
On Solving the Assembly Line Worker Assignment and

Balancing Problem via Beam Search✩

Christian Blum∗,a, Cristobal Mirallesb

aALBCOM Research Group, Universitat Politècnica de Catalunya, Barcelona, Spain
bROGLE – Dpto. Organización de Empresas, Universidad Politécnica de Valencia,

Valencia, Spain

Abstract

Certain types of manufacturing processes can be modelled by assembly line
balancing problems. In this work we deal with a specific assembly line balancing
problem that is know as the assembly line worker assignment and balancing
problem (ALWABP). This problem appears in settings where tasks must be
assigned to workers, and workers to work stations. Task processing times are
worker specific, and workers might even be incompatible with certain tasks.
The ALWABP was introduced to model assembly lines typical for sheltered
work centers for the Disabled.

In this paper we introduce an algorithm based on beam search for solving
the ALWABP with the objective of minimizing the cycle time when given a fixed
number of work stations, respectively workers. The experimental results show
that our algorithm is currently a state-of-the-art method for this version of the
ALWABP. In comparison to results from the literature, our algorithm obtains
better or equal results in all cases. Moreover, the algorithm is very robust for
what concerns the application to problem instances of different characteristics.

Key words:

beam search, assembly line worker assignment and balancing

1. Introduction

Assembly line balancing (ALB) [1] concerns the optimization of processes
related to the manufacturing of products via assembly lines. The specific prob-
lem considered in this paper is a generalization of the so-called simple assembly
line balancing problem (SALBP) [2], which is a well-studied scientific test case.

✩This work was supported by grant TIN2007-66523 (FORMALISM) of the Spanish gov-
ernment. Moreover, Christian Blum acknowledges support from the Ramón y Cajal program
of the Spanish Ministry of Science and Innovation.

∗Corresponding author
Email addresses: cblum@lsi.upc.edu (Christian Blum), cmiralles@omp.upv.es

(Cristobal Miralles)

Preprint submitted to Elsevier January 15, 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41830953?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In SALBP, an assembly line consists of a set of work stations arranged in a
straight line, and by a transport system which moves the product to be manu-
factured along the line. The product is manufactured by performing a given set
of tasks, each of which has a processing time. A solution to a SALBP instance
is obtained by the assignment of all tasks to work stations subject to precedence
constraints between the tasks. The fact that all work stations are equally sized
and the assembly line moves in constant speed, implies a maximum of C time
units (the cycle time) for processing all the tasks assigned to a work station.
Among several possible goals for optimization, the following two are the ones
that were most studied in the literature. Given a fixed cycle time C, the op-
timization goal consists in minimizing the number of necessary work stations.
This problem version is called SALBP-1 in the literature. Given a fixed number
m of work stations, the goal is to minimize the cycle time C. The literature
knows this second problem version as SALBP-2.

In this paper we consider a generalization of SALBP-2: the so-called assem-
bly line worker assignment and balancing problem (ALWABP). This problem
was introduced in [3], motivated by the growing need and desire to incorporate
the Disabled into the active workforce. The World Health Organization esti-
mates that 10% of the global population, which amounts to around 610 million
people worldwide, is disabled. Of these, 386 million people are within the active
labor age range, but experience very high unemployment rates (fluctuating from
13% in the UK to 80% in many under-developed countries). This has led to
various attempts of integrating these citizens into the working society. Indeed,
under the concept of Corporate Social Responsibility (see, for example, [4]), an
increasing number of companies are becoming concerned with this matter. In
this context, the employment of disabled workers is seen as a way of including
the interests of society in the company goals.

One of the strategies most commonly adopted for facilitating the integra-
tion of disabled workers into the labor market is the creation of sheltered work
centers for Disabled (henceforth SWDs). This model of socio-labor integration
tries to move away from the traditional stereotype that considers disabled peo-
ple as unable to develop continuous professional work. Just as in any other firm,
a SWD competes in real markets and must be flexible and efficient enough to
adapt to market fluctuations and changes, the only difference being that the
SWD is a Not-For-Profit organization. Thus, the potential benefits that may
be obtained from increased efficiency are usually invested into the growth of the
SWD. This results in more jobs for the Disabled and the gradual integration
of people with higher levels of disability, which are in fact the primary aims of
every SWD.

Miralles et al. [3] have shown how the adoptation of assembly lines provides
various advantages for these centers. The traditional division of work into single
tasks can become a perfect tool for making certain worker disabilities invisible.
In fact, an appropriate task assignment can even become a good therapeutic
method for the rehabilitation of certain disabilities. However, the employed

2

balancing procedure should be able to cope with some specific constraints rel-
ative to time variability that arise in this environment. Moreover, it should
be able to reconcile the following objectives (that should no longer be seen as
contradictory but complementary): (1) to maximize the efficiency of the line by
balancing the workload assigned to each available worker in each station; (2) to
satisfy and respect the existent constraints in this environment due the human
factors when assigning tasks to workers.

After analyzing several SWDs, the authors of [3] proposed the ALWABP,
which is obtained from the SALBP-2 as follows. Instead of only considering
the assignment of tasks to work stations, Miralles et al. introduced in addition
a set of workers that execute the tasks and that have to be assigned to work
stations. Moreover, processing times of tasks are made worker-dependent. In
other words, in an attempt of modelling the disabilities of different workers, each
task has a worker-dependent processing time. The first mathematical model of
this problem was proposed in [5]. Note that a technical description of the
ALWABP is given in Section 2 below.

1.1. Previous Work

In [5], Miralles et al. presented a branch and bound algorithm for solving the
ALWABP to optimality. They tested their algorithm on a range of benchmark
instances. Unfortunately, only small instances (in terms of the number of tasks)
could be solved. Additionally, the authors of [5] developed a simple construc-
tive one-pass heuristic for obtaining approximate solutions to larger problem
instances. The currently best performing algorithm for the ALWABP is a hy-
brid algorithm proposed by Chaves et al. in [6], where the authors hybridized a
clustering search approach proposed in [7] with iterated local search.

1.2. Contribution of this Work

In this work we present an algorithm based on beam search for solving the
ALWABP. Beam search is a classical tree search method that was introduced in
the context of scheduling [8]. The central idea behind beam search is the parallel
and non-independent construction of a limited number of solutions with the help
of a greedy function and a lower bound to evaluate partial solutions. Our choice
of beam search was motivated by the fact that the crucial algorithmic component
of one of the current state-of-the-art methods for the SALBP (a special case of
the ALWABP) is strongly based on beam search [9]. By the application to a
wide range of benchmark instances we show that our algorithm is currently a
state-of-the-art method for the ALWABP.

1.3. Paper Outline

In Section 2 we present a technical definition of the ALWABP. In Section 3
we outline the proposed algorithm. Finally, in Section 4 we present the compu-
tational results, and in Section 5 we offer conclusions and an outlook on future
work.

3

2. The ALWABP

A technical description of the ALWABP can be given as follows. An instance
(T, S,W,G) of the ALWABP consists of four components. T = {1, . . . , n} is a
set of n tasks that must be processed by workers assigned to work stations.
S = {1, . . . ,m} is an ordered line of m work stations, where 1 is the index of the
first work station and m is the index of the last one. W = {1, . . . ,m} is a set
of m workers. Each worker must be assigned to exactly one work station such
that each work station is occupied by only one worker. Each task i ∈ T has
a worker-specific processing time. More specifically, for each tuple (i, h) where
i ∈ T and h ∈ W a processing time tih > 0 is given. If tih = ∞, worker h is
incompatible with task i. Finally, given is a precedence graph G = (T,A), which
is a directed graph without cycles whose nodes are the tasks. An arc li,j ∈ A
indicates that task i must be processed before task j. Given a task j ∈ T , we
denote by Pj ⊂ T the set of tasks that must be processed before j.

A solution is obtained by assigning workers to work stations and tasks to
workers such that the precedence constraints between the tasks are satisfied.
The objective function is to minimize the so-called cycle time. This problem
can be expressed in the following way as an integer programming (IP) problem
(see also [5]).

min z (1)

subject to:

∑

h∈W

∑

s∈S

xihs = 1 ∀i ∈ T (2)

∑

s∈S

yhs ≤ 1 ∀h ∈W (3)

∑

h∈W

yhs ≤ 1 ∀s ∈ S (4)

∑

h∈W

∑

s∈S

sxihs ≤
∑

h∈W

∑

s∈S

sxjhs ∀j ∈ T, i ∈ Pj (5)

∑

i∈T

tihxihs ≤ z ∀h ∈W, s ∈ S (6)

∑

i∈T

xihs ≤ Myhs ∀h ∈W, s ∈ S (7)

yhs ∈ {0, 1} ∀h ∈W, s ∈ S (8)

xihs ∈ {0, 1} ∀i ∈ T, h ∈W, s ∈ S (9)

z > 0 (10)

This model makes use of the following variables and constants: yhs is a
binary variable which is set to 1 if and only if worker h ∈ W is assigned to
work station s ∈ S. Moreover, xihs is a binary variable which is set to 1 if and
only if task i ∈ T is assigned to worker h ∈ W , which in turn is assigned to

4

work station s ∈ S. Finally, M is a sufficiently large constant which should
have a value larger than |T | · |W | ·maxi∈T,h∈W {tih | tih < ∞}. The objective
function (1) minimizes the cycle time z.1 The constraints (2) ensure that every
task i ∈ T is assigned to a single worker h ∈ W , respectively a single work
station s ∈ S. The constraints (3) and (4) ensure that each worker can only be
assigned to one work station, and that in each work station there is only one
worker. Constraints (5) reflect the precedence relationships between the tasks.
More specifically, in case a task j ∈ T is assigned to a worker h ∈ W , which in
turn is assigned to a work station s ∈ S, all tasks i ∈ Pj can only be assigned to
workers that are assigned to work stations s′ ∈ S with s′ ≤ s. The constraints
(6) and (7) ensure that the sum of the worker-specific processing times of the
tasks assigned to a worker h ∈ W do not exceed the cycle time z. As both z
and yhs are variables, constraints (6) and (7) are defined separately in order to
maintain the linearity of the model.

2.1. Solutions to the Problem

The following representation of solutions is used for the description of the
algorithm in Section 3. A solution τ = (π,S) is a tuple consisting of a permuta-
tion π of length m that stores the assignment of workers to work stations, and
an ordered list S = 〈S1, . . . , Sm〉 of m sets of tasks, where Si denotes the set of
tasks that are assigned to the worker assigned to work station i. In an abuse
of notation we will sometimes call Si a work station. More in detail, πi denotes
the worker that is assigned to work station i, and for a solution τ = (π,S) to
be valid it must fulfill the following conditions:

1.
⋃m

i=1 Si = {1, . . . , n} and
⋂m

i=1 Si = ∅. These conditions ensure that each
task is assigned to exactly one worker.

2. For each task j ∈ Si it is required that Pj ⊆
⋃i

k=1 Sk, which ensures that
the precedence constraints between the tasks are respected.

2.2. Reversal of Problem Instances

Given a problem instance (T, S,W,G), the corresponding reverse problem in-
stance (T, S,W,Gr) is obtained by inverting all the arcs in the precedence graph
G. Each solution τ r = (πr,Sr) to the reverse problem instance (T, S,W,Gr)
can be converted into a solution τ = (π,S) to the original problem instance
(T, S,W,G) as follows:

πi := πr
m−i−1 for i = 1, . . . ,m (11)

Si := Sr
m−i−1 for i = 1, . . . ,m (12)

It is known from the literature (see, for example, [2]) that tackling the reverse
problem instance may lead an exact algorithm faster to an optimal solution,

1Note that we refer to the variable cycle time of the IP model as z, while given fixed cycle
times are denoted by C.

5

respectively, may provide a better heuristic solution when tackled with the same
heuristic as the original problem instance.

3. The Algorithm

The basic component of our algorithm for the ALWABP is beam search
(BS). Even though BS has proved to be a useful heuristic tool especially in the
context of scheduling problems (see, for example, [10, 11, 12]), only very few
applications to other types of problems exist (see, for example, [13, 14]). BS is
an incomplete derivative of branch & bound that was introduced in [8]. In the
following we briefly describe the working of one of the standard versions of BS.
The central idea behind BS is to allow the extension of partial solutions in several
possible ways. The algorithm keeps a set B of at most kbw partial solutions.
Hereby, B is the so-called beam, and kbw is refered to as the beam width. At
each step, the algorithm chooses at most kext feasible extensions of each partial
solution in B. This choice of feasible extensions is done deterministically by
means of a greedy function that assigns a weight to each feasible extension. At
the end of each step, the algorithm creates a new beam B by selecting up to kbw

partial solutions from the set of chosen feasible extensions. For that purpose,
BS algorithms calculate—in the case of minimization—a lower bound value for
each chosen extension. Only the maximally kbw best extensions—with respect
to the lower bound—are chosen to constitute the new set B. Finally, the best
found complete solution (if any) is returned. Crucial components of BS are the
underlying constructive heuristic that defines the feasible extensions of partial
solutions and the lower bound function for evaluating partial solutions.

In the following we first present a description of our implementation of BS
for the ALWABP. Afterwards we describe the algorithmic scheme in which this
beam search component is used for obtaining good solutions to the ALWABP.

3.1. Beam Search

The BS component described in this section—and pseudo-coded in Algo-
rithm 1—is the main component of our algorithm for the ALWABP. As input
the algorithm requires a problem instance (T, S,W,G), a fixed cycle time C, a
beam width kbw, and a maximal number of extensions kext. In short, BS tries
to generate at least one feasible solution with m or less work stations, while
respecting cycle time C. As mentioned before, the central idea behind BS is to
allow the extension of partial solutions in several possible ways. At each step
the algorithm extends each partial solution from beam B in a maximum number
of ways. An extension is generated by, first, assigning an unassigned worker to
the next empty work station and, second, by assigning a set of so-far unassigned
tasks to this worker such that the given cycle time C is not surpassed and the
precedence constraints between the tasks are respected (see lines 13-14 of Al-
gorithm 1). More specifically, given a partial solution τ ′ with l − 1 < m work
stations already filled, the algorithm generates for each unassigned worker a
maximum of kext extensions. In order to avoid having to enumerate all possible

6

Algorithm 1 Beam search

1: input: an instance (T, S,W,G), a fixed cycle time C, a beam width kbw,
and kext

2: l := 0
3: τ := (π,S) where π and S are empty
4: B := {τ}
5: Bcompl := ∅
6: while B 6= ∅ do

7: Bext := ∅
8: l := l + 1
9: for all τ ∈ B do

10: for all unassigned workers w with respect to solution τ do

11: for i = 1, . . . , kext do

12: τ ′ := τ {copy partial solution τ into τ ′}
13: π′

l := w
14: S′

l := ExtendPartialSolution(τ ′, l, w, C) {see Algorithm 2}
15: if solution τ ′ is complete (that is, all tasks are assigned) then

16: Bcompl := Bcompl ∪ {τ
′}

17: else

18: if l < m then

19: Bext := Bext ∪ {τ
′}

20: end if

21: end if

22: end for

23: end for

24: end for

25: B ←SelectSolutions(Bext,kbw)
26: end while

27: output: If Bcompl 6= ∅ the output is true, otherwise false

extensions of a partial solution, our algorithm produces extensions in a (par-
tially) probabilistic way rather than in the usual deterministic manner. Each
generated extension (partial solution) is either stored in set Bcompl in case it is
a complete solution, or in set Bext otherwise (see lines 15-21 of Algorithm 1).
However, a partial solution is only stored in set Bext in case less than m work
stations have been filled already. At the end of each step, the beam search
algorithm creates a new beam B by selecting up to kbw (called the beam width)
solutions from the set of further extensible solutions Bext (see line 25 of Algo-
rithm 1). This is done in function SelectSolutions(Bext,kbw) by means of a lower
bound LB(·). In the following we outline in more detail the extension of partial
solutions and the working of function SelectSolutions(Bext,kbw).

7

Algorithm 2 Function ExtendPartialSolution(τ ′, l, w, C) of Algorithm 1

1: input: A partial solution τ ′, the index l of the work station to be filled, the
worker w assigned to work station l, and the cycle time C

2: S′
l := ∅

3: T ′ := {i ∈ T | i /∈
⋃l

j=1 S′
j , Pi ⊆

⋃l

j=1 S′
j , tiw <∞, tiw + crem ≤ C}

4: crem := C
5: while T ′ 6= ∅ do

6: j :=ChooseTask(T ′, c
rem

)
7: crem := crem − tjw

8: T ′ := {i ∈ T | i /∈
⋃l

j=1 S′
j , Pi ⊆

⋃l

j=1 S′
j , tiw <∞, tiw + crem ≤ C}

9: S′
l := S′

l ∪ {j}
10: end while

11: output: Filled work station S′
l

3.1.1. Generating Extensions of Partial Solutions

The generation of an extension of a partial solution τ ′ = (π′,S ′) with l − 1
work stations already filled takes place in lines 13-14 of Algorithm 1. In this
context, let us denote by W ⊆ W the set of workers that are not assigned to
any of the first l − 1 work stations of partial solution τ ′. The generation of an
extension works as follows. First, a worker w ∈W is assigned to work station l of
τ ′, that is, π′

l := w. Second, unassigned tasks are iteratively assigned to worker
π′

l—that is, added to S′
l—until the sum of their worker-dependent processing

times is such that no other task can be added to S′
l without exceeding the given

cycle time C. This procedure is pseudo-coded in Algorithm 2. At each step,
T ′ denotes the set of so-far unassigned tasks that may be added to S′

l without
violating any constraints. The definition of this set of available tasks is given in
line 3, respectively 8, of Algorithm 2.

It remains to outline the implementation of function ChooseTask(T ′, c
rem

) of
Algorithm 2. For that purpose let us first define the following subset of T ′:

T sat := {i ∈ T ′ | tiw + crem = C} (13)

Hereby, remember that w was the worker assigned to work station l. The
definition in Eq. 13 is such that T sat contains all tasks that saturate, in terms
of processing time, work station l. Next, a sophisticated greedy function is
employed for assigning a value ηi > 0 to all tasks i ∈ T ′. Note that the
definition of these greedy values follows below.

The first action for choosing a task from T ′ consists in flipping a coin for
deciding if the choice is made deterministically, or probabilistically. In case of
a deterministic extension, there are two possibilities. First, if T sat 6= ∅, the best
task from T sat is chosen, that is, the task with maximal greedy value among all
tasks in T sat. Otherwise, we choose the task with maximal greedy value from T ′.
In case of a probabilistic decision, a task from T ′ is chosen using the following

8

probability distribution:

p(i) :=
ηi
∑

j∈T ′

ηj

,∀i ∈ T ′ (14)

For completing the description of the working of function ChooseTask(T ′, c
rem

),
it remains to outline the definition of the greedy values ηi, ∀i ∈ T ′. The greedy
value ηi of a task i ∈ T ′ is composed of a static term αi and a dynamic term βi:

ηi := αi · βi (15)

For each application of BS, the static term αi for each i ∈ T is pre-computed
as follows:

γi := κ1 ·

(

twi

C

)

+ κ2 ·

(

|Sucall

i |

max1≤j≤n

∣

∣Sucall

j

∣

∣

)

,∀i ∈ T (16)

Remeber again, that w is the worker assigned to work station l. In Eq. 16,
Sucall

i denotes the set of all tasks that can be reached from i in the precedence
graph G via a directed path. Moreover, κ1 and κ2 are parameters with values
in [−1, 1]. Given the γi values, the static term αi is derived as

αi :=
γi − γmin + 1

γmax

∀ i ∈ T , (17)

where γmin, respectively γmax, denote the minimum, respectively maximum, val-
ues of all γi. Interestingly, for obtaining well-working αi values, parameters κ1

and κ2 have to be chosen in a problem-instance-dependent way. However, in
preliminar experiments we have not been able to derive parameter values that
work well over the whole range of problem instances. Therefore, both parameter
values are chosen randomly from [−1, 1] for each calculation of the αi values,
that is, for each application of beam search.

In contrast to the static αi values, values βi are dynamic, that is, they
depend on the current partial solution. Given a partial solution τ ′ with l − 1
work stations already filled, remember that W ⊆ W was defined as the set of
workers that have not been assigned to any of the first l− 1 work stations of τ ′.
Then,

βmin

i := minh∈W {tih | tih <∞} ,∀i ∈ T ′ (18)

βmax

i := maxh∈W {tih | tih <∞} ,∀i ∈ T ′ . (19)

Given these definitions, and given that worker w is assigned to work station l
of partial solution τ ′, terms βi are defined as follows:

βi :=
βmax

i − tiw + 1

βmax

i − βmin

i + 1
,∀i ∈ T ′ (20)

9

In other words, in contrast to the first term in the definition of γi (see Eq. 16)
which takes into account the absolute processing time of a task, the term βi

measures the goodness of the processing time of a task i when executed by
worker w in comparison to the processing times of task i when executed by any
of the other so-far unassigned workers.

3.1.2. Lower Bound

The last action of BS at each step consists in determining the beam B of the
next step. This new beam is chosen from Bext in function SelectSolutions(Bext,kbw)
of Algorithm 2. First, the solutions in Bext are ranked with respect to increasing
lower bound values. Then, the min{kbw, |Bext|} highest ranked partial solutions
from Bext are chosen. For the purpose of ranking we used a relatively simple
lower bound, in the following denoted by LB(·). Let us denote by T ⊆ T the
set of tasks that have not yet been assigned to workers in partial solution τ ′.
Then:

LB(τ ′) =

⌈
∑

i∈T minh∈W {tih}

C

⌉

(21)

Remember that further above we defined as W the set of workers that—with
respect to a partial solution τ ′—are not yet assigned to work stations.

3.2. Algorithmic Scheme

The algorithmic scheme which makes use of BS is related to the one proposed
in [5]. The pseudo-code of this scheme, which we labelled iterated beam search
(IBS), is given in Algorithm 3. The first step consists in determining a starting
cycle time C. For that purpose we use the same lower bound for an optimal
solution as given in [5]. More specifically, funcion DetermineStartingCycleTime()
of Algorithm 3 determines the starting cycle time as C = max{C1, C2}, where

C1 := maxi∈T {minh∈W {tih}} , (22)

C2 :=

⌈
∑

i∈T minh∈W {tih}

m

⌉

. (23)

The algorithm works in two phases. In the first phase (see lines 3-12 of Algo-
rithm 3) the algorithm tries to find very quickly a first cycle time C for which
a valid solution can be found. For this purpose, BS is applied with the settings
kbw = 1 and kext = 1. This first phase ends for all instances considered in
Section 4 after a fraction of a second. The second phase of the algorithm itera-
tively tries to find a valid solution for the next smaller cycle time. In this phase,
the algorithm disposes over a certain time limit for each considered cycle time.
Remember that BS works partially probabilistic. Therefore, it can be applied
in a repeated way with potentially different outcomes. The first five percent of
the mentioned time limit are spent with BS applications that use the settings
kbw := 10 and kext := 1. This is done with the intention of rapidly finding a
feasible solution for the given cycle time, if possible. If BS in not able to solve
the given cycle time with these settings, the remaining 95% of the time limit are

10

Algorithm 3 Iterated beam search (IBS) for the ALWABP

1: input: an instance (T, S,W,G)
2: C := DetermineStartingCycleTime()
3: kbw := 1, kext := 1
4: success := false

5: while not success do

6: success := BeamSearch((T, S,W,G), C, kbw, kext) {original instance}
7: if not success then

8: success := BeamSearch((T, S,W,Gr), C, kbw, kext) {reverse instance}
9: if not success then C := C + 1 end if

10: end if

11: end while

12: C := C − 1
13: stop := false

14: while not stop do

15: success := false

16: while time limit not reached and not success do

17: if within 5% of time limit then kbw := 10, kext := 1 else kbw := 100,
kext := 10 end if

18: success := BeamSearch((T, S,W,G), C, kbw, kext) {original instance}
19: if not success then

20: success := BeamSearch((T, S,W,Gr), C, kbw, kext) {reverse instance}
21: end if

22: end while

23: if success then C := C − 1 else stop := true end if

24: end while

25: C := C + 1
26: output: cycle time C

spent with BS applications using the setting kbw := 100 and kext := 10. With
these settings BS is much slower. However, the probability of finding feasible
solutions is much higher than with the settings described before. The second
phase of the algorithm ends when the time limit has passed without having
found a feasible solution for the considered cycle time.

4. Computational results

We implemented IBS in ANSI C++ using GCC 3.4.0 for compiling the
software. Our experimental results were obtained on a PC with an AMD64X2
4400 processor and 4 Gb of memory. In the following we first describe the set of
benchmark instances that we used for the experimental evaluation. Afterwards
we will focus on the results of the proposed algorithm.

11

4.1. Benchmark Instances

For the experimental evaluation of IBS we used a set of 320 benchmark in-
stances proposed by Chaves et al. in [7]. This benchmark set was constructed
following a two-level five factors full factorial scheme from the well-known clas-
sical SALBP collection of Hoffmann [15]. The original problem instances for
generating the benchmark set were selected from that collection, so that prob-
lems with low and high order strength (OS), which measures the structural
properties of the precedence graph, and problems with low and high number
of tasks were included. More specifically, the selected problem instances se-
lected from [15] were Roszieg, Heskia, Tonge, and Wee-mag. Table 1 shows the
characteristics of these problems.

Table 1: The characteristics of the selected problem instances.

Instance Number of tasks Order strength

Roszieg 25 tasks (low) 71.67 (high)
Heskia 28 tasks (low) 22.49 (low)
Tonge 70 tasks (high) 59.42 (high)
Wee-Mag 75 tasks (high) 22.67 (low)

The generation of ALWABP instances from these four problem instances was
done as follows. Only the precedence graph was preserved from each original
problem instances. The original processing times of the tasks were used as
processing times concerning the first worker. The processing times concerning
the remaining workers were randomly generated on the basis of the original
processing times. From the available experience on sheltered work centers for
the Disabled, the upper bound for these randomly generated processing times
should not be greater than three times the original processing times. In case the
processing time of a worker for a certain task is greater than this upper bound,
it is assumed that this task should not be assigned to him or her. The worker
is then assigned an infinite time for that task (which means that the respective
task is incompatible with this worker). The problem instances were generated
according to the following three factors (in addition to the two factors number

of tasks and order strength):

• The high, respectively low, relation between the number of tasks and the
number of workers (size of the task-worker matrix).

• The high, respectively low, variability of processing times for the different
workers.

• The high, respectively low, percentage of task-worker incompatibilities
defined a priori.

Concerning the first one of these three factors, high refers to a number of tasks
four times higher than the number of workers, while low refers to a number of
tasks seven times higher than the number of workers. The different processing

12

times for each task were randomly generated from a uniform distribution with
a range selected according to the original processing time (as described above).
Given a task i with its original processing time ti, high refers to the range
[1, 3 · ti] and low refers to the range [1, ti]. And finally, the high, respectively
low, percentage of task-worker incompatibilities was set to 20%, respectively
10%. Hence, globally the benchmark was created according to the following
five factors: (1) number of tasks, (2) order strength, (3) mean number of tasks
per worker, (4) variability of task times, and (5) percentage of task-worker
incompatibilities. As high and low levels are defined for each factor we count
32 combinations. Generating 10 problems for each combination resulted in a
benchmark of 320 ALWABP instances of varying characteristics. Note that for
each of the four original SALBP instances, 80 ALWABP instances were obtained.

4.2. Experimental Results

We applied IBS for 20 times to each of the 320 problem instances. As a time
limit for each considered cycle time (see Algorithm 3) we used 120 seconds. In
the following we present our results in the same way as done in [6]. Moreover,
we compare our results to the results of the current state-of-the-art algorithm as
published in [6]. This algorithm is labelled CS (for ”clustering search”). The re-
sults are shown in Tables 2 to 5. Each of these tables presents the results for the
80 problem instances obtained from one of the four original SALBP instances
(Roszieg, Heskia, Tonge, and Wee-mag). Moreover, the results are presented in
a summarized way, as averages over the 10 instances for the same combination
of factors (3), (4) and (5). This results in eight groups of 10 instances for each
of the four original SALBP instances. Groups 1-4 are characterized by a low
number of workers, whereas groups 5-8 contain instances with a high number
of workers. Furthermore, groups 1, 2, 5, and 6 are characterized by a low vari-
ability of processing times, whereas groups 3, 4, 7, and 8 contain instances with
a high variability of processing times. Finally, groups 1, 3, 5, and 7 are char-
acterized by a low percentage of worker incompatibilities, while the remaining
groups consist of instances with a high percentage of worker incompatibilities.

The results of the two algorithms (IBS and CS) are presented in three
columns. The first of these column—with heading best—shows the average
over the best solutions found for the 10 instances of the respective groups within
20 applications of each algorithm to each instance. This measure is henceforth
refered to as ”best-performance”. The second column with heading avrg pro-
vides the ”average-perfornamce”, that is, the average over the averages of each
algorithm for the 10 instances of each group. Finally, the last column with
heading time gives the average times when the best solutions of all the runs
were found (again averaged over the 10 instances per group). The last row of
each table provides averages over the 8 groups.

The results show, first, that in terms of average performance IBS is—with
the exception of one case—always better than CS. The exception is Roszieg,
group 4, where both algorithms show the same average-performance. Especially
when the number of tasks grows (see Tonge and Wee-mag families) the average

13

performance of IBS is considerably better than the one of CS. Notice that in
the cases of Tonge and Wee-mag, the average-performance of our algorithm is
even better than the best-performance of CS. The best-performances of the two
algorithms are equal when instances with a low number of tasks are concerned
(Roszieg and Heskia). However, in the cases of Tonge and Wee-mag, IBS obtains
in all 16 cases (two times eight groups) a new best-performance (as well as a
new best average-performance). This is indicated by the asterisk in the columns
with the heading best-known. The asterisk indicates that this performance
was obtained for the first time in the literature. Interestingly we were not able
to detect any decrease in performance for any of the 8 different groups. This
means that—in comparison to CS—IBS works well regardless of the instance
characteristics, even though we can notice that the absolute improvement of
IBS over CS is higher for instances with a high number of workers (groups 5-
8). Concerning robustness we can say that IBS is much more robust than CS.
This is indicated by the average-performances. In the case of CS the difference
between the best-performances and the average-performances is much higher
than in the case of IBS. Therefore, we may say that IBS is more robust than
CS.

Concerning the processing times, CS was evaluated on computer with a 2.6
GHz Pentium 4 processor and 1 Gb of memory. Being conservative, we might
assume that the processor that was used to evaluate IBS is double as fast as the
processor used to evaluate CS. In this case, beam search was faster than CS on
the 80 instances derived from Roszieg. However, beam search was (up to three
times) slower than CS on the remaining instances. However, as the ALWABP is
not a time-critical problem, the focus is on obtaining good solution rather than
on developing the fastest algorithm.

Finally, let us mention that the results of the small instances (Roszieg and
Heskia) have been proved to be optimal by solving the IP formulation presented
in Section 2 with CPLEX. In contrast, the results of CPLEX for the large
problem instances (Tonge and Wee-mag families) are characterized by very high
gaps between upper and lower bounds even after very long running times. The
values of the best solutions for each of the 320 instances (optimal in case of
Roszieg and Heskia, and best-known in case of Tonge and Wee-mag) are given
in the tables in Appendix A.

5. Conclusions and Outlook to the Future

In this work we presented an algorithm based on beam search for the as-
sembly line worker assignment and balancing problem (ALWABP). The results
have shown that our algorithm is currently a state-of-the-art algorithm for this
problem. In the future we plan to apply similar techniques to other assembly
line balancing problems with additional constraints.

14

Table 2: Results for the Roszieg family.

Group best-known IBS CS

best avrg time best avrg time
1 20.1 20.1 20.1 0.01 20.1 20.2 0.8
2 31.5 31.5 31.5 0.09 31.5 32.5 0.9
3 28.1 28.1 28.1 0.13 28.1 28.5 0.6
4 28.0 28.0 28.0 0.00 28.0 28.0 0.2
5 9.7 9.7 9.7 0.01 9.7 10.7 1.3
6 11.0 11.0 11.0 0.02 11.0 12.1 1.4
7 16.0 16.0 16.0 0.01 16.0 16.9 1.5
8 15.1 15.1 15.1 0.01 15.1 15.6 1.9

average 19.94 19.94 19.94 0.04 19.94 20.57 1.09

Table 3: Results for the Heskia family.

Group best-known IBS CS

best avrg time best avrg time
1 102.3 102.3 102.3 8.16 102.3 102.8 1.3
2 122.6 122.6 122.6 2.98 122.6 123.8 1.4
3 172.5 172.5 172.5 5.63 172.5 175.5 1.7
4 171.2 171.2 171.27 5.21 171.2 171.7 1.4
5 34.9 34.9 34.9 1.09 34.9 37.8 4.4
6 42.6 42.6 42.6 2.54 42.6 44.7 3.4
7 75.2 75.2 75.2 1.67 75.2 77.7 2.9
8 67.2 67.2 67.2 2.51 67.2 70.7 3.6

average 98.56 98.56 98.57 3.72 98.56 100.59 2.51

Table 4: Results for the Tonge family.

Group best-known IBS CS

best avrg time best avrg time
1 ∗94.9 94.9 96.66 86.38 96.7 116.6 64.0
2 ∗110.2 110.2 111.53 92.17 116.0 141.8 64.6
3 ∗165.0 165.0 168.02 150.28 167.7 199.4 66.2
4 ∗170.0 170.0 171.41 149.50 174.0 206.0 65.7
5 ∗33.1 33.1 34.17 87.98 41.3 51.3 101.1
6 ∗40.0 40.0 40.96 70.50 48.5 61.6 105.3
7 ∗66.4 66.4 67.89 124.28 77.8 93.0 100.1
8 ∗64.7 64.7 66.59 156.42 77.9 95.6 100.3

average ∗93.04 93.04 94.65 114.69 99.99 120.64 83.42

References

[1] S. Gosh, R. J. Gagnon, A comprehensive literature review and analysis
of the design, balancing and scheduling of assembly systems, International
Journal of Production Research 27 (1989) 637–670.

[2] A. Scholl, C. Becker, State-of-the-art exact and heuristic solution proce-

15

Table 5: Results for the Wee-mag family.

Group best-known IBS CS

best avrg time best avrg time
1 ∗28.7 28.7 29.71 104.91 29.0 32.7 94.3
2 ∗33.6 33.6 34.91 84.93 34.6 38.4 91.4
3 ∗50.1 50.1 51.6 160.33 50.8 56.7 96.0
4 ∗48.6 48.6 50.44 143.34 49.6 55.6 103.9
5 ∗10.3 10.3 10.67 57.05 13.1 20.9 141.2
6 ∗11.9 11.9 12.35 60.24 14.6 18.2 155.2
7 ∗18.2 18.2 18.96 71.36 21.2 27.1 148.0
8 ∗18.1 18.1 18.85 90.00 21.6 26.8 140.6

average ∗27.44 27.44 28.44 96.52 29.31 34.56 121.31

dures for simple assembly line balancing, European Journal of Operational
Research 168 (3) (2006) 666–693.

[3] C. Miralles, J. P. Garcia-Sabater, C. Andres, M. Cardos, Advantages of
assembly lines in sheltered work centres for disabled, International Journal
of Production Economics 110 (2007) 187–197.

[4] P. Kotler, N. Lee, Corporate Social Responsibility: Doing the Most Good
for Your Company and Your Cause, Wiley & Sons, Hoboken, NJ, 2005.

[5] C. Miralles, J. P. Garcia-Sabater, C. Andres, M. Cardos, Branch and bound
procedures for solving the assembly line worker assignment and balancing
problem. application to sheltered work centres for disabled, Discrete Ap-
plied Mathematics 156 (2008) 352–367.

[6] A. A. Chaves, L. A. Nogueira Lorena, C. Miralles, Hybrid metaheuristic
for the assembly line worker assignment and balancing problem, in: M. J.
Blesa, C. Blum, L. Di Gaspero, A. Roli, M. Sampels, A. Schaerf (Eds.),
Proceedings of HM 2009 – Sixth International Workshop on Hybrid Meta-
heuristics, Vol. 5818 of Lecture Notes in Computer Science, Springer Verlag,
Berlin, Germany, 2009, pp. 1–14.

[7] A. A. Chaves, C. Miralles, L. A. Nogueira Lorena, Clustering search ap-
proach for the assembly line worker assignment and balancing problem, in:
M. H. Elwany, A. B. Eltawil (Eds.), Proceedings of ICC&IE 2007 – 37th
International Conference on Computers and Industrial Engineering, 2007,
pp. 1469–1478.

[8] P. S. Ow, T. E. Morton, Filtered beam search in scheduling, International
Journal of Production Research 26 (1988) 297–307.

[9] C. Blum, Beam-ACO for simple assembly line balancing, INFORMS Jour-
nal on Computing 20 (4) (2008) 618–627.

16

[10] I. Sabuncuoglu, M. Bayiz, Job shop scheduling with beam search, European
Journal of Operational Research 118 (1999) 390–412.

[11] M. Ghirardi, C. N. Potts, Makespan minimization for scheduling unrelated
parallel machines: A recovering beam search approach, European Journal
of Operational Research 165 (2) (2005) 457–467.

[12] J. M. S. Valente, R. A. F. S. Alves, Filtered and recovering beam search
algorithms for the early/tardy scheduling problem with no idle time, Com-
puters & Industrial Engineering 48 (2) (2005) 363–375.

[13] G.-C. Lee, D. L. Woodruff, Beam search for peak alignment of NMR signals,
Analytica Chimica Acta 513 (2) (2004) 413–416.

[14] C. Blum, M. J. Blesa, M. López Ibáñez, Beam search for the longest
common subsequence problem, Computers & Operations Research 36 (12)
(2009) 3178–3186.

[15] T. R. Hoffmann, Assembly line balancing: A set of challenging problems,
International Journal of Production Research 28 (1990) 1807–1815.

17

Appendix A

Table 6: Values of optimal solutions for the Roszieg family.

Group Instance number

1 2 3 4 5 6 7 8 9 10
1 20 22 18 18 17 24 21 20 22 19
2 30 27 76 25 26 22 22 20 27 40
3 28 30 26 33 28 27 21 28 27 33
4 31 29 32 27 27 29 27 28 21 29
5 10 10 10 9 12 9 10 8 10 9
6 11 10 10 10 11 13 13 11 12 9
7 16 13 19 16 14 17 17 16 15 17
8 15 16 16 16 16 17 13 14 14 14

Table 7: Values of optimal solutions for the Heskia family.

Group Instance number

1 2 3 4 5 6 7 8 9 10
1 94 95 102 103 92 98 116 86 95 142
2 169 107 108 96 130 117 146 132 101 120
3 200 147 186 181 142 194 149 191 170 165
4 204 147 211 127 181 179 191 152 167 153
5 35 40 35 30 40 29 25 43 38 34
6 51 50 52 33 38 34 42 39 59 28
7 66 56 69 126 107 39 87 62 61 79
8 91 65 73 57 65 70 71 58 46 76

18

Table 8: Values of the best-known solutions for the Tonge family (as obtained by IBS).

Group Instance number

1 2 3 4 5 6 7 8 9 10
1 93 94 106 112 92 90 95 108 73 86
2 112 116 105 93 95 101 123 113 128 116
3 171 161 148 150 174 173 149 182 189 153
4 175 180 157 181 152 169 167 153 183 183
5 29 33 33 34 31 38 32 35 34 32
6 38 43 36 40 40 40 42 42 37 42
7 63 68 69 97 65 69 52 63 55 63
8 57 61 72 68 69 59 62 67 66 66

Table 9: Values of the best-known solutions for the Wee-mag family (as obtained by IBS).

Group Instance number

1 2 3 4 5 6 7 8 9 10
1 28 28 27 33 32 26 27 31 27 28
2 32 33 32 33 34 32 34 37 33 36
3 50 48 48 52 49 47 56 51 45 55
4 51 49 52 58 47 49 42 47 50 41
5 10 10 10 12 11 10 11 10 9 10
6 12 10 11 12 12 13 12 12 14 11
7 16 18 19 17 18 18 20 15 20 21
8 19 16 17 21 19 16 18 18 20 17

19

