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Abstract

Retiming and recycling are two transformations used to optimize the perfor-
mance of latency-insensitive (a.k.a. synchronous elastic) systems. This paper
presents an approach that combines these two transformations for performance op-
timization of elastic systems with early evaluation. The method is based on Mixed
Integer Linear Programming.

On a set of random benchmarks the proposed method achieves, in average,
14.5% performance improvement over min-delay retiming configurations.

1 Introduction
Latency-insensitive (a.k.a. synchronous elastic) systems tolerate changes in communi-
cation and computation latencies [1, 2]. The term “elastic system”, ES, will be used in
this paper.

An elastic system can be viewed as a composition of combinational blocks and
elastic FIFOs connected by channels. A channel is comprised of data wires and a pair
of handshake control signals: (valid, stop). The basic case of an elastic FIFO, called
elastic buffer, EB, has a latency of one clock cycle and a capacity to store two pieces
of information (tokens). An EB initially storing one token of information is an elastic
equivalent of a synchronous register. An empty EB which contains no tokens is called
a bubble.

The valid and stop bits in elastic channels implement a handshake protocol between
the sender and the receiver. The valid bit, going in the forward direction, is used by the
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Figure 1: (a) A retiming and recycling graph, (b) Optimal retiming&recycling solution

sender to indicate when useful data is being sent. The stop bit, going in the backward
direction, is used for stalling the sender by propagating back-pressure when the receiver
is not ready.

In ESs, the latency of propagating data and valid bit in the forward direction is
typically the same as the latency of propagating stop signals in the backward direction.
This makes ESs highly scalable as no global stall needs to be propagated combination-
ally throughout the whole system.

Any synchronous circuit can be transformed into an equivalent ES following a
simple automatic flow [2, 3].

A key aspect of ESs is that they accept a set of valid transformations [4] that pre-
serve the circuit behavior regardless the timing characteristics of its components.

We refer the reader to [1, 2] for basic concepts on ESs.

1.1 Retiming and Recycling Graph
Retiming [5] is a well-known technique for sequential optimization of synchronous
circuits. It moves registers across combinational blocks to minimize the clock cycle
or area. It preserves the sequential behavior of a circuit. In ESs, retiming moves EBs
instead of regular registers.

An ES is modeled by a Retiming and Recycling Graph (RRG). Each node of
the graph is a combinational block with an associated combinational delay. Each edge
represents a connection between combinational blocks labelled with EBs when needed.
The RRG can be viewed as an extension of the retiming graph [5].

Figure 1(a) shows an example of an RRG. Only the datapath of the ES is drawn.
Each box at the edges represents an EB. If the box is empty, the EB contains no valid
information. If the box is marked with a dot, the EB contains one token. E.g., the top
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edge between nodes f and m has three EBs each labelled with a token. Multiplexors
(such as node m) are drawn by using a different symbol than other nodes. Later we
will see why.

Assuming that nodes F1, F2, F3 have unit combinational delay while other nodes
have zero delay, the cycle time of the RRG in Figure 1(a) is equal to three time units,
determined by the critical combinational path F1, F2, F3, f, m (marked with the thick
line in the figure).

1.2 Retiming and Recycling (RR)
In ESs it is possible to insert an empty EB at any channel of the system preserving
sequential behavior with respect to valid tokens of information. Empty buffer insertion
is called recycling [6].

The critical combinational cycle F1, F2, F3, f, m in Figure 1(a) with a bottom
edge f,m contains only one EB. Retiming preserves the total number of EBs at each
directed cycle [5]. Thus, the moves of retiming cannot reduce the cycle time in this ex-
ample: 3 is minimal cycle time achievable by retiming. However, RRG in Figure 1(b)
obtained by applying one retiming move and inserting two bubbles has a smaller cycle
time of 1 time unit.

This reduction of a cycle time is, however, useless, since the actual performance
of the ES has not improved. Indeed, two inserted bubbles reduce the throughput of
the ES (defined as the amount of useful work done per cycle) to 1

3
1. The multiplexor

needs to wait for both valid inputs before computing a new token. This is the reason
for throughput degradation.

To compare the performance of two ESs the effective cycle time metrics is used.
The effective cycle time is the ratio of the cycle time to the throughput. Ignoring the
delay overhead of inserting extra EBs the effective cycle time of both ESs shown in
Figures 1 is the same. It is equal to 3 time units. Minimizing the effective cycle time
of an ES is the main goal of this paper.

1.3 Early evaluation
Conventional ESs are based on late evaluation: the computation is initiated only when
all inputs are available. Sometimes this requirement is too strict. For example, once a
multiplexor received a select signal, it is sufficient to wait for the selected data channel
to produce a token. The other data channel is a don’t care.

Early evaluation takes advantage of this flexibility to improve the performance of
the ES. Care must be taken of the late arriving irrelevant tokens to avoid spurious
enabling of functional units. The control logic for ESs with early evaluation is pre-
sented in [3]. When early evaluation occurs, a negative token, also called anti-token,
is generated in the late channels that were not using for enabling the block. When an

1Elastic FIFOs have fixed sizes. These sizes may affect the throughput of an ES. Thus, in general, tokens
to latency ratio provides an upper bound to the actual throughput of the ES. This paper assumes that each
elastic FIFO is big enough for storing the tokens it may receive, i.e., the performance of the ES is determined
by the forward critical paths, not by the backward ones. It is always possible to optimize FIFO sizes such
that the above assumption is true by optimally sizing FIFOs [7].
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Figure 2: Optimal retiming&recycling solution with early evaluation

anti-token and a token meet in the same channel, they cancel each other. Anti-tokens
can be passive, waiting for the token to arrive, or active, traveling backwards through
the control until they meet a token. Elastic FIFOs can store and propagate anti-tokens
the same way they store and propagate tokens. Notice that an empty EB is equivalent
to an EB containing one token followed by an anti-token (0 = 1 − 1). This rule can
be often applied to enable retiming of EBs that have been initialized with a different
number of tokens.

1.4 Motivational Example
Let us show how RR applied together with early evaluation can improve performance
of the RRG from Figure 1. Assume that the select channel of the multiplexor is always
valid and it chooses the top data channel with probability 0 < α < 1, and the bottom
channel with probability (1− α).

The behavior of ESs with early evaluation can be modeled using Markov chains [8].
Although this approach does not scale in general (and therefore, faster analytical meth-
ods for computing upper bound of the throughput or simulation are used in the pro-
posed method), it can be used for analysis of this small example to compute an exact
expression for the throughput. Recall that with late evaluation the effective cycle time
of the ES in Figure 1(b) is equal to 3. With early evaluation, the throughput is 0.491
for α = 0.5. Hence, the effective cycle time is 1/0.491 ≈ 2.037 time units. For
α = 0.9 the throughput is higher and is equal to 0.719 and the effective cycle time is
approximately 1.39 time units.

Using RR it is possible to further improve the performance in the example. The
obtained optimal solution is shown in Figure 2. Resolving the Markov chain for the
ES in Figure 2, the following expression for the throughput is obtained: 1/(3 − 2α).
For α = 0.9, the throughput is equal to 5

6 ≈ 0.833 that is approximately 16% better
than the throughput for the ES from Figure 1(b) with an early evaluation mux.

The bottom channel coming to the multiplexor contains two anti-tokens (drawn in
the rhombus). Note that the total sum of tokens is an invariant and is equal to four for
the top cycle and to one (3− 2) for the bottom cycle.

For larger systems, the upper bound on the throughput is obtained by solving a
linear programming (LP) model (fast method), or the system is simulated (slower, but
more accurate throughput estimation).

Our contribution. A method for minimization of the effective cycle time of ESs
with early evaluation is presented. The work is an extension of the paper about per-
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formance optimization of ESs with late evaluation [9]. However the extension is non-
trivial:

• The performance core of the mathematical programming formulation has to cap-
ture early evaluation. There are no known polynomial time algorithms for exact
throughput calculation of a such type of systems.

• The proposed solution is a non-convex quadratic mixed integer programming
problem. Such problems provide a big challenge for existing solvers. However,
the special structure of the problem allows to find some non-dominated points
(Pareto frontier). A Pareto point can be found by solving two mixed integer
linear programming problems.

Experimental results show that the performance of ESs with early evaluation can be
significantly improved. This in contrast with ESs with late evaluation, where recy-
cling can improve retiming only in relatively rare cases of highly unbalanced delays in
different paths [9].

2 Background
This section formalizes basic concepts and gives an overview of retiming and recycling
(RR).

Definition 2.1 (RRG) A Retiming and Recycling Graph (RRG) is a tuple 〈S, β, R0, R, γ〉,
where:

• S = (N,E) is the underlying multi-graph of the ES, N is the set of nodes and
E is the set of edges. The set N is partitioned into N1 and N2: N1 includes the
simple combinational nodes and N2 the early evaluation nodes.

• β : N → R+ assigns a combinational delay to each node.

• R0 : E → Z is the number of the tokens on each edge. If negative, R0 is the
number of anti-tokens. To ensure liveness the sum of tokens on each directed
cycle of S must be positive.

• R : E → Z+ is the number of EBs on each edge. Condition R ≥ R0 must hold.

• γ : E → R+\{0} is the branch selection probability for input edges of early
evaluation nodes n ∈ N2. The sum of the probabilities for all inputs of an early
evaluation node n ∈ N2 is equal to one, i.e.:

∑
e=(ni,n)∈E

γ(e) = 1.

As an example, the values of R0, R and γ of the top (bottom) edge (f,m) of the RRG
in Figure 1(b) are 3, 3 and α (0, 1 and 1− α).

Let us now define some concepts related to timing and performance in RRGs.

Definition 2.2 (Combinational path) Given an RRG, a combinational path CP is a
sequence of nodes and edges n0

e1−→ n1
e2−→ · · · ek−→ nk such that R(ei) = 0 for all

edges in the path. The delay of the combinational path CP is equal to
∑

ni∈CP β(ni).
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For example, the path formed by the nodes F1, F2, F3 in the figure 1(a) is a combina-
tional while the path f,m, F1 is not.

Definition 2.3 (Cycle time) The cycle time of an RRG, τ(RRG), is the maximum
delay of all combinational paths.

Let us assume that combinational delays of nodes F1, F2, F3 are equal to one time
unit while the delays of the rest of the nodes are equal to zero. Then, the cycle time
of the RRG from the figure 1(a) is equal to three time units. The combinational path
F1, F2, F3, f, m is critical. Its delay is equal to the cycle time of the RRG.

Definition 2.4 (Throughput) Given an RRG, the throughput, Θ(n), of node n ∈ N

is: Θ(n) = lim
t→∞

σn(t)
t , where σn(t) is the number of tokens produced by n till time

stamp t.

Given an RRG the throughput of every node is the same [10], i.e., Θ(ni) = Θ(nj)
for every ni, nj ∈ N . Thus, the throughput of any node can be denoted by Θ(RRG).

Notice that if an RRG has no bubbles (see Figure 1(a)), one token is produced by
each EB each cycle, then Θ(RRG) = 1.

Definition 2.5 (Effective cycle time) Given an RRG, the effective cycle time is de-
fined as

ξ(RRG) =
τ(RRG)
Θ(RRG)

.

Let us now define formally the RR transformations.

Definition 2.6 (Retiming vector) Given an RRG, a retiming vector r ∈ Z|N | is a
map N → Z that for every edge e = (u, v) transforms R0 to R′

0 as follows: R′
0(e) =

R0(e) + r(v)− r(u).

In contrast to the classical definition in [5] definition 2.6 allows negative values for
R0. This is because in ESs EBs can keep anti-tokens [3].

Definition 2.7 (RR configuration) Given an RRG, a RR configuration, RC, is a pair
of vectors R′

0 ∈ Z|E|, R′ ∈ Z+|E| that satisfies the following constraints:

R′
0(e) = R0(e) + r(v)− r(u),

R′(e) ≥ R′
0(e), for each edge e = (u, v),

(1)

where r is a retiming vector.

An RRG has a lot of different RCs. For instance, the retiming vector: r(m) =
−2, r(F1) = −2, r(F2) = −1, r(f) = r(F3) = 0, transforms the RC in Figure 1(a)
to the RC in Figure 2.

Combinational path constraints. In order for an RC to meet a cycle time τ , the
delay of every combinational path in the corresponding RRG must be smaller than or
equal to τ . The following lemma provides a simple way to verify this for a strongly
connected RRG.
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Lemma 2.1 (Cycle time constraints [9]) Given a strongly connected RRG and a con-
stant τ . The RC of the RRG has cycle time less than or equal to τ iff the following
system of inequalities is feasible:

tin(e) ≥ tout(e′) + β(u) ∀e′ = (w, u), e = (u, v)

tout(e) ≥ tin(e)− τ∗ ·R′(e)

tout(e) ≥ 0, tin(e) ≤ τ.

(2)

In the constraints, tin(e) and tout(e) are real variables. The constant τ∗ must be
large enough to ensure that its value is greater than any possible value of cycle time τ .
A simple way to ensure this is to make τ∗ equal to the sum of all combinational delays
of the RRG. The extension of the lemma to non-strongly connected RRGs is trivial.

In the following, the constraints (2) for a given RC and cycle time τ will be repre-
sented by the predicate Path Constraints(RC, τ).

3 Throughput of RRG
This section shows how the performance of an RRG can be estimated via LP. The
estimation is based on results of [10] on performance analysis of systems with early
evaluation. Let us recall some basic definitions from [10].

3.1 Guarded marked graphs
Guarded marked graphs were originally presented in [10]. They are very suitable for
modeling of ESs with early evaluation nodes.

Let us introduce a guard concept into the classical definition of the marked graph [11].

Definition 3.1 (GMG) A Guarded Marked Graph (GMG) is a tuple 〈N,E, m0, G〉
where:

• N is the set of nodes which is partitioned into N1 and N2: N1 includes the
simple nodes and N2 - the early evaluation nodes.

• E ⊂ N ×N is the set of edges.

• m0 : E → Z assigns an initial number of tokens (possibly negative), m0(e), to
each edge e.

• G : N → 22E

assigns a set of guards to every node, such that the following con-
dition is satisfied. Let us denote the set of input and output edges of a node ni as
•ni = {(nj , ni)|(nj , ni) ∈ E} and n•i = {(ni, nj)|(ni, nj) ∈ E}, respectively.
Then for n ∈ N1 the guards set G(n) is one element set {{•n}}. This means
that all input edges of the node n are in the same guard. For n ∈ N2 the guards
set has |•n| elements, G(n) = {•n}.

Definition 3.2 (Firing semantics) The dynamic behavior of an GMG is determined
by the following firing rules:
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• Guard selection. A guard g(n) ∈ G(n) for the next firing of n is selected non-
deterministically. The guard selection is trivial for simple nodes, since they only
have one guard. For early evaluation nodes any guard in G(n) can be selected.

• Enabling. If the guard g(t) has been selected for the next firing of n, then the
node n becomes enabled when every input edge e ∈ g(t) has positive marking.

• Firing. An enabled node n at marking m can fire leading to another marking m′

such that

m′(e) =

 m(e)− 1 if e ∈ •n \ n•

m(e) + 1 if e ∈ n• \ •n
m(e) otherwise

3.2 Timed guarded marked graphs
In order to carry out performance analysis on GMGs a timing interpretation must be
added to it. For this purpose a nonnegative real number δ(n) is associated with every
node n of the GMG. Moreover, each guard is assigned the probability of being selected.

Definition 3.3 (TGMG) A Timed Guarded Marked Graph (TGMG) is a tuple 〈N,E, m0, G, δ, γ〉
where:

• 〈N,E, m0, G〉 is a GMG.

• δ : N → R+ assigns a nonnegative delay to every node.

• γ : G → R+\{0} assigns a strictly positive probability to each guard of G(n).
It must hold that that:

∑
e∈G(n)

γ(e) = 1.

For the time evolution of an TGMG it is assumed that the guard selection process
has zero duration and that it respects the probabilities (γ) in any infinite execution. The
infinite servers semantics is assumed [10].

Definition 3.4 (Steady state throughput) The steady state throughput, Θ(N ), of an
TGMG is defined as:

Θ(N ) = lim
t→∞

σ(t)
t

(3)

where t represents the time and σ(t) is the firing count vector at time t, i.e., the j’s
component of σ(t) corresponds to the number of times node nj has fired till the time
stamp t.

Notice, Θ(N ) is defined as a vector. In [10] it is shown that all transitions of an
TGMG have the same throughput. The throughput is upper bounded by the solution of
the following LP problem:

Maximize φ :
δ(n) · φ ≤ m̂(e), n ∈ N1, e ∈ •n
δ(n) · φ ≤

∑
e∈•n γ(e) · m̂(e), n ∈ N2

m̂(e) = m0(e) + σ(u)− σ(v), e = (u, v).

(4)
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Figure 3: A timed guarded marked graph for the RRG 1(b).

The vector σ represents the firing count vector (with real components) that corre-
sponds to the number of node firings from the initial marking, m0, to the estimated
average marking m̂.

Now it will be shown how to model RRGs with TGMGs to compute throughput
bounds for RRGs by solving (4).

3.3 RRG throughput constraints
The next procedure shows how to construct a TGMG model for an RRG. (For illus-
tration RRG from Figure 1(b) is used. Its TGMG is shown in Figure 3).

Procedure 1 (TGMG model for an RRG)
1. Set the graph structure of the TGMG to be the same as the one of RRG.
2. A node of the TGMG is early evaluation iff its corresponding node in the RRG
is. The branch selection probability function (γ) of the TGMG is equal to the
corresponding function of the RRG.
3. If a node n of the RRG has one input edge e, then set: m0(e) = R0(e), δ(n) =
R(e), e.g., the delay of the node F2 is equal to one and there is one token on the
edge e3.
4. If a node n has several input edges, then: a) add one node nj on each input edge
e = (ni, n) of the TGMG; b) set: m0(ni, nj) = 0,m0(nj , n) = R0(e), δ(nj) =
R(e); c) set δ(n) = 0. For example, for the top (f,m) edge of the RRG the node
n1 with delay 3 is added to the TGMG; the delay of node m is equal to 0; there
are three tokens on edge (n1,m).

If an RRG has only simple nodes its throughput is equal to the throughput of the
TGMG obtained by Procedure 1. However, if an RRG has early evaluation nodes then
the throughput of TGMG may be greater than the throughput of RRG. The following
procedure refines a given TGMG model in order to alleviate this problem:
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Procedure 2 (Refining a TGMG model)
1. for every early evaluation node n ∈ N2 do
2. add a new simple node s, set δ(s) = 1,
3. add an edge (n, s), set m0(n, s) = 1,
4. for every input edge e = (ni, n) do
5. split e into two edges (ni, nk) and (nk, n),
6. add a new edge (s, nk),
7. set δ(nk) = 0, m0(ni, nk) = m0(e),

m0(nk, n) = 0, m0(s, nk) = 0.

Figure 4 shows a refined model for the TGMG from the figure 3. Basically, proce-
dure 2 adds unit delay self loop for each early evaluation node n and then transforms
TGMG to preserve the guard set G(n) (see [10] for the details).

Lemma 3.1 Given an RRG with throughput Θ and its corresponding TGMG that was
obtained by the consecutive calls of procedures 1 and 2. Then the throughput of the
TGMG is equal to the throughput of the RRG.

From the lemma 3.1 and the inequalities (4) the following lemma follows:

Lemma 3.2 (Throughput constraints) If the throughput of an RRG is equal to Θ,
then the following system of inequalities is feasible:

R(e) ≤ x ·R0(e) + σ(v)− σ(u), e = (u, v), v ∈ N1, (5)
R(e) ≤ σ(u)− auxR(e), v ∈ N2, (6)

0 ≤
∑
e∈•v

γ(e) · (aux0(e)− σ(v)), (7)

x + σ(v)− σ(s) ≥ 1, (8)
σ(s)− aux0(e) ≥ 0, (9)
x ·R0(e) + auxR(e)− aux0(e) ≥ 0. (10)

where x = 1/Θ is used instead of Θ to avoid quadratic terms in (5). Inequali-
ties (6)-(10) are applied for each early evaluation node v. Variables auxR are the
firing count for the nodes introduced by the Procedure 1. Variables aux0 and s refer
to the nodes introduced by Procedure 2. Let us denote the throughput constraints as
Throughput Constraints(RC, x) for a given RC and a constant x ≥ 1. Using
lemma 3.2 an upper bound of the throughput for a given RC, Θlp(RC), can be computed
with the following LP:

Minimize x :
Throughput Constraints(RC, x). (11)

Let x0 be a solution of (11) for a given RC, then Θlp(RC) = 1/x0. The correspond-
ing effective cycle time will be denoted as ξlp(RC), i.e., ξlp = τ(RC)/Θlp(RC), where
τ(RC) refers to the cycle time of the RC.
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Figure 4: A refined TGMG model for the RRG 1(b).

4 Retiming and Recycling
A straightforward method that combines the combinational path (2) and throughput
constraints (5)-(10) for minimizing the effective cycle time leads to the following non-
convex mixed integer quadratic programming problem:

Minimize x · τ,
R′

0(e) = R0(e) + r(v)− r(u),
R′ ≥ R0, R

′ ≥ 0,
Path Constraints(RC, τ),
Throughput Constraints(RC, x),
R′ ∈ INT, r ∈ INT.

(12)

Unfortunately, the exact solution of (12) is not necessarily the one with the minimum
effective cycle time, RCmin, since (11) yields the throughput upper bound, not the ex-
act value. On the other hand, the programming problem (12) represents a big challenge
for existing solvers. Therefore, a heuristics based on a mixed integer linear program-
ming (MILP) is next provided to solve (12). The heuristics makes use of the notion of
non-dominated RC.

Definition 4.1 (Non-dominated RC) Given an RRG and its two RCs RC1 and RC2,
we say that RC1 dominates RC2 if Θ(RC1) > Θ(RC2) and τ(RC1) ≤ τ(RC2). An RC
is called non-dominated if there is no other RC that dominates it.

Notice that RCmin must be non-dominated.
The only non-linear part in (12) is the multiplication of the cycle time and the

inversion of the throughput in the objective function. Fixing one of these variables
leads to an MILP.

Let MIN CYC(x) be the RC given by the solution of (12) with x being constant. In
other words, MIN CYC(x) is an RC with throughput greater or equal to 1/x and mini-
mal cycle time. In particular, MIN CYC(1) returns a min-delay retiming configuration.
Similarly, let MAX THR(τ) denote the RC with cycle time less than or equal to τ and
maximal throughput.
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The following heuristics finds several RCs which are non-dominated with respect
to the Θlp and returns one with the minimal effective cycle time, RClp

min. It also returns
k best RCs (in case RClp

min is not a minimal effective cycle configuration RCmin).
The following observation helps to find such RCs. Given an RRG and a positive

constant Θ ≤ 1, let τ1 = τ(MIN CYC(1/Θ)) be the cycle time of the RC MIN CYC(1/Θ).
Then, the RC MAX THR(τ1) is non-dominated.

If an RRG has only simple nodes, the obtained RC is also non-dominated with
respect to the actual throughput [9].

Let βmax = maxn∈N β(n) be the maximum combinational delay of an RRG. The
following algorithm finds the RClp

min:

MIN EFF CYC(RRG, k):
τ = βmax, RC = RClp

min = MAX THR(τ);
store nondominated configuration(RC);
while (Θlp(RC) < 1)

Θ = Θlp(RC) + ε;
τ = τ(MIN CYC(1/Θ));
RC = MAX THR(τ);
store nondominated configuration(RC);
if (ξlp(RC) < ξ(RClp

min)) then RClp
min = RC;

return RClp
min and k other best RC;

The while loop of the algorithm finds several non-dominated RCs and selects one
with the minimal ξlp. The last stored RC is always a min-delay retiming configura-
tion. The value of the constant ε must be at most the minimal difference between
throughput of two RCs of the RRG. Notice that if one would find such constant, than
MIN EFF CYC solves (12) exactly. Even in this case the ξ(RClp

min), in general, is a
lower bound for ξ(RCmin). In the experiments the value of ε was set to 0.01.

5 Experimental results
A set of experiments was performed to verify the throughput model (5)-(10) and to
demonstrate optimization power of the algorithm for ESs with early evaluation.

A set of RRGs has been generated as follows:

• The ISCAS89 circuits have been used2 to extract the underlying graph struc-
tures. The largest strongly connected component of the each ISCAS89 circuit
was taken. The rest of the nodes and edges were removed.

• Each edge was assigned a token with probability 0.25. Thus, about 25% of the
edges were assigned an initialized register, whereas the rest were just wires.

• Each node was assigned a combinational delay uniformly distributed in the in-
terval (0, 20].

2The ISCAS89 benchmarks were used only for getting realistic graph structures.
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• A node with more than one input was marked as early evaluated with probability
of 0.4. The branch probabilities were selected randomly.

Table 1: All non-dominated RCs for the test case s526
Name τ Θlp Θ err(%) ξlp ξ ∆(%)
s526 19.98 0.2500 0.2390 4.6025 79.9200 83.5983

24.10 0.3333 0.3050 9.2896 72.3000 79.0164
31.74 0.4936 0.4200 17.5219 64.3041 75.5714
56.54 0.8367 0.7910 5.7787 67.5742 71.4791
74.52 1.0000 1.0000 0.0000 74.5200 74.5200 5.4

For each test case the RClp
min was found by using MIN EFF CYC. The Verilog repre-

sentation of elastic controller was generated for each non-dominated RC. The actual
throughput was calculated by performing intensive simulations.

Table 1 shows all the RCs that were found for the test case s526. Rows of the table
correspond to different RCs. The column τ provides the cycle time of the RC. The
columns Θlp and Θ provide the throughput upper bound and the actual throughput of
the RC (obtained by simulation) respectively. The column err(%) provides the relative
difference between the throughput upper bound Θlp and Θ. The effective cycle times
of RClp

min and RCmin are marked in bold in the columns ξlp and ξ respectively. The
last column ∆(%) is the relative difference between ξ(RCmin) and ξ(RClp

min), e.g., for
s526 it is equal to (75.5714−71.4791)/71.4791 ·100% ≈ 5.4%. It can be seen that the
RClp

min and RCmin are different configurations in this case, however RClp
min has only

5.4% worse performance. Also the second best configuration returned by the algorithm
does correspond to RCmin.

Table 2 shows the obtained results. The first column is the name of the underly-
ing ISCAS89 circuit. The next three columns are the number of simple nodes, early
evaluated nodes and edges respectively. The column ξ∗ provides the cycle time of test
case before the optimization (it is equal to the effective cycle time because originally
RRGs have no bubbles). The column ξnee provides the minimal effective cycle time
of the RRG with all nodes being simple (late evaluation). It often coincides with the
min-delay retiming cycle time (see [9] for details). In the experiments the ξnee was
always provided by min-delay retiming configuration. The columns ξlp

min and ξsim
min

show ξ(RClp
min) and ξ(RCmin), respectively. E.g., for s526 the corresponding val-

ues are equal to 75.57 and 71.48. The last column I(%) provides the performance
improvement obtained by MIN EFF CYC using early evaluation. It is calculated as
follows: I = ((ξnee − ξsim

min)/ξnee) · 100%.
CPLEX [12] was used as an MILP solver. The timeout for integer optimization was

set to 20 minutes in all experiments.
Observation 1: The average effective cycle time improvement is equal to 14.5%

(the average value of the column I%). The improvement strongly depends from the
position of early evaluation nodes. The ξnee was not improved for s832, s1488, s1494.
This is because some critical directed cycles (the cycles where bubbles have to be
inserted) have no early evaluation nodes. The early evaluation does not affect the per-
formance os such ESs.

Observation 2: The RClp
min coincides with RCsim

min in more than half of the exam-
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Table 2: Experimental results.
Name |N1| |N2| |E| ξ∗ ξnee ξlp

min ξsim
min I%

s208 7 1 9 87.58 87.58 85.54 85.54 2.3
s641 206 15 270 183.15 109.62 93.72 89.98 17.9
s27 9 5 24 43.73 43.73 32.31 32.31 26.1
s444 45 13 82 174.88 106.75 92.50 92.50 13.3
s838 7 1 9 68.40 68.40 59.99 59.99 12.3
s386 36 12 131 74.80 74.60 58.55 59.81 21.5
s344 122 13 176 130.63 114.19 90.79 82.89 27.4
s400 37 9 66 149.29 79.50 80.10 77.63 2.3
s526 43 7 71 144.47 74.52 75.57 71.48 4.1
s382 35 7 60 84.65 68.47 66.07 66.07 3.5
s420 7 1 9 76.70 76.70 59.78 59.78 22.1
s832 76 41 462 62.11 50.39 50.39 50.39 0.0
s1488 85 48 572 64.28 59.52 59.52 59.52 0.0
s510 63 40 407 116.63 116.63 73.26 73.26 37.2
s953 232 36 371 354.86 292.28 125.92 119.53 59.1
s713 229 27 341 119.15 96.63 99.13 95.96 0.7
s1494 88 48 572 61.97 55.80 55.80 55.80 0.0
s820 72 38 424 55.64 53.23 46.90 46.90 13.5

ples. In s641,s386, s400,s526, s713, s953 the relative difference between ξ(RCmin) and ξ(RClp
min) (∆(%))

is within 5%.
Observation 3: The average error err(%) of the thtoughput estimation is equal to

12.5%. It is calculated as the relative difference between Θlp and Θ. The error usually
increases with the number of bubbles that were inserted in the RRG and achieves 35%
for some configurations. Usually the error is proportional to the difference between
throughputs of an RRG with and without early evaluation nodes.

6 Conclusions and future work
A quadratic mixed integer programming model for retiming and recycling of elastic
systems with early evaluation nodes is presented. This model is solved using a heuris-
tics based on Mixed Integer Linear Programming (MILP). In most cases the heuristics
finds an exact solution. With the proposed approach the performace of a sequential
circuit can be improved up to 50% with respect to the minimal cycle time achievable
by the retiming technique.

The proposed MILPs are difficult to solve exactly for circuit graphs with more than
one thousand edges. However, there are simple and efficient heuristics for solving
MILP problems. Exploring such heuristics is a part of the future work.

The proposed model can be extended to handle telescopic nodes (i.e., nodes with
variable combinational delays).
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