 22
ptla|<2 la|<1
pn<l
(2) (Exterior domain case) For any function u € C§°((0,00) x R3\K) with the Dirichlet condition
uloc =0, and any M >0, po >0

(6.2) ()20 ct —[x)'=0 > Lz (o) <C Y I 2% () e

pt e <M pt| o <M+2
1<po p<pot+l

+C Y it + )2 Deu(t, )| 2

ptla|<M+1
n<po

+CA+1) Y I (1, 2) | = (jaf <2 -

n<po
Proof of Lemma 6.1 : By (3.14c) in [28], and (4.2) in [18], we have
(@20 et — |2) Ol (L) < C Y 120 (@) e +C Y et = |2) Z°0Pu(t, @) 2
laf<2 la<1
for any 6 with 0 < 6 < 1/2. By (2.10) and (3.1) in [17], we have

et = lz)o*u(t, 2)llz < C Y |LFZ°U (t,2) | 2 + C|l{t + [a))Deult, z)| 2

ptlal<1
n<1
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Combining the above two estimates, we obtain (6.1). The proof of (2) can be found as (4.7) in [22]. O

7. Proof of Theorem 1.3.

To prove our global existence theorem, we shall need a standard local existence theorem (See [7,

Theorem 6.4.11] for the local existence theorem for the boundaryless case).

Theorem 7.1. [12, Theorem 9.4] Let s > 7. Let (f,g) € H® ® H*~' satisfy the compatibility conditions
of order s — 1. Then (1.5) has a local solution u € C([0,T); H®), where T depends on s and the norms of
f and g. Moreover if || f||ms + ||gl|gs—1 is sufficiently small, then there exists C' and T independent of f
and g so that the solution of (1.5) exists for 0 <t < T and satisfies

sup > [10)ult, Mo < CUIfllre + llgllsr)-
0

0<t<T “—
J

Based on this local exsistence theorem, we can show the global solutions by the continuity argument.

(1]

(2]

REFERENCES

R. Agemi and K. Yokoyama: The null condition and global existence of solutions to systems of wave equations with
different speeds, Advances in Nonlinear Partial Differential Equations and Stochastics, (1998), 43-86.

N. Burq: Décroissance de lénergie locale de l’équation des ondes pour le problme extérieur et absence de rsonance
au voisinage du réel, Acta Math. 180 (1998), 1-29.

D. Christodoulou: Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math.
39 (1986), 267-282.

D. Gilbarg and N. Trudinger: Elliptic partial differential equations of second order, Springer, Second Ed., Third
Printing, 1998.

K. Hidano: An elementary proof of global or almost global existence for quasi-linear wave equations, preprint.

K. Hidano and K. Yokoyama: A remark on the almost global existence theorems of Keel, Smith, and Sogge, preprint.
L. Hérmander: Lectures on nonlinear hyperbolic equations, Springer-Verlag, Berlin, 1997.

L. Hérmander: L', L estimates for the wave operator, Analyse Mathematique et Applications, Gauthier-Villars,
Paris, 1988, pp. 211-234.

M. Ikawa: Decay of solutions of the wave equation in the exterior of two convex bodies, Osaka J. Math. 19 (1982),
459-509.

M. Ikawa: Decay of solutions of the wave equation in the exterior of several convexr bodies, Ann. Inst. Fourier
(Grenoble), 38 (1988), 113-146.

F. John, Nonlinear wave equations, formation of singularities, Amer. Math. Soc., 1990.

M. Keel, H. Smith, and C. D. Sogge: Global existence for a quasilinear wave equation outside of star-shaped domains,
J. Funct. Anal. 189 (2002), 155-226.

M. Keel, H. Smith, and C. D. Sogge: Almost global existence for some semilinear wave equations, J. D’Analyse 87
(2002), 265-279.

M. Keel, H. Smith, and C. D. Sogge: Almost global existence for quasilinear wave equations in three space dimensions,
J. Amer. Math. Soc. 17 (2004), 109-153.

S. Klainerman: Uniform decay estimates and the Lorentz invariance of the classical wave equation, Comm. Pure
Appl. Math. 38 (1985), 321-332.

S. Klainerman: The null condition and global existence to nonlinear wave equations, Lectures in Applied Math. 23
(1986), 293-326.

S. Klainerman and T. Sideris: On almost global existence for nonrelativistic wave equations in 3d Comm. Pure Appl.
Math. 49 (1996), 307-321.



14

(18]

(19]

I~
k=

(27]

28]

29]

MAKOTO NAKAMURA (GSIS TOHOKU UNIVERSITY)

K. Kubota and K. Yokoyama: Global existence of classical solutions to systems of nonlinear wave equations with
different speeds of propagation, Japan. J. Math. 27 (2001), 113-202.

P. D. Lax, C. S. Morawetz, and R. S. Phillips: Ezponential decay of solutions of the wave equation in the exterior of
a star-shaped obstacle, Comm. Pure Appl. Math. 16 (1963), 477-486.

P. D. Lax and R. S. Phillips: Scattering theory, revised edition, Academic Press, San Diego, 1989.

R. B. Melrose: Singularities and energy decay of acoustical scattering, Duke Math. J. 46 (1979), 43-59.

J. Metcalfe, M. Nakamura and C. D. Sogge: Global existence of solutions to multiple speed systems of quasilinear
wave equations in exterior domains, to appear in Forum Mathematicum.

J. Metcalfe and C. D. Sogge: Hyperbolic trapped rays and global existence of quasilinear wave equations, preprint.
C. S. Morawetz: The decay of solutions of the exterior initial-boundary problem for the wave equation, Comm. Pure
Appl. Math. 14 (1961), 561-568.

C. S. Morawetz, J. Ralston, and W. Strauss: Decay of solutions of the wave equation outside nontrapping obstacles,
Comm. Pure Appl. Math. 30 (1977), 447-508.

J. V. Ralston: Solutions of the wave equation with localized energy, Comm. Pure Appl. Math. 22 (1969), 807-923.
Y. Shibata and Y. Tsutsumi: On a global existence theorem of small amplitude solutions for nonlinear wave equations
in an exterior domain, Math. Z. 191 (1986), 165-199.

T. Sideris: Nonresonance and global existence of prestressed nonlinear elastic waves, Ann. of Math. 151 (2000),
849-874.

T. Sideris: The null condition and global existence of nonlinear elastic waves., Inven. Math. 123 (1996), 323-342.
T. Sideris, S.Y. Tu: Global existence for systems of nonlinear wave equations in 3D with multiple speeds, STAM J.
Math. Anal. 33 (2001), 477-488.

H. Smith and C. D. Sogge: Global Strichartz estimates for nontrapping perturbations of the Laplacian, Comm. Partial
Differential Equations 25 (2000), 2171-2183.

C. D. Sogge: Lectures on nonlinear wave equations, International Press, Cambridge, MA, 1995.

C.D. Sogge: Global existence for nonlinear wave equations with multiple speeds, Harmonic analysis at Mount Holyoke
(South Hadley, MA, 2001), 353-366, Contemp. Math., 320, Amer. Math. Soc., Providence, RI, 2003.

K. Yokoyama: Global existence of classical solutions to systems of wave equations with critical nonlinearity in three

space dimensions J. Math. Soc. Japan 52 (2000), 609-632.



Mode generating property of solutions to
nonlinear Schrodinger equations

Naoyasu Kita
Faculty of Education and Culture, Miyazaki University

Abstract

We consider the initial value problem of the nonlinear Schrédinger equation with
superposed d-functions as initial data. The speaker will treat this problem case by
case, i.e., the cases in which the initial data consists of single and double §-functions,
respectively. In particular, when the initial data consists of double d-functions, the
solution receives the generation of new modes which is visible only in the nonlinear
problem (see section 3).

1 Introduction

In this talk, we present several results on the initial value problem of the nonlinear
Schrodinger equation like

10 = —02u 4+ M (u),

u(0, ) = (superposition of é-functions),

(NLS) {

where (t,2) € R x R and the unknown function u = (¢, x) takes complex values. The
nonlinearity N (u) is given by

N() = [uP'u with 1 < p < 3.

The nonlinear coefficient \ takes arbitrary complex number. The functional §, denotes
the well-known point mass measure supported at x = a € R.

From the physical point of view, the cubic nonlinearity (i.e. p = 3 which is excluded
in our assumption for mathematical reason) frequently appears. For example, (NLS) with
A € R and p = 3 is said to govern the motion of vortex filament in the ideal fluid. In fact,
letting k(t,z) be the curvature of the filament and 7(¢,z) the tortion, we observe that
u(t,z) = k(t,x)exp(i fy 7(t,y) dy) (which is called ”Hasimoto transform” [3]) satisfies
(NLS), where x stands for the position parameter along the filament.

1



To our regret, our argument does not contain the cubic nonlinearity. However, if one
allows us to treat the solution as a fine approximation of the physically important case,
we can imagine the time evolution of vortex filament with the locally bended initial state
(which is described as £(0,z) = d,).

The nonlinear evolution equations with measures as initial data are extensively sutud-
ied for various kinds of initial value problem. As for the nonlinear parabolic equations
like Oyu — O%u + |ulP~'u = 0 with u(0,z) = &, Brezis-Friedman [2] give the critical power
of nonlinearity concerning the solvability and unsolvability of the equation. They prove
that, if 3 < p, there exists no solution continuous at ¢ = 0 in the distribution sense and
that, if 1 < p < 3, it is posibble to construct a solution with a general measure as the
initial data. For the KdV equation, Tsutsumi [5] constructs a solution by making use of
Miura transformation which deforms the original KdV equation into the modified one.
Recently, Abe-Okazawa [1] have studied this kind of problem for the complex Ginzburg-
Landau equation. The ideas of the proof for these known results are based on the strong
smoothing effect of linear part or the nonlinear transformation of unknown functions into
the suitably handled equation. In the present case, however, the nonlinear Schrodinger
equation does not have the useful smoothing properties and the transformation into easily
handeled equation. Therefore, it is still open whether we can construct a solution when
the initial data is arbitrary measure.

We remark that Kenig-Ponce-Vega [4] studied the ill-posedness aspect of the nonlinear
Schrodinger equation with u(0,x) = 0y and 3 < p. The situation is very similar to the
nonlinear heat case introduced above. They proved that (NLS) possesses either no solution
or more than one in C([0,7];S’(R)), where S'(R) denotes the tempered distribution.
In this talk, we consider the construction of the solution to (NLS) for the subcritical
nonlinearity. We prove that the solution is explicitly obtained when the initial data
consists of single d-function (see section 2). Furthermore, we observe that, when the initial
data consists of double (or more) J-functions, the superposition of infinitely many linear
solutions immediately appers (see section 3). This aspect is called ”the generalization of
new modes”. Throughout this note, the Lebesgue space L denotes

Ly = {005 151y = [ 150)1 do < o0},

Let us state our main theorems case by case.

2 The case u(0,x) = podo
This case simply gives an explicit solution. Namely, the solution to (NLS) is given by
(2.1) u(t,r) = A(t) exp(itd?)dy,

2



where exp(itd?)dy = (4mit) "'/ exp(iz?/4t) and the modified amplitude A(t) is

2| pag|P1
flo €XP <.(giol)|47rt|(p1)/2t> if ImA = 0,
/l/ —
(22) A®) = 2(p — f)ImM = oo
Lo (1 2P 3 Ho |47rt|_(p_1)/2t> vy if Im\ # 0.
-D

In fact, by substituting (2.1) into (NLS), we have the ordinary differential equation (ODE)
of A(t) :

i‘i;j = Mdmt|"PD2N7(A),
A(0) = po.

This is easily solved and yields (2.2). Note that ImA > 0 implies blowing-up of A(t) in
positive finite time.

3 The case u(0,x) = podp + (104

The superposition of d-functions causes "the mode generation” for ¢t # 0. Before stating
our results, let 2 be the weighted sequence space defined by

lo = HArtrezs [{Artrezllty = D2 (1+ [k Arl* < oo}

keZ

For the simplicity of description, we often use the notation {Ax} in place of {A}rez.
Then, our results are

Theorem 3.1 (local result) For some T > 0, there exists a unique solution to (NLS)
discribed as

(3.1) u(t,z) =Y Ax(t) exp(itd?2)0ka,
where {A(t)} € C([0,T);63) N CY(0,T7;62) with Ag(0) = g, A1(0) = py and px = 0
(k#0,1).

Remark 3.1. Let us call Ay(t) exp(itd?)dk, the k-th mode. Then, (3.1) suggests that
new modes away from 0-th and first ones appear in the solution while the initial data
contains only the two modes. This special property is visible only in the nonlinear case.



Remark 3.2. Reading the proof of Theorem 3.1, we see that it is possible to gener-
alize the initial data. Namely, we can construct a solution even when point masses are
distributed on a line at equal intervals — more precisely, the initial data is given like

u(0,2) = pbra(z),

keZ

where {1, }rez € £2. In this case, the solution is described similarly to (3.1) but { Ax(0)} =
{ur}. The decay condition on the coefficients described in terms of £2 is required to
estimate the nonlinearity. This is because we will use the inequality like [[A(g)[zz <

OHgHIi}ngHLg where g = g(t,0) = ¥, Ape~#eik)*/4t and ¢ e [0,27]. Accordingly, to
estimate ||g||zs, we require the decay condition of {Ay}.

The sign of ImA determines the global solvability of (NLS).

Theorem 3.2 (blowing up or global result) (1) Let ImA > 0. Then, the solution
as in Theorem 3.1 blows up in positive finite time. Precisely speaking, the (3-norm
of {Ak(t)} tends to infinity at some positive time.

(2) Let Im\ < 0. Then, there exists a unique global solution to (NLS) discribed as in
Theorem 3.1 with {Ax(t)} € C(]0,00); £2) N C((0, 00); £3).

In what follows, we present the rough sketch to prove Theorem 3.1 and 3.2. The idea
is based on the reduction of (NLS) into the ODE system of { Ag }xez. The next key lemma

gives the representation formula of N' (D" Ay exp(itd2)dk,).
k

Lemma 3.3 Let {A;} € C([-T,T); 3). Then, we have

(3.2) NS Ax(t) expl(itd)dea) = [t @=D/2 3" A, (t) exp(it0) g,

kEZ kEZ

where

Ak(t) _ (ZW)—lei(ka)2/4t<N(Z Aje—ijee—i(ja)z/élt)’ e—ik9>67
J

with (f, g) = 2% 1(9)9(B)db.
Proof of Lemma 3.3. Note that the linear Schrodinger group is factorized as follows.

exp(itd?)f = (dmit) /2 [ explile — yI*/40) f(y)dy
= MDFM,
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where
Mg(t,x) = ¢/ g(x),
Dg(t,x) = (2it)"2g(x/2t),
Fgl§) = (QW)_l/Q/e_ifxg(x)dm (Fourier transform of g).

Then, we see that

(3.3) ZA ) exp(itd2)d,a)
= N((2m)2MDY" Aj(t)e i’/
J
lamt| =P~V 2m) TV2PMDN (. Aj(t)e Hwailia)®/aty
J
Note that, to show the last equality in (3.3), we make use of the gauge invariance of

the nonlinearity. Replacing a - z by 6, we can regard N(3; A;(t)e #0-U0)*/4) a5 the
2m-periodic function of 8. Therefore, by the Fourier series expansion,

ZA —zg@ i(ja) /4t) _ ZAk —z (ka)? /4t —ik6
- 27’(’ n/ZZAk t)]:Méka
k
Plugging this into (3.3), we obtain Lemma 3.3. |

Our idea to solve the nonlinear equation is based on the reduction of (NLS) into the
system of ODE’s. By substituting u = 3=, Ag(t) exp(itd?)dy, into (NLS) and noting that
10y exp(1t0?)0pq = — 0?2 exp(it@Z)éka, Lemma 3.3 yields

Z exp(itd?)op, = |Amt|” P23 Ay exp(itd2)Spa-
k k

Equating the terms on both hand sides, we arrive at the desired ODE system:
dAy ~

R gm0 D/2 4

il g

with the initial condition A(0) = ugx. Now, showing the existence and uniqueness of
(NLS) is equivalent to showing those of (3.4). To solve (3.4), let us consider the following

(3.4)

integral equation.

Ap(t) = Pu({Ax(t)trez)
(3.5) = ,uk—i/o |47r7'|_(p_1)/2141k(7') dr.
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Then, we want to see the contraction mapping property of {®y }rez. The simple aplication
of Parseval’s identity derives the following.

Lemma 3.4 Let I = [0,7] and {Ar} = {Ak}rez. Then, we have

(3.6) H{AH =) < CIH{AM B )
(3.7) LAY = LA o (1)

j — 1 2
< Cmax {47}l o= IHAYY = {4 =gy

Proof of Lemma 3.4. According to the description of Ay as in Lemma 3.3 and the
integration by parts, we see that

k;;lk = (27T>71i67i(ka)2/4t<89/\[(2 Ajefz‘jé’ei(ja)2/4t)7 efz‘k0>6.
J
Then, Parseval’s equality yields

[4

Il - —ij6 i(ja)?
I{kAlg = @m) 200N (3 Aje e )|,
J
—450 i(ja)? —1 . —ii0 i(ia)2
< CH ZAje 70 pi(ja) /41t||1£go || Z]Aje 70 gilia) /4t||L§
I j
< Cl{A -

Thus, we obtain (3.6). The proof for (3.7) follows similarly. Since there is a singularity
at u = 0 of the nonlinearity N (u), we do not employ ¢?-norm to measure {A,ﬁl)} - {A,(f)}.
|

We are now in the position to prove Theorem 3.1.

Proof of Theorem 3.1. The proof relies on the contraction mapping principle of
{®c({A;})} Let [[{mille < po and

Bapy = {{Ac} € L2([0, T 61); [I{Ak}H e (ro,r1:3) < 200}

endowed with the metric in L*([0,T];¢2). Then, in virture of Lemma 3.4, we see that
{®,({A;})} is the contraction map on By, if T' is sufficiently small. Thus, Theorem 3.1
is obtained. O

To prove Theorem 3.2, we apply the a priori estimates described in the following.

Lemma 3.5 Let {Ay(t)} be the solution to (3.4) in C([0,T];¢2) N C*((0,T]; £3).

6



(1) Then, we have

AW g Er
(33) e i (1] oot

where v(t,0) = Z Ak(t)@*k9ei(ka)2/4t.
%

(2) In addition, if ImA\ < 0, then we have

(3.9) kAL < Ce'?,

where the positive constant C' does not depend on T.

Remark 3.3 The a priori bound in (3.9) may be refined by sophisticating the estimates
in the proof.

Formal Proof of Lemma 3.5. Note that v(¢, 0)(= v) satisfies the nonlinear equation
like
a2
42
Also, let us remark that [[{Ax(t)}]e = [[v(t)|z2 and |[{kAk()}H|z = [[Opv(t)||12. Then,
multiplying 7 and taking the imaginary part of integration, we obtain (3.8). On the other

(3.10) O = 20 + Admt|~P=YV2N (v).

hand, multiplying d;v and taking the real part of integration, we have

a® d 2Re)
11 = ———||0pv|I3
(3.11) 0 = gl -

—2(Im\)|47t|~ D2 Im (N (v), Opv)g.

d
Art|~P-D/2 2 pt+1
] 02 2 ol

To estimate Im (N (v), 9yv)g in (3.11), let us multiply M (v) on both hand sides of (3.10).
Then, we see that

CL2

(3.12)  ImN(v),0w)s = —4t2Re<3gv,N(v)>g+(Re)\)|47rt|’(p’1)/2]\v|]i%p
> (Re))|drt| =P D72 |v||%

2
LZD?

since Re(93v, N (v))y < 0. Combining (3.11) and (3.12), we have

d e d _
(3.13) —ll9svll7s + K1 (ReA)t? pwallvll’gﬁ — Ks(Im\) (ReA)t? ”Ilvlli’%p <0,

8 8 . .
where K| = (0 T Da2(dm) D72 and Ky = W. This is equivalent to
(3.14) iE(t) < Mt(&p)ﬂuvnpﬂ

p+1)
LB

dt 2



where
¢
E(t) = [|9gv[|7> + K1(ReA)t® ’”/2!|v|pﬁ1 KQ(ImA)(ReA)/ P |o(r) |25, dr
to 0

In this proof, we only consider the most complicated case that ImA and Re\ < 0. The
other case follows more easily. By (3.14), we have E(t) < (const.) for t > t,, i.e.,

(3.15) |9gvlI7; < C1 + Cot P2 il + Cs / IS, dr

for some positive constants C', Cy and C5. Applying the Gagliardo-Nirenberg inequalities:

p+1 <
lollyshy <

2p(1—
ol < C||v||2’”|| 17,

CHUH (p+1 ﬂHUH(PQ-i-l)(l—ﬁ)

Y

where 1/(p+1) = 5(1/2—1)+ (1 — 3)2 and 1/2p = y(1/2 — 1) + (1 — )/2, and using
Young’s inequality, we have

(3.16) o®ly < O + [ o)y dr.

We here note that, since ||v(t)|| 2 has a finite bound in virture of (3.8), it is included in the
positive constant C. Applying Gronwall’s inequality to (3.16), we obtain (3.9). |

Proof of Theorem 3.2. If ImA > 0, then, Lemma 3.5 (3.8) and Hoélder’s inequality
lollf,h = (2m)~ D2l give

|| 175 > Cllvl7s"

This implies that [[v(?)[|zz = H{Ak(t)}Heg blows up in positive finite time. On the other
hand, if ImA < 0, then, Lemma 3.5 gives the a priori bound of [[{ Ax(¢) }[|sz for any positive
t. Hence, the local solution to (3.4) is continuated to the global one. |
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Time local well-posedness for Benjamin-Ono equation
with large initial data

Jun-ichi SEGATA
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This is the joint work with Professor Naoyasu Kita, Miyazaki University.
We consider the initial value problem for the Benjamin-Ono equation:

{ O + Hp0%u + udyu = 0, z,t € R,

(0.1) u(z,0) = up(x), reR,

where H, denotes the Hilbert transform, i.e., H, = F~'(—i&/|¢|)F. The equation (0.1)
arises in the study of long internal gravity waves in deep stratified fluid.

We present the time local well-posedness of (0.1). Namely, we prove the existence,
uniqueness of the solution and the continuous dependence on the initial data. There
are several known results about this problem. One of their concern is to overcome the
regularity loss arising from the nonlinearity. Because of this difficulty, the contraction
mapping principle via the associated integral equation does not work as long as we consider
the estimates only in the Sobolev space H5°, where H*“ is defined by

Hy* ={f € S'(R); || /]

with [|fl[gze = [{2)*(Da)*fllzz, (z)* = (1 +2°)** and (D,)* = F{¢)*F. Indeed,
Molinet-Saut-Tzvetkov [6] negatively proved the solvability of the integral equation in
H#0 for any s € R.

Recently, Koch-Tzvetkov [4] (see also Ponce [7]) have studied the local well-posedness
with s > 5/4 due to the cut off technique of Fu(€). Furthermore, Kenig-Koenig [2] proved
the local well-posedness with s > 9/8. We remark here that it is possible to minimize the
regularity of uy by inducing another kind of function space. In fact, Kenig-Ponce-Vega
[3] construct a time local solution via the integral equation by applying the smoothing
property like

H>® < OO}

t
1D, [ Vit = )P ()t |z < CIF s,
where [[ulzzqzg) = I(lulliriom)llzemys Do = FUEIF and V() = exp(—tH,02). They
obtained the time local well-posedness in H#? (s > 1) for the cubic nonlinearity (Their

1



argument is also applicable to the quadratic case if ug satisfies ug € H5? (s > 1) and the
additional weight condition). In their result, however, the smallness of the initial data is
required. This is because the inclusion L} (LF) - L*(L7) C Ly(L7) yields |lul|ry ey in
the nonlinearity and we can not expect that |ul/z1(zec) — 0 even when T' — 0.

Our concern in this talk is to remove this smallness condition of ug. Before presenting
the rough sketch of our idea, we introduce the function space Y in which the solution is
constructed:

Yr =A{u:[0,T] x R = R;|ully; < oo},
where [[ully, = [ullpsequzongzren + 1) 2Day 20l e o)+ (D) )0l 2 ae) with
p, u > 0 sufficiently small and 0 < ¢ < p. We first consider the modified equation such
that

2 JR—
(02) { Oruy + Hxaxuz/ + u,,@xn,, * Uy, = 0,

u, (0, 2) = up(z),

where 7, (z) = v='n(z/v) with n € C§°, [ n(z)dx = 1 and v € (0,1]. Then, the existence
of u, in Y7 easily follows and it is continuated as long as ||u, ()|l zs.0qgs1e1 < 00. Note
that ||u, ||y, is continuous with respect to T'. To seek for the a priori estimate of ||u, ||y,
we deform (0.2). Let ¢ € C5°(R) and write w, 0,1, * u, = 0,1, * uy, + (U, — ©) 0y * Uy
Note here that, if ¢ is close to ug, one can make u, — ¢ sufficiently small when t — 0.
To control ¢(d,n, * u,), we employ the gauge transform so that this quantity is, roughly
speaking, absorbed in the linear operator. Then, our desired a priori estimate follows via
the integral equation. As for the convergence of nonlinearity u,0,m, * u, — ud,u, we also
consider the estimate of u, — u,s. Let us now state our main theorem.

Theorem 0.1 (i) Let ug € H?° N H:v™ = X° with 51+ a1 < s, 1/2 < sy and 1/2 <
ay < 1. Then, for some T = T(ug) > 0, there exists a unique solution to (0.1) such that
we C([0,T]; X*) N Yo,

(i) Let u/'(t) be the solution to (0.1) with the initial data uf satisfying ||uf — wol|lxs < 9.
If 6 > 0 is sufficiently small, then there exist some T' € (0,T) and C > 0 such that

0" = ul[ g (xs) < Cllug — uollx+,

() ~P{Da)* 2 (u” — w) < Cllug — uol|x+

HWWM

In Theorem 0.1, the conditions on the initial data are determined by the estimate of
maximal function, where, we call || f(-, z)|zs the maximal function of f(,z). Concretely
speaking, the quantity [|ul|r1 (e is bounded by C([[uol| gso + [luol| gzra1) -

Remark. Recently, Tao [8] has studied the global well-posedness in H!° but the L2
stability of the data-to-solution map holds while the initial data belongs to H!Y, i.e.,
[/ (t) = w(®)]| > < Cllug — uoll gro-



We also remark that Koch-Tzvetkov [6] negatively proved the strong stability like
J/(t) = ult) o0 < Cllty = wollzo for s >0,

if there is no weight condition on uy and uy. Though our result requires slightly large
regularity in comparison with Tao’s work, it suggests that the additional weight condition
yields the strong stability of the data-to-solution map in the sense that its target space
coincides with that of initial data. Recently, K. Kato [1] obtained the similar result via
the Fourier restriction method.
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On the nonlinear Schrodinger limit
of the Klein-Gordon-Zakharov system!
Kenji Nakanishi (Nagoya University)

1. INTRODUCTION

The nonlinear Schrodinger equation (NLS) describes nonlinear dispersive wave
propagation in various phenomena. One of such contexts is the plasma physics,
where one derives the nonlinear Schrodinger equation via the Klein-Gordon-Zakharov
system (KGZ) or the simpler Zakharov system (Z), starting from the fluid equations
of the ions and the electrons, coupled to the Maxwell equations (see e.g., [7]). In
this talk, we consider convergence of solutions in the limit from (KGZ) to (NLS).

This problem has two difficulties, which seem typical to this kind of singular
limits. One is that the bilinear interactions have certain resonant frequency which
tends to infinity in the limit. Bilinear estimates can not control this part, because of
non-oscillatory interaction at this frequency. The other is that the conserved energy
tends to infinity in the limit. Hence the energy itself can not bound the solution
along the limit.

To overcome these difficulties, we decompose the solution into the resonant part
and the remaining non-resonant part in the frequency, and apply modified nonlinear
energy and bilinear estimates, so that they can compliment each other.

In the following, u and @ denote the Fourier transforms in the space and in the
space-time respectively. H* denotes the Sobolev space on R?. We denote

N

(a) = V]aP+ 1, [(V)u:= [(i€)i. (1)
2. FORMAL LIMIT

First we formally derive (NLS) from (KGZ). The Klein-Gordon-Zakharov system
(KGZ) reads

¢ E — AFE 4+ = nk,
(2)

a i — An = —A|EJ?,

where F : R — R® and n : R — R are unknown functions, and ¢, a are
given parameters. In the context of the plasma physics, F and n approximately
describe the electric field and the ion density fluctuation respectively, ¢? is the plasma
frequency?, « is the ion sound speed and we usually have ¢ > a > 1, which is the
physical ground for the following approximation. Replacing £ = §R(eic2tE) and
neglecting the complex conjugate®, we get the usual Zakharov system (Z) in the
limit ¢ — oo:

2%E — AE = nkE,
(3)

a”h — An = —A|B|%

1Joint work with Nader Masmoudi.
In the real physical model, the solenoidal part of E obeys faster propagation speed.
3We can not really ignore the complex conjugate and their interactions; see our theorem for a
correct treatment.
1



2
Substitution & — oo gives the nonlinear Schrodinger equation:
2%FE — AE =|E*E, n=|E. (4)

3. KNOWN RESULTS

The above equations have the following conserved energy respectively:

A e e

5:/ | B2 4+ |[VE)? + |cE)* + n|E*de, (KGZ),
RS

2
-1 v —-1.12 2
e~ [ vep s EEEENE g, (2), )
_ »_ E]
€= | IVEP=Sde, (NLS).
R3

so the energy class of solutions are defined by the following:
(KGZ): (B(t), E(t),n(t), V|0 (t)) € H' x L? x L* x L?,
(Z) : (E(t),n(t), V| ta(t)) € H" x L* x L* (6)
(NLS): E(t) e H'.
Local wellposedness is known to hold in the above class for each equation?. Indeed,
(Z) and (NLS) is wellposed even in larger spaces, such as H'/? x L%, See [5, 4, 3].
On the other hand, the convergence of solutions in the limit has been proved
only in Sobolev spaces with much higher regularity. The convergence from (Z) to
(NLS) was proved by [6] in H®, assuming that n = |E|? at ¢ = 0. [1] proved the
convergence in H®, assuming smallness of the energy, but allowing the initial layer.

The convergence from (KGZ) to (7) was proved in [2] in H® for s > 7/2. We are
not aware of any result in the literature for the convergence from (KGZ) to (NLS).

4. MAIN DIFFICULTIES

There is an essential obstacle which prevents those wellposedness results from
deducing the convergence in the same spaces. Local solutions are usually constructed
by using the iteration scheme such as

2% Ey — AE), = nj_ Ey_y, 7)
Oé_szk — Ank = —A|Ek_1|2.

This iteration sequence (Ey, ny) in general does not converge uniformly for large a.
More precisely, we have the following.

Theorem 1. For any s € R, there exist p € H® such that the second iteration F,
defined by (7) together with the initial condition

Lx(0) = ¢, ni(0) = nx(0) =0, (8)
satisfies
lin sup || Bo(6)lsse = 00, )
a—00

AThe local wellposedness of (KGZ) in the energy class is known in the case ¢ # a. The case
¢ = « seems to be open.



forany 0 <t <1 ande > 0.

We have a similar result for (KGZ). Thus we need something else to bound the
nonlinearity in the limit. The above divergence occurs only at a certain resonant
frequency, where the bilinear estimate can not derive any cancellation from oscilla-
tory integrals. The resonant frequency is given by the intersection in the space-time
Fourier space of the characteristic surfaces of the Schrodinger equation and of the
wave equation, where both the linear equations behave the same. This portion does
not matter at all if the parameter « is fixed, because the resonant frequency then
remains bounded.

Another standard way to control the nonlinearity is to use the conserved energy. In
fact, the above convergence results for (7) rely mostly on nonlinear energy argument,
or the conservation structure. In the case of (KGZ), however, we encounter another
difficulty in using the energy. Namely, the conserved energy £ is not bounded
uniformly for ¢ — oo, because of the term |¢E|2. The energy for ¢ 'E (or e_ic2tE),
which appears formally to be bounded, is useless in our context: forcing a uniform
bound on that energy makes the limit solution vanish identically, as long as the
original F is real-valued.

5. MAIN RESULT

Theorem 2. Let s > 3/2 and 0 <y < 1. Let I/ and n be the solution of (KGZ),
and assume that (E(0), ¢ (V /)" E(0)) converges in H® and n(0) is bounded in
H*7' as (c,a) — oo with afe < . Let E* = (B, E>) be the solution of the
nonlinear Schrodinger equation

UE — AE™ — |[E*|*E> = 0,

B (0) = lim J(B(0) — ie” (V/e) ™ E(0)) (10)

1 :
Eﬁ%@)zlnn§(Ean—¢c4<V/@—¥Eany
and denote its maximal existence time by T°. Then the maximal existence time T' of
(E,n) satisfies iminf T > T and (E,n) have the following asymptotic behavior:
E— (B2 4+ B2 = 0 in O([0,T%); H?), n
n—n;— |[E°? = 0in C([0,T%); H*"),

where ny is the free wave solution o™iy — Any = 0 satisfying the initial condition
n(0) —ng(0) = [EX(0)]*,  n(0) —np(0) = —S[E=(0) - AE*(0)].  (12)

We have a similar result for the limit from (Z) to (NLS). The convergence from
(KGZ) to (Z) is much easier and can be proved in the energy class. On the other
hand, the limit equation changes if the plasma frequency ¢? is comparable to, or
smaller than the ion sound speed «. For example, if we take the limit @ — oo first
and ¢ — oo later, then we get a different limit system

{2@'15?5 — AEY — (|[EZP +2/E)ES =0,

. 13
2%ES — AE® — (2] EF? + | EXP)E= = 0. (13)



6. OUTLINE OF PROOF

The main part of proof is deriving estimates which are uniform in (¢, o). We first
rewrite the equation into the first order system by putting

-2 1 -2 1 J— P
e, = S = i V)T OE), B = S(F = iV e\ OE),

(14)
N :=n—ia ' |V| ' Omn.
Let B := (Ey, E_) and E* := ¢ %Y E_, E;). Then (KGZ) is reduced to
{2iE—ACE = (V/e) 'n(E + E), 5)
iN + a|V|N = o|VI(E,E + E),

where we denote A, = 2¢*(1 — (V/c)). The original function is given by F =
eic2tE+ + e @*E_, n = RN. The initial condition implies that
E(0) — E>(0) in H®, N(0) bounded in H*™", (16)
and the convergence result is equivalent to
E — E* in C([0,T); H?),
N — Ny —|[E*|> = 0in C([0,T); H*™"),
where N; = e@IVI(N(0) — |E®(0)[?).

Next we decompose the solution (E, N) into the resonant part and non-resonant
part. Let ¢ € C5°(R") be a cut-off function satisfying (&) =1 for 2/3 < [€] < 3/2
and (&) =0 for [£] < 1/2 and |£] > 2. We define the resonant frequency by

M :=2ac?/(* — a?), E\;:: c,o(f/M)[E, Ey :=FE — Ey,. (18)

We define Ny; and Ny in the same way.

The main uniform estimates are given in the following spaces. Fix a small k > 0
such that s — 3k > 3/2 and denote 2+ :=1/(1/2 — k). We introduce the Strichartz
space-time norms by

Str(0,7) := L(0, 5 H*) N (V /o) 277 L24(0, T By, V*49),

(17)

1/k
19
Str™(0,7) := L™(0,T; H*~') N oz_l/2+”L2+(0, T, Bls/_:"'z”), (19)
where B} := B;, denotes the Besov space on R3. The latter space on each line is

close to the endpoint Strichartz norm. We define the Fourier restriction norms by

XoH0,T) i= 220,75 HY),

Y0, T) := ¢ VEHY 0, T; H?). (20)

We prove that the following norms are bounded uniformly for (¢, «).
I8 1) = Bl 300 + 1B s o

I N0,y := 1N || oo 0,755 1)y =11 0,7y + || Nx s 0,1)-

We derive the uniform estimates by the bootstrap argument: we estimate the above
norms by themselves with a small factor depending on the time interval 7. The
outline is as follows. The standard energy estimate yields bounds on the X*~1:1
and oY*~ 5! norms in terms of ||E||~gs and || N|[f~g:-1. We can use the Strichartz
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estimate to control the high-high interactions in the space-time norms Str”, Str”.
For the low-high interactions, we use the bilinear estimate to recover the derivative
loss, where we have to restrict the frequency to the non-resonant part. Hence we
get bounds for the non-resonant part in the space-time norms. For the resonant
frequency part, we use a modified energy, which is localized in the frequency and does
not contain the divergence factor |cF|?. Thus we obtain a bound in L H® x L H*™1,
which closes our bootstrap argument.

7. BILINEAR ESTIMATE

The bilinear estimate uses the following geometric property of the non-resonant
interaction. We consider the trilinear form

(RINE | F), = R(N)EFdtdz, (22)
’ R1+3
for general functions N, K, F'. We decompose each function at a distance § > 0 from
each characteristic surface:

N =N N N6 = ((r — [EN/HN(T.©).
E=E"+ B, B €)= x((r —w(€)/8)E(r,6), (23)
F=FC 4 FOr.6) = ((r —wl()/§)F(r.€).
where w(£) := 2c¢*(({/c) —1) and y € C§°(R) is a cut-off function satisfying (¢) = 1
for [t| < 1 and x(¢) = 0 for |t| > 2. Furthermore, we restrict each function into
spatial frequency j, k,[, respectively, using the following notation «; := @(&/7)u.
The non-resonant property can be formulated as follows. Assume that
E<j~lgd M, §<(a+min(el))l. (24)
Then we have (R(n§)ES | FY)

least has to be away from the characteristic. For that function, we use the X*~1:!
type norm. For instance, we have

HEFHL2HS—1 S (S_IHEHXS—I,17 (25)

which gives us, roughly speaking, two derivative gain, compensating the derivative

loss.
There is no resonance in the terms including E*: it holds (R(n§)ES~ | Ef), =0

t,x
whenever 6 < ¢(c+ j 4 k 4 1), without any condition on j, k, /.

.. = 0. In other words, one of the three functions at

8. MODIFIED ENERGY FOR RESONANT PART
We define the following modified energy to control the resonant part.
Em =2(AE | (V/)Er ) + (N | Nap)e/2 — (nmBEar | Eng )z, (26)
where (f | g). denotes the L*(R?) inner product. Using the equation, we have
0:En = —2(nE — nyEpy + nE | 1A En ),
+ (nuEar | iPy(V/¢) " 'n(E + EY)), (27)
F (il TNy | (B, E) — (Byy, By} + (E, E°))..
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Notice that the error terms do not contain any triple interaction of the resonant
part (Eas, Nas). They can be estimated by using the Strichartz estimate for the
high-high interaction and the bilinear estimate for the low-high interaction, just in
the same spirit as in estimating the non-resonant part. The lower bound 3/2 of the
regularity is the most crucial in this step, where we are forced to bound n in L°.
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Schrodinger Maps:
Local regularity and singularity formation

Jalal Shatah (Courant Institute)

Abstract

Schrédinger Maps are a generalization of the Landau Lifschitz equations
that arise in ferromagnets. We will discuss the physical meaning of these
equations and the equivalence between Schrodinger Maps and nonlinear
Schrodinger equations. We will show how this equivalence leads to local
and global well posedness results. We will also discuss how singularities

might form for data with large energy.



Existence and uniqueness of the solution to the modified
Schrodinger maps

Jun Kato*

Department of Mathematics, Kyoto University
jkato@math.kyoto-u.ac. jp

We consider the local well-posedness of the initial value problem for the system of

the nonlinear Schrodinger equations on (0,7) x R?,

i Oy + Auy = —2i A - Vuy + Buy + |A]Puy + 1 S(ugtiy us,
(MSM) { i Oyug + Auy = —2i A - Vuy + Buy + |A]Pug + i S(urtiz)uy,
ui(0,2) = up(x), u2(0,2) = ug(z), x€R
under the low regularity assumption on the initial data, where uy, uy are complex valued

functions (we set u = (uq,us) in the following), and A = (A;[u|, As[u]), B = Blu| are
defined by

AJ[U] = 2G] * S(ulﬂg), j = 172, (1)
1 x 1 x
G1($) = %‘x%, GQ(JU) = —%@7 (2)
2
Blu] = = Y 2(R; RpR(u;tie) + [ul®). (3)
g k=1

Here, for a complex number z, 3z and $z denotes the real part of z and the imaginary

part respectively, and I?; denotes the Riesz transform. We notice that
divA=0 and rotA= 81A2 - 82141 = 2%(U1ﬂ2)

hold from the definition of A. These properties are useful to construct the solution to
(MSM) for the low regularity initial data.

The system (MSM) above is called the modified Schrodinger map which is derived
by Nahmod-Stefanov-Uhlenbeck [3] from Schrodinger map from R x R? to the unit
sphere S? choosing an appropriate gauge change so that the first order derivatives of
the Schrodinger map satisfy (MSM). Roughly speaking, well-posedness of (MSM) in
H* corresponds to the well-posedness of the Schrodinger map in H**!. As for the
modified Schrédinger map, Nahmod-Stefanov-Uhlenbeck [4] showed the existence and
uniqueness of the solution for the data uy € H*(R?) with s > 1 by using the energy
method. In this talk, we show the improvement of their result.

* JSPS Research fellow




Theorem 1. Let ug € H*(R?) for s > 1/2. Then, there exists T > 0 satisfying

min{1, C/((1+ [Juol|2) /| uo]

)} <T <1,
and at least one solution u € L>(0,T; H*(R?)) to (MSM) such that

Ju € LP(0,T; LY(R?)), (4)
where s —1/2> 8 >2/¢>0,1/p=1/2—1/q, and J° = (I — A)°/2.

Remark 2. (1) The modified Schrodinger map is invariant under the scale transforma-
tion
u(t, ) — Au(N\’t, A\r), A > 0.

Thus, the critical space for the well-posedness of the Cauchy problem (MSM) is consid-
ered to be L?(R?), which corresponds to the energy class for the original Schrodinger
map.

(2) As is pointed out in [3, §3], it is not possible to go back directly from solutions
of the (MSM) to the original Schrédinger map. However, a priori estimate and the
estimate on the time of existence on the smooth solution to (MSM) are made use of in

order to construct the low regularity solution to the Schrodinger map. See [3, §3] for
details.

In the theorem above, the uniqueness of the solution is not known. However, we

have the following result by using the Vladimirov’s argument [6] (see also [5]).

Theorem 3. Let ug € H'(R?). We assume that u and v are solutions to (MSM) on

(0,T) x R? in the distribution sense with the same data ug satisfying

u, v € C([0,T]; L*(R?)),
lullpgery < M, [[ollgemy < M.

Then, we have u(t) = v(t) in L*(R?) for 0 <t <T.

Corollary 4. If we assume ug € H'(R?), then the solution in the class of Theorem 1

15 uniquely determined.

For the proof of Theorem 1 we use the compactness argument. Because the local
well-posedness for smooth data is already known, our task is to show a priori esti-
mate for the solution to (MSM). To recover the loss of the derivatives caused by the

nonlinearity, the following type of estimate
||J5w||L§L_% S ||w||LoToH;+1/2+s’ + “FHL?TH;*”Z (5)
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for the solution to i0;w + Aw = F is crucial in our argument, where p, ¢ are the
admissible exponent for Strichartz estimates, i.e. 1/p = 1/2 —1/q, 2 < ¢ < o0, and

s € R. Compared with the usual Strichartz estimate

[T wllzg s < flw(0)]

ws + | Flloy g,

estimate (5) says that we have a gain of regularity 1/2 on the inhomogeneous term at
the cost of a loss of regularity 1/2+¢" on the homogeneous term. This type of estimate
is first appeared in Koch-Tzvetkov [2] and refined by Kenig-Koenig [1] in the context
of the Benjamin-Ono equation.
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Conservation Laws
with Vanishing Diffusion and Dispersion

Naoki Fujino (University of Tsukuba)*

1 Introduction
We study scalar conservation laws with diffusion and dispersion terms:

O+ 0, f(u) = €d2u—002u, (z,t) € R x (0,00),

u(z,0) = ui’(x), = eR, (1.2)
where e > 0 and § = d(e) > 0 tend to zero and the initial data u5° is an
approximation of a given initial condition uy : R — R. We show that the
sequence u=’ of solutions for (1.1) converges to the unique entropy solution
of the hyperbolic conservation laws:

Ou+ 0, f(u) = 0, (1.3)
u(z,0) = wo(z), z€R,

under the assumption that the dispersion parameter J is small compared with
the diffusion parameter e.

We recall that the existence and uniquness of an entropy solution were
first proved by S.N. Kruzkov [11] for the Cauchy problem (1.3)-(1.4). Fur-
thermore we recall that J.L. Bona-R. Smith [4] showed that there exist the
solutions us® € L>®(0,T; H¥) (T > 0) when the initial data u5° € H¥ for
a positive integer k to the Korteweg-de Vries equation (1.1)-(1.2). Here
H*® = H*(R) is the Sbolev space for integers s > 0.

There are many previous results for Egs. (1.1)-(1.2): M.E. Schonbek, P.G.
LeFloch-R. Natalini, etc. At first, M.E. Schonbek [20] gave a convergence

*This note is a joint work with Mitsuru Yamazaki (University of Tsukuba).
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result under the assumption that either & = O(g?) for f(u) = u?/2, or
§ = O(g?) for abitrary subquadratic flux functions f. Next P.G. LeFloch-
R. Natalini [17] studied the equation with nonlinear diffusion and showed
that the sequence u®? converges to the entropy weak solution under the
assumption d = o(¢/") (r > 1). See also a convergence result for systems in
B.T. Hayes-P.G. LeFloch [7].

On the other hand, when the flux is a smooth function with linear growth
at infinity: |f'(u)| < M, for u € R, some M > 0, C.I. Kondo-P.G. LeFloch
[10] proved that the sequence u®? for the linear diffusion and dispersion terms
converge in L*(R4; LP(R)) (1 < s < oo and 1 < p < 2) to a weak solution
under the assumption § = O(g?) and that the limit is the unique entropy
solution in the sence of Kruzkov under the stronger condition on § = o(g?).

In this note, we restrict ourselves to assume that the flux function is a
special form f(u) = u*/2 i.e. Burgers equation:

oo () _ o
ot Oz \ 2 - °

Here we assume the diffusion term to be a natural form e92u which did not ap-
parently treated in [17]. For this equation, we obtain a similar result to P.G.
LeFloch-R. Natalini, weakening a vanishing order between diffusion and dis-
persion terms without the condition: |f'(u)| < M, for u € R, some M > 0.
More explicitly, P.G. LeFloch-R. Natalini showed that a sequence u®° con-
verges strongly to u € L*(0,7,; LY(R)) in L*(0,T,; LP(R)) (s < oo and p <
q) using a priori estimate, compensated compactness and Young measure.
We improve a relation between ¢ and J, a priori estimate being carried
out for our conservation law. Then we describe that the sequence u®? of
the smooth approximate solution converges to the unique entropy solution
u e L*(0,T,; LY(R)) in L*(0,T,; LP(R)) (s < o0 and p < q).

In the case of f(u) = u?/2, by making a consideration for the travelling
wave solution, which are of the form

T —ct

u(:v,t):u( ), c>0,

€

we are led to the differential equation:

o
_Cul + uu/ — U” o 7u///‘
g2



This structure suggests that for 6 < ke? with a some appropriate k, there
is convergence to the solution of Eq. (1.3), that is, if § = O(e?), Eq. (1.1)
could be reduced to a conservation law with diffusion:

Opu + O, f (u) = 02w,

it is rather trivial that the sequence u*° of solutions to Eq. (1.1) converge to
the solution of the hyperbolic conservation law (1.3). On the other hand, if
§ > ke?, Eq. (1.1) could be reduced to a conservation law with dispersion:

Opu + Oy f (u) + 60%u = 0,

it is considered that the solutions of Eq. (1.1) do not converge in general to
the solution of Eq. (1.3) (cf. P.D. Lax-C.D Levermore [13, 14]) (See also Lax
[12]). Contrary to the above suggestion, we will show that for § = o(e), even
if § > ke?, the sequence u®? of solutions to Eq. (1.1) converge to the entropy
weak solution of the hyperbolic conservation law (1.3).

In the section 2, we recall some important tools: Young measures, en-
tropy measure-valued (m.-v.) solutions. In the section 3, we apply a priori
estimates to a scalar conservation law (1.1). In the last section, we show that
the sequence u° of the solutions to Eqgs. (1.1)-(1.2) converges to the unique
entropy solution of Eq. (1.3).

2 Young measures and entropy mesure-valued
solutions

In this section, we recall a generalization of the Young measures associated
to sequences and entropy measure-valued solutions.

Lemma 2.1 Let {u;} be a uniformly bounded sequence in L>°(R; LY(R)).
Then there exists a subsequence {u;} and a weakly-« measurable mapping
v: R x Ry — Prob(R) such that, for all functions g € C(R) satisfying

g(u) < e(l+|u|") for some 0 <r < g, (2.1)
the following limit holds

g(uy) = [ glu)dv(u) as j— oo



in L*(Ry) for some 1 < s < q/r, i.e.

I // (.t ,tddt:// / N v (N oz, t)drdt
Jim [ gl )60zt = [ [ g0due N6
(2.2)
for all p € C3°(R x R).
Here Prob(R) is the space of nonnegative Borel measures with unit total

mass and the measure-valued function v, is a Young measure associated
with the sequence {u; } and

(v, g(N)) 3:/Rg(>\)d1/y.

Lemma 2.2 Suppose that v is a Young measure associated with a sequence
{u;}, uniformly bounded in L>°(R; LY(R)). Then, for u € L*(R4; LI(R)),

lim u; =u in L¥(Ry; L. (R)) for some 1<r <gq

Jj—00
if and only if
Vat)(A) = Ou@n(A)  for ae. (x,t) € R x Ry

In the above, the notation 6,4 (A) = 0(A — u(x,t)) is used for the Dirac
measure defined by

//RXRJr<5u(;r,t)7 g())o(x, t)dxdt = //RXR+ g(u(x,t))¢(x, t)dzdt

for all g € C(R) satisfying Eq. (2.1) and all ¢ € C°(R x R).
Next, following DiPerna [5], LeFloch-Natalini [17] and Szepessy [21], we

define the measure-valued (m.-v.) solutions to the Cauchy problem (1.3)-
(1.4).

Definition 2.1 Let f € C(R) satisfy the growth condition (2.1) and ug €
LYR)NLYR). A Young measure v associated with the sequence {u;}, which
is assumed to be uniformly bounded in L*(R;LI(R)), is then called an
entropy measure-valued (m.-v.) solution of Cauchy problem (1.3)-(1.4) if

OV, A = Kl) + 0u{vy, sgn(X = k)(fF(N) = f(k))) <0, (2.3)
in D'(R x Ry) for all k € R (i.e. in the sence of distribution), and for all
compact sets K C R,

1T
Jim /0 /K W), IA — o) |)dadt = 0. (2.4)



The following theorems were proved in Szepessy [21], Theorem 2.1 states
that entropy m.-v. solutions are solutions of Krtuizkov. Theorem 2.2 states
that there exists a unique entropy solution to the Cauchy probrem (1.3)-(1.4).

Theorem 2.1 Let f satisfy Eq. (2.1) and ug € L*(R) N LY(R). Suppose
that v is an entropy m.-v. solution of Eqs. (1.3)-(1.4). Then there exists a
function w € L>®(R; LY(R) N LY(R)) such that

Vwt) = Ow(zy) Jor a.a. (z,t) € R xRy, (2.5)

Theorem 2.2  Let f satisfy Eq. (2.1) and ug € L*(R) N LY(R). Then
there exists a unique entropy solution u € L®(R;L*(R) N LY(R)) of Egs.
(1.8)-(1.4) which satisfies

| w(,t) [[orw)y<|| wo ||l rmy  for a.a t € Ry and 1 <r <q. (2.6)

Moreover the measure-valued mapping Vs = Oywy) 5 the unique entropy
m.-v. solution of Eqs. (1.3)-(1.4).

Combining the above results, we obtain the following main convergence
tool which was proved in P.G. LeFloch- R. Natalini [17].

Corollary 2.1 Let f satisfy Eq. (2.1) and ug € L*(R) N LY(R). Suppose
that v is a Young measure associated with a sequence {u;}, unifomly bounded
in L®(Ry; LYR)) forq > 1. If v is an entropy m.-v. solution of Eqs. (1.3)-
(1.4), then

lim uj =u in L*(R4; L (R)) for all 1 <r <g,

Jj—oo
where u € L (Ry; LY(R)) is the unique entropy solution of Eqs. (1.3)-(1.4).
In the framework of the above strategy, we establish several a priori esti-
mates in the followoing section.
3 A priori estimates

In this section, we study a sequence {u®’} of smooth solutions to Egs.
(1.1)-(1.2) vanishing at infinity. We assume that the initial data {uj®} are
smooth functions with compact support, uniformly bounded in L!(R)NL?(R)
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for ¢ > 1. Moreover we assume that the flux function is a special form
f(u) = u?/2 i.e. Burgers equation. Here we recall again that there exist the
solutions u=% € L*(0,T; H¥) when the initial data ui® € H¥ for a positive
integer k to the Korteweg-de Vries equation (1.1)-(1.2).

There is a time T, € (0,00] such that the initial problem (1.1)-(1.2) is
well-posed in the strip R x (0,7%). Then we have

Lemma 3.1 For T € (0,T,), we have

T
/ u?(z, T)dx + 28/ / u?(z,t)drdt = / ud(x)dz . (3.1)
R o JR R
Let be F(u) = u®/3 then F'(u) = f(u). We obtain the following

Lemma 3.2 For every T € (0,T.), we have

5 T
f/ ui(m,T)dx—l—Eé/ / u?, ddt
2 J/r 0 /R

= g/Ruax(:r)d:v—i—/RF(u(:v,T))dx—/R F(uo(x))d:v+€/OT/Ruuidxdt.

Using Lemma 3.1, we have obtained a norm of v in L>(0,T,; L*(R)) and
of eu? in L*((0,T,) x R) which are both uniformly bounded with respect to
e € (0,1].

Now we introduce a condition for a general flux f(u):

(A) Jer >0, m>1 st |f(w)| <er(1+ |u)™) for all ueR,
we get an estimate of u in the L* norm.

Lemma 3.3 If m < 5 in condition (A), then for the solution to Eq. (1.1),
there exist ¢ > 0 such that

u(z, )| < cd=1/C=m) for all (z,t) € R x (0,T%).

In the case of f(u) = u?/2, we can take m = 2 € (1,5). Using the same
arguments as in the proof of Lemma 3.3, we also get:

Lemma 3.4 For any T € (0,T%), we have

1 T
*/ ui(x, T)dx + 8/ / ul dedt < co~H O™,
2/r 0o JR



Moreover we get the following result by differentiating Eq. (1.1).
Lemma 3.5 For any T € (0,T%), we have

/ dem—f—// xtda:dt+2z—:// (x,t)dzdt = /ugm(x)dx
RO

(3.2)

From the above Lemmas, we are led to uniform bound in L>°(0,T,; L(R))
with ¢ < 6 which is an improvement of the L? bound in Lemma 3.1.

Proposition 3.1 Assume that ¢ +m < 8 (m < q) in (A). There exists a
constant C > 0 (depending only on the initial data), such that, for all small
enough 0 and ¢,

sup |[u(, )| Foggy < C(1+ G 07m/G=m), (3.3)
te(0,T%)

When 6 = 0 in an estimate (3.3), Egs. (1.1)-(1.2) are reduced to the
conservation law with viscosity but no dispersion.

4 Convergence results

In this section, we show that the sequence {u®°} of solutions to Egs.
(1.1)-(1.2) converge to the unique entropy solution to Eqgs. (1.3)-(1.4).
Assume again that the flux function f(u) = u?/2 and that the initial
data {u3’5} are smooth functions with compact support, uniformly bounded
in LY(R) N LY(R) for ¢ > 1 and there exists a function ug € L*(R) N LY(R)
for ¢ > 1 such that, if § = O(e),
limug® =uy in L'(R)NLIR). (4.1)

e—0

In the case of f(u) = u?/2, the sequence u*° is uniformly bounded in

L*>(0,T,; LY(R)) from Proposition 3.1 for ¢ € (2,6).
Now, we state main results of this note.

Theorem 4.1 Let us° be a sequence of the smooth solutions to Egs. (1.1)-
(1.2) defined on R x (0,T%), vanishing at infinity and associated with initial
data {ug’é} satisfying Eq. (4.1) with q € (2,6). If § = o(¢), the sequence us’
of solutions converges to the unique entropy solution u € L*>(0,T,; LY(R)) to
Eqgs. (1.3)-(1.4) in L*(0,T,; L*(R)) (s < 00 and p < q).
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Weak solutions for the Falk model system of
shape memory alloys in energy class

Shuji Yoshikawa*

Mathematical Institute, Tohoku University,
Sendai 980-8578, Japan

1 Summary

We study the following initial boundary value problem of the following
Boussinesq-heat system:

Ut + Ugrxxr = (fl(ux)e + fZ('u'w))wa (t,l‘) S R+ X <07 1)a (1
9,5 - ezr = fl(uz)eu:rh (1
U(O,.’ﬁ) = UO(x)a ut(O,:E) - ul(x)v 9(0,%) = 00(1')7 (1
w(t,0) = u(t, 1) = Upz(£,0) = upy(t,1) = 0,(¢,0) = 0,.(¢,1) = 0. (1

where RT = {t e R | ¢ > 0}.

This system describes the dynamics of first order martensitic phase tran-
sitions occurring in a sufficiently thin rod of a shape memory alloys, where u
denotes the longitudinal displacement of the rod, and 6 is the temperature. In
[7], Falk proposes a Landau-Ginzburg theory using the shear strain v = u, as
an order parameter in order to explain the occurrence of the martensitic phase
transitions in shape memory alloys such as Nitinol (Ni-Ti alloy). In this pa-
per we assume that the Helmholtz free energy density F' is a potential of the
following simple form that accounts quite well for the experimentally observed
behavior, i.e.

F = F(v,v,0)

1
= Fo(0) — 0F, (v) + Fa(v) + ivi,

where Fi(r) and F5(r) are the primitives of fi(r) and fa(r), respectively. For
more details of the Falk model system, we refer the reader to Chapter 5 in the
literature [5].

Before stating our results, let us first recall some results related to this
article. Sprekels and Zheng [14] proved the unique global existence of smooth
solution for (1.1)-(1.4). In [6], Bubner and Sprekels established unique global

*Correspondence to: Department of Mathematics, Faculty of Science, Kyoto University,
Kyoto 606-8502, Japan
TE-mail: yosikawa@math.kyoto-u.ac.jp



existence results of (1.1)-(1.4) with the moving boundary condition for data
(ug,u1,00) € H® x H' x H', and discussed the optimal control problem in the
case

fi(r) = —r and fo(r) =r° —r® 4. (A0)
T. Aiki [1] proved unique global existence of solution with (ug,u1,6p) € H? x
H' x H' for more general nonlinearity, that is,

f1, f2 € C*(R), (A1)
and
Fy(r) > —C for r € R. (A2)

We note that the condition (A0) implies the conditions (A1) and (A2). Systems
related to (1.1)-(1.4) have been studied for the case of viscous materials, that
is, the stress o contains additional viscous component of the following form,

_oF |
g = 81} Ugt-
Correspondingly, the equations (1.1) and (1.2) are modified as follows:
Ut + Uggar — Ugat = (fl (uw)e + f?(ux)):m (15)
et - 093:1: - |uac’t|2 = fl(uz)eua:t (16)

The viscosity term simplifies the analysis because this term has smoothing prop-
erty. In fact, K.-H. Hoffman and Zochowski establish the existence result de-
composing (1.5) into a system of two parabolic equations in [10]. Sprekels,
Zheng and Zhu [15] prove the asymptotic behavior of the solution for (1.5)-(1.6)
as t — oo. However, the literature [5] says that there is no interior friction
from the experimental evidence. Moreover, it seems that for (1.1)-(1.4) has not
been determined the asymptotic behavior of the solution as ¢ — oco. Another
interesting property of shape memory alloys is hysteresis. There are a lot of
models and results from this point of view. For related results to hysteresis, we
refer to e.g. [2].
System (1.1)-(1.2) conserves the energy, namely, the integral

B(t). (1), 00)) = g (Il + el e) + [ 0+ [ Pauie (17

does not depend on the time t. Therefore, the energy class of this system is
H? x L? x L. In the author’s master thesis [18], the unique global existence
theorem in H? x L? x L? is proved, which is slightly smaller than the energy
space. When we consider the solvability of (1.1)-(1.4), the energy class seems
most natural. Nevertheless, there have been no papers on the solvability of
(1.1)-(1.4) in the energy class up to the present. The aim of this paper is to
prove the unique global existence of solution for (1.1)-(1.4) in this space. Here
the spaces W™P and H™ are the standard Sobolev spaces, that is, WP ig
equipped with the norm

Ifllwme = > 10K Fl Lo,
m>k>0

and H™ = Wm™2,
Our main results in this paper are stated as follows:



Theorem 1.1 (Local existence and uniqueness). Assume that fi, fo sat-
isfy the condition (A1). Let any e € (0,1/6) be fized. Then for any (ug,u1,6p) €
H2x L2x L' with ug(0) = ug(1) = 0, there exists T = T(||uol| 2, ||lu1 | 2, |00l 1) >
0 such that the problem (1.1)-(1.4) has a unique solution (u, @) on the time in-
terval [0, T, satisfying

u € C([0,T]; H*(0,1)) N L*(0, T; W?*(0, 1)),
u, € L°(0,T; L2(0,1)) N L4(0,T; L*(0,1)),

0 € C([0,T]; L'(0,1)),
0, € L57°(0,T; L3%5(0,1)).

Our main tools of the proof of this theorem are the maximal regularity es-
timate and the Strichartz estimate. In general, the derivative of a solution for
most of the equations is less regular than the right-hand side of the correspond-
ing equations. However for parabolic equations such a loss of regularity does not
occur, as in the case of elliptic equations. The estimate ensuring this regularity
is called the maximal regularity. For this estimate, we refer to [3], [11] and [12].
The Strichartz estimate established in [16] is closely related to the restriction
theory of the Fourier transform to surfaces and used often in various areas of
the study of nonlinear wave equations. For the application of this estimate,
we refer to [9], [13] and [17]. Corresponding results in the spatially periodic
setting are established by J. Bourgain [4], and more transparent version is given
by Fang and Grillakis in [8]. Therefore we first consider the following initial
value problem with periodic boundary conditions, which is closely related to
(1.1)-(1.4).

Ut + Ugzer = (f1(uz)0 + fo(ug))az, (t,z) e RT x T, (1.8)

9t - axz - fl (um)eumta (19)

w(0,2) = up(x), u(0,2) =wui(x), 6(0,2)=60y(x), (1.10)
where T = R/Z.

Theorem 1.2. For the problem (1.8)-(1.10), the same conclusion as in Theorem
1.1 holds.

From a physical point of view, the problem (1.8)-(1.10) describes the dy-
namics of the ring made of shape memory alloys. So it is a very interesting
problem. Moreover Theorem 1.1 can be proved in the same way as Theorem
1.2. Roughly speaking, extending the solutions u and 6 of (1.1)-(1.4) as odd
and even periodic function respectively, we regard the initial boundary value
problem as the problem with periodic boundary condition.

In order to regard the third term of the right hand side of (1.7) as L!'-norm
of 0, we give the following lemma related to a sign property for the temperature

0

Lemma 1.1 (Maximum principle). If 6y > 0 on T (resp. [0,1]) then the
solution 0 of (1.8)-(1.10) (resp. (1.1)-(1.4)) satisfies @ > 0 a.e. on T (resp.
[0,1]) x[0,T7].

Combining these results with the energy conservation law, we can easily
obtain the following global result.



Theorem 1.3 (Global existence). In addition to the assumptions of Theo-
rems 1.1 and 1.2, suppose that (A2) and 6y > 0. Then, the solution given by
Theorems 1.1 and 1.2 can be extended globally in time.

In the end we state the Strichartz estimate and the maximal regularity. For
a 1-parameter (semi-)group V (t), we write

D(V)f = /O V(t — 5)f(s)ds.

Lemma 1.2 (Strichartz type estimate [4], [8]). The following estimates
holds,

IV ()gs Ly Lall < Cllgs L2 ]I, (1.11)
P
IT(Ve) fs Ly Ly || < Ol fs L3 LE |, (1.12)
and W
|P(Va) £ LELZ| < CHf;L%LE , (1.13)
where Vy 1= eTito:
Lemma 1.3 (Maximal regularity). For any q € (1,00), we have
020U f; LY LN < CA+ T)|f3 LELE, (1.14)

where U(t) := e'%% .

Remark. We note that the nonlinear term of (1.2) and (1.9) is rewritten as
the following form:

fl(uz)autz = (fl(u:v)eut)m - f{(uz)uxmgut - f(um)amut»

which makes sense in the distribution class.
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Strong instability of standing waves for
nonlinear Klein-Gordon equations

Masahito Ohta
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This note is based on a joint work with Grozdena Todorova (University
of Tennessee).
We consider nonlinear Klein-Gordon (KG) equation of the form

(1) O*u — Au+u = |uff"u, (t,r) e R xRY,

where N > 2, 1 <p<1+4+4/(N —2). We study instability of standing wave
solutions u(t, ) = e“tp(x) for (1), where —1 < w < 1, and p € H*(RY) is a
nontrivial solution of

(2) —Ap+ (1 -w)p— e lp=0, zeR"

Recall that the Cauchy problem for (1) is locally well-posed in the energy
space X := H'(RY) x L?(RY) (see [4]): For any (up,u;) € X there exists
a unique solution 4 := (u, Qu) € C([0, Timax); X) of (1) with @(0) = (ug, uy)
such that either T = 00 Or Thax < 00 and limy_ 7, ||4(t)||x = co. More-
over, the solution wu(t) satisfies E(u(t)) = E(ug,u1) and Q(u(t)) = Q(ug, uy)
for all t € [0, Trhax), Where

1 1 1 1
3 B(u,v) = 0l + 51Vl + 5wl - ——ull

(4) Q(u,v) =Im [ wvdz.

R

Let ¢, be the ground state (unique positive radially symmetric solution)
of (2). The stability of standing waves u,,(t) = e*¢,, for (1) has been studied



by many authors. First, we consider the orbital stability of u,(¢). Shatah [§]
proved that u,(t) is orbitally stable if p < 14 4/N and w, < |w| < 1, where

p—1
) ”C:\/4—<N—1><p—1>'

Moreover, Shatah and Strauss [10] proved that w,(t) is orbitally unstable
when p < 1+ 4/N and |w| < w. or when p > 1+ 4/N and w € (—1,1).
Here, we say that a standing wave solution ey is orbitally stable for KG
(1) if for any ¢ > 0 there exists 6 > 0 such that if (ug,u;) € X satisfies
| (uo, u1) — (p,iwp)||x < d, then the solution u(t) of (1) with @(0) = (ug, u1)
exists globally in time and satisfies

sup inf |d(t) — e”(p(- +y) iwe(- +y))llx <e.
t>0 0€R,yeRN
Otherwise, e is said to be orbitally unstable.

Next, we consider instability of u,(f) in stronger senses. Berestycki and
Cazenave [1] proved that u, () is very strongly unstable in the sense of Defi-
nition 1 whenw =0 and 1 < p < 1+4/(N —2). Moreover, Shatah [9] studied
nonlinear Klein-Gordon equation with more general nonlinearity, and proved
that u,(t) is strongly unstable in the sense of Definition 2 when w = 0.
Recently, the authors [7] proved that u,(t) is very strongly unstable for (1)
when [w| < \/(p—1)/(p+3), 1 <p<1+4/(N—2)and N > 3. Here, we
give the definitions of very strong instability and strong instability.

Definition 1 (very strong instability) We say that ¢!y is very strongly
unstable for KG (1) if for any € > 0 there exists (up,u;) € X such that
I|(uo, u1) — (p,iwep)||x < € and the solution wu(t) of (1) with %(0) = (ug, u1)
blows up in a finite time.
Definition 2 (strong instability) We say that ™' is strongly unstable for
(1) if for any € > 0 there exists (ug, u1) € X such that || (ug, u1)—(p, iwe)|| x <
e and the solution wu(t) of (1) with @(0) = (uo, u1) either blows up in a finite
time or exists globally in time and satisfies lim sup,_, . ||@()]|x = oo.

Note that, by the definitions, if €™y is very strongly unstable, then it
is strongly unstable, and if e’y is strongly unstable, then it is orbitally
unstable.

For the nonlinear Schrédinger (NLS) equation
(6) i0u + Au+ |ulfPfu =0, (t,r) € R x RY,

2



it is known that for any w > 0 the standing wave solution e™“'¢,, for (6) is
orbitally stable when 1 < p < 1+4/N, and it is very strongly unstable when
1+4/N <p<1+4/(N —2), where ¢, € H'(RY) is the ground state of

(7) ~Ap+wp— ol =0, xRV

(see [1, 3]). For the critical case p = 1+4/N, for any w > 0 and any nontrivial
solution ¢ € HY(RY) of (7), it is known that the standing wave e™“'¢ is very
strongly unstable for (6) (see [12]).

The main results in this note are as follows.

Theorem 1 Let N >2, 1 <p<1+4/(N—2),we (—1,1) and ¢, be the
ground state of (2). Assume that |w| < w. if p < 1+ 4/N. Then, e“t¢, is
strongly unstable for KG (1) in the sense of Definition 2.

In Theorem 1, one may expect that u,(t) is very strongly unstable for (1)
in the sense of Definition 1. In this direction, Cazenave [2] proves that any
global solution u(t) of (1) is uniformly bounded in X, i.e., sup,sq [|u(t)| x <
o0, if l <p<band N =2 andif 1l < p < N/(N —2) and N > 3.
Moreover, using arguments in Merle and Zaag [5], we can prove the uniform
boundedness of global solutions of (1) in X when 1 <p <1+4/(N —1) and
N > 2. Note that 1+4/(N—1) =5if N=2,1+4/(N—1)= N/(N—-2) =3
if N=3,and N/(N—-2) <144/(N —1)if N > 4. Therefore, as a corollary
of Theorem 1, we have the following.

Corollary 2 In addition to the assumptions in Theorem 1, assume that p <
14+4/(N—1)if N =2,3, and thatp < 1+4/(N —1) if N > 4. Then, e“'¢,
is very strongly unstable for (1) in the sense of Definition 1.

For the critical frequencies w = tw, in the case p < 1+4/N, we have the
following.

Theorem 3 Let N > 2,1 <p<1+4/N and ¢ € H*(RY) be a nontrivial
radially symmetric solution of (2) with w = w.. Then, the standing wave
twet

solution ey is very strongly unstable for (1).

As mentioned above, similar result is known for NLS (6) in the critical
case p = 1 4+ 4/N without assuming the radial symmetry of solution of (7).



The proofs of Theorems 1 and 3 are based on the argument in Shatah [9]
and on local versions of the virial type identities. In [9], Shatah considers a
local version of the following identity

(8) %Re /RN x - Vudiudr = NKy(u(t)),

Kiu,0) = =0l + (5 - 7 ) IVl -+ glll = = lulzth
Since the integral in the left-hand side of (8) is not well-defined on the energy
space X, we need to approximate the weight function = in (8) by suitable
bounded functions. To control error terms by the approximation, we assume
that the initial perturbations are radially symmetric, and use the decay es-
timate for radially symmetric functions in H*(RY):

(9) || oo (azm) < Cm~ N2 jw||

(see [11]). The assumption N > 2 is needed here. This kind of approach has
been also used for blowup problem of NLS (6) (see, e.g., [6]).

For the case p > 1+4/N in the proof of Theorem 1, we use a local version
of the identity

d
(10) —— Re/ {22 - Vu+ Nu}oudr = 4P (u(t)),
dt RN
1 » N(p-1) +1
P(u) = §||VU||2 - m||u||§+1~
Note that the functional P in (10) appears in the virial identity for NLS (6):
(11) gz leu®)lz = 16P(u(?)).
For the case p < 1+ 4/N, we use a local version of the identity
d
(12) % Re/ {22 - Vu+ (N + a)u}diudr = K(u(t)),
RN

2
K(u,v) = —allvll; + aflull; + (@ + 2){[Vullz - m““”ﬁﬁ ,
where o :=4/(p—1) — N > 0 (cf. [10, page 185]). Note that

K(u,v) = =2(a+ 1)[jv — iwul)3 + 2(a + 2)(E - wQ)(u, v)
~200Q(u,0) — 2{1 — (a + D} ull,
and that if |w| = w, then (o + 1)w? = 1.

4
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Fast Singular Oscillating Limits, Restricted
Convolutions and Global Regularity of the 3D
Navier-Stokes Equations of Gephysics

Alex Mahalov (Arizona State University)

Abstract

We prove existence on infinite time intervals of regular solutions to the 3D
Navier-Stokes Equations for fully three-dimensional initial data character-
ized by uniformly large vorticity and for the full 3D Navier-Stokes Equations
of Gephysics in the regime of strong stratification and rotation; smoothness
assumptions for initial data are the same as in local existence theorems.
There are no conditional assumptions on the properties of solutions at later
times, nor are the global solutions close to any 2D manifold. The global ex-
istence is proven using techniques of fast singular oscillating limits, lemmas
on restricted convolutions and the Littlewood-Paley dyadic decomposition.
The approach is based on the computation of singular limits of rapidly oscil-
lating operators and cancellation of oscillations in the nonlinear interactions
for the vorticity field. With nonlinear averaging methods in the context of
almost periodic functions, we obtain fully 3D limit resonant Navier-Stokes
equations. We establish the global regularity of the latter without any re-
striction on the size of 3D initial data. With strong convergence theorems,
we bootstrap this into the global regularity of the 3D Navier-Stokes Equa-

tions for above classes of fully 3D initial data.





