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Abstract. We describe an alternative construction of an existing canon-
ical representation for definite Horn theories, the Guigues-Duquenne ba-
sis (or GD basis), which minimizes a natural notion of implicational size.
We extend the canonical representation to general Horn, by providing a
reduction from definite to general Horn CNF. We show how this repre-
sentation relates to two topics in query learning theory: first, we show
that a well-known algorithm by Angluin, Frazier and Pitt that learns
Horn CNF always outputs the GD basis independently of the counterex-
amples it receives; second, we build strong polynomial certificates for
Horn CNF directly from the GD basis.

1 Introduction

The present paper is the result of an attempt to better understand the classic
algorithm by Angluin, Frazier, and Pitt [2] that learns propositional Horn for-
mulas. A number of intriguing questions remain open regarding this algorithm;
in particular, we were puzzled by the following one: we expected the outcome
of the algorithm to depend on the specific counterexamples received as answers,
along the run, because it is easily seen that, in general, each equivalence query
depends heavily upon the counterexamples received so far, and, in fact, the out-
come of the algorithm is an equivalence query: the first one with positive answer.
However, if hypotheses are expressed in terms of implications (or “meta-clauses”
in the terminology of [2]), attempts at providing an example of different coun-
terexamples leading to equivalent but different outputs consistently fail.

In this paper we prove that such attempts must in fact fail: we describe a
canonical representation of Horn functions in terms of implications, and show
that the algorithm of [2] always outputs this particular representation. It turns
out that this canonical representation is well-known in the field of Formal Con-
cepts, and bears the name of the authors that, to the best of our knowledge,
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first described it: the Guigues-Duquenne basis or GD basis [8, 15]. In addition,
the GD basis has the important quality of being of minimum size.

However, the GD basis is defined for definite Horn formulas only. Fortunately,
we are able to extend the notion of GD basis to general Horn formulas by means
of a reduction from general to definite Horn formulas. This reduction allows us
to lift the characterization of the output of AFP as the generalized GD basis.
Furthermore, the generalized GD representation provides the basis for building
strong polynomial certificates with p(m,n) = m and q(m,n) =

(
m+1

2

)
+m+ 1 =(

m+2
2

)
for the class of general Horn formulas, extending a similar construction

from [4] which applied only to definite Horn.

2 Preliminaries

We start by reviewing basic definitions and results from Horn logic. We work
within the standard framework in logic, where one is given an indexable set
of propositional variables of cardinality n, boolean functions are subsets of the
boolean hypercube {0, 1}n, and these functions are represented by logical formu-
las over the variable set in the standard way. Binary strings of length n assign
a boolean value for each variable, and are therefore called assignments; given
any boolean function or formula H, the fact that assignment x makes it true
(or “satisfies” it) is denoted x |= H. Following the standard overloading of the
operator, H |= H ′ means that, for every assignment x, if x |= H then x |= H ′.

A literal is a variable or its negation. A conjunction of literals is a term,
and if none is negated it is a positive term; we often identify positive terms and
mere sets of variables; in fact, we switch back and forth between set-based no-
tation and assignments. We denote terms, or equivalently subsets of variables,
with greek letters and assignments with letters from the end of the alphabet.
We may abuse notation at times and it should be understood that if we use a
subset α when an assignment is expected, it is to be interpreted as the assign-
ment that sets to 1 exactly those variables in α. We denote this explicitly when
necessary by x = BITS(α). Similarly, if we use an assignment x where a subset
of variables is expected, it is to be understood that we mean the set of variables
that are set to 1 in x. We denote this explicitly by α = ONES(x). Clearly, we
have a bijection between sets of propositional variables and assignments, and
x = BITS(ONES(x)) and α = ONES(BITS(α)) for all assignments x and
variable sets α. The following lemma is a direct consequence of the definition of
satisfiability over conjunctions:

Lemma 1. x |= α iff α ⊆ ONES(x) iff BITS(α) ≤ x. ut

2.1 Horn Logic

In this paper we are only concerned with Horn functions, and their represen-
tations using conjunctive normal form (CNF). A Horn CNF formula is a con-
junction of Horn clauses. A clause is a disjunction of literals. A clause is definite



Horn if it contains exactly one positive literal, and it is negative if all its literals
are negative. A clause is Horn if it is either definite Horn or negative. Since we
are dealing with Horn functions only, we drop the “Horn” adjective frequently.

Horn clauses are generally viewed as implications where the negative liter-
als form the antecedent of the implication (a positive term), and the singleton
consisting of the positive literal, if it exists, forms the consequent of the clause.
Note that both can be empty; if the consequent is empty, then we are dealing
with a negative Horn clause. Furthermore, we allow our representations of Horn
CNF to deviate slightly from the standard in that we represent clauses sharing
the same antecedent together in one implication. Namely, an implication α→ β,
where both α and β are possibly empty sets of propositional variables, is to be
interpreted as the conjunction of definite Horn clauses

∧
b∈β α→ b if β 6= ∅, and

as the negative clause α→ tu if β = ∅. 3 A semantically equivalent interpretation
is to see both sets of variables α and β as positive terms; the Horn formula in
its standard form is obtained by distributivity on the variables of β.

Example 1. Let (¬a∨ b)∧ (¬a∨ c)∧ (¬a∨¬b) be a standard representation of a
Horn function over the variable set {a, b, c}. In standard implicational form this
expression becomes (a→ b)∧ (a→ c)∧ (ab→ tu). In our compact representation
we write (a → bc) ∧ (ab → ∅). All these represent the same boolean function.
When clear from context, we drop the set representation in our examples.

We refer to our generalized notion of conjunction of clauses sharing the an-
tecedent as implication; the term clause retains its classical meaning (namely,
a disjunction of literals). Notice that an implication may not be a clause, e.g.
(a → bc) corresponds in classical notation to the formula ¬a ∨ (b ∧ c). Thus,
(a → bc), (ab → c) and (ab → ∅) are Horn implications but only the latter
two are Horn clauses. Furthermore, we often use sets to denote conjunctions, as
we do with positive terms, also at other levels: a generic (implicational) CNF∧
i(αi → βi) is often denoted in this text by {(αi → βi)}i. Parentheses are

mostly optional and generally used for ease of reading.
Clearly, an assignment x ∈ {0, 1}n satisfies the implication α → β, denoted

x |= α → β, if it either fails the antecedent or satisfies the consequent, that is,
x 6|= α or x |= β respectively, where now we are interpreting both α and β as
positive terms. By convention, x 6|= ∅ for any assignment x.

A Horn function admits several syntactically different Horn CNF represen-
tations; in this case, we say that these representations are equivalent. Such rep-
resentations are also known as theories or bases for the boolean function they
represent. The size of a Horn function is the minimum number of clauses that a
Horn CNF representing it must have. The implication size of a Horn size is de-
fined analogously, but allowing formulas to have implications instead of clauses.
3 Notice that this differs from an alternative existing interpretation [14], obsolescent

by now, in which α→ β represents the clause (¬x1∨ . . .∨¬xk∨y1∨ . . .∨yk′), where
α = {x1, . . . , xk} and β = {y1, . . . , yk′}. Though identical in syntax, the semantics
are different; in particular, ours can only represent a conjunction of definite Horn
clauses whereas the other represents a general possibly non-Horn clause.



Clearly, every clause is an implication, and thus the implication size of a given
Horn function is always at most that of its standard size as measured in the
number of clauses. Not all boolean functions are Horn. The following semantic
characterization is a well-known classic result of [13, 11], proved in the context
of propositional Horn logic e.g. in [12]:

Theorem 1. A boolean function admits a Horn CNF basis if and only if the set
of assignments that satisfy it is closed under bit-wise intersection. ut

2.2 Definite Horn Functions

Forward chaining. We describe the well-known method of forward chaining
for definite Horn functions. Notice that it directly extends to our compressed
representation where consequents of clauses can contain more than one variable.
Given a definite Horn CNF H = {αi → βi}i and a subset of propositional
variables α, we construct chains of subsets of propositional variables α = α(0) ⊂
α(1) ⊂ . . . ⊂ α(k) = α?. Each α(i) with i > 0 is obtained from its predecessor
α(i−1) in the following way: if BITS(α(i−1)) satisfies all implications in H, then
the process can stop with α(i−1) = α?. If, on the other hand, BITS(α(i−1))
violates some implication αj → βj ∈ H, then α(i) is set to α(i−1) ∪ αj .

Similarly, one can construct an increasing chain of assignments (using the
usual bit-wise partial order of hypercubes) x = x(0) < x(1) < . . . < x(k) = x?

using our bijection α(i) = ONES(x(i)) and x(i) = BITS(α(i)) for all i.

Theorem 2. The objects x? and α? are well-defined and computed by the for-
ward chaining procedure regardless of the order in which implications in H are
chosen. The forward chaining process finishes in linear time in |H| and n. More-
over, x? and α? depend only on the underlying function being represented, and
not on the particular choice of representation H; and for each x(i) and α(i) along
the way, we have that (x(i))? = x? and (α(i))? = α?. ut

It is well-known that the forward chaining procedure is a sound and complete
deduction method for definite Horn CNF [7]:

Theorem 3. Let h be a definite Horn function, and let α be an arbitrary variable
subset. Then h |= α→ b if and only if b ∈ α?. ut

Closure operator and equivalence classes. It is easy to see that the ?
operator is extensive (that is, x ≤ x? and α ⊆ α?), monotonic (if x ≤ y then
x? ≤ y?, and if α ⊆ β then α? ⊆ β?) and idempotent (x?? = x?, and α?? = α?)
for all assignments x, y and variable sets α, β; that is, ? is a closure operator [4].
Thus, we refer to x? as the closure of x w.r.t. a definite Horn function.

It should be always clear from the text with respect to what definite Horn
function we are taking the closure, hence it is omitted from the notation used.
An assignment x is said to be closed iff x? = x, and similarly for variable sets.
Furthermore, it is not hard to see that closed elements are always positive (by



construction via the forward chaining procedure, they must satisfy all implica-
tions), and assignments that are not closed are always negative (similarly, they
must violate some implication). This closure operator induces a partition over
the set of assignments {0, 1}n in the following straightforward way: two assign-
ments x and y belong to the same class if x? = y?. This notion of equivalence
class carries over as expected to the power set of propositional variables: the
subsets α and β belong to the same class if α? = β?. It is worth noting that
each equivalence class consists of a possibly empty set of assignments that are
not closed and a single closed set, its representative.

3 The Guigues-Duquenne Basis for Definite Horn

In this section we characterize and show how to build a canonical basis for definite
Horn functions that is of minimum implication size. This canonical representa-
tion has been introduced before as the Guigues-Duquenne basis (the GD basis)
[8]. Here, we introduce it in a form that is, to our knowledge, novel, although it
is relatively close to the approach of [15]. Moreover, we base the construction of
the GD basis on the notion of saturation, a notion that has been used already
in the context of Horn functions and seems very natural [5, 4].

First, we prove several interesting properties that serve as the basis for our
work.

Definition 1. Let B = {αi → βi}i be a basis for some definite Horn function.
Then, B is left-saturated if the following 2 conditions hold:

1. BITS(αi) 6|= αi → βi, for all i
2. BITS(αi) |= αj → βj, for all i 6= j

Alternatively, it can be more succintly described by the following equivalence:
a basis {αi → βi}i is left-saturated if i = j ⇔ BITS(αi) 6|= αj → βj .

Definition 2. Let B = {αi → βi}i be a basis for some definite Horn function.
Then, B is right-saturated if for all i, βi = α?i . Accordingly, we denote right-
saturated bases with {αi → α?i }i.

Definition 3. We say that a basis B is saturated iff it is left- and right-
saturated.

Lemma 2. If B is left-saturated then B is irredundant.

Proof. Suppose that B is left-saturated but redundant. Then it contains an
implication (a → b) that is redundant, where both a and b are now variable
sets. By definition of left-saturation, we have that BITS(a) |= (α → β) for
implications (α → β) other than (a → b). Thus BITS(a) |= B \ {(a → b)},
contradicting the fact that B and B \ {(a→ b)} are equivalent. ut

Lemma 3. Let B = {αi → βi}i be an irredundant basis. Then, BITS(αi) 6|=
αi → βi for all i.



Proof. We are dealing with definite implications, therefore no βi can be empty.
Moreover, the fact that B is irredundant implies that some variable in βi must
be from outside αi, otherwise the implication would be redundant. Thus we have
that BITS(αi) |= αi but BITS(αi) 6|= βi because the variable of βi outside of
αi is set to 0 in BITS(αi) by definition. ut

Lemma 4. Let B = {αi → α?i }i be a saturated basis for some definite Horn
function h. Then, BITS(αi) 6|= h and BITS(α?i ) |= h hold for all i.

Proof. It must hold that αi ⊂ α?i for all i, since otherwise B would be reduntant,
and hence could not be saturated. This implies that αi is not closed and α?i is,
and the lemma follows. ut

Lemma 5. Let B = {αi → α?i }i be an irredundant and right-saturated implica-
tional basis. Then, the following hold for all i 6= j

1. αi 6= αj
2. αi ⊆ αj ⇒ αi ⊂ αj

Proof. Follows simply from the fact that if αi = αj with i 6= j, then the impli-
cations αi → α?i and αj → α?j would, in fact, be the same implication, and thus
B is redundant. The second statement is a direct consequence of the first. ut

Lemma 6. Let B = {αi → α?i }i be an irredundant, right-saturated basis. Then,
B is left-saturated if and only if the following implication is true for all i 6= j:

αi ⊂ αj ⇒ α?i ⊆ αj .

Proof. Assume that the implication αi ⊂ αj ⇒ α?i ⊆ αj holds for all i 6= j.
We show that B must be left-saturated, namely, that the following equivalence
must hold: i = j ⇔ BITS(αi) 6|= αj → α?j . If i = j, Lemma 3 guarantees that
BITS(αi) 6|= αi → α?i . For the other direction, assume by way of contradiction
that BITS(αi) 6|= αj → α?j , for some i 6= j. This happens if BITS(αi) |= αj
(namely, αj ⊆ αi by Lemma 1 and thus αj ⊂ αi by Lemma 5) but BITS(αi) 6|=
α?j (namely, α?j 6⊆ αi). But this contradicts the implication αi ⊂ αj ⇒ α?i ⊆ αj .

Finally, assume that αi ⊂ αj for some i 6= j, and that B is left-saturated,
which implies by definition that BITS(αj) |= αi → α?i : then α?i ⊆ αj follows. ut

The following Lemma is a variant of a result of [15] translated into our
notation. We include the proof that is, in fact, missing from [15].

Lemma 7. Let B = {αi → α?i }i be a saturated basis for a definite Horn func-
tion. Then for all i and β it holds that (β ⊆ αi and β? ⊂ α?i )⇒ β? ⊆ αi.

Proof. Let us assume that the conditions of the implication are true, namely,
that β ⊆ αi and β? ⊂ α?i . We proceed by cases: if β is closed, then β? = β
and the implication is trivially true since β ⊆ αi clearly implies β? ⊆ αi when
β? = β. Otherwise, β is not closed. Let β = β(0) ⊂ β(1) ⊂ . . . ⊂ β(k) = β? be
the series of elements constructed by the forward chaining procedure described



in Section 2.2. We argue that if β(l) ⊆ αi and β(l) ⊂ β?, then β(l+1) ⊆ αi as
well. By repeatedly applying this fact to all the elements along the chain, we
arrive at the desired conclusion, namely, β? ⊆ αi. Let β(l) be such that β(l) ⊆ αi
and β(l) ⊂ β?. Thus β(l) violates some implication (αk → α?k) ∈ B. Our forward
chaining procedure assigns β(l+1) to β(l) ∪ α?k. The following inequalities hold:
αk ⊆ β(i) because β(i) 6|= αk → α?k, β(i) ⊆ αi by assumption; hence αk ⊆ αi.
Using Lemma 6, and noticing the fact that, actually, αk ⊂ αi since β(i) ⊂ αi
(otherwise we could not have β? ⊂ α?i ), we conclude that α?k ⊆ αi. We have that
α?k ⊆ αi and β(i) ⊆ αi so that β(i+1) = β(i) ∪ α?k ⊆ αi as required. ut

We arrive at our version of the GD basis:

Theorem 4. Definite Horn functions have a unique saturated basis.

Proof. Let B1 and B2 be two equivalent and saturated bases. Let (a → a?) be
an arbitrary comparable pair in B1. We show that (a → a?) ∈ B2 as well. By
symmetry, this implies that B1 = B2.

By Lemma 3, we have that BITS(a) 6|= B1 and thus BITS(a) must violate
some implication (b → b?) ∈ B2, hence it must hold that b ⊆ a but b? 6⊆ a.
The rest of the proof is concerned with showing that assuming b ⊂ a leads to a
contradiction. If so, then b = a and thus (a→ a?) ∈ B2 as well as desired.

Let us assume then that b ⊂ a so that, by monotonicity, b? ⊆ a?. If b? ⊂ a?,
then we can use Lemma 7 with αi = a and β = b and conclude that b? ⊆ a,
contradicting the fact that BITS(a) 6|= (b→ b?). Thus, it should be that b? = a?.
Now, consider (b→ a?) ∈ B2. Clearly b is negative and thus it must violate some
implication (c → c?) ∈ B1, namely, c ⊆ b but c? 6⊆ b. If c = b, then we have
(a → a?) ∈ B1 and (c → c?) with c ⊂ a and c? = b? = a? contradicting the
fact that B1 is irredundant. Thus, c ⊂ b and so c? ⊆ b?. If c? ⊂ b? then we use
Lemma 7 as before but with αi = b and β = c and we conclude that c? ⊆ b.
Again, this means that b |= (c |= c?) contradicting the fact that b violates this
implication. So the only remaining case is c? = b? but this means that we have
the implications (a→ a?) ∈ B1 and (c→ c?) ∈ B1 with c ⊂ a but a? = c? which
again makes B1 redundant. ut

3.1 Constructing the GD Basis

So far, our definition of saturation only tests whether a given basis is actually
saturated; we study now a saturation process to obtain the GD basis. New
definitions are needed. Let H be any Horn CNF, and α any variable subset. Let
H(α) be those clauses of H whose antecedents fall in the same equivalence class
as α, namely, H(α) = {αi → βi | αi → βi ∈ H and α? = α?i } .

Given a Horn function H and a variable subset α, we introduce a new oper-
ator • that we define as follows: α• is the closure of α with respect to the subset
of clauses H \H(α). That is, in order to compute α• one does forward chaining
starting with α but one is not allowed to use the clauses in H(α). This operator
has been used in the literature before in related contexts, for example in [15].



Example 2. Let H = {a → b, a → c, c → d}. Then, ac? = abcd but ac• = acd
since H(ac) = {a → b, a → c} and we are only allowed to use the clause c → d
when computing ac•.

Computing the GD basis of a definite Horn H. The algorithm for con-
structing the GD basis of an arbitrary definite Horn CNF H is presented in
Figure 1 and works as follows. First, saturate every clause C = α → β in H
by replacing it with the implication α• → α?. Then, remove possibly redundant
implications, namely: (1) remove implications s.t. α• = α?, and (2) remove du-
plicates, and (3) remove subsumed implications, i.e., implications α• → α? for
which there is another implication β• → β? s.t. α? = β? but β• ⊂ α•.

Let us denote with GD(H) the implicational definite Horn CNF obtained
by applying this procedure to input H. Note that this algorithm is designed to
work when given a definite Horn CNF both in implicational or standard form.

The procedure can be computed in quadratic time, since finding the closures
of antecedent and consequent of each clause can be done in linear time w.r.t. the
size of the initial Horn CNF H.

GD(H)

1 for every clause C ∈ H � /* C has antecedent α and consequent β */
2 do β ← α? � /* right-saturate C */
3 α← α• � /* left-saturate C */
4 remove from H clauses α→ β such that α = β
5 remove from H duplicate clauses
6 remove from H subsumed clauses

� /* i.e. remove α→ β if there is an α′ → β′ s.t. β? = β′? but α′ ⊂ α */
7 return H

Fig. 1. Constructing the GD basis for definite Horn CNF

Example 3. Following our previous example, let H = {a → b, a → c, c → d}.
Then, a• = a, a? = abcd, c• = c, and c? = cd. Thus our H after the for loop
is {a → abcd, a → abcd, c → cd}, and the final GD basis is GD(H) = {a →
abcd, c→ cd}.

Example 4. Let H = {a → b, a → c, ad → e, ab → e}. We compute the closures
of the antecedents: a? = abce, ad? = abcde, and ab? = abce. Therefore, H(a) =
{a → b, a → c, ab → e}, H(ad) = {ad → e}, and H(ab) = H(a). Thus, a• = a,
ad• = abcde, and ab• = abce. After saturation of every clause in H, we obtain
H ′ = {a → abce, a → abce, abcde → abcde, abce → abce}. It becomes clear that
the third clause was, in fact, redundant. Also, the fourth implication is subsumed
by the first two (after right-saturation) and we can group the first and second
implications together into a single one. Hence, GD(H) = {a→ abce}.



In the remainder of this Section we show that the given algorithm computes
the unique saturated representation of its input. First, we need a simple lemma:

Lemma 8. Let H be any basis for a definite Horn CNF over variables X =
{x1, . . . , xn}. For any α, β, γ ⊆ X, the following statements hold:

1. α ⊆ α• ⊆ α?
2. If H |= β → γ, β ⊆ α• but β? ⊂ α?, then γ ⊆ α•

Proof. The first statement follows from the fact that to get from α to α• we do
forward chaining with the clauses in H \H(α), but to get to α? we are allowed
to use all clauses in H.

This second statement is in fact a variant of Lemma 4 of [15]. To see that it
holds, we first prove that H \H(α) |= β → γ. Assume w.l.o.g. that H is right-
saturated4. By assumption, H |= β → γ. Therefore, if we do forward chaining
starting from β we end up with a variable subset that contains γ, namely γ ⊆ β?.
We need to make sure that no clause in H(α) is used in the forward chaining
process, so that H \H(α) |= β → γ as well. But if this were not so, and some
clause with an antecedent in the same class as α were used, the forward chaining
procedure would add α? to the closure being computed, and thus we would have
that α? ⊆ γ ⊆ β?, thus contradicting our assumption. So, no clauses in H(α)
can be used and therefore H \H(α) |= β → γ.

Finally, to compute α• we do forward chaining with clauses in H \ H(α).
Since β ⊆ α• and H \H(α) |= β → γ, it must be that H \H(α) |= α → γ so
that γ ⊆ α• as required. ut

Lemma 9. The algorithm computing GD(H) outputs the GD basis of H for
any definite Horn formula H.

Proof. Let H be the input to the algorithm, and let H ′ be its output. We show
that H ′ must be saturated. Let α→ β be an arbitrary implication in the output
H ′. Because of the initial saturation process, we can refer to this implication
as α• → α?. Clearly, (α•)? = α?, and H ′ is right-saturated. It is only left to
show that H ′ is left-saturated. By Lemma 8, it must be that α• ⊆ α?, but the
removal of implications of type (1) guarantees that α• ⊂ α?, thus we have that
BITS(α•) 6|= α• → α? and Condition 1 of left-saturation is satisfied. Now let
β• → β? be any other implication in H ′. We need to show that BITS(α•) |=
β• → β?. Assume by way of contradiction that this is not so, and BITS(α•) |= β•

but BITS(α•) 6|= β?. That is, β• ⊆ α• but β? 6⊆ α•. If β• = α•, then β? = α?,
contradicting the fact that both implications have survived type (2) of removal
of implications in the algorithm. Thus, β• ⊂ α•, and therefore β? ⊆ α? must
hold as well. It cannot be that β? = α? because we would have that α• → α? is
subsumed by β• → β? and thus removed from the output H ′ during removal of
implications of type (3) (and it is not). Thus, it can only be that β• ⊂ α• and
β? ⊂ α?. But if β? ⊂ α?, Lemma 8 and the fact that H |= β• → β? (notice that
4 No generality is lost since right-saturating clauses (that is, replacing right-hand-sides

of clauses with their closure) does not change the function represented.



saturating clauses does not change the logical value of the resulting formula)
guarantee that β? ⊆ α• contradicting our assumption that β? 6⊆ α•. It follows
that H ′ is saturated as required. ut

It is clear that GD(H) has at most as many implications as H. Thus, if H is
of minimum size, then so is GD(H). This, together with the fact that the GD
basis is unique, implies:

Theorem 5. [8] The GD basis of a definite Horn function is of minimum im-
plicational size. ut

4 The Guigues-Duquenne Basis in Query Learning

The classic query learning algorithm by Angluin, Frazier, and Pitt [2] is able to
learn Horn CNF with membership and equivalence queries. It was proved in [2]
that the outcome of the algorithm is always equivalent to the target concept.
However, the following questions remain open: (1) which of the Horn CNF,
among the many equivalent candidates, is output? And (2) does this output
depend on the specific counterexamples given to the equivalence queries? Indeed,
each query depends on the counterexamples received so far, and intuitively the
final outcome should depend on that as well.

Our main result from this section is that, contrary to our first intuition, the
output is always the same Horn CNF: namely, the GD basis of the target Horn
function. This section assumes that the target is definite Horn, further sections
in the paper lift the “definite” constraint.

4.1 The AFP Algorithm for Definite Horn CNF

We recall some aspects of the learning algorithm as described in [4], which bears
only slight, inessential differences with the original in [2]. The algorithm main-
tains a set P of all the positive examples seen so far. The fact that the target
is definite Horn allows us to initialize P with the positive example 1n. The al-
gorithm maintains also a sequence N = (x1, . . . , xt) of representative negative
examples (these become the antecedents of the clauses in the hypotheses). The
argument of an equivalence query is prepared from the list N = (x1, . . . , xt)
of negative examples combined with the set P of positive examples. The query
corresponds to the following intuitive bias: everything is assumed positive unless
some (negative) xi ∈ N suggests otherwise, and everything that some xi sug-
gests negative is assumed negative unless some positive example y ∈ P suggests
otherwise. This is exactly the intuition in the hypothesis constructed by the AFP
algorithm.

For the set of positive examples P , denote Px = {y ∈ P
∣∣ x ≤ y}. The

hypothesis to be queried, given the set P and the list N = (x1, . . . , xt), is denoted
H(N,P ) and is defined as H(N,P ) = {ONES(xi)→ ONES(

∧
Pxi) | xi ∈ N} .



A positive counterexample is treated just by adding it to P . A negative
counterexample y is used to either refine some xi into a smaller negative example,
or to add xt+1 to the list. Specifically, let

i := min({j
∣∣MQ(xj ∧ y) is negative, and xj ∧ y < xj} ∪ {t+ 1})

and then refine xi into x′i = xi ∧ y, in case i ≤ t, or else make xt+1 = y,
subsequently increasing t. The value of i is found through membership queries
on all the xj ∧ y for which xj ∧ y < xj holds.

AFP()

1 N ← () � /* empty list */
2 P ← {1n} � /* top element */
3 t← 0
4 while EQ(H(N,P )) = (“no”, y) � /* y is the counterexample */
5 do if y 6|= H(N,P )
6 then add y to P
7 else find the first i such that � /* N = (x1, . . . , xt) */
8 xi ∧ y < xi, and � /* that is, xi 6≤ y */
9 xi ∧ y is negative � /* use membership query */

10 if found
11 then xi ← xi ∧ y � /* replace xi by xi ∧ y in N */
12 else t← t+ 1; xt ← y� /* append y to end of N */
13 return H(N,P )

Fig. 2. The AFP learning algorithm for definite Horn CNF

The AFP algorithm is described in Figure 2. In order to prove that its output
is indeed the GD basis, we need the following lemmas from [4]:

Lemma 10 (Lemma 2 from [4]). Along the running of the AFP algorithm,
at the point of issuing the equivalence query, for every xi and xj in N with i < j
there exists a positive example z such that xi ∧ xj ≤ z ≤ xj. ut

Lemma 11 (Variant of Lemma 1 from [4]). Along the running of the AFP
algorithm, at the point of issuing the equivalence query, for every xi and xj in
N with i < j and xi ≤ xj, it holds that

∧
Pxi
≤ xj.

Proof. At the time xj is created, we know it is a negative counterexample to the
current query, for which it must be therefore positive. That query includes the
implication ONES(xi)→ ONES(

∧
Pxi), and xj must satisfy it, and then xi ≤

xj implies
∧
Pxi
≤ xj . From that point on, further positive examples may enlarge

Pxi
and thus reduce

∧
Pxi

, keeping the inequality. Further negative examples y
may reduce xi, again possibly enlarging Pxi

and keeping the inequality; or may
reduce xj into xj ∧ y. If xi 6≤ xj ∧ y anymore, then there is nothing left to prove.
Finally, if xi ≤ xj ∧ y, then xi ≤ y, and y is again a negative counterexample



that must satisfy the implication ONES(xi)→ ONES(
∧
Pxi

) as before, so that∧
Pxi ≤ xj ∧ y also for the new value of xj . ut

Our key lemma for our next main result is:

Lemma 12. All hypotheses H(N,P ) output by the AFP learning algorithm in
equivalence queries are saturated.

Proof. Recall that H(N,P ) = {ONES(xi) → ONES(
∧
Pxi

)
∣∣ xi ∈ N}, where

Pxi = {y ∈ P
∣∣ xi ≤ y}. Let αi = ONES(xi) and βi = ONES(

∧
Pxi) for all i

so that H(N,P ) = {αi → βi
∣∣ 1 ≤ i ≤ t}.

First we show that H(N,P ) is left-saturated. To see that xi 6|= αi → βi it
suffices to note that xi <

∧
Pxi since xi is negative but

∧
Pxi is positive by

Lemma 1, being an intersection of positive examples; thus, these two assignment
must be different.

Now we show that xi |= αj → βj , for all i 6= j. If xi 6|= αj , then clearly
xi |= αj → βj . Otherwise, xi |= αj and therefore xj ≤ xi. If i < j, then by
Lemma 10 we have that xi ∧ xj ≤ z ≤ xj . Then, xi ∧ xj = xj ≤ z ≤ xj , so
that xj = z, contradicting the fact that xj is negative whereas z is positive.
Otherwise, j < i. We apply Lemma 11: it must hold that

∧
Pxj
≤ xi. Thus, in

this case, xi |= αj → βj as well because xi |= βj = ONES(
∧
Pxj

).
It is only left to show that H(N,P ) is right-saturated. Clearly, H(N,P ) is

consistent with N and P , that is, x 6|= H(N,P ) for all x ∈ N and y |= H(N,P )
for all y ∈ P . Take any x ∈ N contributing the implication ONES(x) →
ONES(

∧
Px) to H(N,P ). We show that it is right-saturated, i.e.,

∧
Px =

x?, where the closure is taken with respect to H(N,P ). We note first that
H(N,P ) |= ONES(x) → (ONES(x))? since the closure is taken w.r.t. impli-
cations in H(N,P ). By the construction of H(N,P ), all examples y ∈ Px must
satisfy it, hence they must satisfy the implication ONES(x)→ (ONES(x))? as
well. Therefore, since y |= ONES(x) we must have that y |= (ONES(x))?,
or equivalently, that x? ≤ y. This is true for every such y in Px and thus
x? ≤

∧
Px. On the other hand, it is obvious that

∧
Px ≤ x? since the implica-

tion ONES(x)→ ONES(
∧
Px) of H(N,P ) guarantees that all the variables in∧

Px are included in the forward chaining process in the final x?. So we have
x? ≤

∧
Px ≤ x? as required. ut

Putting Theorem 4 and Lemma 12 together, we obtain:

Theorem 6. AFP, run on a definite Horn target, always outputs the GD basis
of the target concept. ut

5 A Canonical Basis for General Horn

Naturally, we wish to extend the notion of saturation and GD basis to general
Horn functions. We do this via a a prediction-with-membership reduction [3]
from general Horn to definite Horn, and use the corresponding intuitions to de-
fine a GD basis for general Horn. We use this reduction to generalize our AFP



algorithm to general Horn CNF, and as a consequence one obtains that the gen-
eralized AFP always outputs a saturated version of the target function. Indeed,
for the generalized AFP it is also the case that the output is only dependent
on the target, and not on the counterexamples received along the run. Finally,
we contruct strong polynomial certificates for general Horn functions direclty in
terms of the generalized GD basis, thus generalizing our earlier result of [4].

5.1 Reducing General Horn CNF to Definite Horn CNF

In this section we describe the intuition of the representation mapping, which
we use in the next section to obtain a canonical basis for general Horn functions.

For any Horn H over n propositional variables, e.g. X = {xi | 1 ≤ i ≤ n},
we construct a definite Horn H ′ over the set of n + 1 propositional variables
X ′ = X ∪ {f}, where f is a new “dummy” variable; in essence f represents the
false (that is, empty) consequent of the negative clauses in H. The relationship
between the assignments for H and H ′ are as follows: for assignments of n + 1
variables xb where x assigns to the variables in X and b is the truth value
assigned to f , x0 |= H ′ if and only if x |= H, whereas x1 |= H ′ if and only if
x = 1n.

Define the implication Cf as f → X ′. Let Hd be the set of definite Horn
clauses in H, and Hn = H \ {Hd} the negative ones. Define the mapping g as

g(H) = Hd ∪ {¬C → X ′ | C ∈ Hn} ∪ {Cf}.
That is, g(H) includes the definite clauses of H, the special implication Cf ,

and the clauses C that are negative are made definite by forcing all the positive
literals, including f , into them. Clearly, the resulting g(H) is definite Horn.
Observe that that the new implication Cf is saturated and the ones coming from
Hn are right-saturated. Observe also that g is injective: given g(H), we recover
H by removing the implication Cf , and by removing all positive literals from
any implications containing f . Clearly, g−1(g(H)) = H, since g−1 is removing
all that g adds.

5.2 Constructing a GD-like Basis for General Horn CNF

The notion of left-saturation translates directly into general Horn CNF:

Definition 4. Let B = {αi → βi}i be a basis for some Horn function. Notice
that now βi can possibly be empty (it is empty for the negative clauses). Then,
B is left-saturated if the following two conditions hold:

1. BITS(αi) 6|= αi → βi, for all i
2. BITS(αi) |= αj → βj, for all i 6= j

Notice that now in the second condition, if βj = ∅, i.e., we are dealing with a
negative clause, then BITS(αi) |= αj → βj translates directly into BITS(αi) 6|=
αj (equivalently, αi 6⊇ αj) since it could never happen that BITS(αi) |= αj but
BITS(αi) |= tu, where tu is the (unsatisfiable) empty clause. The conditions can
be more explicitly stated as follows:



1. BITS(αi) 6|= αi → βi, for all i
2. BITS(αi) |= αj → βj , for all i 6= j such that βj 6= ∅
3. αj 6⊆ αi, for all i 6= j such that βj = ∅

Notice that the third condition guarantees that no negative clause is a subset
of any other clause. If this were not so, we clearly would have a redundant clause.

For a definite Horn CNF H, right-saturating a clause α → β essentially
means that we add to its consequent everything that is implied by its antecedent,
namely α?. This can no longer be done in the case of general Horn CNF, since
we need to take special care of the negative clauses. If β = ∅, we cannot set
β to α? without changing the underlying boolean function being represented.
The closure x? of an assignment x is defined as the closure with respect to all
definite clauses in the general Horn CNF. It is useful to continue to partition
assignments x in the boolean hypercube according to their closures x?; however,
in the general Horn case, we distinguish a new class (the negative class) of closed
assignments that are actually negative, that is, it is possible now that x? 6|= H.
These assignments are exactly those that satisfy all definite clauses of H but
violate negative ones. Based on this, the negative clauses (those with antecedent
α such that BITS(α?) 6|= B) should be left unmodified, and the definite clauses
(those whose antecedents α are such that BITS(α?) |= B) should be right-
saturated. Thus, the definition is:

Definition 5. Let B = {αi → βi}i be a basis for some general Horn function.
Then, B is right-saturated if, for all i, βi = ∅ if α?i 6|= B, and βi = α?i otherwise.

As for the definite case, “saturated” means that the Horn CNF in question is
both left- and right-saturated. We must see that this is the “correct” definition
in some sense:

Lemma 13. A basis H is saturated iff H = g−1(GD(g(H))).

Proof. First let us note that the expression g−1(GD(g(H))) is well-defined. We
can always invert g on GD(g(H)), since saturating g(H) does not modify Cf

(already saturated) and it does not touch the positive literals of implications
containing f since these are right-saturated. Therefore, we can invert it since the
parts added by g are left untouched by the construction of GD(g(H)).

We prove first that if H is saturated then H = g−1(GD(g(H))). Assume,
then, that H is saturated but H 6= g−1(GD(g(H))). Applying g, which is in-
jective, this can only happen if GD(g(H)) 6= g(H), namely, g(H), as a definite
Horn CNF, differs from its own GD basis and, hence, it is not saturated: it must
be because some implications other than Cf is not saturated, since this last one
is saturated by construction. Also the ones containing f in their consequents are
right-saturated, so no change happens in the right-hand-sides of these implica-
tions when saturating g(H)). This means that when saturating we must add a
literal different from f to the right-hand-side of an implication not containing
f or to the left-hand-side of an implication. In both cases, this means that the
original H could not be saturated either, contradicting our assumption.



It is only left to show that an H such that H = g−1(GD(g(H))) is indeed
saturated. By way of contradiction, assume that H is not saturated but H =
g−1(GD(g(H))). Applying g to both sides, we must have that g(H) = GD(g(H))
so that g(H) is actually saturated. Notice that the only difference between H
and g(H) is in the implication Cf and the right-hand-sides of negative clauses
in H; g(H) being left-saturated means that so must be H since the left-hand-
sides of H and g(H) coincide exactly (ignoring Cf naturally). Therefore, H is
left-saturated as well. It must be that H is not right-saturated, that is, it is
either missing some variable in some non-empty consequent, or some clause that
should be negative is not. In the first case, then g(H) is missing it, too, and it
cannot be saturated. In the second case, then there is a redundant clause in H
contradicting the fact that H is left-saturated (see Lemma 2). In both cases we
arrive at a contradiction, thus the lemma follows. ut

Notice that this last lemma also gives us a way to compute the saturation
(that is, the GD basis) of a given general Horn CNF:

Theorem 7. Horn functions have a unique saturated basis. This basis, which
we denote GD(H), can be computed by GD(H) = g−1(GD(g(H))).

Proof. If H is saturated then H = g−1(GD(g(H))). The uniqueness of such an H
follows from the following facts: first, g(H) and g(H ′) are equivalent whenever H
and H ′ are equivalent; second, GD(g(H)) is unique for the function represented
by H (Theorem 4) and third, g−1 is univocally defined since g is injective. ut

Example 5. Let H be the Horn CNF {a→ b, a→ c, abc→ ∅}. Then,

– g(H) = {a→ b, a→ c, abc→ abcf , f → abcf}
– GD(g(H)) = {a→ abcf , f → abcf}
– GD(H) = g−1(GD(g(H))) = {a→ ∅}

Similarly to the case of definite Horn functions, GD(H) does not increase
the number of new implications, and therefore if H is of minimum size, GD(H)
must be of minimum size as well. This, together with the uniqueness of saturated
representation implies that:

Theorem 8. [8] The GD basis of a general Horn function is of minimum im-
plicational size. ut

5.3 The AFP Algorithm for General Horn CNF

We study now the AFP algorithm operating on general Horn CNF, by following
a detour: we obtain it via reduction to the definite case.

We consider, therefore, an algorithm that, for target a general Horn function
H, simulates the version of AFP algorithm from Figure 2 on its definite trans-
formation g(H), where g is the representation transformation from Section 5.1.
It has to simulate the membership and equivalence oracles for definite Horn



CNF that the underlying algorithm expects, by using the oracles that it has for
general Horn.

Initially, we set P = {1n+1}, and N = (0n1) since we know that g(H) is def-
inite and must contain the implication f → X ∪{f} by construction. In essence,
the positive assignment 1n+1 = f? and the negative 0n1 = f• guarantee that
the implication Cf is included in every hypothesis H(N,P ) that the simulation
outputs as an equivalence query. The resulting algorithm for general Horn CNF
is described in Figure 3.

In order to deal with the queries, we use two transformations: we must map
examples over the n + 1 variables, asked as membership queries, into examples
over the original example space over n variables, although in some cases are able
to answer the query directly as we shall see. Upon asking x0 as membership query
for g(H), we pass on to H the membership query about x. Membership queries
of the form x1 are answered always negatively, except for 1n+1 which is answered
positively (in fact query 1n+1 never arises anyway, because that example is in P
from the beginning). Conversely, n-bit counterexamples x from the equivalence
query with H are transformed into x0. The equivalence queries themselves are
transformed according to g−1. It is readily checked that all equivalence queries
belong indeed to the image set of g since Cf ∈ H(N,P ).

All together, these functions constitute a prediction-with-membership (pwm)
reduction from general Horn to definite Horn, in the sense of [3].

It is interesting to note that if we unfold the simulation, we end up with the
original algorithm by Angluin, Frazier and Pitt [2] (obviously, with no explicit
reference to our “dummy” f). In fact, the only difference between our algorithm
in Figure 3 is in the construction of hypotheses: ours uses the reduction de-
scribed in Section 5.1 and the construct H(N,P ), whereas the algorithm AFP
of [2] directly build their hypotheses from the negative xi and positive examples
received. These negative examples, in fact coincide exactly for both algorithms,
as the mechanism that maintains N is the same. AFP [2] builds the hypotheses
in the following way. Let X be the set of propositional variables. Each xi ∈ N
generates an implication ONES(xi) → F if no positive counterexample y re-
ceived is such that y ≥ xi, where [2] use the variable F to denote the always
false variable (this is analogue to our f). Otherwise, xi generates the implication
ONES(xi)→ β, where β is the set of variables in X that are not in ONES(xi)
and are set to 1 in all positive counterexamples y such that y ≥ xi.

To see that H(N,P ) contains the same implications, notice that if there is no
y ≥ xi, then the implication included in H(N,P ) in our version is ONES(xi)→
X ∪ {f} (because 1n+1 is used to construct the right-hand-side). When con-
structing the inverse image g−1 all the literals in the consequent are removed
and thus the corresponding clause is ONES(xi) → tu, precisely the one con-
structed by [2]. On the other hand, if there are positive y s.t. y ≥ xi, then our
algorithm constructs the implication ONES(xi) → ONES(

∧
Pxi). Notice that

since Pxi = {y | y ≥ xi, y ∈ P}, variables in ONES(
∧
Pxi) are precisely those

that are set to 1 in all y ∈ Pxi
. Thus, the only difference between our clauses



and the ones in [2] is the fact that ours are right-saturated (the ones in [2] are
only missing the variables in ONES(xi) from their right-hand-sides).

AFP()

1 N ← (0n1)
2 P ← {1n+1}
3 � /* simulate AFP */
4 if AFP asks an equivalence query with H(N,P )
5 then pass g−1(H(N,P )) to our equivalence oracle
6 if answer is “Yes”
7 then return g−1(H(N,P )) and stop
8 elseif answer is “No” and x is counterexample received
9 then pass f(x) = x0 as a counterexample to AFP

10 elseif AFP asks a membership query MQ(x′)
11 then if h(x′) = 0 � /* membership query transformation */
12 then answer the query with a “No”
13 elseif h(x′) = 1
14 then answer the query with a “Yes”
15 elseif h(x′) = x 6∈ {0, 1}
16 then answer query using our own membership oracle on x

Fig. 3. The AFP learning algorithm for general Horn CNF

Therefore, the outcome of AFP on a general Horn target H comes univocally
determined by the outcome of AFP on the corresponding definite Horn function
g(H); combining this fact with Theorems 6 and 7 leads to:

Theorem 9. The AFP algorithm always outputs the GD basis of the target
concept. ut

5.4 Certificates for General Horn CNF

The certificate dimension of a given concept class is closely related to its learn-
ability in the model of learning from membership and equivalence queries [10, 9,
1, 6]. Informally, a certificate for a class C of concepts of size at most m is a set
of (labeled) assignments that proves that concepts consistent with it must be
outside C. The polynomial q(m,n) used below quantifies the cardinality of the
certificate set in term of m, the size of the class, and n, the number of variables in
the class. The polynomial p(m,n) quantifies the expansion in size allowed in the
hypotheses. In this paper, p(m,n) = m and thus we construct strong certificates.
Formally,

Definition 6. Let C be a class of representations of a boolean concepts in {0, 1}n,
and let C≤m be the subclass of concepts in C of size at most m. The class C
has certificates of size q(m,n) for representation expansion p(m,n) if for every
m,n > 0 and for every boolean function f 6∈ C≤p(m,n) (i.e., |f | > p(m,n) or
f 6∈ C), there is a set Qf ⊆ {0, 1}n satisfying the following:



1. |Qf | ≤ q(m,n), and
2. for every g ∈ C≤m, there is some x ∈ QF s.t. g(x) 6= f(x). In other words,

no function in C≤m is consistent with f over Qf .

If p(m,n) and q(m,n) are polynomials then we say that C has polynomial
size certificates.

In [4] we show how to build strong certificates for definite Horn CNF. Here,
we extend this to general Horn CNF, and describe the certificates directly in
terms of the generalized GD basis. First we present a lemma that is useful in
the final proof.

Lemma 14. Let f be a Horn function and x•i , x
•
j two left-hand-sides of saturated

clauses αi → βi, αj → βj of f (i.e., x•i = BITS(αi) and x•j = BITS(αj)). Then,
x•i ∧ x•j 6|= f if and only if x•i ≤ x•j or x•j ≤ x•i .

Proof. The direction from right to left is clear: if x•i ≤ x•j (or x•j ≤ x•i ), then
x•i ∧x•j = x•i (or x•i ∧x•j = x•j ). In either case, it is clear that x•i 6|= f and x•j 6|= f
so that x•i ∧ x•j 6|= f .

For the other direction, assume that x•i ∧ x•j 6|= f . Other implications α→ β
of f that are neither αi → βi nor αj → βj are satisfied by x•i ∧ x•j , since Horn
implications are closed under intersection and both x•i |= α→ β and x•j |= α→ β
by left-saturation. Therefore, it must be that either x•i ∧ x•j 6|= αi → βi or
x•i ∧ x•j 6|= αj → βj . Assume w.l.o.g. that x•i ∧ x•j 6|= αi → βi. This implies that
αi ≤ x•i ∧ x•j so that αi ≤ x•j . Since x•j |= αi → βi, it must hold that x•j |= βi.
Thus, βi 6= ∅ and βi = α?i by right-saturation of the implication. We obtain that
x•i ≤ x?i ≤ x•j as required. ut

Finally, our certificate result is:

Theorem 10. The class of general Horn CNF has strong polynomial certificates
with p(m,n) = m and q(m,n) =

(
m+1

2

)
+m+ 1 =

(
m+2

2

)
.

Proof. The argumentation follows, essentially, the same steps as the analogous
proof in [4], because, by Lemma 13, the GD basis in the general case is saturated,
and therefore all required facts carry over to the general case. Let f be a boolean
function that cannot be represented with m Horn implications. If f is not Horn,
then three assignments x, y, x ∧ y such that x |= f , y |= f but x ∧ y 6|= f suffice.
Otherwise, f is a general Horn CNF of implicational size strictly greater than
m. Assume that f contains at least m+ 1 non-redundant and possibly negative
implications {αi → βi}. We define the certificate for f as follows:

Qf = {x•i , x?i | 1 ≤ i ≤ m+ 1, xi = BITS(αi), βi 6= ∅}
∪ {x•i | 1 ≤ i ≤ m+ 1, xi = BITS(αi), βi = ∅}
∪
{
x•i ∧ x•j

∣∣ 1 ≤ i < j ≤ m+ 1
}

It is illustrative to note the relation between this set of certificates for f and
its GD basis: the assignments x•i and x?i correspond exactly to the left and



right-hand-sides of the (saturated) definite implications in GD(f). For negative
clauses, only the (saturated) left-hand-side of the implication x•i matters.

We prove that Qf is indeed a certificate set. Take any Horn function g of
implicational size at most m. By way of contradiction, assume that g is consistent
with f over all the elements in Qf .

By construction, the assignments x•i are negative for f . Since there are at
least m + 1 such assignments in Qf , there must be one particular implication
α→ β in g violated by both x•i and x•j for some i, j s.t. 1 ≤ i < j ≤ m+ 1.

Clearly x•i ∧ x•j 6|= α→ β; therefore x•i ∧ x•j 6|= g.
Assume w.l.o.g. that the clauses in f are saturated; it must be that x•i |=

αj → βj , and x•j |= αi → βi.
If x•i ≤ x•j , then x•j |= αi and therefore x•j |= βi, βi 6= ∅, βi = BITS(x?i ) so

that x?i ≤ x•j . The fact that βi 6= ∅ implies that x?i |= f and x?i ∈ Qf . If x?i is
positive for f then it must be positive for g as well, thus x?i |= α→ β and hence
x?i |= β since x•i |= α and x•i ≤ x?i . But this contradicts the fact that x•j 6|= α→ β
because we have obtained that x?i ≤ x•j and x?i |= β. The case where x•j ≤ x•i
is analogous. Otherwise, x•i and x•j are incomparable. In this case, Lemma 14
guarantees that x•i ∧ x•j |= f , thus g and f differ on x•i ∧ x•j ∈ Qf .

We conclude that Qf is a certificate set. Its cardinality appears to be
(
m+1

2

)
+

2(m+ 1) in the worst case that f is definite Horn (no negative clauses). Notice
however that the proof above only uses x?i when there is a x•j s.t. x•i ≤ x•j .
Moreover, in this case, it is clear that x•i ∧ x•j = x•i so the intersection is already
in Qf and we do not need to count it. So, if we remove from Qf as described
above those x?i for which no x•j exists s.t. x•i ≤ x•j , we end up with a certificate
set of the desired cardinality. The final certificate set is:

Qf = {x•i | 1 ≤ i ≤ m+ 1, xi = BITS(αi)}
∪
{
x?i
∣∣ 1 ≤ i, j ≤ m+ 1, xi = BITS(αi), x•i ≤ x•j for some j 6= i

}
∪
{
x•i ∧ x•j

∣∣ 1 ≤ i < j ≤ m+ 1, x•i 6≤ x•j , x•j 6≤ x•i
}

ut

The certificates of [5] for Horn CNF use p(m,n) = m(n+1). In contrast, here
we only require that p(m,n) = m thus applying to the more stringent model
of strong proper learning [10]. On the other hand, in [5] m counts the number
of clauses whereas here m is the number of comparable pairs, which translates
to using implications in the Horn logic setting. The authors feel that the right
thing to count in the case of Horn expressions is the number of implications,
especially in the context of analyzing the AFP algorithm that learns using the
implicational representation.

Notice also that this upper bound matches exactly the lower bound from [5]
in the case that m < n. If m > n, there is still a gap between the lower bound
of Ω(mn) in [5] and our upper bound of O(m2). Regarding the consequences of
this certificate size on the query complexity of the problem, see the discussions
in [1, 5].
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