
On the number of string lookups in BSTs (and related algorithms)

with digital access

Leonor Frias ∗

Departament de Llenguatges i Sistemes Informàtics

Universitat Politècnica de Catalunya

lfrias@lsi.upc.edu

Abstract

Binary search trees and quicksort are examples of
comparison-based data structure and algorithm re-
spectively. Comparison-based data structures and al-
gorithms can be can be augmented so that no redun-
dant character comparisons are made. Unnoticed,
this approach also avoids looking up the string in
some nodes. This paper characterizes analytically
the number of string lookups in so-augmented BSTs,
quicksort and quickselect. Besides, we also character-
ize a variant proposed in this paper to reduce further
the number of string lookups.

1 Introduction

In comparison-based data structures and algorithms,
comparisons are made taking the keys as a whole,
whatever the key type is. This is simple, there is
often no other obvious way to compare keys, and in
many cases leads to a good performance. However,
for string keys this approach is rough and string keys
are indeed common.

String keys can be seen as a sequence of digits or
characters, whose alphabet size is typically relatively
small. Efficient ad hoc string algorithms and data
structures (i.e. tries and its variants) exploit the dig-
ital structure of string keys to avoid redundant char-
acter comparisons. However, their worst-case per-

∗Supported by Spanish project ALINEX (ref. TIN2005-
05446)

formance is tied to the string length and in general,
their performance depends greatly on the character-
istics of the dataset. Also, most of them require infor-
mation on the alphabet cardinality (i.e. the number
of different digits). Instead, it is possible to special-
ize comparison-based data structures and algorithms,
so that no redundant digit comparisons are made
whilst keeping the rest of combinatorial properties
(see [13, 11, 9]). That is, their main advantage is ro-
bustness. The application of these techniques relies
on the relative order in which elements are compared.
Specifically, information on the common prefixes be-
tween one element and its predecessor/successor in
the access path must be kept. Besides, using this
information not only redundant character compar-
isons are avoided but actually accessing the string
data itself in some cases. This is relevant from a
performance perspective, because string data is ac-
cessed through pointers to arbitrarily far locations in
memory and memory hierarchies in modern comput-
ers deal efficiently only with memory accesses with
high locality of reference (i.e., repetitive memory ac-
cesses to locations close in memory).

In this paper, we analyze the number of string
lookups in so-enhanced binary search trees (BSTs),
quicksort and quickselect. In the following, we call
them respectively augmented BSTs (aBSTS), aug-
mented quicksort (aQSort) and augmented quicks-
elect (aQSel). In all cases, the implementation is
amenable. Besides, in [5] an experimental study
showed that aBSTS are also competitive in practice.

In order to characterize aBSTs, aQSort and aQSel

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41830901?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

from the number of string lookups perspective is key
to relate them with some kind of tries. Indeed, the
relationship with tries is stated in [13] to characterize
them from the point of view of the digit comparisons.
In Section 2, these data structures and algorithms
are presented in more detail. In Section 3, the nota-
tion is introduced. Then, in Section 4, we describe
precisely the relationship between aBSTs and tries
and present the theoretical analysis on the number
of string lookups. Following from this analysis, an
extension of aBSTs is presented, which aims to avoid
one specific kind of string lookups. Its analysis is on
Section 5. Then, in Section 6, we analyze aQSort and
a aQSel relating them to aBSTs. Finally, Section 7
closes with a summary and a discussion of further
research.

2 Preliminaries

In order to search and sort strings efficiently, we can
either use a trie-like data structure or algorithm, or
enhance a BST-like data structure or algorithm with
efficient digital access. Examples from the latter are
aBSTs, aQSort and aQSel. In the following, we de-
scribe them as well as some trie-like data structures
and algorithms of relevant interest in order to char-
acterize them.

Figure 1 shows an example of an aBST, as well as
the corresponding trie-based data structures.

2.1 Combining BSTs, quicksort and
quickselect with digital access

Comparison-based data structures and algorithms
can be augmented, so that its combinatorial proper-
ties are kept whilst enhancing efficient digital access.
Thus, they are of particular interest when worst-case
guarantees (such as, logarithmic cost search in the
number of elements) are required. In return, linear
extra space in the number of elements is needed.

aBSTs. Combining BSTs with fast digital compar-
isons was particularly tackled in [13, 11].

Each node in a BST stores a string y and pointers
to the children (and possibly the parent). Let `p and

resultComparison compare()(nodePtr t, stringType& key,

int& l_p, int& l_s){

if (t.b){

if (l_p > t->l) return SMALLER;

if (l_p < t->l or l_p < l_s) return GREATER;

return look_string(t, key, l_p, l_s);

}

else{

if (l_s > t->l) return GREATER;

if (l_s < t->l or l_s < l_p) return SMALLER;

return look_string(t, key, l_p, l_s);

}

}

Figure 2: Compare function for aBSTs

`s be respectively the maximum common prefix of y
with its predecessor and its successor. Each node in
an aBST stores additionally `, defined as the maxi-
mum of `p and `s, and a boolean b to indicate which
is the maximum. Searching for a string w works as
follows: while going down the tree, two lengths are
kept: lp and ls; they are respectively the maximum
common prefix of w with the current predecessor and
the current successor (and thus, initially they equal
to 0). The new comparison function works as follows
(see Figure 2 for a possible definition). ` is compared
against lp or ls (according to b). Let l be that length.
If l = `, the characters of w must be compared against
those of y, starting at the `+1-th position, which has
the first significant character of y, until a difference is
found. Besides, if at least the first couple of charac-
ters are equal (i.e. y[` + 1] = w[` + 1]), `p or `s must
be updated accordingly. If l 6= `, the next node to
visit is determined merely on the values of `, b, and l,
the string y is not looked up, and there is no change
in `p or `s. In Figure 2 the comparison function is
sketched. Using this method, searching for a string
of length m in a BST of height h takes time Θ(m+h)
in the worst-case.

Concerning storage needs, the overall increment in
storage becomes less important as longer the string
pointed by the node. Besides, looking up the fields
` and b in a search only increases the number of lo-
cal memory accesses, which are handled efficiently by
memory hierarchies.

2

Figure 1: Example of a TST (left), an aBST (top) and a Patricia trie (bottom) storing the same set of
strings. The shared prefixes are shown between parentheses.

aQSort and aQSel. Combining quicksort with
fast digital comparisons was particularly tackled only
in [13]. Also, recently the problem has been revisited
considering their parallel versions [10].

The following properties on the comparisons made
in quicksort are used. First, if the pivot is chosen
otherwise than comparing elements, comparisons are
made solely in partitioning. In one partition, each
element is compared exactly once against the pivot.
Besides, the implicit structure defined by the recur-
sive calls in quicksort corresponds to a BST, where
each pivot choice (and partitioning) constitutes a
node and base cases in the recursion correspond to
leaves. Note that, in the case of quickselect (only ex-
plicitly tackled in [10]), the structure of the recursive
calls corresponds to a path, which is a particular case
of BST.

Then, we proceed analogously as in the aBST. For
each string x the length of the maximum common
prefix of x with its predecessor and successor in the
implicit BST structure is kept. Besides, the follow-
ing changes must be done in partition. Let y be the

string acting as pivot, and let x be an string in the
array to be partitioned. Then, the comparison func-
tion of x against y is analogous to that in aBSTs: y
acts as the string in the node and x acts as the string
to be searched. Besides, the swap function used in
partition to swap two strings x1 and x2 must be spe-
cialized so that, in addition, their prefix information
is also swapped.

The previous assumes that the pivot is chosen with-
out comparing elements and that it is not compared
against itself. However, a good pivot choice is cru-
cial for guaranteeing the quasilinear performance of
quicksort. For instance, one widely used approach
consists on using the median of 3 (or more elements).
Doing so would cause making some comparisons twice
and would destroy the BST properties. However, we
can compare the elements as long as the prefix infor-
mation is not corrupted. One possibility is providing
an additional comparison function that does use pre-
fix information but does not update it. Even better,
given that we are not that interested in the exact
result, we can rely merely on prefix information to

3

make a decision (to the detriment of the quality of
the partitioning).

2.2 Tries and variants

Tries are traditional efficient string data structures.
They are a digit-based data structures, that is keys
are considered as a sequence of digits or characters
in a fixed alphabet. Specifically, tries are trees of
minimal size in which there is a node for every com-
mon prefix. Thus, the worst-case performance is tied
to the string length. In many common situations the
string length is relatively small (as words in a natural
language) but this is not necessarily the case.

There are several representations and variations of
tries. In the following we described the most relevant
for the aim of this paper.

TSTs, Multikey Quicksort and Quickselect.
The most typical representation of tries is using an
array of characters for each node to access the chil-
dren subtrees. However, this option is adequate only
when the cardinality of the alphabet is small. In or-
der to not waste so much space with unused point-
ers, a popular alternative are ternary search trees [1]
(TSTs).

TSTs are a trie representation in which BSTs are
used to guide descent. Each node in a TST contains
at most two (not null) comparison pointers and a (not
null) descent pointer. When searching for a string w,
a comparison pointer (shown with a diagonal line in
Figure 1) is followed when the output of the compar-
ison is ’<’ or ’>’. A descent pointer (shown with a
vertical line in Figure 1) is followed when the out-
put of the comparison is ’=’. In addition, the end of
the strings is marked with a special end character (in
Figure 1 is denoted by #).

There is a unique trie for a given set of strings.
Instead, there might be several TSTs because for a
given position and prefix, the k possible following
characters can be placed in as many ways as BSTs
with k nodes; binary search is used to find the follow-
ing character. For instance, given the set of strings
in Figure 1, there are 4 possibilities for the first posi-
tion: d, p, s and t and 14 resulting BSTs depending
on the choices to place them. Finally, as with BSTs,

TSTs may be balanced by a variety of schemes. In
[4] a detailed analysis of TSTs is given.

Finally, multikey quicksort is a divide-and-conquer
sorting algorithm isomorphic to TSTs, also presented
in [1]. In the case of multikey quickselect, the se-
quence of calls defines a path in that isomorphic TST.

Patricia tries. The classical variation of tries are
Patricia tries [12]. A Patricia trie is a compacted
trie built as a binary trie s.t. one-way branching is
avoided by including in each node the number of char-
acters to skip over before making the next test. That
is, there is a node in the Patricia trie for each node
that in the corresponding trie two or more pointers
go out from it. Besides, as in tries, its shape is deter-
mined uniquely by the set of strings. Furthermore,
they constitute a basic block of the IO-efficient string
B-tree in [8] and the static cache oblivious dictionary
in [3] because it is guaranteed that only one string is
looked up per search.

3 Notation

In this section, we present the notation that will be
used throughout the paper.

General. The following notation is used. Let a be
an array of strings, S(a) denotes the set of strings in
a. Analogously, let u be a search tree (e.g. a TST,
an aBST), let w be a string. S(u) denotes the set
of strings stored in u. C(u, w) denotes the sequence
of pairwise character comparisons made in u search-
ing for w. Each pairwise character comparison in u
is matched to the node that is looked up to make
the comparison. I(u, w) denotes the sequence of sub-
sequences resulting from partitioning C(u,w) after
each inequality comparison.

TSTs. The following notation on TST elements is
used. A node with at least one not null comparison
pointer is a decision node. A node that is not reached
following a descent pointer is a descent root. A path
that begins in a descent root, ends either in a de-
cision node or a in leaf, and is made exclusively of
descent pointers, is called a descent path. It is proper

4

if it contains at least two nodes (joint by one descent
pointer). Note that intermediate nodes can also be
decision nodes. Thus, there may be several descent
paths beginning at the same node, but with different
lengths. For instance, in Figure 1, there are three de-
scent paths beginning from the root right child: tr,
tre and tree#. Let x be a decision root or a leaf
in a TST; D(x) denotes the sequence of nodes in the
descent path that ends in x.

The following notation regard to the searching path
of a TST for a string w. A decision taken node for
w is a decision node in the searching path of w such
that one of its comparison pointers is followed. For
instance, searching for tree in the TST in Figure 1,
the root is a decision taken node, whilst its right child
is a decision node but not a decision taken node. A
search descent path for w is a descent path ending in
a decision taken node or a leaf. Alternatively stated,
it is a maximal descent path in the searching path
of w. It is proper if it contains at least two nodes.
For instance, the searching path for tree in the TST
in Figure 1, contains only one search descent path:
tree#. The searching path for trie contains two
search descent paths: tre and ie#. (Note that the
last character in the search descent paths are not in-
cluded in the searched word; for instance, trie is
build up concatenating tr and ie).

4 On the number of string
lookups in aBSTs

In this section, we analyze the number of string ac-
cesses in aBSTs. First, we present some properties
on TSTs and aBSTs (independently). Then, we re-
late both search trees. Finally, we relate the number
of string accesses in aBSTs with known properties in
TSTs.

Lemma 1. Let t be a TST and let w be a string.
Each of the subsequences in I(t, w) matches to a
search descent path in t for w and each search de-
scent path in t for w is matched to a subsequence.

Proof. I(t, w) is obtained from C(t, w) partitioning
after each inequality comparison. In t inequality hap-
pens only if a comparison pointer is followed. Thus,

the nodes matching one subsequence in I(t, w) must
be joint by descent pointers, the first must be a de-
scent root and the last must be a decision taken node.
This is exactly a search descent path. On the other
hand, each search descent path must be matched to
a subsequence in I(t, w) because otherwise I(t, w)
would not represent the sequence C(t, w).

From the previous lemma, it follows that:

Corollary 1. Let t be a TST. |I(t, w)| corresponds
with the number of search descent paths in t for
searching a string w.

∑
w∈S(t) |I(t, w)| corresponds

with the cumulative number of search descent paths
in t searching for every string in S(t).

Now, we analyze ABSTs.

Lemma 2. Let b be an aBST and let w be a string.
Each of the subsequences in I(b, w) matches to a node
in b. Moreover, if a node in the searching path of b
searching for w does not match to any subsequence in
I(b, w), then no character is compared in the node.

Proof. I(b, w) is obtained from C(b, w) partitioning
after each inequality comparison. In b inequality hap-
pens only if a pointer is followed. Thus, each of the
subsequences in I(b, w) must be matched to exactly
one node. On the other hand, if a node is not matched
to any subsequence, no character is compared in the
node because otherwise I(b, w) would not represent
the sequence C(b, w).

From the previous Lemma, it follows that:

Corollary 2. Let b be an aBST. |I(b, w)| corresponds
with the number of string lookups searching for a
string w.

∑
w∈S(b) |I(b, w)| correspond with the cu-

mulative number of string lookups in b searching for
every string in S(b).

Using the previous properties, we relate TSTs and
aBSTs.

Definition 1. A TST t and an aBST b are equiva-
lent iff for any string w, I(t, w) equals I(b, w).

Note that, if t and b are equivalent, then S(t) and
S(b) must be equal, so as the number of digit com-
parisons for a fixed w.

5

Lemma 3. Let S be a set of strings. If an aBST b
and a TST t are built inserting the strings in S in
the same order (and apply no rotations), t and b are
equivalent.

Proof. The proof is by induction. After inserting the
first string w1, b contains only one node, which con-
tains w; t contains a descent path of |w| + 1 nodes,
i.e. one for each character in w plus the special end
character. Searching any string y in b and in t, results
in I(b, y) and I(t, y) containing only one subsequence.
Besides, the subsequence is the same because only w1

is stored.
Before inserting the string wi+1 in t and in b, i

strings have already been inserted in each tree, and
they are equivalent. Given the equivalence, it holds
that I(t, wi+1) equals I(b, wi+1). Let r be the leaf in
t and let s be the leaf in b for searching wi+1. Let x
be the length of the longest common prefix of wi+1

with the strings already inserted. Inserting wi+1 in t
and in b produces the following modifications. In t, a
descent path of |wi+1|−x+1 nodes is added as a child
of r containing each of the characters in w starting at
the (x + 1)-th position (in sequence order) plus the
special end character. In b, exactly only one node is
added as a child of s containing wi+1. In any case,
given a searched string y, I(t, y) and I(b, y) change
only if nodes r and s are reached respectively. In
particular, I(t, y) and I(b, y) contain one additional
subsequence. Besides, the resulting new subsequence
is the same in t and in b, because the same substring
is reached from r and s respectively.

Note that an aBST has a unique equivalent TST,
but a TST may have several equivalent aBSTs.

Let t be a TST and let b be an aBST which are
equivalent. The following holds on the number of
string lookups in aBSTs.

Lemma 4. The number of string lookups in b search-
ing for a string w coincides with the number of search
descent paths in t for w. The number of string
lookups in b searching for all the strings in b coin-
cides with the cumulative number of search descent
paths in t searching for every string in S(t).

Proof. From Corollary 1, |I(t, w)| corresponds with
the number of search descent paths in t for w. From

Corollary 2, |I(b, w)| corresponds with the number
of string lookups in b searching for w. Given that
t and b are equivalent, I(t, w) equals I(b, w). Thus,
|I(t, w)| equals |I(b, w)| and

∑
w∈S(t) |I(t, w)| equals∑

w∈S(b) |I(b, w)| and the lemma follows.

Recall that in the case of BSTs, the number of
string lookups in searching coincides with the number
of key comparisons because each comparison requires
looking up a string. Thus, it is greater or equal than
the number of string lookups in searching in aBSTs.
Note that, in a TST there are no string lookups (be-
cause each node contain one character not a string).
In this case, the most relevant performance parame-
ter is the number of visited nodes (which depends on
the string length and the alphabet cardinality).

Finally, we determine precisely the number of
string accesses in searching in an ABST using the
following fact.

Fact 1. In [4] the (comparison) search cost R(t, w)
of a string w in a TST t is defined as the number of
comparison pointers in the searching path of w in t.
This is equivalent to counting the number of search
descent paths in t for w except the last one. Besides,
the (comparison) path length L(t) of a TST t is de-
fined as the sum of the distances of all external nodes
to the root of the tree, where distance is measured in
the number of comparison pointers. This is equiva-
lent to the cumulative number of search descent paths
in t minus S(t).

An exact mathematical expression for R(t, w) and
L(t) is given in [4, Theorem 2.1]. An asymptotic ex-
pression for R(t, w) and L(t) is given in [4, Theorem
2.2]. Then, from Lemma 4 and the previous fact, it
follows that:

Corollary 3. The number of string lookups in b
searching for string w is R(t, w) + 1. The number
of string lookups in b searching for every string in
S(b) is L(t) + S(t).

Note that, from Lemma 3, if b is generated using
a probability distribution α, α is the probability dis-
tribution for generating t.

6

5 On the number of string
lookups in CaBSTs, an ex-
tension of aBSTs

aBSTs not only avoid redundant character compar-
isons but also looking up some strings. In the fol-
lowing, an extension of aBSTs is presented and ana-
lyzed aimed to avoid the string lookups due to binary
searching. We call them CaBSTs. We relate the num-
ber of string lookups in CaBSTs with properties in
TSTs and in turn with properties in Patricia tries.

We define CaBSTs as follows.

Definition 2. A CaBST cb is an extension of an
aBST b in which a character field is added to each
node. This additional field stores the first significant
character of the string y stored in the node. We say
that cb corresponds to b.

Comparisons are modified accordingly to take this
character value into account. The sequence of charac-
ter comparisons, though, remains the same, and so,
they can be related to TSTs analogously as aBSTs
are related to them.

Definition 3. Given a string w, a character stored
in a node r in a CaBST is useful in searching w, iff
it avoids from looking up the string in r.

Consider a node in an aBST whose string should be
looked up for searching w. Intuitively, as larger the
diversity of strings sharing the current prefix, greater
the probability that the character in the correspond-
ing node in a CaBST is useful.

In the following, the benefits from CaBSTs search-
ing for a string w are described precisely taking into
account the relationship between aBSTs and TSTs.
Let t be a TST and let b be an aBST which are equiv-
alent; let cb be a CaBST corresponding to b.

Definition 4. Let t be a TST and let b be an
(C)aBST that are equivalent (thus I(t, w) = I(b, w));
let r be a node in b and let s be a node in t. r and s
are search related if the same subsequence in I(t, w)
is matched in t and in b searching for w.

Lemma 5. Let r be a node in cb search related to a
node s in t for searching w, a character stored in r is

useful in searching w iff D(s) is not a proper search
descent path.

Proof. A character stored in r is useful for search-
ing w, iff it avoids from looking up the string in r.
That is, if exactly one pairwise character comparison
is made in r. Given that s in t is search related to r,
only one character is compared in D(s). This implies
that D(s) is not a proper search descent path.

The opposite implication is proved as follows. If
D(s) is a not a proper search descent path, only one
character is compared in D(s). Given that s is search
related to r, also only one character must be com-
pared in r. Besides, according to CaBSTs definition,
the character stored in r is the first significant char-
acter, and thus, it is compared against the current
character of w. Given that only one character must
be compared in r, the character in r is useful.

That is, Lemma 5 states that CaBSTs only need
one string lookup to determine the next value for a
character position. Specifically, the looked up string
is the one with the coinciding character value.

Lemma 6. The number of proper search descent
paths in the searching path of t for w coincides with
the number of strings looked up in cb searching for w.
The cumulative number of search descent paths in t
searching for every string in S(t) coincides with the
total number of strings looked up in cb searching for
every string in S(b).

Proof. From Lemma 4, the number of nodes in b
whose string is looked up searching for w coincides
with the number of search descent paths in t. In cb,
from them, as many string lookups as useful nodes
are avoided. According to Lemma 5, a node in cb is
useful if it is search related to a node s in t, s.t. D(s)
is not a proper search descent path. Thus, a string
in a node in cb is looked up in cb searching for w
only if it is search related to a node s in t, s.t. D(s)
is a proper search descent path. Then, the lemma
follows.

However, the number of proper search descent
paths in a TST is an unknown result as far as we are
concerned. However, using the following fact, that

7

follows from the definition of a proper descent path,
we can give an upper bound.

Fact 2. The number of proper descent paths com-
pletely included in the searching path of w is greater
than or equal to the number of proper search descent
paths for w.

Lemma 7. The number of proper descent paths in
t completely included in the searching path of t for
w corresponds with the search cost in a Patricia trie
storing S(t). The cumulative number of descent paths
in t for searching every string in S(t) corresponds
with the external path length in a Patricia trie storing
S(t).

Proof. Let t be a TST, let p be a Patricia trie and
let q be a trie such that S(t) = S(p) = S(q). Recall
that a TST is a trie representation. In particular,
given the aforementioned equality between the sets of
strings, the nodes in t where a proper descent path
ends are related to the nodes in q in which two or
more pointers go out from them and in turn, these
are exactly the nodes in p (p has no other nodes).

Therefore, the number of descent paths followed in
t searching for w corresponds with the search cost
in p and similarly, the cumulative number of descent
paths corresponds with the external path length.

Useful references on the analysis of Patricia tries
are [6, 2, 7]. Finally, from Lemma 6, Fact 2 and
Lemma 7 follows that:

Corollary 4. The number of strings looked up in cb
searching for w is upper bounded by the search cost in
a Patricia trie storing the same set of strings. The
total number of strings looked up in cb searching for
every string in S(cb) is upper bounded by the external
path length in a Patricia trie storing the same set of
strings.

Indeed, for many common datasets, strings lookups
in CaBSTs can be almost eliminated by not only stor-
ing the first but the k first relevant digits, where k
is a small constant (thus, memory accesses are only
due to accessing to the tree nodes).

6 On the number of string
lookups in (C)aQSort and
(C)aQSel

In this Section, we analyze the number of string
lookups in aQSort and aQSel, relating them to aB-
STs.

In the following, when referring to comparisons
(and related string lookups) in quicksort or quicks-
elect, we consider only the ones due to partitioning,
i.e. we do not consider the ones due to selecting the
pivot (recall that special care must be taken in doing
comparisons to select the pivot, see Section 2.1).

First, we present their extended versions adding
one character field, namely CaQSort and CaQSel.
Let a be an array of strings.

Definition 5. CaQSort and CaQSel are an exten-
sion of respectively aQSort and aQSel, in which a
character field is added per each element in a. This
additional field stores the first significant character of
the string.

Note that from the definition of the comparison
function in Section 2.1, it suffices to store the char-
acter value of the largest of the two common prefixes
(namely, the one with the predecessor and the one
with the successor in the implicit tree).

Now, we characterize the number of string lookups
thanks to the relationship of quicksort and quickse-
lect with BSTs. First, we consider (C)aQSort.

Lemma 8. Let b be an aBST corresponding to the
execution e of aQSort on a, let cb be a CaBST cor-
responding to the execution f of CaQSort on a. The
number of string lookups and digit comparisons in
e and f correspond respectively with the number of
string lookups and digit comparisons in b and cb,
searching for every string in S(a).

Proof. There is an isomorphism between a quicksort
execution and a BST built in the same order as pivots
are selected. So happens with the augmented versions
(the fact of augmenting the BST and quicksort does
not change the order in which comparisons are made),
and thus, the lemma follows.

8

Recall that in the case of quicksort, the number of
string lookups coincides with the number of key com-
parisons because each comparison requires looking up
a string. Thus, it is greater or equal than the number
of string lookups in (C)aQSort. In the case of multi-
key quicksort, the number of string lookups coincides
with the number of digit comparisons because each
digit comparison requires looking up a string. Thus,
it is also greater or equal than the number of string
lookups in aQSort (but in return, multikey quicksort
uses no additional space).

Besides, let t be an TST equivalent to the aBST
corresponding to an execution e of aQSort. From
Corollary 3 and Lemma 8 follows that:

Corollary 5. The number of string lookups in e is
L(t) + S(t).

Now, we consider (C)aQSel.

Lemma 9. Let p be an aBST corresponding to the
execution e of aQSel on a, let cp be a CaBST corre-
sponding to the execution f of CaQSel on a. The
number of string lookups and digit comparisons in
e and f correspond respectively with the number of
string lookups and digit comparisons in p and cp,
searching for every string in S(a).

Proof. There is an isomorphism between a quickse-
lect execution and a BST built in the same order as
pivots are selected (note that the BST is actually a
path). So happens with the augmented versions (the
fact of augmenting the BST and quickselect does not
change the order in which comparisons are made),
and thus, the lemma follows.

Recall that in the case of quickselect, the number
of string lookups coincides with the number of key
comparisons because each comparison requires look-
ing up a string. Thus, it is greater or equal than the
number of string lookups in (C)aQsel. In the case
of multikey quickselect, the number of string lookups
coincides with the number of digit comparisons be-
cause each comparison requires looking up a string.
However, it cannot be directly related to the number
of string lookups in aQSel. That is, the sequence of
pivot selections in multikey quickselect form a path
in the TST that would be isomorphic to sorting the

array, whilst in the case of aQSel, the concatenation
of pivots is never a path (because at least the special
end character follows after the root node).

Besides, from Corollary 3 and Lemma 9, it follows
that:

Corollary 6. The number of string lookups in e is∑
w∈S(a)(R(t, w) + 1) = n +

∑
w∈S(a) R(t, w).

It does not seem straightforward to obtain a
close formula for the number of string accesses in
(C)aQSel.

7 Conclusions and further work

Comparison-based data structures and algorithms
can be augmented so that no redundant character
comparisons are made while keeping the rest of com-
binatorial properties. We have noted that actually,
some of the comparisons can be made without looking
up any string. This is relevant from a performance
perspective because saving string lookups saves ran-
dom memory accesses and they are not handled effi-
ciently by modern memory hierarchies.

In this paper, we have characterized so-augmented
BSTs from the number of string lookups perspective
(which we have called aBSTs). Besides, we have also
proposed and characterized a variant (which we have
called CaBSTs) that stores for every string the value
of the first relevant character. In this way, string
lookups due to binary searching when determining
the next value for a character position, are avoided.
Both characterizations are based on their relationship
with TSTs, which are a kind of trie. Specifically, we
can obtain the precise number of string lookups in
searching in an aBST using known results for TSTs.
In the case of CaBSTs, the exact values are unknown,
but we have provided an upper bound, relating TSTs
in turn with Patricia tries.

Finally, we have characterized so-augmented
comparison-based algorithms, namely quicksort and
quickselect (which we have called respectively
(C)aQSort and (C)aQSel) relating them to (C)aBSTs
(which are in turn related to TSTs). However, the be-
havior of (C)aQsel, not only on the number of string

9

lookups but on the number of digit comparisons, can-
not be transposed to any known property on TSTs.
That is, it remains as an open problem.

Also interesting would be to put this knowledge
into practice. First, a thorough experimental analy-
sis should compare the performance of the variants
proposed in this paper against existing ones. In par-
ticular, the parallel setting should be taken into ac-
count, and so, continuing the work in [10]. Addi-
tionally, data structures libraries could be enhanced
using this approach. For instance, the dictionary
classes in the standard library of the C++ program-
ming language are typically implemented with bal-
anced BSTs. These could be augmented so that com-
binatorial properties are kept and fast string compar-
isons are offered. The latter is work in progress.

Acknowledgments

I would like to thank Jordi Petit, Salvador Roura,
Amalia Duch and Conrado Mart́ınez for their useful
comments.

References

[1] J. L. Bentley and R. Sedgewick. Fast algorithms
for sorting and searching strings. In SODA ’97:
Proceedings of the eighth annual ACM-SIAM
symposium on Discrete algorithms, pages 360–
369, Philadelphia, PA, USA, 1997. Society for
Industrial and Applied Mathematics.

[2] Jérémie Bourdon. Size and path length of pa-
tricia tries: dynamical sources context. Random
Struct. Algorithms, 19(3-4):289–315, 2001.

[3] G. S. Brodal and R. Fagerberg. Cache-oblivious
string dictionaries. In SODA’06: Proceedings
of the 17th Annual ACM-SIAM Symposium on
Discrete Algorithms, 2006.

[4] Julien Clément, Philippe Flajolet, and Brigitte
Vallée. Dynamical sources in information the-
ory: A general analysis of trie structures. Algo-
rithmica, 29(1):307–369, 2001.

[5] P. Crescenzi, R. Grossi, and G. F. Italiano.
Search data structures for skewed strings. In
Experimental and Efficient Algorithms, Second
International Workshop, WEA 2003, Ascona,
Switzerland, May 26-28, 2003, Proceedings, vol-
ume 2647 of Lecture Notes in Computer Science,
pages 81–96. Springer, 2003.

[6] Luc Devroye. A study of trie-like structures un-
der the density model. The Annals of Applied
Probability, 2(2):402–434, 1992.

[7] Luc Devroye. Universal asymptotics for random
tries and PATRICIA trees. Algorithmica, 42,
2005.

[8] P. Ferragina and R. Grossi. The string B-tree:
a new data structure for string search in ex-
ternal memory and its applications. J. ACM,
46(2):236–280, 1999.

[9] G. Franceschini and R. Grossi. A general tech-
nique for managing strings in comparison-driven
data structures. In Proceedings of the 31st In-
ternational Colloquium on Automata, Languages
and Programming (ICALP), 2004.

[10] L. Frias and J. Petit. Combining digital access
and parallel partition for quicksort and quickse-
lect. In IWMSE ’09: Proceedings of the 2nd in-
ternational workshop on Multicore software en-
gineering, New York, NY, USA, 2009. ACM. To
appear.

[11] R. Grossi and G. F. Italiano. Efficient tech-
niques for maintaining multidimensional keys in
linked data structures. In ICALP ’99: Pro-
ceedings of the 26th International Colloquium on
Automata, Languages and Programming, pages
372–381, London, UK, 1999. Springer-Verlag.

[12] D. R. Morrison. PATRICIA: A practical algo-
rithm to retrieve information coded in alphanu-
meric. J. ACM, 15(4):514–534, 1968.

[13] S. Roura. Digital access to comparison-based
tree data structures and algorithms. J. Algo-
rithms, 40(1):1–23, 2001.

10

