
Note: More Efficient Conversion of
Equivalence-Query Algorithms to PAC

Algorithms

Ricard Gavaldà∗

Department of Software (LSI)
LARCA Research Group

Universitat Politècnica de Catalunya

May 8th, 2008

Abstract

We present a method for transforming an Equivalence-query algo-
rithm using Q queries into a PAC-algorithm using Q

ε + O(Q2/3

ε log Q
δ )

examples in expectation. The method is a variation of that by Schuur-
mans and Greiner which provides, for each γ > 0, an algorithm using
(1 + γ)Q

ε + O(1
ε log Q

δ ) examples in expectation. In other words, we
show that the constant in front of the dominating term Q/ε can be
made 1 + o(1).

1 Introduction

In her seminal paper on learning from queries, Angluin [Ang87] showed
that algorithms using Equivalence queries can be rewritten as PAC algo-
rithms. Her simulation uses a worst-case sample O(Q2

ε
ln 1

δ
) to achieve (ε, δ)-

confidence from an algorithm using Q Equivalence queries, but it is not
difficult to show that in her same simulation, sample size O(Q

ε
ln Q

δ
) suffices.

∗Partially supported by the EU PASCAL2 Network of Excellence, and by the Span-
ish Ministry of Education through the MOISES-BAR project, TIN2005-08832-C03-03.
gavalda@lsi.upc.edu, http://www.lsi.upc.edu/~gavalda.

1



It was shown later that, with a diferent algorithm, that the dependence
on n can be made linear. Specifically, Littlestone [Lit89] showed that there is
a simulation using a worst-case sample size 4 Q

ε
+ O(1

ε
ln Q

δ
)) (his simulation

was phrased in terms of on-line learning rather than Equivalence queries,
but the distinction is irrelevant for our purpose). Schuurmans and Greiner
[SG95, Sch96] showed how to build, for every constant γ > 0, a simulation
that uses expected sample size (1 + γ) Q

ε
+ c(γ)1

ε
ln Q

δ
. Here c(γ) is constant

for each γ, but tends to infinity as γ tends to 0.
In this note we show that the leading constant in front of the Q/ε term

can be made 1 + o(1), that is, arbitrarily close to 1 as Q grows. In fact, our
algorithm is essentially the same as the Schuurmans-Greiner one, except that
instead of using a fixed value for γ a priori, we let the value of γ decrease at
a precisely controlled rate as the algorithm progresses.

2 The Algorithm

We view an Equivalence query algorithm as a particular case of a strategy
for generating hypothesis from sequences of labelled examples. Given such
an algorithm, we build a new algorithm S, given in Figure 1, which reads
a sequence of example, uses the Equivalence-query strategy as a black box,
and eventually outputs a hypothesis from those generated by the strategy.
We will show that S is a PAC-learning algorithm.

Procedure sprt is Wald’s Sequential Probability Ratio Test, discussed
below, and also used in the Schuurmans-Greiner approach. The main dif-
ference with their method is that we do not fix a constant γ a priori, but
rather use a different γi that varies with i. We will fix one particular setting
for the sequence of γi to obtain our bound on the sample size used by S, but
occasionally comment on the effect of using other values for γi.

We will argue that procedure S satisfies three conditions, which we for-
mulate as theorems: Correctness, Completeness, and Efficiency.

Theorem 1 (Correctness) The probability that S(ε, δ) outputs some h ∈ H
with error(h) > ε is less than δ.

The completeness condition can be stated in many ways, of which the
following is but one example:

Theorem 2 (Completeness) If for some i we have that error(hi) = 0 with
probability 1, then S(ε, δ) stops with probability 1.

2



Algorithm S(ε, δ)

1 Generate initial hypothesis h1;
2 i := 1; t := 0;
3 while true
4 do
5 t := t + 1;
6 get a training example (xt, c(xt)), labelled by the unknown target c;
7 if hi(xt) 6= c(xt) (i.e., (xt, c(xt)) is a counterexample for hi)
8 then
9 use (xt, yt) to generate hi+1;

10 start testing error(hi) on subsequent examples
11 using sprt(ε/(1 + γi), ε, δ/(i(i + 1)), 0);
12 i := i + 1;
13 if for some j < i, the sprt test for hj rejects
14 then
15 drop hj from the list of hypothesis being tested
16 if for some j < i, the sprt test for hj accepts
17 then
18 output hj and stop
19 end while

Figure 1: Algorithm S

3



Putting both claims together, if the strategy used to generate hypothesis
is an exact Equivalence-query algorithm learning with finitely many queries,
with probability 1 the algorithm stops, and its output is, with probability
1− δ, a hypothesis h having error(h) < ε.

Theorem 2 in fact follows from this more general statement:

Theorem 3 (Running time) Define γi = i−1/3, and let the base Equivalence-
query learner learn with at most Q queries. Then

E[running time of S(ε, δ)] ≤ Q

ε
+ 7

Q2/3

ε
· (ln Q(Q + 1)

δ
+ 2).

We do not describe here the sprt test. We quote, however, some relevant
properties from [Sch96], appendix A:

Theorem 4 [Sch96] Let k > 1 and suppose sprt(ε/k, ε, δacc, δrej) is run on
a sequence X1, X2, . . . , Xi,. . . of i.i.d. boolean random variables. Then:

1. If E[Xi] > ε, the probability that sprt accepts is at most δacc.

2. If E[Xi] < ε/k, the probability that sprt rejects is at most δrej.

3. ([Sch96], Lemma A.4) If δrej = 0, the expected running time of sprt is(
k

k − 1− ln k

)
1

ε

(
ln

1

δacc

+ 1
)

.

3 Proof of Theorem 1

The proof is as in [SG95, Sch96], but we reproduce it for completeness. We
say that a hypothesis h ∈ H is ε-bad iff error(h) ≥ ε. Observe that the sprt
instance associated to hi is fed boolean variables whose expected value is
precisely error(hi). Therefore, by Theorem 4, part (1), we have the follow-
ing (where probabilities are taken over infinite sequences of independently
generated examples).

Pr[S(ε, δ) outputs an ε-bad hypothesis]

≤
∞∑
i=1

Pr[hi is ε-bad yet S(ε, δ) outputs hi]

4



≤
∞∑
i=1

Pr[sprt(ε/(1 + γi), ε, δ/(i(i + 1)), 0) accepts hi | hi is ε-bad]

≤
∞∑
i=1

δ

i(i + 1)
= δ.

4 Proof of Theorem 3

For every i, we define the following random variables and expected values:

• hi is the random variable representing the ith generated hypothesis,

• εi is such that 1/εi = E[1/ error(hi)],

• Ti is the number of examples read from the moment in which hi is gen-
erated until either hi+1 is generated (if hi+1 is ever generated; otherwise,
Ti = ∞)

• Ri is the running time of the sprt test run on hi, and

• T is the running time of the algorithm.

Proving Theorem 3 is thus bounding E[T ]. Let i be the first index such that
εi(1 + γi) < ε. Note that if the base Equivalence learner uses at most Q
queries, we have i ≤ Q. Observe also that

T ≤
∑
j<i

Tj + Ri (1)

because, by definition of Tj and Ri, by this time hi has been generated and
the sprt test for hi has stopped. Since the test is run with parameter δrej, it
rejects hi with probability 0, i.e., it accepts hi. Therefore, by this time either
S stops outputting hi, unless it has stopped before due to another hj.

Taking expectations in Equation (1), we have

E[T ] ≤
∑
j<i

E[Tj] + E[Ri]. (2)

We first bound E[Tj]; the proof of the lemma is given later.

Lemma 1 E[Tj] = 1/εj.

5



Taking k = (1 + γi) in Theorem 4, part (3), provides the following bound
on E[Ri]:

E[Ri] ≤
1 + γi

γi − ln(1 + γi)

1

ε
(ln

i(i + 1)

δ
+ 1). (3)

As a detour, let us note how to get the result in [SG95, Sch96]. Since i is the
first index such that εi(1 + γi) < ε, for j < i we have εj ≥ ε/(1 + γj), that is,
E[Tj] = 1/εj ≤ (1 + γj)/ε. Fix γi = γ for every i. Then from Equation (2)
we get

E[T ] ≤
∑
j<i

1 + γ

ε
+

1 + γ

γ − ln(1 + γ)

1

ε
(ln

i(i + 1)

δ
+ 1)

= (1 + γ)
i

ε
+ c(γ)

1

ε
(ln

i(i + 1)

δ
+ 1).

Now, take take instead γi = i−1/3. We have the following two lemmas, whose
proofs are given later:

Lemma 2 For γj = j−1/3,

∑
j<i

(1 + γj) ≤ i +
3

2
i2/3.

Lemma 3 Define c(γ) = (1 + γ)/(γ − ln(1 + γ)). Then c(γ) ≤ 7/γ2 for
every γ ∈ (0, 1], and c(γ) tends to 2/γ2 as γ tends to 0.

From Equations (2) and (3) and Lemmas 2 and 3, and using again that for
all j < i we have E[Tj] = 1/εj ≤ (1 + γj)/ε, we obtain

E[T ] ≤
∑
j<i

1 + γj

ε
+

7

γ2
i

1

ε
(ln

i(i + 1)

δ
+ 1)

≤ 1

ε
(i +

3

2
i2/3) + 7

i2/3

ε
(ln

i(i + 1)

δ
+ 1)

≤ i

ε
+ 7

i2/3

ε
(ln

i(i + 1)

δ
+ 2)

i.e., the statement of Theorem 3.

6



Proof of Lemma 1. Suppose that in a particular run of the algorithm
the random variable hj takes a particular value h ∈ H. Conditioned to
hj = h, the expected number of examples that have to be read to produce a
counterexample for hj is an exponential distribution with base error(h), and
therefore,

E[Tj|hj = h] =
∞∑

`=1

(1− error(h))`−1 · error(h) · ` = 1/ error(h).

So E[Tj] = E[1/ error(hj)] (where the expectation is taken over h on the
right-hand side), which is 1/εj by definition of εj. (Lemma 1)

Proof of Lemma 2. We show by induction on i the following inequality,
which implies the lemma:

∑
j≤i

(1 + j−1/3) ≤ i

ε
+

3

2

i2/3

ε
.

For i = 1 it is obvious. Assume true for i, then

i+1∑
j=1

j−1/3 ≤ 3

2
i2/3 + (i + 1)−1/3

and observe that
3

2
i2/3 + (i + 1)−1/3 ≤ 3

2
(i + 1)2/3

iff (multiplying on both sides by (i + 1)1/3)

3

2
(i2(i + 1))1/3 + 1 ≤ 3

2
(i + 1)

iff (taking cubes on both sides)

(
3

2

)3

(i2(i + 1)) ≤ (
3

2
(i + 1)− 1)3

which is verified to be true by simple algebra. (Lemma 2)

7



Proof of Lemma 3. We have c(1)12 = 2/(1 − ln(2)) < 7, and studying
the Taylor expansion of c(γ)γ2 shows that it is strictly increasing with γ, so
c(γ)γ2 < 7 for all γ < 1. Also, for small enough γ we have ln(1+γ) ∼= γ−γ2/2,
from which c(γ) ∼= 2/γ2 follows. (Lemma 3)

5 Final Remarks

Observe that Theorem 3 does not strictly require that the algorithm produces
an hypothesis with 0 error within the first Q queries. It is enough to assume
that within the first Q queries it generates a hypothesis hi with εi(1+γi) < ε.

Note also that a variety of bounds on the sample size are possible by
taking other definitions for γi. In particular, with essentially the same proof,
if we take γi = 1/iβ for β < 1, we obtain (approximately)

E[T ] ≤ Q

ε
+

1

1− β

Q1−β

ε
+ 7

Q2β

ε
ln

Q(Q + 1)

δ
.

We just chose β = 1/3 to make 1− β = 2β, but if the values of Q and δ are
known in advance, other values of β may give better bounds.

Finally, as indicated by Lemma 3, the factor 7 in front of the second term
is actually a decreasing function of Q that tends to 2 as Q grows.

References

[Ang87] Dana Angluin. Queries and concept learning. Machine Learning,
2(4):319–342, 1987.

[Lit89] Nick Littlestone. From on-line to batch learning. In COLT, pages
269–284, 1989.

[Sch96] Dale Schuurmans. Effective Classification Learning. PhD thesis,
Department of Computer Science, University of Toronto, 1996.

[SG95] Dale Schuurmans and Russell Greiner. Practical PAC learning. In
IJCAI, pages 1169–1177, 1995.

8


