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1.

Recent findings on cortical dynamic behavior show the presence of specific insta-
bility in animal and human brains. This instability produces a transitory behavior
between dynamic states. A single time series of the transitory behavior is often
observed in laboratory experiments to be “non-stationary” with aperiodic changes
between dynamic states. These dynamic transitions between dynamic states may be
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We investigate the dynamic character of a network of electrotonically coupled cells consist-
ing of class I point neurons, in terms of a finite dimensional dynamical system. We classify
a subclass of class I point neurons, called class I* point neurons. Based on this classifi-
cation, we use a reduced Hindmarsh-Rose (H-R) model, which consists of two dynamical
variables, to construct a network model consisting of electrotonically coupled H-R neurons.
Although biologically simple, the system is sufficient to extract the essence of the complex
dynamics, which the system may yield under certain physiological conditions. The network
model produces a transitory behavior as well as a periodic motion and spatio-temporal
chaos. The transitory dynamics that the network model exhibits is shown numerically
to be chaotic itinerancy. The transitions appear between various metachronal waves and
all-synchronization states. The network model shows that this transitory dynamics can
be viewed as a chaotic switch between synchronized and desynchronized states. Despite
the use of spatially discrete point neurons as basic elements of the network, the overall
dynamics exhibits scale-free activity including various scales of spatio-temporal patterns.

Keywords: Gap junction-coupled system; class I* neurons; dynamic cell assembly; chaotic
itinerancy; Milnor attractor; metachronal waves; synchronization.

Introduction

characterized by the term “transitory dynamics”.
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Viewed from the dynamical systems standpoint, the basic language to “interpret”
various dynamical behaviors has been geometric attractors and attractor dynamics.
For instance, steady states can be represented by fixed point attractors. In a similar
way, periodic states may be represented by limit cycles, quasi-periodic states by tori,
and chaotic states by strange attractors. These attractors are, however, concepts of
low-dimensional dynamical systems, and those terms are evidently inadequate for
the description of the much more complex and transitory behaviors mentioned above.

To describe higher-dimensional chaotic behavior, only a few concepts to capture
such complex dynamics have been proposed. Among others, hyperchaos [40] is de-
fined to express stationary and complex behavior with multiple positive Lyapunov
exponents. Although hyperchaos can provide an important conceptual framework
for understanding brain dynamics, it cannot adequately describe such complex dy-
namics, because the concept is still within the classical framework of attractor.
Some authors Tsuda [52], Kaneko [26] and Ikeda [24], on the other hand, proposed
“chaotic itinerancy” as a concept to describe transitory behavior that might appear
to be “non-stationary” for short periods of observation. Furthermore, the idea of
stochastic dynamical systems may be highlighted for understanding brain dynamics
[32], because the brain works in very noisy environments. In stochastic dynamical
systems, the concept of orbits remains in spite of noisy systems, and is typically clar-
ified in the noise-induced order [33], the stochastic resonance [4], and the stochastic
chaos [13].

The aim of the present paper is to interpret cortical transitory dynamics in
terms of chaotic itinerancy. Recent discovery of the massive and ubiquitous pres-
ence of electrotonic coupling (EC) between fast spiking (FS) (and also among low
threshold spiking (LTS)) cells in the neocortex [15, 16, 50], has enabled the formu-
lation of a mathematical model in the search for the presence of chaotic behavior
in such electrotonically coupled systems. Our computer simulations of an electro-
tonically coupled neural system are expected to show a possible mechanism for the
background neural activity that underlies the synchronization and the transitory
dynamics observed in the brain.

The organization of this paper is as follows. In § 2, we show the characteristics
of chaotic itinerancy and discuss its possible mechanisms. In § 3, we describe two
classes of neurons and their dynamic characteristics in electrotonically coupled sys-
tems, and also show the computation results of our proposed model. In § 4, with
numerical analyses, we show the mechanism of the transition between synchronized
and desynchronized states exhibited in the model. Section 5 is devoted to discus-
sions on information processing with chaotic itinerancy, and the relation of chaotic
itinerancy and dynamic cell assemblies.

2. Chaotic Itinerancy and its Possible Mechanisms

In this section, we discuss the concept of chaotic itinerancy. The main characteristics
of chaotic itinerancy found in previous studies are summarized as follows (although
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not all characteristics should be required before it is considered present) [28, 29]:

(1) the appearance of relatively many near-zero Lyapunov exponents,

(2) slow decay of correlations or time-dependent mutual information,

(3) transitions between relatively low-dimensional states that are called attractor
ruins and high-dimensional chaotic states,

(4) non-convergence or extremely slow convergence of zero Lyapunov exponents in
some cases, and in some other cases extremely slow convergence of even the
largest Lyapunov exponent,

(5) lack of both an attractor-tracing property and a pseudo-orbit tracing property.

The first factor means the appearance of relatively many modes with neutral
stability as well as definite stable and unstable modes. The second term indicates
that the quantities usually follow a power decay, that results in the appearance
of a highly ordered but irregular temporal structure, and hence the appearance of
history-dependent transitions. The third represents the characteristic of the transi-
tion itself such that it differs from simply chaotic behavior. The transition can be
characterized as the transitory dynamics between low-dimensional attractor ruins
and high-dimensional chaotic states. The fourth factor expresses the characteristics
of the Lyapunov spectra, indicating either the absence of ergodicity or weak ergod-
icity. A typical chaotic system such as Aziom A diffeomorphism has a pseudo-orbit
tracing property. In a system with this property, it is guaranteed that its trajecto-
ries can be simulated step by step. Other typical chaotic systems do not possess this
property and hence each trajectory cannot be properly calculated in simulations.
Even in such cases, there is a possibility of obtaining precise information for the
global features of the whole attractor, that is, precise statistical properties. If we
obtain correct information concerning the statistical properties of orbits, we will
know the system’s global behavior through computer simulations and also through
laboratory experiments. However, it has been observed that the statistical properties
of chaotic itinerancy do not necessarily show information about the overall attractor
[45, 46, 54].

Chaotic itinerancy is thus addressed as a transitory dynamics that might ap-
pear to be “non-stationary” in short-time observations. The elemental state for the
transition is not represented by a conventional geometric attractor. Therefore, we
called the representation of such a state an “attractor ruin”. The dynamical orbits
reach an attractor ruin, stay in its neighborhood according to a certain distribution
of residence times, escape, and again reach the same or another ruin. This transi-
tory dynamics continues without external perturbations. One possible mathematical
description of an attractor ruin may be an attractor in Milnor’s sense [34]. The ge-
ometric attractor which is defined by using the concept of attracting sets, and the
Milnor attractor are defined as follows.
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Definition 2.1. Let M be a compact, or at least finite-dimensional, smooth mani-
fold. Let the development of orbits in phase space be given by a continuous map ¢ :
M - M. For a set Ay, the trapping region S O Ay is defined as the region satisfying
A, C ¢(S) C S. A set Ay is called an attracting set when N; ¢(S) = A, , where
#@) is the ith iteration of ¢, and N; denotes infinitely many set intersections. A set
Ay is called an attractor if it is an attracting set and ¢ |Ag is topologically transitive,
meaning that A, cannot be separated into subsets by ¢.

According to this definition, any point in a neighborhood of geometric attractor
asymptotically approaches the attractor. On the other hand, a Milnor attractor
is defined to extend the definition of attractor, taking account of both measure-
theoretic and geometric concepts.

Definition 2.2. Let p be a measure equivalent to the Lebesgue measure on M. A
compact invariant set Anr is called a Milnor attractor if the following conditions
hold:
a) the basin of attraction B(Ap) of Ay has a positive p-measure, i.e.
p(B(Anm)) > 0;
b) there are no proper closed subset A\, satisfying p(B(An)\B(A4',)) =0.

According to this definition, a Milnor attractor may accompany an unstable
manifold, but it attracts orbits with positive measure. Milnor attractors have been
studied for chaotic dynamical systems with symmetry [2, 27]. For example, a sys-
tem of globally coupled identical chaotic oscillators with the same coupling strength
is invariant under replacements of elements, and this invariance under this group
action gives rise to the invariance under the dynamics. A synchronized state of all
oscillators, which has chaos as a base state, forms a chaotic invariant set. In this
symmetric case, it turns out that the Milnor attractors appear, probably, associ-
ated with a riddled basin, and this situation can allow the occurrence of chaotic
itinerancy between partially synchronized states. However, asymmetric cases, like
non-equilibrium neural networks [51], can also produce chaotic itinerancy, and thus
such symmetry under group action is not prerequisite for the existence of chaotic
itinerancy.

3. Chaotic Itinerancy in Networks of Electrotonically Coupled
Class I'* Point Neurons

As explained in detail in previous papers which will be published elsewhere, it has
recently been revealed that electrotonic coupling is ubiquitous, even in mammalian
neocortex [49], although it had been believed that electrotonic coupling plays a major
role only in subcortical systems (e.g., in the inferior olive nucleus or hippocampus)
or in invertebrates’ neural systems.

Concerning the neuron type, as Alan Hodgkin pointed out [22], two classes of
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neurons (more precisely, excitatory membranes of space-clamped neurons or simply
point neurons) exist: class I and class I1. The latter may include the unmyelinated
giant axon membrane of the squid Loligo, first modeled by Hodgkin and Huxley [23].
In a physiological condition where a current is injected to soma with the strength
gradually increasing, class I1 point neurons abruptly start firing with a rather high
frequency at a critical current strength, and the frequency does not increase much,
even if the strength of the input current is greatly increased. This situation may well
be attributed to the occurrence of a Hopf bifurcation, if the strength of the input
current is regarded as the bifurcation parameter. On the other hand, class I point
neurons are characterized by regular repetitive firings with frequencies that vary
widely with even slight changes in the strength of the input current. They start firing
with an infinitely long period at a critical value of input current strength, and the
frequency increases as the strength of the input current increases. Mathematically,
this situation could occur if a saddle-node bifurcation structure was imbedded in
the neuronal system.

Although the concept of “classes” of neurons does not depend on the number of
variables in any model equations, we restrict our arguments to a reduced form with
two variables, where the first variable, V', may represent the membrane potential,
and the second one, R, an activation state of, for example, some potassium channels.

dVv
C'E = f(VR)+1
(3.1)
dR
TRE = g(VaR)

In fact, Rinzel [38], Rose and Hindmarsh [42], Wilson [56] and others have pro-
posed that such reduced models extract the “essential dynamics” of space-clamped
or point neurons under consideration. In two-variable reduced models, dynamic be-
havior can be characterized by nonlinearity of the two nullclines corresponding to
the two variables. Class I point neurons have J or U-shaped nullclines for the R-
variable, while that for class IT point neurons is essentially a linear nullcline. (It
should be noted that the nullcline of a V-variable is essentially a graph of cubic
function for both classes.)

Within the family of class I point neurons, the Morris-Lecar model, Ips1, [35],
has been known as a mathematical model to study bifurcations of dynamical be-
havior. It is noted, however, that the Morris-Lecar equation was designed to model
barnacle invertebrate neurons, taking into account only the calcium and the recti-
fying potassium channels, but not intended to model realistic aspects of neocortical
neurons. A subclass of the Morris-Lecar model is known to possess saddle-node bi-
furcations, which allows the presence of a homoclinic orbit at the bifurcation point
[19, 20, 25, 39].

Another example of class I point neurons is the one originally considered by
Connor and others [6, 7, 8, 9]. They included an effect of the transient potassium
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current, called the A-current, resulting in the Hodgkin-Huxley-type equations with
six dynamical variables. The reduction of the Connor equations to a two-variable
model was presented by Rose and Hindmarsh [42], and Wilson [56]. The class I
point neuron models of Connor type, I, have essentially quadratic nullclines of R-
variable. As the injected current I increases from the resting state, the saddle-node
bifurcation appears, yielding an action potential with an infinitely small frequency at
the critical regime. After a pair annihilation of saddle and node, a narrow “channel”
appears in the phase space between the two nullclines. The presence of this narrow
channel characterizes the class I point neurons of Connor type, I¢, as compared with
the Morris-Lecar model, I, , together with the differences in bifurcation structure
of the two models.

While the orbit is in the narrow channel, the point neurons undergo a subthresh-
old polarized state. The residence time in the channel depends on the width of the
channel, and the channel width depends sensitively on the input current level. Thus,
the firing frequency of individual point neurons of class I possesses a sensitive de-
pendence on the fluctuations of input current near the saddle-node bifurcation point.

The class I reduced models of Connor type I may further be classified into two
subclasses: I(*) and Ic(b), according to whether the remaining equilibrium point is
an unstable spiral, IC(“), or an unstable node, Ic(b), in the parameter range where
the narrow channel exists. An example of the class Io@ point neuron model can be
given as follows, which is a modified version of Wilson model of class Io®) [57]:

g(V,R) = =R+ R (V). '
Meo(V) = 5.36 + 17.04V + 16.9V 2,

Reo(V) = 1.29V +0.53 + 3.3(V + 0.18)2, gx = 11.0 (3.3.1)
Ey, =048, By = —0.95, C=1.0, 7, = 2.4 (3.3.2)

Our main interest here is the study of the system-level behavior of a network
of electrotonically coupled cells consisting of class I point neurons, rather than the
dynamics of an isolated single neuron, because we believe that the spatio-temporal
activity of neural assemblies at the mesoscopic level is responsible for higher-level
functions such as memory, perception and cognition.

The network of electrotonically coupled cells can be described by:

dv;
d—t] = f(Vj,Rj) + gas Z(V”bj — Vi) +1; (nb; € coupled neigbor cells)
nb;
(3.4.1)
dR,

Ty = 9(Vj, Ry). (3.4.2)



May 31, 2004 17:4 WSPC/INSTRUCTION FILE TF.JIN

Chaotic Itinerancy in Cortical Neural Networks 7

Here, the electrotonic coupling is assumed to take the form of linear diffusions in
the V-variable (see, for example, [47]). The strength of this electrotonic coupling
is denoted by gg,. The summation is taken over the “neighboring” point neurons
that are coupled with the other cells concerned, although this is not necessarily a
neighborhood in the Euclidean space, as the couplings may exist with cells placed
far from the neuron’s soma.

For the case of all-to-all electrotonic couplings with the Morris-Lecar models,
Han et al. [19, 20] reported the presence of chaotic alterations of synchronized and
desynchronized states in a very narrow parameter region. This chaotic behavior
occurs in a neighborhood of a critical regime of bifurcation, at the bifurcation point
of which a homoclinic orbit appears; hence the name homoclinic bifurcation. It may
be a kind of chaotic itinerancy, although the chaotic states in this model are in an
unrealistic membrane potential range and a mechanism for such chaotic states has
not been clarified.

As a preliminary work, we investigated nearest-neighbor couplings for the Morris-
Lecar neurons, Iy, . This case also produces chaos but again in very narrow param-
eter regions. Among class I point neurons, we could not find any chaotic behavior in
a similar situation of nearest-neighbor couplings for either the six-variable Connor
point neuron, or for Io® point neurons. In contrast, point neurons of class Io®
change to exhibit chaotic behavior with large fluctuations in both phase and ampli-
tude when electrotonically coupled. Here, they show perfectly regular firings when
isolated. Thus a single cell’s activity is represented by a limit cycle oscillator. This
occurs near the saddle-node bifurcation point of the injection current, but with a
rather large range of the coupling strength. The above observation for class Ic®
behavior is regarded as a special case of the class I'*, that is, a point neuron class
defined in a more abstract setting.

Let I'* denote a subclass of class I point neurons, in which there is a certain
interval of injected current, I, such that the following conditions hold simultaneously:

1. the presence of a family of limit cycles with periods that go to infinity at the

saddle-node bifurcation point;

2. the presence of a narrow channel; and

3. the presence of an unstable spiral inside the closed orbit described in 1.

It should be noted that the presence of a saddle-node bifurcation is not a sufficient
condition for a cell to be of class I*, although it is a natural situation in most
models. We expect that the class I* point neurons exhibit chaotic behavior in some
parameter regions when electrotonically coupled.

The subclass I(®) of the Connor type satisfies these “essential conditions”, while
the Morris-Lecar model I3;7, does not, because it does not possess a property corre-
sponding to the above second condition. The class I model of Rose and Hindmarsh
and that of Wilson do not satisfy the third condition, and thus do not belong to I'*.

It is not difficult to construct a simplified model of class I* rather than 1o\,
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For instance, a piecewise-linear model can be in class I*. In the present paper, the
following one-parameter (u-) family of two-variable models, which are of class I'*,
is studied as the basic model. This model can be reduced from the two-variable
Hindmarsh-Rose model [21] by simple coordinate transformations and reduction
of the parameters. Hindmarsh and Rose [21] introduced one slow variable to the
two-variable model to produce the bursts. For our present purpose, we neglect this
slow variable. Although, in this respect, our present model is a special case of the
Hindmarsh-Rose model [21], the model exhibits a whole bifurcation structure as-
sociated with the appearance of saddle-node and Hopf bifurcations that the class
I'* possesses. Thus, our model possesses necessary and sufficient features to express
class I'* point neurons, and hence the essential minimum. This minimum model for
the Connor equations may have a similar relation to the Hindmarsh-Rose model as
the FitzHugh-Nagumo model has to the Hodgkin-Huxley equations in a mathemat-
ical sense, but not in a physiological sense.

p-model: (class I*)

dzx 9 3
> _2 T
g7 y—ne*(z—5)+
(3.5)
dy _ 9
E = y—i—,um.

In fact, the p-model yields abundant chaotic behavior and chaotic itinerancy
in its coupled systems. We model electrotonic coupling following Schweighofer et
al. [47], which take essentially a diffusion-like form with a mild nonlinearity. In
the present simulation, we assume linear diffusion-type couplings in the p-model.
Corresponding to the Neumann type of boundary condition in a continuous space
model, we adopt a free boundary condition in the present coupled system.

The overall network is modeled as follows:

Electrotonic coupling of p-models

For i=1,...,N:
dx; 3
dtl = —yi—uxi2( xi—§ )+Ii+Ji
(3.6)
d .
dytz = —yi + pai’,

where the I;’s represent injected background currents (which are assumed to be
constant in time and space in this simulation), and the J;’s represent the currents
induced by electrotonic couplings:
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Ji = gas Z(mnbl —x;) (nb; € coupled neigbor cells)

nb;

(3.7)

gas (w2 — 1) (i =1)
= 9as (Tiv1 + i1 —2z) (i =2,..., N — 1)
Gor (2n 1 — ) (i = ).

Here, g4, is a coupling constant that is assumed to be identical for all connections
in the present simulation.

Figure 1(a) shows a time series of 30 coupled p-model neurons exhibiting
spatio-temporal chaos. The degree of instability of the orbits produced by this 60-
dimensional dynamical system can be estimated by the Lyapunov exponents that
define orbital instability [36]. The exponents can be calculated as an expanding or a
contracting rate in each direction of orthonormal vectors in the time development of
orbits, and thus they can be represented by a long-time average of the eigenvalues of
the matrix formed by multiplication of Jacobian matrices [11, 44]; hence the name
multiplicative ergodic theory [36]. Several methods could be used for numerical sim-
ulations or experimental data analysis, but the best method to use depends on the
norm adopted [3]. A set of Lyapunov exponents is called a Lyapunov spectrum.
According to a conventional definition of chaos, the presence of positive Lyapunov
exponents indicates chaos.

The Lyapunov dimension that can approximate the Haussdorf dimension of the
obtained chaotic attractor is 34.158 in the case of the spatio-temporal chaos shown
in Fig. 1. This dimensionality indicates the effective dimension of an attractor in
60-dimensional vector space. On the other hand, the topological dimension, i.e.,
the dimension of the support of the attractor, is only 20 in the present case, that
is the total number of non-negative Lyapunov exponents. This dimension gap [41]
(34.158 - 20 > 1) stems from the large number of negative Lyapunov exponents
with relatively small absolute values. A large dimension gap like this implies that
an attractor is distributed over a wide range in phase space.

Figure 1(b) shows a time series of a contour map in which the colors denote
the level of amplitude of the z-variable (namely, the membrane potential) of the
neurons. Thus, it indicates the spatio-temporal organization of neural activity. Many
cell assemblies, each of which yields a different metachronal wave, are temporarily
formed, giving rise to a reorganization of cell assemblies. Here, a metachronal wave
means a wave formed by neural activity with orderly phase shifts. A metachronal
wave is observed in the movement of a centipede and that of cilia and flagella. The
change of behavior in this simulation is highly complex, that is, it demonstrates
chaotic changes of cell assemblies formed by metachronal waves. We call this complex
form a metachronal assembly.
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Fig. 1. Dynamic behavior of a network of p-model neurons with electrotonic couplings. Parameters

are as follows: p = 1.65, I = 0.005, gg; = 0.05. All present simulations for integration of the

differential equations are performed by using the fourth order of Runge-Kutta-Gill method with

time increment 0.02 (ms).

(a) Superimposed time series of the membrane potentials of 30 coupled p-model neurons. The
abscissa denotes time and the ordinate the amplitude of the potential denoted by the z-variable.

(b) Spatio-temporal patterns represented by a contour map. Color denotes the level of amplitude
of the z-variable (namely, the membrane potential) of the neurons.

If a metachronal wave appears as a certain definite state, then it could be repre-
sented as an attractor. Actually, to a first approximation, in a moving coordinate,
x - vt, this wave could be viewed as a fixed-point attractor of the motion. The tran-
sition between metachronal waves and spatio-temporal chaos may be viewed as a
transition between low-dimensional Milnor attractors and high-dimensional chaotic
states. In fact, chaotic itinerancy between metachronal waves is observed in this
model. At least, the four factors (1)-(4) described in § 2 are confirmed. A typi-
cal behavior is shown in Fig. 2 by the contour map and the time series of the z
variables. Similar metachronal assemblies appear frequently, and they are not peri-
odic but chaotic in such a way that spatio-temporal patterns become quite different
soon after a very close metachronal assembly appears. The Lyapunov dimension is
8.045, and the topological dimension is 5 for the chaotic itinerancy shown in Fig. 2.
Compared with fully developed chaos in Fig. 1, the dimensionality becomes low, re-
flecting the appearance of the relatively low-dimensional ordered motion that forms
metachronal waves.
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Fig. 2. A typical chaotic itinerancy between metachronal waves. p = 1.65, I = 0.005, go; = 0.5.

(a) Superimposed time series of the membrane potentials of 30 model neurons.

(b) Spatio-temporal patterns by a contour map. Color denotes the level of amplitude of the
z-variable (namely, the membrane potential) of the neurons.

Figure 3 shows the chaotic alteration of synchronized and desynchronized states,
here the transitory dynamics may provide a mechanism for cortical transient syn-
chronization. This situation is realized when in addition to a relatively strong cou-
pling of point neurons, a single I'* point neuron exhibits longer periods of oscillations
of spikes than are seen in fully developed turbulence. This stems from a slow motion
in the vicinity of the original saddle, that is, in the presence of a narrow channel
in phase space, where the saddle itself disappears but its ruin remains. This can be
controlled by an injected current, but not necessarily by the ion channels’ intrinsic
character. The chaotic alteration between synchronized and desynchronized states is
also described as chaotic itinerancy, because this behavior satisfies at least charac-
teristics (1)-(4) of chaotic itinerancy. Very slow convergence of the largest Lyapunov
exponent (see also [54] as well as [29]) is also observed in the present condition, which
is shown in Fig. 3 (c), although it is not clear whether it is so “nonstationary” as to
satisfy factor (5). Highly ordered structures in a complex transitory dynamics can
also be estimated by the decay of correlations, which is depicted in Fig. 3 (d).
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Fig. 3. A typical chaotic alteration of synchronized and desynchronized states. This shows another

typical chaotic itinerancy observed in the model. 4 = 1.65, I = 0.005, g¢s; = 0.83.

(a) Superimposed time series of the membrane potentials of 30 model neurons. The upper two time
series are depicted during ¢ = 6,500-7,300 ms, and the lower two during ¢t = 15,000-15,800 ms.

(b) Spatio-temporal patterns by contour map. The upper and the lower figures correspond to those
of (a).

(c) The fluctuations of the largest Lyapunov exponent.

(d) The auto-correlation of the first neuron (above) and the cross-correlation between the first and
the 15¢th neurons (below).

Even the highly developed spatio-temporal chaos exhibited in Fig.1 contains
ordered structures that are made of metachronal assemblies with various spatio-
temporal scales. Because the extreme of an infinite velocity in metachronal waves
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is viewed as a completely synchronized state, we can describe a transition between
synchronized and desynchronized states as a continuation of the transition between
metachronal waves. The former transition has actually been observed in physiologi-
cal experiments. Thus we expect chaotic itinerancy between partially synchronized
states or between various metachronal waves. In general, nearest-neighbor couplings
of the diffusion type easily yield metachronal waves, and a complete synchronization
is usually unstable. A wider range of couplings than the nearest-neighbor couplings,
yields states close to synchronization more easily. The increase of the size of such a
range tends to bring about the increase of the spatial size of partial synchronizations,
i.e., synchronized assemblies.

4. The Mechanism of Chaotic Itinerancy Between Synchronized
and Desynchronized States

By studying further the dynamic behavior in electrotonically coupled p-models,
we clarify a mechanism of chaotic itinerancy between the synchronized and desyn-
chronized states. We calculated the transverse Lyapunov exponents in a subspace
transversal to the subspace in which the activity of all point neurons are completely
synchronized, where the activity is represented by an individual limit cycle oscilla-
tor. Two positive transverse Lyapunov exponents appear; their situation indicates
that this all-synchronization state (denoted by S4) is unstable in its transverse di-
rections. This state is stable only within the two-dimensional subspace, My syn ,
formed by 1 = 29 = ... xy and y; = y2 = ... yn. Because this space is measure-zero
in a whole space, the all-synchronization state, S, is not even a Milnor attractor,
but simply a saddle. However, we often observe the re-entering orbits in a neighbor-
hood of S4 and hence the repeated appearance of a quasi all-synchronization state,
which is described by the synchronized state of all oscillators within very small phase
shifts.

We further investigate which components of motion destabilize the all-
synchronized state, S4, focusing on positive transverse Lyapunov exponents. At
most two such exponents appear. These two exponents correspond to two kinds of
metachronal waves, which often appear in the present model as fundamental com-
ponents of the complex behavior of spatio-temporal chaos. One kind of metachronal
wave consists of two different metachronal waves, denoted by S,* and S, . The
difference of these two waves is only in the direction of phase shift, i.e., opposite
directions to each other, which is due to the symmetry of the system (see Fig. 4
(a)). The other kind of metachronal wave, denoted by Sg, has the symmetric form
of phase shift in both directions from the center, where the center is a neural element
placed in the middle of the network in the present Neumann boundary condition
(see Fig. 4 (a)).

The scenario of the chaotic transition between synchronized and desynchronized
states is sketched as follows. We describe the dynamic behaviors on the Poincaré
section, ¥;z;/N = 0.2, which clarifies the discussion based on dynamical systems’
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theory. To show the correspondence of dynamical systems terminology to realistic
patterns, the corresponding spatio-temporal patterns are given in Fig. 4 (a).

Two saddles, S4 and Sg, exist on the section, representing an all-synchronized
periodic state and a metachronal wave, respectively. There are also two stable fixed
points, S, 7 and S, ~, representing the other kind of metachronal waves; their appear-
ance depends on the initial conditions. During the initial period, the fixed points,
S, and S, , become unstable simultaneously via Hopf bifurcations. Thus, two
limit cycles are generated on the section, indicating a genesis of two tori in a whole
space, the appearance of which depends on the initial conditions. These states rep-
resent modulated metachronal waves. Such tori merge in a neighborhood of the
all-synchronized state, S4, and the state of the metachronal wave, Sg, and then a
large torus enclosing S, and S,” in an eight-shaped fashion appears. Therefore,
this large torus represents a quasiperiodic transition between the all-synchronized
state and the two kinds of metachronal waves. The bifurcations at the next stage are
complicated: at least a region, denoted by Xg, exists, inside which toric or chaotic
motion enclosing S, ™ and S, ~ occurs. This represents a toric or a chaotic transition
between the all-synchronized state and the different kinds of metachronal waves, S 4,
Ss, S, and S, . Next, large chaotic orbits, denoted by C(, are generated, due to
an interior crisis, with orbits starting near the metachronal wave state, Sg. These
orbits experience a large excursion, and come back near the all-synchronized state,
S4.

At the next stage of bifurcation, further complex and itinerant transitions are
induced, where the objects consisting of the all-synchronization state, the different
kinds of metachronal waves, and the large chaotic orbits, depicted in Fig. 4 (a),
can be Milnor attractors (or attractor ruins). This situation can be described by
chaotic itinerancy, in the sense of chaotic transitions between Milnor attractors, each
consisting of an all-synchronization state, different kinds of metachronal waves, and
large chaotic orbits. A typical trajectory of such a chaotic itinerancy is shown in
Fig. 4 (b), drawn in the projection to the space x; — x15 of the Poincaré map with
the Poincaré section, ¥;x;/N = 0.2, and also a time series of the voltage of the
first neural element, where N = 30. Stagnant motion near zy = 0.2 indicating an
all-synchronized state, Sg4, is clearly seen as well as the chaotic or toric states on
Xg, and a large chaotic state, Cc.
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Fig. 4. A fundamental structure of dynamic states for the transition between synchronized and

desynchronized states.

(a) Various dynamical states on the Poincaré section, X;z;/N = 0.2, where N = 30, yielding the
transition are schematically drawn, together with the corresponding actual spatio-temporal
patterns to the dynamical states. The spatio-temporal pattern shown in the lowest inset in the
figure can be represented by a Milnor attractor for the present chaotic itinerancy. See details
in the text.

(b) Typical trajectories in the projection to 1 — w15 of a Poincaré map with the Poincaré section,
Y;z;/N = 0.2, where N = 30, and also a corresponding time series of the voltage of the first
neuron, 1, is depicted in the case of injection current I = 0.00385. Here, time n is in discrete
time steps, which measure a trajectory on the Poincaré section.
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5. Summary and Discussions

We investigated electrotonically coupled I'* point neurons, a subclass of class
I point neurons, to clarify a mechanism underlying cortical synchronization
and its transitory dynamics, in particular, an irregular change between syn-
chronized and desynchronized states. As a model of class I'* point neurons,
we used a one-parameter family of y-models. This model possesses a dynamic
character such that networks with electrotonic couplings easily yield chaotic
behaviors even though each produces a periodic activity.

We found, in the present paper, ordered but ever-changing dynamic behav-
iors of neural assemblies, accompanying states of different kinds of metachronal
waves and all-synchronization. The findings allow us to provide a dynamical in-
terpretation of cortical transitory dynamics in terms of chaotic itinerancy. The
behaviors obtained may explain the cortical mechanism of “chaotic” and “non-
stationary” transitions between synchronized and desynchronized states that
have been observed in cortical activity [12, 13, 17, 30, 31, 48] and in model neu-
ral assembly systems with some theoretical frameworks [5, 19, 20, 25, 37, 55].

Our model simulations are based on class I'* point neurons, but such elec-
trotonically coupled cells show dynamic behaviors reflecting the appearance
of macro-variables, i.e., the order parameters. This is clearly seen in Fig. 5.
The coarse-grained activity obtained by various scales of ensembles yield quite
similar spatio-temporal patterns, which give rise to a similar decay process of
auto- and cross-correlations between single neurons activity and also between
coarse-grained activity. This implies that various scales of neural assemblies
are formed in the network, and this formation of macroscopic ordered motion
does not depend on the details of a single cell’s feature. This character of in-
dependence from single-cell’s details, perhaps, stems from chaotic instability
inherent in the system.
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Fig. 5. Scale-free behaviors of spatio-temporal patterns. p = 1.65, I = 0.005, go; = 0.83.

(a) Original spatio-temporal dynamics represented by a contour map. Different time interval is
shown in the same parameter as in Fig. 3.

(b) Coarse-grained spatio-temporal dynamics represented by contour map. Each dynamics in each
unit indicates activity averaged over L model neurons. Here L = 10. These coarse-grained
patterns are essentially the same as the spatio-temporal patterns obtained from a single
neuron’s activity shown in (a).

(c) Auto-correlations in the case of coarse-graining show the same characteristics as those in the
original patterns. Both cases of L = 0 (original, denoted by a solid line), and 10 (a dotted line)
are overlaid.

(d) Cross-correlations between the 1st and the 15th units. Cross-correlations show the same
tendency as auto-correlations. The original is denoted by a solid line and a coarse-grained one
(L = 10) by a dotted line.

Metachronal waves can effectively carry the information that could be input
into local sites. Chaotic itinerancy between assemblies of metachronal waves
may play a role in creating new local assemblies, which may be components [43],
that is, the basic format of the brain [55], and transmit information between
assemblies by linking these components. By this mechanism of creation of
shared information, the reorganization of assemblies may proceed smoothly
[53].

As for the chaotic transition between synchronization and desynchro-
nization, it may also be related to the binding problem through synchrony
[10, 18, 55]. Inspired by the von der Malsburg theory [55], Aertsen et al. [1],
and Fujii et al. [14] have discussed some aspects of dynamic cell assemblies.
They proposed that feature bindings could be formed by functional couplings
via spike coincidence. Our present results show an alternative possibility; that
chaotic itinerancy appears to be associated with dynamic changes of cell as-
semblies, and thus feature bindings may not necessarily be established by spike
coincidence but possibly by chaotic behavior of background FS (fast spiking)
interneurons. Here, it should be noted that chaotic fluctuations of inhibitory
interneurons, say of F'S cells in cortical layers, are not directly reflected in local
field potentials. Rather, the inhibitory influence of FS cells on pyramidal cells
affects the fluctuations of membrane potentials of the pyramidal cells, and then
those fluctuations may cause dynamic changes such as the transitory and syn-
chrony dynamics of local field potentials or EEGs. Recently, Raffone and van
Leeuwen [37] demonstrated chaotic itinerancy-like transitions between rela-
tively synchronized and desynchronized states of a layered associative network
with three-variable Hindmarsh-Rose neurons [21]. Raffone and van Leeuwen
showed in a model study how a flexible feature binding could occur in neural
assemblies. Because our present model exhibits various transitory synchroniza-
tions under constant inputs, it may provide a dynamic basis for such a flexible
feature binding.

Another important open question is whether cortical FS neurons possess
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class I'* nature. With these conditions assumed, we propose the following hy-
pothesis:

Chaotic and “non-stationary” changes between synchronization and desyn-
chronization that have been observed in experiments are based on itinerant mo-
tion that may be generated by electrotonically coupled point neuron systems.
This itinerant motion can be described by the chaotic itinerancy obtained in
this paper.
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