

Secure and Insecure Chat
 Implementation

 Project: Final Master Thesis Project

Student: Aleix Masdeu Medina

Profesor: Thomas Newe

Date: 15/12/2015

(Department of Electronic and Computer Engineering)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41830929?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CONTENTS

1. Introduction ... 1

2. Background .. 2

3. Security issues .. 4

3.1 ASYMMETRIC CRIPTOGRAPHY .. 4

3.1.1 Man in the middle attack ... 5

3.1.2 Public-Key infrastructure (PKI) ... 8

3.2 SYMMETRIC CRIPTOGRAPHY ... 10

3.3 Diffie-Hellman .. 11

3.3.1 Implementation .. 11

3.3.2 Man in the middle attack ... 13

3.4 SSL .. 15

3.4.1 Socket .. 18

4. Technologies .. 19

4.1 JAVA .. 19

4.2 ECLIPSE .. 20

4.3 X.509 Certificates .. 22

4.3.1 Certification authority .. 23

4.4 KEYTOOL .. 24

4.5 WIRESHARK ... 26

4.6 Model View Controller (MVC) ... 27

4.3 Class Diagram ... 29

4.7.1 Interface .. 30

4.7.2 Controller .. 31

4.7.3 Server Model ... 33

4.7.4 Client Model .. 43

5. Implementation ... 45

5.1 Graphical User Interface (GUI) .. 45

5.2 SSL Handshake ... 47

5.3 Wireshark analysis ... 50

5.3.1 Sockets .. 50

5.3.2 SSL sockets .. 51

5.5 Testing .. 52

6. Conclusions .. 62

7. References.. 63

7.1 Links .. 63

7.2 Tables ... 65

7.3 Table of figures .. 66

1

1. INTRODUCTION

Internet is not a single network, but a worldwide collection of loosely connected networks that

are accessible by using computers, smartphones or tablets, in a variety of ways, to anyone with

a computer and a network connection. Thus, individuals and organizations can reach any point

on the internet without regard to national or geographic boundaries or time of day.

However, along with the convenience and easy access to information come risks. Among them

are the risks that valuable information will be lost, stolen, changed, or misused. If information is

recorded electronically and is available on networked computers, it is more vulnerable than if

the same information is printed on paper and locked in a file cabinet. Intruders do not need to

enter an office or home, they may not even be in the same country. They can steal or tamper

with information without touching a piece of paper or a photocopier. They can also create new

electronic files, run their own programs, and hide evidence of their unauthorized activity.

As it can be seen, securities issues are of a high relevance because Internet is a network of

networks in which the information sent can travel over a secure or insecure network. Nowadays,

messaging or chat applications are used every day by millions of users to exchange text

messages, pictures, videos, contacts, documents and so on. It is translated to a huge amount of

data travelling by the network in a transparent way for the users involved.

For all this reasons, applying security to the information sent is really important to guarantee

data protection. In our case, it has been desired to implement a chat application in which a

Server and a Client can exchange, for instance, messages, pictures, documents, songs, and

videos. In this application, both entities should have the possibility of sending the information

over a secure or insecure channel. If the secure way is chosen some cryptographic protocols,

such as symmetric and asymmetric cryptography methods, will be applied to guarantee the most

important security aspects: confidentiality, security, reliability and no repudiation. In the

insecure way, any cryptographic method is applied and the information will be sent in clear.

To be able to exchange messages and several types of documents, it is desired to implement an

interface using JAVA language in which an option has to offer to the user the possibility of

switching between the secure and insecure channel. Moreover, this interface should have a box

in which to store the information sent and received and a copy of this information should be

stored in a backup file for further treatment.

After that, it is desired to compare the packets sent and received over the local loop using

Wireshark tool to verify how the information is sent when using the secure and insecure way.

2

2. BACKGROUND

A communication is encrypted only when transmitter and receiver are able to extract the

message information. Therefore anyone outside communication will be able to see only

gibberish and the message content will be completely hidden.

Although we can think of Alan Turing, Claude Shannon or the NSA as references in the field of

cryptography (and, of course, they are), this art goes back much further in time. Message

encryption has been practiced for over 4,000 years and, indeed, the origin of the word

cryptography is found in the Greek krypto (hidden), and graphos (writing).

The Spartans were also using cryptography to protect their messages, specifically, a technique

known as transposition cipher consisting of a parchment roll on a stick that served to sort letters

and displayed the message. To decrypt, the receiver must have a scytale with the same diameter

as the issuer had used (symmetric cryptography) because it was the only way to display the

message in the same way.

Over time, cryptography has become a key part of armies worldwide. During the French Wars

of Religion (which confronted the state with the Huguenots), decode enemy messages became

a tactical objective and Antoine Rossignol became, in 1628, one of the most important

cryptographers in France.

Cryptography was the key during World War II (1939-1945) because it changed the course of

the war. Germany had mastered the North Atlantic with its submarine fleet, and

communications were indecipherable because of the Enigma machine. Besides the traditional

fronts and battles between the armed forces it had opened a new battlefield: break enemy

communications. A task that the Allies commissioned a group of mathematicians, engineers and

physicists who worked from Bletchley Park facilities and among them was Alan Turing.

Perhaps Alan Turing’s work and the Allies is the best known work on cryptography during World

War II. However it was not the only one. The encryption communications marked the conflict

and a varied set of techniques used to prevent the enemy from intercepting communications.

United States, for example, rescued a technique already used successfully during the First World

War and, instead of resorting to complex encryption algorithms, opted for use as code the

language of Native Americans.

After World War II, cryptography made a big leap by Claude Shannon, known as the father of

the theory of communication. In 1948, Shannon, who worked at Bell Labs published "A Theory

of Secrecy Systems Communications" a seminal paper in which coding techniques were

modernized to transform them into advanced mathematical processes. While the frequency

analysis was based on statistics, Shannon proved mathematically that fact and introduced the

concept of "unicity distance" that marked the length of ciphered text is needed to be able to

decrypt it.

But it wouldn’t be until March 17, 1975 when would reach the first "public preview" (not

dependent on the NSA) linked to the cryptography world. The International Business Machines

3

Company (IBM), developed the encryption algorithm Data Encryption Standard (DES), and two

years later, would become a Federal Information Processing Standard (FIPS 46-3) and its use

spread worldwide. In 2001, DES ceded his post to Advanced Encryption Standard (AES) which,

after 5 years of review, became a standard.

The second major public developments also had its origin in the 70. All systems discussed before

were symmetrical and it means that both sender and receiver must handle the same code. So

there was a necessity of being synchronized. However, Whitfield Diffie and Martin Hellman laid

the foundations of asymmetric cryptography (public key and private key) in the article "New

Directions in Cryptography" published in 1976. Asymmetric cryptography today is fundamental

to transactions conducted through the Internet.

4

3. SECURITY ISSUES

In this section, it is explained the technologies used in the project concerning to security issues.

First, asymmetric cryptography is explained, in which a public key and private key are used to

encrypt and decrypt messages and files.

After that, symmetric encryption is explained as it is used in the project in combination with

asymmetric cryptography to generate a session key which is later used to encrypt the

information before sending and decrypt the information after receiving.

Then, Diffie-Hellman is explained because it is used to send a pre master secret between both

entities, Client and Server which is used to generate the session key.

In all this security methods, the man in the middle attack (MITM) is explained as the weaknesses

of the analyzed method and then a solution is proposed to overcome this attack.

3.1 ASYMMETRIC CRIPTOGRAPHY [1]

Asymmetric cryptography or public-key cryptography (Figure 1) is a cryptography method in

which a pair of keys is used to encrypt and decrypt a message so that it arrives securely.

Initially, a network user receives or generates a public and private key pair. Any other user who

wants to send an encrypted message can get the intended recipient's public key from a public

directory. They use this key to encrypt the message, and they send it to the recipient. When the

recipient gets the message, they decrypt it with their private key, which no one else should have

access to.

Two of the best-known uses of public-key cryptography are:

1. Public-key encryption, in which a message is encrypted with a recipient's public key.

The message cannot be decrypted by anyone who does not possess the matching

private key, who is thus presumed to be the owner of that key and the person associated

with the public key. This is used in an attempt to ensure confidentiality.

2. Digital signatures, in which a message is signed with the sender's private key and can

be verified by anyone who has access to the sender's public key. This verification proves

that the sender had access to the private key, and therefore is likely to be the person

associated with the public key. This also ensures that the message has not been

tampered with, as any manipulation of the message will result in changes to the

encoded message digest, which otherwise remains unchanged between the sender and

receiver. With digital signatures it can be assured data integrity and no repudiation.

The central problem with the use of public-key cryptography is confidence that a particular

public key is authentic, in that it is correct and belongs to the person or entity claimed, and has

not been tampered with or replaced by a malicious third party. The usual approach to this

https://en.wikipedia.org/wiki/Confidentiality
https://en.wikipedia.org/wiki/Digital_signature
https://en.wikipedia.org/wiki/Message_digest

5

problem is to use a public-key infrastructure (PKI), in which one or more third parties, known

as certificate authorities, to certify ownership of key pairs.

3.1.1 MAN IN THE MIDDLE ATTACK

Suppose Client wishes to communicate with Server. Meanwhile, Mallory wishes to intercept the

conversation to eavesdrop and optionally deliver a false message to Server.

The man in the middle attack starts when Client asks Server for his public key and when Server

sends his public key to Client and Mallory is able to intercept it. Then, Malory sends a forged

message to Client hat claims to be from Server but instead includes Mallory’s public key.

Client, believing this public key to be Server’s public key, encrypt the message with Mallory’s

public key and sends the enciphered message back to Server. Mallory’s intercepts again the

message and decrypt the message with his private key as the message is encrypted with his

public key. After that, Mallory’s encrypts again the message with Server’s public key and sends

the message to the Server. When Server receive the message it believe it came from Client. The

steps are as follows and can be seen in the next picture (Figure 2):

1. Client sends a message to Server, which is intercepted by Mallory:

 Client: "Hi Server, it’s Client. Give me your key." Mallory

DECRYPT ENCRYPT

CLIENT SERVER

HELLO! Y6uWs HELLO!

DECRYPT ENCRYPT

CLIENT SERVER

HELLO! Y6uWs HELLO!

Figure 1 - Server and Client public key exchange

https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/Certificate_authority

6

2. Mallory relays this message to Server and Server cannot tell it is not really from Client:

Mallory: "Hi Server, it’s Client. Give me your key." Server

3. Server responds with his encryption key:

Mallory [Server’s public key] Server

4. Mallory replaces Server’s key with her own, and relays this to Client, claiming that it is
Server’s key:

Client [Mallory's key] Mallory

5. Client encrypts a message with what she believes to be Server’s key, thinking that only
Server can read it:

Client: "Meet me at the bus stop!" [Encrypted with Mallory's key] Mallory

6. However, because it was actually encrypted with Mallory's key, Mallory can decrypt it,
read it, modify it (if desired), re-encrypt with Server’s key, and forward it to Server:

 Mallory "Meet me at the shopping center!" [Encrypted with Server's key] Server

7. Server thinks that this message is a secure communication from Client.

This attack can be done in one of the sides or in both sides. If Mallory wants Client to believe he
is Server, he only has to repeat the process again.

CLIENT

SERVER

MALLORY

 1. Client sends his public key to

Server but Mallory intercepts the

key and sends Server his public key
1. Server sends his public key to

Client but Mallory intercepts the

key and sends Client his public key

2. When Client sends an encrypted message to

Server, Mallory intercepts the message and

since the message is actually encrypted with

Mallory’s public key, he decrypts the message,

makes some changes and encrypts the message

with Client’s public key.

2. When Server sends an encrypted message to

Client, Mallory intercepts the message and

since the message is actually encrypted with

Mallory’s public key, he decrypts the message,

makes some changes and encrypts the message

encrypted with Server’s public key.

Figure 2 - Public key Criptography attack

7

This example shows the need for both Client and Server to have some way to ensure that they
are truly using each other's public keys, rather than the public key of an attacker. Otherwise,
such attacks are generally possible, in principle, against any message sent using public-key
technology. Fortunately, there are a variety of techniques that help defend against MITM
attacks.

All cryptographic systems that are secure against MITM attacks require an additional exchange
or transmission of information over some kind of secure channel. Many key agreement methods
have been developed, with different security requirements for the secure channel. Various
defenses against MITM attacks use authentication techniques that include:

 1. DNSSEC: Secure DNS extensions

2. Public key infrastructures: Transport Layer Security is an example of implementing PKI
over TCP protocol. This is used to prevent man in the middle attack over a secured HTTP
connection on internet. Client and Server exchange PKI certificates issued and verified by a
common certificate authority.

2.1 PKI mutual authentication: The main defense in a PKI scenario is mutual
authentication. In this case applications from both Client and Server
mutually validates their certificates issued by a common root certificate
authority. Virtual Private Networks do mutual authentication before
sending data over the created secure tunnel, however mutual
authentication over internet for HTTP connections are seldom enforced.

 3. Stronger mutual authentication, such as:

3.1 Secret keys (which are usually high information entropy secrets, and thus
more secure), or

3.2 Passwords (which are usually low information entropy secrets, and thus less
secure.

https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Secure_channel
https://en.wikipedia.org/wiki/Key_agreement
https://en.wikipedia.org/wiki/DNSSEC
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Mutual_authentication
https://en.wikipedia.org/wiki/Entropy_%28information_theory%29

8

3.1.2 PUBLIC-KEY INFRASTRUCTURE (PKI)

Enveloped Public Key Encryption (EPKE) is the method of applying public-key cryptography and
ensuring that an electronic communication is transmitted confidentially, has the contents of the
communication protected against being modified (communication integrity) and can’t be denied
from having been sent (non-repudiation). This is often the method used when securing
communication on an open networked environment such by making use of the Transport Layer
Security (TLS) or Secure Sockets Layer (SSL) protocols.

EPKE (Figure 3) consists of a two-stage process that includes Public Key Encryption (PKE) and a
digital signature. Both Public Key Encryption and digital signatures make up the foundation of
Enveloped Public Key Encryption.

For EPKE to work effectively, it is required that:

1. Every participant in the communication has their own unique pair of keys. The first key
that is required is a public key and the second key that is required is a private key.

2. Each person's own private and public keys must be mathematically related where the
private key is used to decrypt a communication sent using a public key and vice versa. Some
well-known asymmetric encryption algorithms are based on the RSA cryptosystem.

3. The private key must be kept absolutely private by the owner, though the public key can
be published in a public directory such as with a certification authority.

To send a message using EPKE, the sender of the message must first sign the message using their
own private key, which ensures non-repudiation of the message. The sender then encrypts their
digitally signed message using the receiver’s public key thus applying a digital envelope to the
message. This step ensures confidentiality during the transmission of the message. The receiver
of the message then uses their private key to decrypt the message thus removing the digital
envelope and then uses the sender's public key to decrypt the sender's digital signature. At this
point, if the message has been unaltered during transmission, the message will be clear to the
receiver.

Due to the computationally complex nature of RSA-based asymmetric encryption algorithms,
the time taken to encrypt a large documents or files to be transmitted can take an increased
amount of time to complete. To speed up the process of transmission, instead of applying the
sender's digital signature to the large documents or files, the sender can rather hash the
documents or files using a cryptographic hash function and then digitally sign the generated
hash value, therefore enforcing non-repudiation. Hashing is a much faster computation to
complete as opposed to using an RSA-based digital signature algorithm alone. The sender would
then sign the newly generated hash value and encrypt the original documents or files with the
receiver's public key. The transmission would then take place securely and with confidentiality
and non-repudiation still intact. The receiver would then verify the signature and decrypt the
encrypted documents or files with their private key.

The problem of using public key cryptography is the key size needed to avoid attacks which
reduces the protocol efficiency and for this reason public key cryptography is used with
symmetric cryptography to exchange a session key used later for both encryption and
decryption.

https://en.wikipedia.org/wiki/Non-repudiation
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29
https://en.wikipedia.org/wiki/Certificate_authority
https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Cryptographic_hash_function

9

Figure 3 - Public key infrastucture

6. DECRYPT 5. ENCRYPT

Public KeyServer

Certificate Certificate

Secret KeyServer Public KeyServer

2. Registration

3. Issue
Certification Autority

Client Server

1. Generate Key

4. Verify

10

3.2 SYMMETRIC CRIPTOGRAPHY [2]

Symmetric cryptography (Figure 4), also called secret key cryptography, is a cryptographic

method where the same key is used to encrypt and decrypt messages. The two communicating

parties have to agree in advance on the key used. Symmetric encryption is the oldest and best-

known technique. A secret key, which can be a number, a word, or just a string of random letters,

is applied to the text of a message to change the content in a particular way. This might be as

simple as shifting each letter by a number of places in the alphabet. As long as both sender and

recipient know the secret key, they can encrypt and decrypt all messages that use this key.

The problem with secret keys is exchanging them over the Internet or a large network while

preventing them from falling into the wrong hands. Anyone who knows the secret key can easily

decrypt the message.

One answer is asymmetric encryption, in which there are two related keys. A public key is made

freely available to anyone who might want to send you a message. A second, private key is kept

secret, so that only you know it.

Any message (text, binary files, or documents) that are encrypted by using the public key can

only be decrypted by applying the same algorithm, but by using the matching private key. Any

message that is encrypted by using the private key can only be decrypted by using the matching

public key.

This means that you don’t have to worry about passing public keys over the Internet (the keys

are supposed to be public). A problem with asymmetric encryption, however, is that it is slower

than symmetric encryption. It requires far more processing power to both encrypt and decrypt

the content of the message.

CLIENT

SERVER

DECRYPT ENCRYPT

Same key is used to encrypt and

decrypt messages

Plain text Plain text Ciphered text

Figure 4 - Symmetric cryptography

11

3.3 DIFFIE-HELLMAN [3]

Diffie-Hellman key exchange is a specific method of securely exchanging cryptographic keys over

a public channel and was one of the first public-key protocols originally conceptualized by Ralph

Merkle. D-H is one of the earliest practical examples of public key exchange implemented within

the field of cryptography. Traditionally, secure encrypted communication between two parties

required that they first exchange keys by some secure physical channel, such as paper key lists

transported by a trusted courier. The Diffie-Hellman key exchange method allows two parties

that have no prior knowledge of each other to jointly establish a shared secret key over an

insecure channel. This key can then be used to encrypt subsequent communications using a

symmetric key cipher.

Diffie-Hellman is used to secure a variety of Internet services. However, research published in

October 2015 suggests that the parameters in use for many D-H Internet applications at that

time are not strong enough to prevent compromise by very well-funded attackers, such as the

security services of large governments.

Although Diffie-Hellman key agreement itself is a non-authenticated key-agreement protocol, it

provides the basis for a variety of authenticated protocols, and is used to provide forward

secrecy in Transport Layer Security's ephemeral modes (referred to as EDH or DHE depending

on the cipher suite).

The method was followed shortly afterwards by RSA, an implementation of public-key

cryptography using asymmetric algorithms.

3.3.1 IMPLEMENTATION

To implement Diffie-Hellman (Figure 5), the two end users Client and Server, while

communicating over a channel they know to be private, mutually agree on positive whole

numbers p and q, such that:

 - p is a prime number

- q is a generator of p.

The generator q is a number that, when raised to positive whole-number powers less than p,

never produces the same result for any two such whole numbers. The value of p may be large

(should be the same size as the public key used) but the value of q is usually small (1bit).

Once Client and Server have agreed on p and q in private, they choose positive whole-number

personal keys a and b, both less than the prime-number modulus p. Neither user divulges their

personal key to anyone.

https://en.wikipedia.org/wiki/Key_%28cryptography%29
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Ralph_Merkle
https://en.wikipedia.org/wiki/Ralph_Merkle
https://en.wikipedia.org/wiki/Key_exchange
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Courier
https://en.wikipedia.org/wiki/Shared_secret
https://en.wikipedia.org/wiki/Data_security
https://en.wikipedia.org/wiki/Channel_%28communications%29
https://en.wikipedia.org/wiki/Symmetric_key
https://en.wikipedia.org/wiki/Cipher
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Key-agreement_protocol
https://en.wikipedia.org/wiki/Forward_secrecy
https://en.wikipedia.org/wiki/Forward_secrecy
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Ephemeral_key
https://en.wikipedia.org/wiki/RSA_%28algorithm%29
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Public-key_cryptography
http://whatis.techtarget.com/definition/prime-number

12

In the next step, Client and Server compute public keys a* and b* based on their personal keys

according to the formulas:

a* = qa mod p

and

b* = qb mod p

The two users can share their public keys a* and b* over a communications medium assumed

to be insecure, such as the Internet or a corporate wide area network (WAN). From these public

keys, a number x can be generated by either user on the basis of their own personal keys. Client

computes x using the formula:

x = (b*)a mod p

Server computes x using the formula:

x = (a*)b mod p

The value of x turns out to be the same according to either of the above two formulas. However,

the personal keys a and b, which are critical in the calculation of x, have not been transmitted

over a public medium. Because it is a large and apparently random number, a potential hacker

has almost no chance of correctly guessing x, even with the help of a powerful computer to

conduct millions of trials. The two users can therefore, in theory, communicate privately over a

public medium with an encryption method of their choice using the decryption key x.

The most serious limitation of Diffie-Hellman in its basic or "pure" form is the lack of

authentication. Communications using Diffie-Hellman all by itself are vulnerable to man in the

middle attacks. Ideally, Diffie-Hellman should be used in conjunction with a recognized

authentication method such as digital signatures to verify the identities of the users over the

public communications medium. Diffie-Hellman is well suited for use in data communication but

is less often used for data stored or archived over long periods of time.

http://searchwindevelopment.techtarget.com/definition/Internet
http://searchsecurity.techtarget.com/definition/authentication
http://searchsecurity.techtarget.com/definition/man-in-the-middle-attack
http://searchsecurity.techtarget.com/definition/man-in-the-middle-attack
http://searchsecurity.techtarget.com/definition/digital-signature

13

3.3.2 MAN IN THE MIDDLE ATTACK

The protocol is sensible to active man in the middle attacks (Figure 6). If communication is

intercepted by a third party, it can be passed by the sender to the receiver and vice versa face

because it does not have any mechanism to validate the identity of the participants involved in

the communication. Thus, the man in the middle could agree a key with each participant and

relay data between them, listening to the conversation both ways. Once the attacker established

 p = 23; g = 5; a = 6 p = 23; g = 5; b = 15

Diffie-Hellman implementation includes a

prime number p and a base g.

In this example, p = 23 and g = 5

A chooses a secret

number a (a < p) as

for instance, a = 6

B chooses a secret

number b (b < p) as

for instance, b = 15

A sends (g mod p)
a

B sends (g mod p)
b

5 mod 23 = 8
6

5 mod 23 = 19
15

A calculates:

19 mod 23 = 2

(g mod p) mod p
b a

6
(g mod p) mod p

a b

(8 mod 23) = 2 15

B calculates:

Secret Key

(g mod p) mod p b a

=
(g mod p) mod p a b

Figure 5 - Diffie-Hellman secret key generation

14

symmetrical communication must follow amid intercepting and modifying traffic to not realize.

Note that for the attack to be operating the attacker must know the symmetric encryption

method to be used. Concealment based on symmetric encryption algorithm does not meet the

principles of Kerckhoffs (the effectiveness of the system should not depend on its design remains

secret).

To prevent this type of attack is often used one or more of the following techniques:

1. Timing control

2. Pre-authentication of the parties: For example use underlying layer authentication protocol.
We could first establish a TLS connection on that layer and apply the Diffie-Hellman.

3. Content Authentication: For example we could use MAC on the message content.

4. Encrypting public keys with a public key algorithm (asymmetric), avoiding the problem of
Man-in-the-middle.

 CLIENT SERVER MALLORY

A = (g mod p)
a

Z = (g mod p)
z

B = (g mod p) b

Z = (g mod p) z

K = (z mod p) a
A

K = (A mod p)
z

A

K = (B mod p)
z

B

K = (Z mod p)
b

B

Figure 6 - Diffie-Hellman MITM

15

3.4 SSL [4]

SSL is designed to make use of TCP to provide a reliable end-to-end secure service. SSL is not a
single protocol but rather two layers of protocols, as illustrated in Figure 7.

The SSL Record Protocol provides basic security services to various higher-layer protocols. In
particular, the hypertext transfer protocol (HTTP), which provides the transfer service for Web
client/server interaction, can operate on top of SSL. Three higher-layer protocols are defined as
part of SSL: the Handshake Protocol (Figure 8), the Change Cipher Spec Protocol and the Alert
Protocol.

Two important SSL concepts are the SSL session and the SSL connection, which are defined as
follows:

 Connection: A connection is a transport (in the OSI layering model definition) that
provides a suitable type of service. For SSL, such connections are peer-to-peer
relationships. The connections are transient. Every connection is associated with one
session.

 Session: An SSL session is an association between a client and a server. Sessions are
created by the Handshake Protocol. Sessions define a set of cryptographic security
parameters, which can be shared among multiple connections. Sessions are used to
avoid the expensive negotiation of new security parameters for each connection.

Between any pair of parties (applications such as HTTP on client and server), there may be
multiple secure connections.

There are actually a number of states associated with each session. Once a session is established,
there is a current operating state for both read and write (i.e., receive and send). In addition,
during the Handshake Protocol, pending read and write states are created. Upon successful
conclusion of the Handshake Protocol, the pending states become the current states.

A session state is defined by the following parameters (definitions from the SSL specification):

 Session identifier: An arbitrary byte sequence chosen by the server to identify an active
or presumable session state.

 Peer certificate: The X509 certificate of the peer. This element of the state may be null.
 Compression method: The algorithm used to compress data prior to encryption.
 Cipher spec: Specifies the bulk data encryption algorithm (such as null, DES, etc.) and a

hash algorithm (such as MD5 or SHA-1) used for MAC calculation. It also defines
cryptographic attributes such as the hash size.

 Master secret: Forty eight byte secret shared between the Client and Server.
 Is presumable: A flag indicating whether the session can be used to initiate new

connections.

A connection state is defined by the following parameters:

 Server and Client random: Byte sequences that are chosen by the Server and Client for
each connection.

 Server write MAC secret: The secret key used in MAC operations on data sent by the
Server.

16

 Client write MAC secret: The secret key used in MAC operations on data sent by the
Client.

 Server write key: The conventional encryption key for data encrypted by the server and
decrypted by the client.

 Client write key: The conventional encryption key for data encrypted by the client and
decrypted by the server.

 Initialization vectors: When a block cipher in CBC mode is used, an initialization vector
(IV) is maintained for each key. This field is first initialized by the SSL Handshake
Protocol. Thereafter the final ciphered text block from each record is preserved for use
as the IV with the following record.

 Sequence numbers: Each party maintains separate sequence numbers for transmitted
and received messages for each connection. When a party sends or receives a change
cipher spec message, the appropriate sequence number is set to zero.

The SSL Record Protocol provides two services for SSL connections:

 Confidentiality: The Handshake Protocol defines a shared secret key that is used for

conventional encryption of SSL payloads.

 Message Integrity: The Handshake Protocol also defines a shared secret key that is used

to form a message authentication code (MAC).

When the Record Protocol takes an application message to be transmitted, fragments the data
into manageable blocks, optionally compresses the data, applies a MAC, encrypts, adds a
header, and transmits the resulting unit in a TCP segment. Received data are decrypted, verified,
decompressed, and reassembled and then delivered to higher-level users.

 TCP

IP

Network Access

SSL Handshake

HTTP LDAP
Protocol

SSL Change

Cipher Spec

Protocol

Protocol

SSL Alert

SSL Record Layer

HTTP STMP Application

Layer

Transport

Layer

 Internet

Layer

 Network

Layer

 Figure 7 - SSL protocol stack

17

Trusted Certificate

Certificate Autority

1. Issue Certificates

 Handshake

 Handshake

2. SSL Handshake

3. Establish Trust

Trusted

Certificate

Trusted

Certificate

DECRYPT ENCRYPT

DECRYPT ENCRYPT

4. Communicate Securely

Client Server

Client

Certificate

Server

Certificate

Figure 8 - SSL procedure

18

3.4.1 SOCKET [5]

A socket is one endpoint of a two-way communication link between two programs running on

the network. A socket is bound to a port number so that the TCP layer can identify the

application that data is destined to be sent to.

Socket designates an abstract concept by which two programs (possibly located in different

computers) can exchange any data stream, generally reliable and orderly manner.

The term socket is also used as the name of an application programming interface (API) for the

Internet Protocol Suite TCP / IP, usually provided by the operating system.

Internet sockets are the mechanism for delivery of data packets from the network card to the

appropriate threads or processes. A socket is defined by a pair local and remote IP addresses, a

transport protocol and a pair of numbers of local (Figure 9) and remote (Figure 10) port.

For two programs can communicate with each other is necessary that certain requirements are

met:

1. A program to be able to locate the other.

2. Both programs are able to interchange any sequence of bytes, that is, data relevant

to its purpose.

For this, two resources that originate the concept of socket are necessary:

1. A couple of network protocol addresses (IP address, if the TCP / IP protocol is used),

identifying the source computer and the remote:

2. To do the two resources that originate the concept of socket are necessary. A pair of

port numbers that identify a computer within each program.

The sockets allow you to implement a client-server architecture. Communication should be

initiated by a software program called "client". The second program waits for the other to

initiate communication, for this reason is called "server" program.

A socket is a process or thread existing on the client machine and the server machine, used

ultimately for the server and the client program to read and write information. This information

will be transmitted by different network layers.

P

Client

O

P
O
R

T

1. Connetion

Request

R
T

Server

L
I
S
T
E
N

Client

P
O
R

T

2. Connetion

Accept

Server

L
I
S
T
E
N

P
O
R

T

Figure 10 - Socket connection request procedure Figure 9 - Socket connection accept procedure

19

4. TECHNOLOGIES

In this chapter it is explained the related technologies involved in the project development. As

it can be seen below, JAVA language has been used to develop project’s code, Eclipse is the

program used to develop the project, Keytool is used to generate a pair of certificates for both

Client and Server and Wireshark is used to analyze the packets and the differences between

both secure and insecure channels. Finally, Model View Controller technology is explained in

detail because it has been used to structure the code, separating the different created classes

to maintain the scalability and feasibility to changes.

4.1 JAVA [6]

Java is a programming language object oriented which was specifically designed to have as few

implementation dependencies as possible. His intention is to enable application developers to

write the program once and run it on any device.

The Java programming language was originally developed by James Gosling at Sun Microsystems

(which was acquired by Oracle Corporation) and released in 1995 as a key component of the

Java platform from Sun Microsystems. Its syntax derive largely from C and C ++ but has fewer

low-level utilities than any of them. Java applications are typically compiled to bytecode (Java

class) that can run on any Java (JVM) virtual machine regardless of the underlying computer

architecture.

The company Sun developed the original reference implementation for Java compilers, virtual

machines, and class libraries in 1991 and was first published in 1995.

The Java language was created with five main objectives:

1. The paradigm of object-oriented programming should be used.

2. It should allow execution of the same program on multiple operating systems.

3. It should include default support for networking.

4. It should be designed to execute code on remote systems securely.

5. It should be easy to use and take the best from other object-oriented languages like

C ++.

The first feature, object oriented ("OO"), relates to a programming method and language design.

Although there are many interpretations for OO, the first idea is to design the software so that

various types of data used are attached to their operations. Thus, data and code (functions or

methods) are combined into entities called objects. An object can be seen as a package

containing the "behavior" (the code) and the "state" (data). Often, changing a data structure

implies a change in the code that operates on them, or vice versa. This separation into coherent

and independent objects provides a more stable environment for the design of a software

system base. The goal is to make large projects are easier to manage and handle, improving their

quality and, as a result, reducing the number of failed projects. Another of the great promises

20

of object-oriented programming is creating more generic entities (objects) that enable software

reuse between projects, one of the fundamental premises of Software Engineering.

The second characteristic, platform independence, means that programs written in Java can also

run on any hardware. This is the meaning of being able to write a program once and can run on

any device, such as Java follows the axiom, "write once, run anywhere".

For this, the source code written in Java language is compiled to generate a code known as

"bytecode" (specifically Java bytecode). This part is "halfway" between source code and machine

code understood by the target device. The bytecode is then executed on the Java virtual

machine (JVM), a program written in native code of the destination (which is the one that

understands your hardware) which interprets and executes the code platform. Furthermore,

additional libraries are provided to access the features of each device (such as graphics,

execution by threads or threads, and the network interface) as one. It should be noted that,

although no explicit compilation stage, the generated bytecode is interpreted or converted to

native machine code instructions for the JIT (Just in Time).

The JRE (Java Runtime Environment, or Runtime Environment for Java) is required to run any

application developed for Java platform software. The end user uses the JRE as part of the

software or plug-ins (or connectors) packets in a Web browser. Sun also provides the Java 2 SDK

or JDK (Java Development Kit) within which resides the JRE, and includes tools such as the Java

compiler, to generate Javadoc documentation or the debugger. It is also available as a separate

package, and can be considered necessary to run a Java application environment, whereas a

developer must also have other facilities offered by the JDK.

4.2 ECLIPSE [7]

Eclipse is a computer program comprising a set of programming tools to develop open source

platform so the project called “Enriched client applications” as opposed to “Client-light”

browser-based applications. This platform has typically been used to develop integrated

development environments (IDE) such as the Java IDE called Java Development Toolkit (JDT) and

compiler (ECJ) delivered as part of Eclipse (which are also used to develop the same Eclipse).

However, it can also be used for other types of client applications, such as BitTorrent and

Azureus.

Eclipse is also a community of users, constantly expanding application areas covered. One

example is the recently created Eclipse Modeling Project, covering almost all areas of Model

Driven Engineering. It was originally developed by IBM as a successor to its family of tools for

VisualAge. Eclipse is now developed by the Eclipse Foundation, as an independent nonprofit

organization that promotes open source community and a set of complementary products, skills

and services.

21

Eclipse was originally released under the Common Public License, but then was re-licensed

under the Eclipse Public License. The Free Software Foundation has said that both licenses are

free software licenses, but are incompatible with the GNU General Public License (GNU GPL).

The widgets are implemented by a tool called widget for Java Standard Widget Toolkit, unlike

most Java applications, are using standard options as Abstract Window Toolkit (AWT) or Swing.

The Eclipse UI also has an intermediate layer called JFace GUI that simplifies the construction of

SWT based applications.

The integrated development environment (IDE) used modules (plug-in English) to provide full

functionality in front of the rich client platform, unlike other monolithic environments where

functionalities are all included, the user needs or not. This mechanism module is a light platform

for software components. In addition to allowing Eclipse extended using other programming

languages as are C / C ++ and Python, allowing Eclipse to work with languages like LaTeX text

processing, network applications such as Telnet and management system database. The plugin

architecture allows writing any desired extension in the environment, as would be configuration

management. Java and CVS support in Eclipse SDK is provided. And not have to be used only

with these languages as it supports other programming languages.

22

4.3 X.509 CERTIFICATES [8]

X.509 (Figure 11) was officially published in 1988 and started in conjunction with the X.500

standard and assumed a strict hierarchical system of certification authorities (CAs) to issue

certificates.

In cryptography, X.509 is an ITU-T standard for public key infrastructure (PKI) that specifies,

among other things, standard formats for public key certificates and algorithm validation

certificate path. Its syntax is defined using language ASN.1 (Abstract Syntax Notation One), and

the most common encoding formats are DER (Distinguish Encoding Rules) or PEM (Privacy

Enhanced Mail). X.509 also includes standards for implementing certified revocation lists (CRLs),

and neglected aspects of PKI systems.

A
ll

V
e

rs
io

n
s

Signature

Algorithm

Identifier

Subject’s

Public key

Info

Period of
Validity

V
e

rs
io

n
 1

V
e

rs
io

n
 2

V
e

rs
io

n
 3

Version

Certificate Serial
Number

Algorithm

Parameters

Issuer Name

Not Before

Not After

Subject Name

Algorithms

Parameters

Key

Identifier

Identifier

Extensions

Algorithms

Parameters

Encrypted

Signature

Subject Uniquer

Issuer Unique

Figure 11 - X.509 Certificates structure

23

4.3.1 CERTIFICATION AUTHORITY

A certification authority (CA) is an entity that issues digital certificates to be used by third parties.

It is an example of a trusted third party. CAs are characteristic in many schemes of public key

infrastructure (PKI).

In the X.509 system, a certificate authority issues a certificate to associate a public key to a

particular Distinguished Name in the X.500 tradition or an alternate name such as an email

address.

X.509 is the centerpiece of the public key infrastructure and the data structure that links the

public key to the data that identify the holder. Its syntax is defined using ASN.1 language

(Abstract Syntax Notation One) and the most common encoding formats are DER (Distinguished

Encoding Rules) or PEM (Privacy-enhanced Electronic Mail). Following the notation of ASN.1, a

certificate contains several fields, grouped in three main groups:

1. The first field is the subject (subject), which contains data identifying the subject holder. These

data are expressed in notation DN (Distinguished Name), where a DN in turn consists of various

fields, the most common being the following; CN (Common Name), OU (Organizational Unit), O

(Organization) and C (Country).

Besides the name of the titular subject (subject), the certificate also contains data

associated with the digital certificate itself as the version of the certificate, your ID (serial

Number), the signing CA (issuer) and the validity period (validity).

The X.509.V3 version also allows you to use optional fields (alternative names and

permitted uses for the key location of the CRL and the CA).

2. The certificate contains the public key, which expressed in ASN.1, consists of two fields, first,

showing the algorithm used to create the key (RSA), and secondly, the public key itself.

3. CA added the sequence of fields that identify the signature of the previous fields. This

sequence contains three attributes, the signature algorithm used, the hash of the signature, and

the digital signature itself.

24

4.4 KEYTOOL [9]

When two SSL socket try to establish a connection (a client socket and a server socket), the first

thing they do is to present to each other and each one finds out if the other is trustable. If the

information exchanged is correct then the connection is established. If one of both entities

doesn’t trust the other one then the connection isn’t stablished.

To present themselves a certificate has to be created for each socket. This certificate is merely

to generate a file with the keytool that is integrated with Java. Two certificates are created, one

for the server and one for the client.

To know if each entity trust with the other one, each socket has a file store with the trusted

certificates this entity trust with. Therefore, in the customer's warehouse the server certificate

must be added and vice versa. These stores are just created files with java keytool.

Java Keytool is a key and certificate management utility. It allows users to manage their own

public/private key pairs and certificates. Java Keytool stores the keys and certificates in what is

called a keystore. It protects private keys with a password.

Each certificate in a Java keystore is associated with a unique alias. When creating a Java

keystore a .jks file will be created. Initially will only contain the private key, and then a CSR is

generated. After that, the certificate is imported to the keystore including any root certificates.

The three main functions used in this project are:

1. Generate a Java keystore with a certificate (Figure 12).

2. Export the certificate from the keystore in a CER file (Figure 13).

3. Import the certificate to the certificate store of the other entity (Figure 14).

Figure 12 - Server’s certificate generation

 Server’s Certificate Generation
1. keytool -genkey -keyalg RSA -alias serverKay -keystore serverKey.jks -storepass serverpassword

- Genkey: Indicates the generation of a certificate.

- keyalg: Indicates that RSA encryption will be used.

- Alias: As in the certificates store can be more than one certificate this alias will be to identify
the certificate within the store.

- keystore: Indicates the file that will work as the certificates store.

- Storepass: A password is needed to log in the certificates store. If the keystore doesn’t exist
then it will be created.

25

1. keytool -genkey -keyalg RSA -alias clientKay -keystore clientKey.jks -storepass clientpassword

2. keytool -export -keystore clientkey.jks -alias clientkay -file ClientPublicKey.cer

3. keytool -import -alias clientKay -file ClientPublicKey.cer -keystore serverTrustedCerts.jks -keypass

serverpassword -storepass serverpassword

 CLIENT

 Server’s Certificate Exportation

 2. keytool -export -keystore serverkey.jks -alias serverKay -file ServerPublicKey.cer

- Export: Indicates that the operation done will be an exportation.

- Alias: As in the certificates store can be more than one certificate this alias will be to identify
the certificate within the store.

- keystore: Indicates the file that will work as the certificates store.

- File: Contains the file in which the certificate exported will be stored.

 Server’s Certificate Importation

3. keytool -import -alias serverKay -file ServerPublicKey.cer -keystore clientTrustedCerts.jks -

keypass clientpassword -storepass clientpassword

- Import: Indicates that the operation done will be an importation.

- Alias: As in the certificates store can be more than one certificate this alias will be to identify
the certificate within the store.

- keystore: Indicates the file that will work as the certificates store.

- File: Contains the file in which the certificate exported will be stored.

Figure 13 - Server’s certificate exportation

Figure 14 - Server’s certificate importation

Figure 15 - Client’s certificate procedure

26

4.5 WIRESHARK [10]

Wireshark is a free and open-source packet analyzer. It is used for network troubleshooting,

analysis, software and communications protocol development and education. Originally named

Ethereal, the project was renamed Wireshark in May 2006 due to trademark issues.

Wireshark is cross-platform, using the GTK+ widget toolkit in current releases, to implement its

user interface, and using pcap (packet capture) that consists of an application programming

interface (API) for capturing network traffic. It runs on Linux, OS X, BSD, Solaris, some other Unix-

like operating systems, and Microsoft Windows. Wireshark, and the other programs distributed

with it are free software and released under the terms of the GNU General Public License.

Wireshark is a software that "understands" the structure (encapsulation) of different

networking protocols. It can parse and display the fields, along with their meanings as specified

by different networking protocols. Wireshark uses pcap format to capture packets, so it can only

capture packets on the types of networks that pcap supports.

Wireshark lets the user put network interface controllers that support promiscuous mode into

that mode, so they can see all traffic visible on that interface, not just traffic addressed to one

of the interface's configured addresses and broadcast/multicast traffic. However, when

capturing with a packet analyzer in promiscuous mode on a port on a network switch, not all

traffic through the switch is necessarily sent to the port where the capture is done, so capturing

in promiscuous mode is not necessarily sufficient to see all network traffic.

Unfortunately, on Windows, Wireshark is unable to capture packets or traffic sent from a host

machine to that same host machine. This is due to the fact that such local traffic is not sent over

a real network interface, but instead (in many cases) is sent over a loopback interface. Then to

be able to capture this traffic a program called RAWCAP is used because also enables the user

to save captured traffic as .pcap file and this means that Wireshark can be used to analyze the

resulting file.

https://en.wikipedia.org/wiki/Free_and_open_source_software
https://en.wikipedia.org/wiki/Packet_analyzer
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Communications_protocol
https://en.wikipedia.org/wiki/Cross-platform
https://en.wikipedia.org/wiki/GTK%2B
https://en.wikipedia.org/wiki/Widget_toolkit
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/OS_X
https://en.wikipedia.org/wiki/BSD
https://en.wikipedia.org/wiki/Solaris_%28operating_system%29
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/Encapsulation_%28networking%29
https://en.wikipedia.org/wiki/Pcap
https://en.wikipedia.org/wiki/Network_interface_controller
https://en.wikipedia.org/wiki/Promiscuous_mode
https://en.wikipedia.org/wiki/Packet_analyzer
https://en.wikipedia.org/wiki/Network_switch

27

4.6 MODEL VIEW CONTROLLER (MVC) [11]

The Model-View-Controller (MVC) is a standard software architecture that separates data and

business logic of an application from the user interface and the module responsible for

managing events and communications. To do so, MVC proposes the construction of three

distinct components that are the model, view and controller. This pattern software architecture

is based on the ideas of code reuse and separation of concepts, features that are intended to

facilitate the task of application development and subsequent maintenance.

Generically, the MVC components (Figure 16) could be defined as follows:

- Model: It is the representation of information with which the system operates,

therefore manages all access to such information, both queries and updates, ad also

implementing privileges access have been described in the specifications of the

application (business logic). It sends the view that part of the information at all times is

asked to be shown (typically to a user). Requests for access or manipulation of

information reach the model through the controller.

- The View: It presents the model (information and business logic) in a suitable format

to interact (usually the user interface) and therefore requires that model the

information to be represented as output.

- Controller: It responds to events (typically user actions) and invokes requests to the

model when a request for information is made (by such as editing a document or record

in a database). You can also send commands to its associated view if a change is

requested in the way the model is presented so you could say that the controller is the

intermediary between the view and model.

Although you can find different implementations of MVC, the control flow that follows is usually

the following:

1. The user interacts with the user interface in some way (for example, the user presses a button,

link and so on).

2. The controller receives the notification of the action requested by the user. The controller

manages the event that arrives, frequently through an event handler (handler) or callback.

3. The controller accesses the model, updating it, possibly modifying appropriately to the action

requested by the user. The complex controllers are often structured using a command pattern

that encapsulates the actions and simplifies his extension.

4. The controller delegates the objects of sight the task of displaying the user interface. The view

gets its data model to generate the appropriate user interface where changes are reflected in

the model. The model must not have direct knowledge about the view. However, you could use

the Observer pattern to provide some indirection between the model and the view, allowing the

model to notify interested parties of any change. A view object can register with the model and

28

wait to change, yet the model itself still does not know anything about the view. This use of the

Observer pattern is not possible in the Web application since classes are disconnected model

view and controller. In general the controller fails domain objects (model) in sight although it

can give the order in sight to be updated.

5. User interface waits for new user interactions, starting the cycle again.

CONTROLLER VIEW MODEL

Data Storage, integrity

consistency, queries

& mutacions

Receive, interpret & validate

Input, create & update views

Query and modify Models

Presentation assets

& Views

Figure 16 - Model View Controller

29

CONTROLLER VIEW

Figure 17 - Class diagram

MODEL

4.3 CLASS DIAGRAM

SERVER & CLIENT

INTERFACE CONTROLLER

Variables

JTextField PortField, HostField, InputBox

JTextPane ConversationBox

JButton SendButton, SendFile, ConnectButton

JLabel HostLabel, PortLabel JCeckBox Encrypt

Int Port String Host Boolean IsServer, IsClient

Variables

Int Port String Host

Variables

BufferReader Br, BrSecure BufferWritter Bw, BwSecure

ServerSocket RFS, SFS SSLServerSocket RFI, SFI

SecretKeySpec AES_Session_Key

PublicKey RSA_PK_Client, RSA_PK_Server

Methods

-Void add_message(String message)

-Void View(Container Pane)

-Void ActionPerform (ActionEvent event)

Methods

-Static void Controller (Object Action)

-Static void Entities()

-StartServer

- ConnectClient

-SendMessage

-Exit

-SendFile

Server & Client Methods

Static void Server (int port)

Static void Secure_Server (int Port)

Static void Receive_Secure_Info()

Static void Receive_Insecure_Info()

Static void Send_File (String Name)

Static void Send_File_Secure(String Name)

Static void Receive_File(String Name)

Static void Receive_File_Secure(String Name)

Static void Send_Message (String Message)

Static void Send_Message_Secure(byte[] Message)

Static void Chat_Backup(String Message, int Type)

Static void Ichat_Folder()

Static String File_Type(String Name)

-Static Boolean CheckParameters()

-Void add_message(String message)

30

4.7.1 INTERFACE

This function is the first one executed when the program is run and is in charge of building the

graphical interface for both user and server. As the programming mode used is the Model View

Controller (MVC) this class only contains those variables and methods involved in graphical

issues and it is completely independent from the rest of the parts. Using this model, changes

done in the graphical interface not will affect the rest of the other parts and will be transparent

for the other entities.

VIEW

This class is in charge of initializing all the variables relatives to the graphical interface. When

this method is called from the main class a JFrame is created and a JPane is added to this frame.

After that, this method handles the position on the container of all the elements that build the

interface. This elements are:

1. JButtons: All the buttons which the user can interact with and generate an event

that will be analyzed by the Controller.

2. JTextPane: This element contains the conversation box between the server and

the client.

3. JTextFields: The interface has a text field to write the port and the host and

another one used as the input to send messages.

4. JLabels: This elements can’t be modified and only indicate the text fields

corresponding to the host and port.

5. JCheckBox: When this box is ticked both messages and files are sent over a secure

channel.

6. Image Icons: It corresponds to the profile image of the chat and the rest of the

buttons.

In the case of the buttons, a listener is needed to know when a button has been pressed to

execute the corresponding event.

ACTIONPERFORMED

When a button is pressed then an event is generated. This function is in charge of analyzing this

event and converting it into an action. Then, this action is send to the Controller for treatment.

This method is used as a connection between the view and the controller.

ADD_MESSAGE

This function is used every time a writing operation is done. Initially, the idea was to use a

JTextArea to write all the messages but the option of changing the color of the different lines

was not let and then it was needed to use a JTextPane which let us to paint every specific

character using the desired color. As the JTextPane has a limited size, after sending some

messages a scroll bar is needed and another problem was found because the JTextPane doesn’t

have a scroll bar by itself. Then, the solution was to include a scroll bar independent from the

JTextPane. Besides being used to write the messages in a different color depending on the

information is generated or is received from an external entity, this method updates the view of

the scroll bar if needed.

31

It has to be mentioned that every time a message or a file is received it is shown in the

conversation box and before the message, a headboard is added. This headboard contains the

date in which the message has been received or sent. All the message sent are painted with blue

color whilst all the messages received are painted with gray color.

As this form part of the view, when a writing operation is required by the Server_Model or

Client_Model, a function of the Controller is called which sends the message to the view using

the Add_Message function. This avoids the Models of directly affecting the view and reinforces

the idea of our programming model. Then if a change in the message appearance is desired only

the class view has to be modified and this modification will be transparent for the rest of the

classes.

4.7.2 CONTROLLER

This method is acting as a connection between the sight and the logic of the application. All

the actions received for the view because of the user interaction are analyzed and sent to the

model to be processed.

The actions received from the view can be:

1. Start the server: When this button is pressed and a true value is returned by the
Check_Parameters function, then a SSL server socket and a server socket are generated
in the desired port and the server will be waiting for a client to be connected using both
a secure and an insecure channel.

2. Connect the client: When this button is pressed and a true value is returned by the
Check_Parameters function, then a SSL socket and a socket is generated in the desired
port which has to be the same as the port chosen by the server. Then the client is linked
to the server and messages and files can be exchanged between them.

3. Send messages: As it will be explain in detail in the testing part, the server and the
user can exchange messages that will travel encrypted or in clear from the sender to the
receiver. A JCheckBox has been created and when it is clicked a secure channel will be
used and the data will be encrypted using an asymmetric key as it is explained later in
the Model part. Later, in the testing part, it is shown that the synchronism between the
client and the server will be important when sending encrypted messages.

4. Send files: Both entities, server and client, can exchanged files over a secure or
insecure channel and the option of saving the file or not is decided by the receiver itself.
This option will be very useful to compare between both methods to see how many
packets are sent depending on the choice done and the size of those packets. An error
control is deployed before enabling the sender to send the file because files larger than
6 MB aren’t allowed.

5. Shut down the application: When any of the two sides want to finish the connection,
there is a button to do so. When this button is pressed a confirmation message is shown
to ensure it has not been an error. Moreover, the interface has a button in the upper
right side that has the same function.

32

It can be sent that in any case the view will be in direct contact with the model without using

the controller as a connection between them. So, the changes made to the model part will be

completely transparent to the view.

CHECK_PARAMETERS

This function is executed every time an event is generated by the user when the start or connect

button are clicked. This function returns a boolean variable which takes a true value if the rules

are accomplished or false in case of not.

The parameters controlled by this function are:

1. The host has to be composed of numbers and dots and can’t be changed from the one

shown by default. This is done because in the future this application could be run not

only in the local host.

2. The port has to be a number compressed between 44000 and 65535 because

numbers lower than 44000 may be reserved and the bound number is because a higher

port is not available.

As it can be seen this function is only controlling the two parameters that are involved to create

the server and the client. If these rules are fulfilled then the program can be run and depending

on the role chosen a client or a server will be deployed. In case there is something wrong alert

messages will be shown to the user and the possibility of trying again will be an available option.

ENTITIES

When a true value is returned by the Check_Parameters function one of this two entities can

be chosen:

1. Server: Then a method from the Server_Model will be called by the Controller to

prepare the SSL server socket and server socket using the host and port chosen by

the user. In case any problem is detected when stablishing the sockets a report

message will be shown to the user.

2. Client: As it happens with the server, a method from the Client_Model class will be

called by the Controller. This time, the procedure is a little bit sophisticated because

the port in which the connections will be focused on has to be the same chosen by

the server because if not the tunnel between the server and the client can’t be set

up. If the port introduced is correct a SSL socket and a socket will be generated and

the server will indicate with two messages than a secure and an insecure client have

been connected.

After having the client connected to the server both entities are let to send messages and files

using the secure or insecure way. Now, the Controller will be in touch with the client and the

server when an event is generated by the user’s activity.

33

As it will be explained later in more detail several folders are created to store the files and the

information transmitted between them.

Having the choice of sending the information using a secure or an insecure channel will allow us

to check and analyze by using Wireshark both ways.

SEND_MESSAGE

When a message is sent to any of the two entities involved, this function is not used because

the message is written directly in the input box and then, adding the message can be done in

the view part but when a message is received in the buffer’s reader, this message is located in

the Model part and then to be appended in the conversation box has to be sent to the Controller

using the Send_Message function which receives a string as a parameter. After that, the only

function this method has is to send the message to the view and the view is who adds the

headboard and the color to this specific message.

Using this structure the MVC is followed and it facilitates the work if some updates have to be

done. Moreover, it guarantees the totally transparence between the View and the Model which

let us to have a more scalable project.

4.7.3 SERVER MODEL

This class implements all the methods of the server side. When the start button is pressed and

there isn’t any errors with the host the port and, then an event is received by the Controller and

the server’s methods can be called. As it has been mentioned before, this class only interacts

with the Controller and never with the view as the controller is in between of them isolating

both parts.

SERVER

This is the first method called by the Controller when the start button is pressed. This method

receives an integer as the main parameter. Then the entity server is created and the variables

referring to the server part are set up. After that, a server socket is created and then the class

Secure_Server is called to create the SSL server socket. The secure channel is created in the port

chosen and the insecure channel is created in the next available port. It has been implemented

this way because the most important part is the secure channel and the insecure channel is used

for comparing and checking which information can be sniffed using Wireshark tool.

Moreover, two threads are executed. It has been implemented this way because the server has

to be able to receive both secure and insecure information at any time and the only way to do

that is creating two independent threads. One thread is listening in the secure port to be able

to receive secure messages and files and the other one is listening to the insecure port. Each of

these threads are listening to its buffer reader where it is received the information sent from

the server.

Finally, the IChat_Folder method is called and a group of folders are created in a hierarchical

way to store and classify the information received.

34

ICHAT_SERVER

This function is in charge of creating a set of folders for storage. As it can be seen in the picture

below (Figure 18), a folder called IChat is created in the system root folder where the program is

deployed. Inside this folder, the server’s folder is created and then inside this folder other five

folders are created: Pictures, Chats, Documents, Videos and Others. It can be guessed what

these folders will contain but not which formats are allowed:

1. Pictures: In this folder are stored all the images with jpg, png or bmp extension.

2. Documents: In this folder are stored those document which extension is txt, pdf,

doc and docx.

3. Videos: All the videos which extension is mp3, mp4 or wax are stored in this folder.

4. Others: The rest of the files which extension is not one of the mentioned previously

are stored in this folder.

5. Chats: Every time the program is deployed, a txt file is created, the name of this file

is the following: Year-Month-Day Hour Minute Second. Using this nomenclature, it

can be ensured the independence of all the files. This archives are very important

because are used as a backup of all the conversations done by the server and in this

file it can be seen all the messages and files sent and received, the date in which

they were sent or received and if they were sent or received using the secure or

insecure channel. This backup has been implemented because in most of the

messaging or chat applications it is present and really useful. A complete

explanation of this files can be seen in the testing part.

It has to be said that there is a restriction concerning to the size of the files. The maximum size

allowed is 6MB. It is a design decision but it has been thought that files larger than this size

would slow down the program and for our purposes is not useful. When a file is sent, a

confirmation message is append to the conversation box indicating the file has been sent

correctly. Otherwise, when a file is stored, a message is appended to the conversation box and

then it is shown the folder in which the file has been stored and the file’s name. As it is detailed

in the testing part, when an existing file is received, the user is alerted with a notification

message and the opportunity of renaming or not storing the file is shown and is up to the user.

Figure 18 - Server folders structure

35

SECURE_SERVER

This method receives an integer as a parameter which is the port in which the SSL socket will be

stablished. The first thing to do is to configure the SSL server socket. When two SSL sockets, a

client and a server socket, want to stablish a connection the first think they have to do is to

present itself to the other part and then each of them checks that the other side is a trustable

entity. If the process is correct and both entities trust each other the connection is done. To

present themselves they a certificate is needed and to believe the certificate of the other part is

a trusted one they need to have this certificate stored in his a store of trustable certificates. To

create the SSL socket, the factories that came by default with JAVA were used.

To configure the SSL server socket this following steps have to be followed:

1. The key store is initialized with a JKS extension and the store in which the server’s

certificate is located is loaded in this instance.

2. A key manager is initialized with the key store created before using the

corresponding password chosen when the certificate’s store was configured using

Keytool program.

3. A trusted store is set up where the client’s certificate was introduced using the

Keytool program. This is an important step because when the client will try to

connect to the server and will send its own certificate, if the server doesn’t have this

certificated added to its store as a trustable one, then the connection will be

rejected. This step isn’t necessary if the certificated had been signed by a certificate

authority but as our certificates are auto generated then this step is fundamental to

stablish the secure connection between both entities.

4. The SSL server socket factory is created and loaded with the key manager and the

trusted manager. Both variables are arrays and contain the server’s certificate and

the client’s certificate.

5. The SSL server socket is created using the SSL server socket factory configured

previously and after that, the method accept connections is called to enable

connections on that channel.

Finally, a buffer reader and a buffer writer are created and initialized using the SSL server socket

previously created. The buffer reader is used to store the information received and the buffer

writer is used to send information.

Now the server is properly configured to accept connections. When a connection is received

there is the handshake that has the following steps:

1. Client cipher suite and other parameters

2. Server’s certificate, cipher suite and other parameters

3. Client’s certificate

4. Server key exchange

5. Change cipher suite

6. Client key exchange

7. Change cipher suite

8. Finished

36

The aim is to use a combination of asymmetric and symmetric key encryption. Finally, with the

information exchanged during the handshake, both entities have to be able to create the same

symmetric session key which will be used to encrypt and decrypt the information that will travel

over the secure channel. For the asymmetric encryption RSA keys are used and for the

symmetric encryption a 256 bits AES key is used. The aim of combining both methods is to

prevent the MITM attacked. The handshake is explained in detail in the handshake chapter (page

35).

FILE_TYPE

This method is called every time a file is received. The main purpose of this function is to figure

out the extension of the file received to decide in which of the created folder should be stored.

To do so, this functions needs to receive the name of the file as a parameter. In the case of not

being able to find out the extension or if this extension is not one of the desired extensions, the

file is stored in the Others folder. This method has been created because it was hoped to create

a chat application the most similar possible to the existing ones.

RECEIVE_SECURE_INFO

This function (Figure 19) is inside a thread because is needed to be able to receive messages and

files at any moment over the secure and insecure channel. The procedure followed to know if a

message has been received is to check if there is any data in the buffer reader. In case the buffer

reader is filled, there are two possibilities:

1. The encrypted check box is not clicked: This is the worst case because it means that

both entities aren’t synchronized and then the information received will not be

decrypted because the AES session key won’t be used. So, the server, in its own

conversation box, will see strange symbols and letters that won’t make any sense.

This method has been implemented to shown that the synchronism is a key issue in

communications and it is useful to understand how the information travels over the

secure channel and this information is what a third entity will be able to see if it was

sniffing the traffic.

 2. ADD_Message

Chat_Backup

View Controller Model

1. ADD_Message

Update the view

Encrypted

Message received

Message not decoded

Figure 19 - Receive secure information diagram when not synchronized

37

2. The encrypted check box is clicked: This is the desired case (Figure 20) in which both

sender and receiver are synchronized. Then the information encrypted by the Client with

his own AES session key is decrypted easily by the Server which will used its AES session

key. As it can be seen, the Client and the Server are using a symmetric encryption mode.

Before sending the information, the message is encoded in Base 64 and for this reason,

the Server has to decode the information following the same rule before using the AES

session key. It has been done because if not there were times that if the message

contained some accent or other special symbols the information was wrongly decoded.

As the session key used for both entities has a length of 256 bits, sometimes the information

received can be larger than 256-bits and then a method is needed to decrypt the information

because it has to be decrypted in chunks. Finally, all the chunks are joint to recover the original

message and then the message is sent to the Controller for further treatment. The method that

is called to decrypt the message in chunks is called Decrypt_Bytes_Array and as it suggested by

the name, an array has to be sent as a parameter.

Otherwise, if a file is received, the server will know it because the Client will notify it with a

message that will contain a concrete string. Then, the Server will called the method

Receive_File_Secure and the Server will be waiting until the file transmission is finished.

After a file or a message is received, the generated backup file has to be updated by the

Controller with the same information appended to the conversation box and adding a

headboard to differentiate the messages or files received over the secure channel from those

received over the insecure channel.

2. ADD_Message

Chat_Backup

View Controller Model

1. ADD_Message

Update the view

Encrypted

Message received

Message decoded

Figure 20 - Receive secure information diagram when synchronized

38

RECEIVE_INSECURE_INFO

As the previous method, this function (Figure 21) is inside a thread because is needed to be able

to receive messages and files at any moment but in this case the channel used is the insecure

one. The procedure followed to know if a message has been received is to check if there is any

data in the buffer reader attached to the socket input stream.

In case the buffer reader is filled, the data is taken out and sent to the Controller which sends

the message to the View for further treatment. After delivering the message to the Controller,

the method Chat_Backup is called to update the file in which the conversation is stored and a

headboard is added to know that this message was sent using the insecure channel and the time

in which this information was sent. Otherwise, if a file is received, the method Receive_File is

called which will call the method Chat_Backup to add that an insecure file was received.

Having this method is very useful because it can be sent the same message by both the secure

and the insecure channel and then using the Wireshark tool both messages can be compared.

RECEIVE_FILE_SECURE

As the name suggests this method (Figure 22) is called every time a file is received by the SSL

socket previously created.

When inside this function, a variable of the type Boolean is configured with a true value. This

variable is used to create a loop that will not finish until this variable becomes false and it

happens when all the bytes of the file are received. Then, the bytes are received in chunks,

decrypted using the AES session key and stored in a byte array until the reading done returns a

zero value which indicates there aren’t bytes pending to be read. After that, the method

File_Type is needed to find out the file extension which let the program to save the file in the

corresponding folder. Once the extension is known, all the bytes are copied to a buffered output

stream. This stream has the path in which the file has to be created. Finally, the file can be

opened, read and modified if needed by the Server. The server knows the file location because

2. ADD_Message

Chat_Backup

View Controller Model

1. ADD_Message

Update the view

Message received

Figure 21 - Receive insecure information diagram

39

a message is added to the conversation box and the backup file showing a confirmation message

and the folder in which the file has been saved.

If the sever had stored this file from previous conversations, an alert message is shown indicating

the option of renaming or deleting the file.

RECEIVE_FILE_INSECURE

This function (Figure 23) is called every time a file is received over the insecure channel what it

means the information regarding the file has been travelling in clear over the channel and if a

third malicious entity has been sniffing the traffic could have read the information.

When inside this function, a variable of the type Boolean is configured with a true value. This

variable is used to create a loop that will not finish until this variable becomes false and it

happens when all the bytes of the file are received. Then, the bytes are received in chunks and

stored in a byte array until the lecture done returns a zero value which indicates there aren’t

bytes pending to be read. After that, the method File_Type is needed to find out the file

extension which let the program to save this file in the corresponding folder. Once the extension

is known, all the bytes are copied to a buffered output stream. This stream has the path in which

the file has to be created. Now, the file can be opened, read and modified if needed by the

Server. The server knows the file location because a message is added to the conversation box

and to the backup file showing a confirmation message and the folder in which the file has been

saved.

If the sever had stored this file from previous conversations, an alert message is shown indicating

the option of renaming or deleting the file.

As it can be seen, the procedure is almost the same as when receiving a file over the secure

channel but now as the bytes are not encrypted with the AES session key this step is skipped.

2. ADD_Message

Chat_Backup

View Controller Model

1. ADD_Message

Update the view

File decoded

Decrypted

File received encoded

Send Button

Figure 22- Receive file over SSL socket diagram

40

SEND_FILE_SECURE

As the SSL server socket has been previously created, now all the steps concerting to the SSL

handshake can be skipped.

When the encrypted check box is ticked and the Server needs to send an encrypted file to the

Client, the button send file is clicked and then an additional interface is shown to the user. This

interface is used by the user to navigate around the different folders and to choose the desired

file. Then, a verification is done over the file to enssure the files don’t overcome the size

permitted and in case of trying to send a file too much longer an alert message is shown and

then another file has to be chosen. When the size condition is fulfilled, this function (Figure 24)

is called by the Controller and a string containing the path where the file is stored is sent.

After that, a byte array is created with the size of the file and a variable of the type file is set up

with the path. Then, the file is read in chunks until the last byte and introduced to the output

stream. Finally the file is delivered to the Client and the corresponding inputs and outputs

streams are closed.

After sending the file, the Send_Message function is called and the Controller replies this

information to the View for further treatment. As a final step, the Chat_Backup function is

required to update the content.

2. ADD_Message

Chat_Backup

View Controller Model

1. ADD_Message

Update the view

File received

Figure 23 - Receive file over socket

41

SEND_FILE_INSECURE

The difference between this method and the previous one is that now (Figure 25) the insecure

channel is used to send the file because the encrypted checkbox is not ticked. So, the

information sent could have been modified by a third entity not directly involved in the

conversation.

As in the secure case, after sending the file, the Send_Message function is called and the

Controller replies this information to the View for further treatment. As a final step, the

Chat_Backup function is required to update the content.

4. ADD_Message

Chat_Backup

View Controller Model

1. Action

2. Send_Secure_File

3. ADD_Message

Send File

Analyzes the action

Update the view

Encrypted

File sent

4. ADD_Message

Chat_Backup

View Controller Model

1. Action

2. Send_Insecure_File

3. ADD_Message

Send File

Analyzes the action

Update the view

File sent

Figure 24 - Send file oevr SSL socket

Figure 25 - Send file over socket

42

INSECURE_MESSAGE

When the send message button is clicked by the user, the input box is checked to ensure that

isn’t empty. If it is empty, an alerting message is displayed but if not then an action event is sent

to the Controller and the function Insecure_Message is called. This method (Figure 26) receives

a string as a parameter that is sent to the Client using the buffer writer.

Finally, the message is sent again to the Controller which replies the information to the View for

further treatment and the method Chat_Backup is called to update the backup file.

As it can be seen in all the previous functions, the actions start in the view, are managed in the

Controller, are executed in the Model and then the result is sent to the Controller and the

Controller is in touch again with the View to update the conversation box.

SECURE_MESSAGE

This method (Figure 27) is a little bit sophisticated than the previous one because the secure

channel is used and some extra steps have to be done. This time, the AES session key has to be

used to encrypt the message before sending over the SSL channel. When the message is

encrypted is encoded in base 64 before transmitting and finally the message is sent using the

buffer writer. After that, the message is delivered to the Controller which replies the information

to the View for further treatment and the method Chat_Backup is called to update the backup

file adding a header indicating this message has been sent in a secure way.

4. ADD_Message

Chat_Backup

View Controller Model

1. Action

2. Send_Insecure_Message

3. ADD_Message

Send Button

Analyzes the action

Update the view

Message sent

Figure 26 - Send message over an insecure channel

43

4.7.4 CLIENT MODEL

This class implements the methods for the Client which will be called in some cases for the

Controller and in other cases for some functions of the Client class. The main difference between

both Models is that in the Server part a SSL server socket and a server socket are created whilst

in the Client side a SSL socket and a socket are created. This is because the Client is who connects

to the Server the first time and the Server is who is waiting for connections. A part from that

both entities have the same classes because they are let to do the same things as it will be done

in a messaging or chat application.

In the case the connection is lost or finished by one of the two sides, the other side is alerted

with a message indicating that the connectivity has been lost.

ICHAT_CLIENT

This method is a bit different from the server’s one because as this time an independent folder

is created for the client. As in the Server method is done, the same folders (Figure 28) part are

created under this folder called Client and then as it can be seen in the picture below the

structure of folders is completely built and from so on both entities are able to send and receive

messages and files in a secure and insecure way.

4. ADD_Message

Chat_Backup

View Controller Model

1. Action

2. Send_Secure_Message

3. ADD_Message

Send Button

Analyzes the action

Update the view

Encrypted

Message sent

Figure 27 - Send message over a secure channel

44

When the Client has been correctly created and connected to the Server the resulting folders

overview can be seen in the picture below (Figure 29). As it can be seen both entities share the

same root folder but they have independent folders to store the information received.

Figure 28 - Client’s folders structure

Figure 29 - Complete folder structure diagram

45

5. IMPLEMENTATION

In this chapter it can be seen all the procedures involved in the project development, as for

instance, the graphical user interface implementation, the SSL handshake steps and a Wireshark

analysis for both secure and insecure packets. Finally, a testing is done to verify and explain in

detail all the functionalities developed in the project.

5.1 GRAPHICAL USER INTERFACE (GUI)

In computer science, a graphical user interface or GUI, is a type of interface that allows users to

interact with electronic devices through graphical icons and visual indicators such as secondary

notation, as opposed to text-based interfaces, typed command labels or text navigation. GUIs

were introduced in reaction to the perceived steep learning curve of command-line interfaces

which require commands to be typed on the keyboard.

The actions in a GUI are usually performed through direct manipulation of the graphical

elements. The elements used in our implementation are the following:

1. JTextField: is a lightweight component that allows the editing of a single line of text.

2. JTextPane: A text component that can be marked up with attributes that are

represented graphically. This component models paragraphs are composed of runs

of character level attributes. Each paragraph may have a logical style attached to it

which contains the default attributes to use if not overridden by attributes set on

the paragraph or character run. Components and images may be embedded in the

flow of text.

3. JButton: Buttons can be configured and to some degree controlled, by Actions.

Using an Action with a button has many benefits beyond directly configuring a

button.

4. JScrollPane: Provides a scrollable view of a lightweight component. A JScrollPane

manages a viewport, optional vertical and horizontal scroll bars and optional rows

and columns heading viewports.

5. JCheckBox: This is an item which can be selected or deselected. The implementation

of a check box displays its state to the user. By convention, any number of check

boxes in a group can be selected.

6. JLabel: This component can display an area for a short text string, an image, or both.

A label does not react to input events. As a result, it cannot get the keyboard focus.

However, a label can display a keyboard alternative as a convenience for a nearby

component that has a keyboard alternative but can't display it. A JLabel object can

display both text and images.

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/User_%28computing%29
https://en.wikipedia.org/wiki/Human%E2%80%93computer_interaction
https://en.wikipedia.org/wiki/Computer_icon
https://en.wikipedia.org/wiki/Secondary_notation
https://en.wikipedia.org/wiki/Secondary_notation
https://en.wikipedia.org/wiki/Text-based_user_interface
https://en.wikipedia.org/wiki/Learning_curve
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Computer_keyboard
https://en.wikipedia.org/wiki/Direct_manipulation
https://docs.oracle.com/javase/7/docs/api/javax/swing/Action.html

46

7. ImageIcon: An implementation of the Icon interface that paints Icons from Images.

This images can be created from a URL, filename or byte array are preloaded using

MediaTracker to monitor the loaded state of the image.

In the picture below (Figure 30), it can be seen how these components have been combined all

together and distributed to develop our interface.

In the picture below (Figure 31), it can be seen the interface physical appearance which has

been built this way to be the easiest for the user to interact with.

JScro
ller

 JLabel

JTextField

JTextPane ImageIcon

JButton + ImageIcon

JTextField

JTextField

JButton + ImageIcon JCheckBox

Figure 30 - Components of the interface

Figure 31 - Interface

JLabel

JButton + ImageIcon

JButton + ImageIcon JButton + ImageIcon

47

5.2 SSL HANDSHAKE

The steps involved in the SSL handshake (Figure 32) are as follows (note that the following steps

assume the use of the cipher suites listed in Cipher Suites with RSA Key Exchange: Triple DES,

RC4 and DES (table [1)):

1. The client sends the server the client's SSL version number, cipher settings, session-

specific data, and other information that the server needs to communicate with the

client using SSL.

-SSL version: TLSv1.2.

-Cipher settings: 32 cipher suites as it can be seen in the references (table [1]).

-Signature algorithms: Sha512(ECDSA), SHA512(RSA), SHA384(RSA),

SHA256(ECDSA), SHA256(RSA), SHA224(ECDSA), SHA224(RSA), SHA1(ECDSA),

SHA1(RSA), SHA1(DSA) and MD5(RSA).

2. The server sends the client the server's SSL version number, cipher settings, session-

specific data, and other information that the client needs to communicate with the

server over SSL. The server also sends its own certificate, and if the client is requesting

a server resource that requires client authentication, the server requests the client's

certificate.

-SSL version: TLSv1.2

-Cipher settings: TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

-Signature algorithms: SHA512(RSA)

-Handshake protocol: Server Hello, Certificate and Server Key Exchange

-Prime number p: This number has a length of 2048 bits

-Generator g: This number has a length of 1 bit

Server's Diffie-Hellman public value A = g^X mod p, where X is a private integer chosen by the

server at random and never shared with the client.

When an ephemeral Diffie-Hellman cipher is used, the server and the client negotiate a pre-

master key using the Diffie-Hellman algorithm. This algorithm requires that the server sends the

client a prime number and a generator. Neither are confidential, and are sent in clear text.

However, they must be signed, such that a MITM cannot hijack the handshake.

3. The client uses the information sent by the server to authenticate the server. If the

server cannot be authenticated, the user is warned of the problem and informed that

48

an encrypted and authenticated connection cannot be established. If the server can be

successfully authenticated, the client proceeds to step 4.

The step 4 can be deployed in two different ways:

4.1 Using all data generated in the handshake thus far, the client (with the cooperation

of the server, depending on the cipher being used) creates the pre-master secret for the

session, encrypts it with the server's public key (obtained from the server's certificate,

sent in step 2), and then sends the encrypted pre-master secret to the server.

4.2 If the server has requested client authentication (an optional step in the handshake),

the client also signs another piece of data that is unique to this handshake and known

by both the client and server. In this case, the client sends both the signed data and the

client's own certificate to the server along with the encrypted pre-master secret.

 -Hanshake type: Client Key Exchange

 -Public key length: 65 bits

In our case, the 4.2 has been the option selected as authentication for both entities has been

the objective.

5. If the server has requested client authentication, the server attempts to authenticate the

client. If the client cannot be authenticated, the session ends. If the client can be successfully

authenticated, the server uses its private key to decrypt the pre-master secret, and then

performs a series of steps (which the client also performs, starting from the same pre-master

secret) to generate the master secret.

- The ChangeCipherSpec message is sent by both the client and the server to notify the

receiving party that subsequent records will be protected under the newly negotiated

CipherSpec and keys. Reception of this message causes the receiver to instruct the

record layer to immediately copy the read pending state into the read current state.

Immediately after sending this message, the sender must instruct the record layer to

make the write pending state the write active state. The ChangeCipherSpec message is

sent during the handshake after the security parameters have been agreed upon, but

before the verifying Finished message is sent.

6. Both client and server use the master secret to generate the session keys, which are

symmetric keys used to encrypt and decrypt information exchanged during the SSL session

and to verify its integrity (that is, to detect any changes in the data between the time it was

sent and the time it is received over the SSL connection).This process is explained in detail

in the Diffie-Hellman section.

7. The client sends a message to the server informing that future messages from the client

will be encrypted with the session key. Then, the client sends a separate (encrypted)

message indicating that the client portion of the handshake is finished.

49

8. The server sends a message to the client informing that future messages from the server

will be encrypted with the session key. Then, the server sends a separate (encrypted)

message indicating that the server portion of the handshake is finished.

9. The SSL handshake is now complete and the session begins. The client and the server use

the session key to encrypt and decrypt the data they send to each other and to validate its

integrity.

10. This is the normal operation condition of the secure channel. At any time, due to internal

or external stimulus (either automation or user intervention), either side may renegotiate

the connection, in which case, the process repeats itself.

3

Server

Client Random
Client Cipher Suites

Encrypted Hash

Premaster Secret
Session Key

Client Public DH Value Yc

Client Public DH Value Xc

Server Random

Selected Cipher Suite

DH Params g, p

Server Public DH Value Ys

Signature

Client Certificate

Client Public Key

Client

Client Random
Client Cipher Suites

Encrypted Hash

Premaster Secret
Session Key

Client Public DH Value Yc

Client Public DH Value Xc

Server Random

Selected Cipher Suite

Server Certificate

Server Public Key

DH Params g, p

Server Public DH Value Ys

Signature

Server Hello & Certificate

Client Hello

Client’s Certificate

Server Key Exchange

Client Key Exchange

Finished

Figure 32 - SSL handshake

50

5.3 WIRESHARK ANALYSIS

As it has been commented before, in this project a chat has been implemented to be able to

ensure both, secure and insecure communications. In this communications, each of both parts,

Client and Server, can exchange messages and file, as for instance, videos, pictures and

documents in different formats.

To check the differences between both channels, Wireshark application has been used to

compare:

 - Initial procedures

 - Security aspects

5.3.1 SOCKETS

When sockets are implemented over the TCP protocol, they have the following properties:

1. They are connection oriented.

2. The data transmission is guaranteed without errors and omissions.

3. It is guaranteed that all the octets are going to get their destination in the same

order in which they have been sent.

As it has been verified (Figure 33) using Wireshark tool, when packets are sent over a TCP
channel, there isn’t an initial procedure between both, sender and receiver, to stablish a secure
channel or to present themselves and for this reason the information is sent over an insecure
channel in which the confidentiality, integrity and security is not guaranteed because in this
case, the port is the only property that identifies them. Then, an external Mallory entity can
eavesdrop the channel, take the packets and figure out the information contained. Moreover, it
can use the man in the middle attack to supply the original sender and modify the packet
information.

As it can be seen, the data packets are sent over TCP but no security measures are applied and
the information can be easily intercepted by a Mallory entity. As Internet is not a trustable
medium this is not an optimal way when personal or private information has to be sent.

 Source Destination Protocol Length Information

127.0.0.1 127.0.0.1 TCP 109 Application data [PSH, ACK]

Source Port: 55006 Destination Port: 44006

Data length: 69 bytes Data info: Credit Card number 4599 8716 8745 2514

127.0.0.1 127.0.0.1 TCP 40 ACK

127.0.0.1 127.0.0.1 TCP 316 Application data [PSH, ACK]

Figure 33 - Socket Wireshark capture

51

5.3.2 SSL SOCKETS

Such as sockets, SSL sockets are normal stream sockets, but they add a layer of security
protections over the underlying network transport protocol, such as TCP. Those protections
include:

1. Integrity Protection: SSL protects against modification of messages by an active
wire tapper.

2. Authentication: In most modes, SSL provides peer authentication. Servers are
usually authenticated, and clients may be authenticated as requested by
servers.

3. Confidentiality: In most modes, SSL encrypts data being sent between client and
server. This protects the confidentiality of data, so that passive wire tappers
won't see sensitive data such as financial information or personal information
of many kinds.

4. No repudiation: As in the handshake procedure both entities have exchanged
their certificates and they trust each other, when information is received from
the other side or vice versa, the receiver is sure whom this information comes
from.

These kinds of protection are specified by a "cipher suite", which is a combination of
cryptographic algorithms used by a given SSL connection. During the negotiation process, the
two endpoints must agree on a cipher suite that is available in both environments. If there is no
such a suite in common, no SSL connection can be established, and no data can be exchanged.

The cipher suite used is established by a negotiation process called "handshaking". The goal of
this process, as it is explained in detail in the SSL section is to create or rejoin a "session", which
may protect many connections over time.

 Source Destination Protocol Length Information

127.0.0.1 127.0.0.1 TLSv1.2 294 Client Hello

127.0.0.1 127.0.0.1 TLSv1.2 1396 Server Hello, Certificate, Key Exchange

127.0.0.1 127.0.0.1 TLSv1.2 1396 Client Certificate, Client key Exchange

127.0.0.1 127.0.0.1 TLSv1.2 46 Change Cipher Spec

127.0.0.1 127.0.0.1 TLSv1.2 141 Encrypted Handshake Message

127.0.0.1 127.0.0.1 TLSv1.2 46 Change Cipher Spec

127.0.0.1 127.0.0.1 TLSv1.2 141 Encrypted Handshake Message

Figure 34 - SSL socket Wireshark capture

52

5.5 TESTING

In this section, it is explain in detail all the functionalities available in the project. Some of them

are information messages shown depending on the user’s behavior. Moreover, it is explained in

depth how the messages are built into the chat box and their characteristics depending on if the

information is sent or received. Finally, it is shown, with some examples, how the backup file

works and its main features.

INVALID PORT NUMBER

When the start Server button is pushed or a connection to the Server is required by the Client

pressing the connect button, then the host and the port fields are checked. In the case of the

port number, it is verified if the number introduced is compressed between 40000 and 65535.

The lower bound is because numbers lower can be used by other programs and the upper bound

is because this is the maximum port allowed. If the number introduced is correct, the following

step is to check the host and after that, the session can be begun.

INVALID HOST

As in the previous case explained, when the start Server button is pushed or a connection to the

Server is required by the Client pressing the connect button, then the host and the port are

checked. In the case of the host number, it is checked that the number introduced is 127.0.0.1

because the program is executed in the localhost machine. When both, port and host are correct

parameters the Server can be started or the Client ca be connected to start a session.

Invalid port number (40000 < Port < 65535)

Error Message

ACCEPT

Host must be 127.0.0.1 (localhost)

Error Message

ACCEPT

Figure 35 - Invalid port number

Figure 36 - Invalid host number

53

EMPTY MESSAGE

When the session has been started, both Client and Server can exchange messages and files but

as it is obvious empty messages are not allowed because it doesn’t make sense in a chat

application and for this reason every time the send message button is pressed, the input of the

corresponding text field is checked and if it is empty the following message is shown to the user.

START SERVER WITH CORRECT PARAMETERS

When the parameters introduced are correct then an information message is shown in the

Server’s chat to specify the listening port in which connections requests will be accepted. In this

specific case (Figure 38), the Server is waiting for Clients in the port number 44006.

Empty messages can’t be sent

Error Message

ACCEPT

Figure 37 - Empty message

Figure 38 - Start Server with incorrect parameters

54

START CLIENT WITH CORRECT PARAMETERS

After the Server is running, the Client can be connected to establish a socket and a SSL socket

between them. When the Client is well connected, a message with the connection has been

stablished is showed as it is depicted in the picture below (Figure 39).

When a connection from a Client is received, a message is shown in the Server’s chat indicating

a secure and insecure Client has been connected. Then, both entities are able to exchange

messages and files in both ways, secure and insecure channel using SSL sockets and sockets.

Figure 39 - Start Client with correct parameters

Figure 40 - Server message after the Client is connected

55

SEND INSECURE MESSAGE FROM SERVER TO CLIENT AND VICEVERSA

After the connection is established, as it can be seen in the picture below (Figure 42), an insecure

message has been sent from the Server to the Client and after that, the Client has answered the

message (Figure 41). In both chats, when a message is sent the color is blue and for the received

messages the color is gray. This has been done this way because it is easier to the user to

differentiate which messages has been sent and which of them have been received. Moreover,

a header is added before every message showing the date in hour, minutes and seconds. When

a message is added to the chat box the backup file is updated with a copy of the message and a

header indicating if the message was sent or received in a secure or insecure way.

Figure 41 - Send insecure message from Client to Server

Figure 42 - Send insecure message from Server to Client

56

In this particular case, the Server wants to send to the Client a secure message and to do so the

encrypted checkbox has to be clicked. If the Client has the encrypted checkbox clicked it means

there is synchronism between both entities and the message will be decrypted in the Client side

being able to recover the original information but if the Client isn’t synchronized with the Server

then the Client won’t be able to decrypt the message because it won’t use the session key and

the original message won’t be recovered.

Figure 43 - Send a secure message to the Client without synchronization

Figure 44 - Receive a message without synchronization

57

FILE SENT FROM THE CLIENT TO THE SERVER

When the Server or Client want to send a file they have to click to the send file button and then

a file chooser is open (Figure 45). When a file is chosen an information message is shown asking

the user if it is sure of sending the file. Finally, if the yes button is clicked by the user, the file is

sent and an information message is shown to the sender chat saying the file was correctly sent

(Figure 46).

As it has been explained before, both entities are able to send a file over a secure or insecure

channel but is desired to send files over the secure channel because there can be personal

information.

Figure 45 - File chooser

Figure 46 - File correctly sent

58

When the file is received by the user, a header is added to the chat showing the file was completely

received and it can be seen the path in which the file is stored.

MESSAGE CONFIRMATION BEFORE SENDING THE FILE

This is the confirmation message shown every time a file has to be sent by either Client or Server.

If the yes button is clicked by the user, the file is sent and if the no button is clicked the user has

the possibility of choosing another file. As it has been mentioned before, the maximum size

allowed is 6Mb.

Do you want to send the file CV.pdf?

Error Message

YES NO

?

Figure 47 - File correctly received

Figure 48 - Send file confirmation message

59

FILE EXCEEDS THE MAXIMUM SIZE ALLOWED

If the user tries to send a file larger than the maximum size allowed then an information message

is shown indicating the file can’t be larger than 6Mb and the user has the possibility of choosing

another file. It has been thought that for the purposes of this project sizes larger than 6Mb would

slow down the application.

CLIENT IS DISCONNECTED

When the session is ended by the Client, a message is shown to the Server indicating the Client

has left and then a new Client can be connected to the Server.

Client has finished the session

Error Message

ACCEPT

The maximum size allowed is 6Mb

Error Message

ACCEPT

Figure 49 - File excedes máximum size allowed

Figure 50 - Client ends the session

60

SERVER IS DISCONNECTED

When the Server is not available a message is shown to the user indicating the Server has left

and it doesn’t make sense to have the session running as messages and files can’t be sent.

EXIT BUTTONCONFIRMATION MESSAGE

To leave the session, both Client and Server can use the exit button provided in the interface

and then a message indicating if they are sure is shown. If the yes button is clicked the sockets

are closed and the interface is cleared out form the screen. Then a message will indicate to the

other entity that the communication isn’t possible.

SERVER BACKUP FILE

When the Server is started, a backup file is created into the Server Chats folder with a unique

name formed by the date in the following format: Year/Month/day/Hour/Minute/Seconds.

Then, every time a message or a file is sent or received the chat box is updated with the

corresponding information. After that, a copy of this information is stored in the backup file

adding a header showing if the message or file was sent or received in a secure or insecure way.

Are you sure you want to close the session?

Error Message

YES NO

?

Server has finished the session

Error Message

ACCEPT

Figure 51 - Server ends the session

Figure 52 - Exit message confirmation

61

CLIENT BACKUP FILE

When the Client is connected to the Server, a backup file is created into the Client Chats folder

with a unique name formed by the date in the following format:

Year/Month/day/Hour/Minute/Seconds. Then, every time a message or a file is sent or received

the chat box is updated with the corresponding information. After that, a copy of this

information is stored in the backup file adding a header showing if the message or file was sent

or received in a secure or insecure way.

 Client Backup File

Messages send or received in clear

[17:52:37] Server: Hello, how are you?

[17:52:55] You: I’m fine thanks you :)

Messages send or received encrypted

[17:53:08] Server: {ew}[îÁ]ÒÙ õYÕxï

Messages send or received in clear

[18:04:50] * You sent the file CV.pdf *

 Server Backup File

Messages send or received in clear

[17:52:37] You: Hello, how are you?

[17:52:55] Client: I’m fine thanks you :)

Messages send or received encrypted

[17:53:08] You: Oh, that’s fine!

Messages send or received in clear

[18:04:50] * You received the file CV.pdf *

Figure 53 - Server backup file

Figure 54 - Client backup file

62

6. CONCLUSIONS

During my degree in telecommunications specified in the telematics field and my master in

telecommunications engineering I have been studying some subjects referring to security topics

but I haven’t been in direct touch because we did only the theory part but not the practice part.

This was the key aspect I make this choice.

The idea of this project was to be able to create two interfaces using JAVA code, one for each

Client and Server, in which messages and files could be sent using a secure or insecure channel

using normal sockets or SSL sockets in which a pair of certificates would be needed to identify

both sides. When a file or a message would be received, it was desired to store the information

to be able to check this information when needed. To do so, it was implemented a folder’s

structure in which the information was stored depending on the content and the messages sent

and received were stored in backup files.

In the first case, no cryptographic methods would be applied while in the second case, a mixed

of some cryptographic methods such as symmetric, asymmetric and Diffie-Hellman would be

combined.

Mixing the best properties of all this methods it was got our initial aim of having a chat in which

two entities, a Server and a Client, were able to agree a session key to encrypt and decrypt

messages and to send them over a SSL channel guaranteeing integrity, confidentially and no

repudiation of the information transmitted. This three properties are really important because

Internet is a network of networks and the information sent isn’t always travelling over a trusted

way and for this reason is crucial to protect the data before sending. To be able to create a SSL

socket it was used the Keytool program to generate a pair of certificates.

During the creation of the secure channel it has been seen all the procedures involved in the SSL

handshake in which both Client and Server exchange different information to be able to

generate the same session key using the Diffie-Hellman method and to avoid sending the

session key over Internet.

Moreover, it was desired to have an insecure channel in which no cryptographic methods were

applied. This channel was used to check the differences respecting to the SSL channel and it has

been seen that confidentiality, integrity and no repudiation can’t be guaranteed when no

cryptographic methods are applied to the information before sending over the channel. To do

so, Wireshark tool has been used with RAWCAP tool to be able to analyze the packets

transmitted over the local loop.

After comparing both methods, it has been verified that man in the middle attacks are really

feasible over the insecure channel and it can affect to the transmitted information modifying

the content or changing the remittent. Over the secure channel as several cryptographic

techniques have been used the data is really difficult to decrypt by a Mallory entity and the

receiver can be sure that confidentiality, integrity, security and no repudiation is maintained.

Finally, all the goals explained in the introduction were accomplished and all the theory learnt

during the studies was physically applied.

63

7. REFERENCES

In this last chapter it can be seen the resources used in the project’s development and some

extra information as for instance tables about the encryption possibilities offered by JAVA and

an overview of all the figures used in the project.

7.1 LINKS

[1] Asymmetric cryptography:

https://en.wikibooks.org/wiki/Cryptography/Asymmetric_Ciphers

http://hitachi-id.com/concepts/asymmetric_encryption.html

https://www.cs.utexas.edu/users/byoung/cs361/lecture44.pdf

http://computer.howstuffworks.com/encryption3.htm

https://www.comodo.com/resources/small-business/digital-certificates2.php

[2] Symmetric cryptography:

https://www.princeton.edu/~rblee/ELE572Papers/CSurveys_SymmAsymEncrypt-simmons.pdf

https://support.microsoft.com/en-us/kb/246071

http://www.webopedia.com/TERM/S/symmetric_key_cryptography.html

http://www.cs.cornell.edu/courses/cs5430/2010sp/TL03.symmetric.html

[3] Diffie-Hellman

http://mathworld.wolfram.com/Diffie-HellmanProtocol.html

https://www.ietf.org/rfc/rfc2631.txt

https://www.secpoint.com/what-is-diffie-hellman-encryption.html

[4] SSL

https://www.digicert.com/ssl.htm

https://www.instantssl.com/ssl.html

http://searchsecurity.techtarget.com/definition/Secure-Sockets-Layer-SSL

[5] Sockets

https://docs.oracle.com/javase/tutorial/networking/sockets/definition.html

http://www.tutorialspoint.com/java/java_networking.htm

[6] JAVA

https://www.codecademy.com/learn/learn-java

https://en.wikibooks.org/wiki/Cryptography/Asymmetric_Ciphers
https://www.cs.utexas.edu/users/byoung/cs361/lecture44.pdf
http://computer.howstuffworks.com/encryption3.htm
https://www.princeton.edu/~rblee/ELE572Papers/CSurveys_SymmAsymEncrypt-simmons.pdf
https://support.microsoft.com/en-us/kb/246071
http://www.webopedia.com/TERM/S/symmetric_key_cryptography.html
http://mathworld.wolfram.com/Diffie-HellmanProtocol.html
https://www.ietf.org/rfc/rfc2631.txt
https://www.digicert.com/ssl.htm
https://www.instantssl.com/ssl.html
https://docs.oracle.com/javase/tutorial/networking/sockets/definition.html
https://www.codecademy.com/learn/learn-java

64

https://www.oracle.com/java/index.html

[7] ECLIPSE

https://eclipse.org/home/index.php

[8] X.509 Certificates

http://www.cypherpunks.to/~peter/T2a_X509_Certs.pdf

http://docs.oracle.com/javase/7/docs/api/java/security/cert/X509Certificate.html

[9] Keytool

http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/keytool.html

https://www.sslshopper.com/article-most-common-java-keytool-keystore-commands.html

http://alvinalexander.com/java/java-using-keytool-list-query

[10] Wireshark

https://www.wireshark.org/

[11] Model View Controller (MVC)

https://developer.apple.com/library/ios/documentation/General/Conceptual/DevPedia-

CocoaCore/MVC.html

https://msdn.microsoft.com/en-us/library/ff649643.aspx

http://programmers.stackexchange.com/questions/127624/what-is-mvc-really

http://www.cypherpunks.to/~peter/T2a_X509_Certs.pdf
http://docs.oracle.com/javase/7/docs/api/java/security/cert/X509Certificate.html
http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/keytool.html
https://www.sslshopper.com/article-most-common-java-keytool-keystore-commands.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html
https://msdn.microsoft.com/en-us/library/ff649643.aspx
http://programmers.stackexchange.com/questions/127624/what-is-mvc-really

65

7.2 TABLES

[1] Cipher suites possibilities during the handshake negotiation:

CIPHER SUITE KEY EXCHANGE CIPHER MAC
TLS_NULL_WITH_NULL_NULL Null Null Null

TLS_RSA_WITH_NULL_MD5 RSA Null MD5

TLS_RSA_WITH_NULL_SHA RSA Null SHA

TLS_RSA_WITH_NULL_SHA256 RSA Null SHA256

TLS_RSA_WITH_RC4_128_MD5 RSA RC4_128 MD5

TLS_RSA_WITH_RC4_128_SHA RSA RC4_128 SHA

TLS_RSA_WITH_3DES_EDE_CBC_SHA RSA 3DES_EDE_CBC SHA

TLS_RSA_WITH_AES_128_CBC_SHA RSA AES_128_CBC SHA

TLS_RSA_WITH_AES_256_CBC_SHA RSA AES_256_CBC SHA

TLS_RSA_WITH_AES_128_CBC_SHA256 RSA AES_128_CBC SHA256

TLS_RSA_WITH_AES_256_CBC_SHA256 RSA AES_256_CBC SHA256

TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA DH_DSS 3DES_EDE_CBC SHA

TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA DH_RSA 3DES_EDE_CBC SHA

TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA DHE_DSS 3DES_EDE_CBC SHA

TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA DHE_RSA 3DES_EDE_CBC SHA

TLS_DH_anon_WITH_RC4_128_MD5 DH_anon RC4_128 MD5

TLS_DH_anon_WITH_3DES_EDE_CBC_SHA DH_anon 3DES_EDE_CBC SHA

TLS_DH_DSS_WITH_AES_128_CBC_SHA DH_DSS AES_128_CBC SHA

TLS_DH_RSA_WITH_AES_128_CBC_SHA DH_RSA AES_128_CBC SHA

TLS_DHE_DSS_WITH_AES_128_CBC_SHA DHE_DSS AES_128_CBC SHA

TLS_DHE_RSA_WITH_AES_128_CBC_SHA DHE_RSA AES_128_CBC SHA

TLS_DH_anon_WITH_AES_128_CBC_SHA DH_anon AES_128_CBC SHA

TLS_DH_DSS_WITH_AES_256_CBC_SHA DH_DSS AES_256_CBC SHA

TLS_DH_RSA_WITH_AES_256_CBC_SHA DH_RSA AES_256_CBC SHA

TLS_DHE_DSS_WITH_AES_256_CBC_SHA DHE_DSS AES_256_CBC SHA

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA DHE_RSA AES_256_CBC SHA

TLS_DH_anon_WITH_AES_256_CBC_SHA DH_anon AES_256_CBC SHA

TLS_DH_DSS_WITH_AES_128_CBC_SHA256 DH_DSS AES_128_CBC SHA256

TLS_DH_RSA_WITH_AES_128_CBC_SHA256 DH_RSA AES_128_CBC SHA256

TLS_DHE_DSS_WITH_AES_128_CBC_SHA256 DHE_DSS AES_128_CBC SHA256

TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 DHE_RSA AES_128_CBC SHA256

TLS_DH_anon_WITH_AES_128_CBC_SHA256 DH_anon AES_128_CBC SHA256

TLS_DH_DSS_WITH_AES_256_CBC_SHA256 DH_DSS AES_256_CBC SHA256

TLS_DH_RSA_WITH_AES_256_CBC_SHA256 DH_RSA AES_256_CBC SHA256

TLS_DHE_DSS_WITH_AES_256_CBC_SHA256 DHE_DSS AES_256_CBC SHA256

TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 DHE_RSA AES_256_CBC SHA256

TLS_DH_anon_WITH_AES_256_CBC_SHA256 DH_anon AES_256_CBC SHA256

66

7.3 TABLE OF FIGURES

Figure 1 - Server and Client public key exchange ... 5

Figure 2 - Public key Criptography attack ... 6

Figure 3 - Public key infrastucture .. 9

Figure 4 - Symmetric cryptography .. 10

Figure 5 - Diffie-Hellman secret key generation ... 13

Figure 6 - Diffie-Hellman MITM .. 14

Figure 7 - SSL protocol stack ... 16

Figure 8 - SSL procedure ... 17

Figure 9 - Socket connection request procedure ... 18

Figure 10 - Socket connection accept procedure ... 18

Figure 11 - X.509 Certificates structure .. 22

Figure 12 - Server’s certificate generation ... 24

Figure 13 - Server’s certificate exportation .. 25

Figure 14 - Server’s certificate importation ... 25

Figure 15 - Client’s certificate procedure ... 25

Figure 16 - Model View Controller ... 28

Figure 17 - Class diagram ... 29

Figure 18 - Server folders structure.. 34

Figure 19 - Receive secure information diagram when not synchronized ... 36

Figure 20 - Receive secure information diagram when synchronized ... 37

Figure 21 - Receive insecure information diagram .. 38

Figure 22- Receive file over SSL socket diagram .. 39

Figure 23 - Receive file over socket .. 40

Figure 24 - Send file oevr SSL socket .. 41

Figure 25 - Send file over socket .. 41

Figure 26 - Send message over a insecure channel .. 42

Figure 27 - Send message over a secure channel ... 43

Figure 28 - Client’s folders structure .. 44

Figure 29 - Complete folder strcuture diagram .. 44

Figure 30 - Components of the interface ... 46

Figure 31 - Interface ... 46

Figure 32 - SSL handshake .. 49

Figure 33 - Socket Wireshark capture .. 50

Figure 34 - SSL socket Wireshark capture .. 51

Figure 35 - Invalid port number ... 52

file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984833
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984834
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984835
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984836
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984837
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984838
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984839
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984840
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984841
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984842
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984843
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984844
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984845
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984846
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984847
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984848
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984849
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984850
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984851
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984852
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984853
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984854
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984855
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984856
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984857
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984858
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984859
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984860
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984861
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984862
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984863
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984864
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984865
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984866
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984867

67

Figure 36 - Invalid host number ... 52

Figure 37 - Empty message .. 53

Figure 38 - Start Server with incorrect parameters .. 53

Figure 39 - Start Client with correct parameters .. 54

Figure 40 - Server message after the Client is connected .. 54

Figure 41 - Send insecure message from Client to Server and viceversa ... 55

Figure 42 - Send insecure message from Server to Client and viceversa ... 55

Figure 43 - Send a secure message to the Client without synchronization .. 56

Figure 44 - Receive a message without synchronization ... 56

Figure 45 - File chooser .. 57

Figure 46 - File correctly sent ... 57

Figure 47 - File correctly received .. 58

Figure 48 - Send file confirmation message ... 58

Figure 49 - File excedes máximum size allowed ... 59

Figure 50 - Client ends the session ... 59

Figure 51 - Server ends the session .. 60

Figure 52 - Exit message confirmation ... 60

Figure 53 - Server backup file ... 61

Figure 54 - Client backup file .. 61

file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984868
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984869
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984870
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984871
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984872
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984873
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984874
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984875
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984876
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984877
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984878
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984879
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984880
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984881
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984882
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984883
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984884
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984885
file:///C:/Users/Masde7/Dropbox/Tesis_report1.docx%23_Toc435984886

