

Verifying Action Semantics Specifications in UML

Behavioral Models (Extended Version)

Elena Planas
1
, Jordi Cabot

1
 and Cristina Gómez

2

1 Estudis d'Informàtica, Multimèdia i Telecomunicacions, Universitat Oberta de Catalunya
{eplanash | jcabot}@uoc.edu

2 Dept. de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya
cristina@lsi.upc.edu

Abstract. MDD and MDA approaches require capturing the behavior of

UML models in sufficient detail so that the models can be automatically

implemented/executed in the production environment. With this purpose,

Action Semantics (AS) were added to the UML specification as the

fundamental unit of behavior specification. Actions are the basis for defining

the fine-grained behavior of operations, activity diagrams, interaction

diagrams and state machines. Unfortunately, current proposals devoted to the

verification of behavioral schemas tend to skip the analysis of the actions they

may include. The main goal of this paper is to cover this gap by presenting

several techniques aimed at verifying AS specifications. Our techniques are

based on the static analysis of the dependencies between the different actions

included in the behavioral schema. For incorrect specifications, our method

returns a meaningful feedback that helps repairing the inconsistency.

1 Introduction

One of the most challenging and long-standing goals in software engineering is the

complete and automatic implementation of software systems from their initial high-

level models [21]. This is also the focus of current MDD (Model-driven development)

and MDA (Model-driven architecture) approaches.

Recently, the OMG itself has issued a RFP for the “Foundational Subset for

Executable UML Models” [20], with the goal of reducing the expressivity of the UML

to a subset that can be directly executable [17]. A key element in all executable UML

methods is the use of Action Semantics (AS) to specify the fine-grained behavior of

all behavioral elements in the model. Actions are the fundamental unit of behavior

specifications. Their resolution and expressive power are comparable to the

executable instructions in traditional programming languages. Higher-level behavioral

formalisms of UML (as operations, activity diagrams, state machines and interactions

diagrams) are defined as an additional layer on top of the predefined set of basic

actions (e.g. creation of new objects, removals of existing objects, among others) [19].

Given the important role that actions play in the specification of the behavioral

aspects of a software system, it is clear that their correctness has a direct effect on the

quality of the final system implementation. As an example, consider the class diagram

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41830747?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of Fig. 1.1 including the operations changeAddress and addPerson. Both operations

are incorrect, since changeAddress tries to update an attribute which does not even

exist in the class diagram and addPerson can never be successfully executed (i.e.

every time we try to execute addPerson the new system state violates the minimum ‘1’

cardinality constraint of the department role in WorksIn, since the created person

instance p is not linked to any department). Besides, this operation set is not complete,

i.e. through these operations users cannot modify all elements of the class diagram,

e.g. it is not possible to create and destroy departments. These errors must be fixed

before attempting to generate the system implementation.
 context Person::changeAddress(a:String) {
 AddStructuralFeature(self,address,a); }

context Person::addPerson(n:String, e:String) {
 p: Person;
 p := CreateObject(Person);

 AddStructuralFeature(p,name,n);
 AddStructuralFeature(p,email,e); }

Fig. 1.1. A simple example of a class diagram with two operations.

The main goal of this paper is to provide a set of lightweight techniques for the

verification of correctness properties (syntactic correctness, weak executability,

completeness and redundancy) of action-based behavior specifications at design time.

Due to space limitations, we will focus on the verification of AS specifications used to

define the effect of the operations included in the class diagram (as the example

above). Nevertheless, the techniques presented herein could be similarly used to verify

action sequences appearing in other kinds of UML behavior specifications.

Roughly, given an operation op, our method (see Fig. 1.2) proceeds by first,

analyzing the syntactic correctness of each action ac ∈ op. Then, the method analyzes

op to determine all its possible execution paths. Executability of each path p is

determined by performing a static analysis of the dependencies among the actions in p

and their relationship with the structural constraints (as cardinality constraints) in the

class diagram. Next, our method analyses the completeness of the whole operation set,

as well as possible redundancies. For each detected error, possible corrective

procedures are suggested to the designer as a complementary feedback. After our

initial analysis, model-checking based techniques could also be used to get more

information (e.g. incorrect execution traces) on the operations.

Fig. 1.2. Method overview.

The rest of the paper is structured as follows. The next section describes basic AS

concepts. Section 3 focuses on the operations’ syntactic correctness. Section 4

explains how to determine the different execution paths in an operation and Section 5

determines their executability. Sections 6 and 7 study the completeness and the

redundancies of the operations, respectively. In Section 8, we compare our method

with the related work and, in Section 9, we present the conclusions and further work.

Department

name : String

Person

name : String
email : String

WorksIn 1*

Syntactic

Correctness
Completeness

Execution

Paths
Redundancy

MODEL
CHECKING

OUR METHOD

 feedback

Weak

Executability

UML Model
input translation

2 Action Semantics in the UML

The UML standard [19] defines the actions that can be used in behavioral specifica-

tions. In this paper, we will focus on the following write actions1 (actions that modify

the system state) since they are the ones that can compromise the system consistency:

1. CreateObject(class:Classifier):InstanceSpecification: Creates a new object that

conforms to the specified classifier. The object is returned as an output parameter.

2. DestroyObject(o:InstanceSpecification): Destroys the object o. We assume that

links in which o participates are not automatically destroyed.

3. AddStructuralFeature(o:InstanceSpecification, at:StructuralFeature, v:

ValueSpecification): Sets the value v as the new value for the attribute at of the

object o. We assume that multi-valued attributes are expressed (and analyzed) as

binary associations between the class and the attribute data type.

4. CreateLink(as:Association, p1:Property, o1:InstanceSpecification, p2:Property,

o2:InstanceSpecification): Creates a new link in the binary association as between

objects o1 and o2, playing the roles p1 and p2, respectively.

5. DestroyLink(as:Association, p1:Property, o1:InstanceSpecification, p2:Property,

o2:InstanceSpecification): Destroys the link between objects o1 and o2 from as.

6. ReclassifyObject(o:InstanceSpecification, newClass:Classifier[0..*], oldClass:

Classifier[0..*]): Adds o as a new instance of classes in newClass and removes it

from classes in oldClass. We consider that classes in newClass may only be direct

superclasses or subclasses of classes in oldClass.

7. CallOperation(op:Operation, o:InstanceSpecification, arguments:

List(LiteralSpecification)): List(LiteralSpecification): Invokes op on o with the

arguments values and returns the results of the invocation.

These actions can be accompanied with several read actions (e.g. to access the

values of attributes and links of the objects). Read actions do not require further

treatment since they do not affect the correctness properties we define in this paper.

Additionally, UML defines that actions can be structured to coordinate basic

actions in action sequences, conditional blocks or loops (do-while or while-do loops).

As an example, we have defined three operations: endOfReview, submitPaper and

dismiss (Fig. 2.2) for the class diagram of Fig. 2.1, aimed at representing part of a

conference management system. The first operation reclassifies a paper as rejected or

accepted depending on the evaluation parameter. The second one creates a new

“under review” paper and links the paper with its authors. The last one deletes the

WorksIn link between a person and his/her department.

Pe rson

nam e : S trin g { re ad On ly }
ema il : S trin g

P aper

tit le : S tr ing

Rejec te d

com men ts : Stri ng

Acce pte d

acce pDa te : Da te

Depa rtm ent

nam e : S trin g

UnderRe vie w

IsA utho rO f

 a utho r

1 ..* * W orksIn 1*

{d isjoi nt,comp le te }

cont ext Department inv Ma xPa persS ent:
 self .pers on.paper � a sSet() � size() < = 10

Fig. 2.1. Excerpt of a conference management system class diagram.

1 UML provides an abstract syntax for these actions [19]. Our concrete syntax is based on the

names of the action metaclasses. For structured nodes we will use an ASL-based syntax [17].

Fig. 2.2. Specification of endOfReview, submitPaper and dismiss operations.

3 Syntactic Correctness

The UML metamodel includes a set of constraints (i.e. well-formedness rules (WFRs))

that restrict the possible set of valid (or well-formed) UML models. Some of these

WFRs are aimed at preventing syntactic errors in action specifications. For instance,

when specifying a CreateLink action ac over an association as, the WFRs ensure that

the type and number of the input objects in ac are compatible with the set of

association ends defined for as.

An operation is syntactically correct when all the actions included in the operation

satisfy the WFRs. Unfortunately, our analysis of the WFRs relevant to the Action

Packages has revealed several flaws (see the detected errors in Appendix A). Besides,

several required WFRs are missing. For instance, in actions of type

WriteStructuralFeature we should check that the type of the input object (i.e. the

object to be modified) is compatible with the classifier owning the feature (in OCL:

context WriteStructuralFeature inv: self.value.type = self.structuralFeature.type).

Also, in CreateObject, the input classifier cannot be the supertype of a covering

generalization set (in a covering generalization, instances of the supertype cannot be

directly created). Similar WFRs must be defined to restrict the possible newClassifiers

in the ReclassifyObject. For instance, we should check that the newClassifiers set and

the oldClassifiers set are disjoint sets. Additional rules are needed to check that values

of readOnly attributes are not updated after their initial value has been assigned and so

forth. These WFRs must be added to the UML metamodel to ensure the syntactic

correctness of action specifications.

After this initial syntactic analysis, we proceed next with a more semantic

verification process that relates the specified actions with other model elements.

4 Computing the Execution Paths

The correctness properties that will be presented in the next sections are based on an

analysis of the possible execution paths allowed by the structured group of actions that

define the operation effect. An execution path is a sequence of actions that may be

context Paper::submitPaper(tit:String, authors:Person[1..*]) {
 i: Integer := 1;
 p: Paper;
 p := CreateObject(UnderReview);
 AddStructuralFeature(p,title,tit);
 while i <= authors->size() do
 CreateLink(IsAuthorOf,author,authors[i],paper,p);
 i := i+1;
 endwhile }

context Paper::endOfReview(com:String,d:Date,
evaluation:String) {
 if self.oclIsTypeOf(UnderReview) then
 if evaluation = ’reject’ then
 ReclassifyObject(self,[Rejected],[]);
 AddStructuralFeature(self,comments,com);
 else
 ReclassifyObject(self,[Accepted],[]);
 AddStructuralFeature(self,accepDate,d);
 endif
 endif }

context Person::dismiss() {
 DestroyLink(WorksIn,person,self,department,self.department); }

followed during the operation execution. For trivial groups of actions (e.g. with

neither conditional nor loop nodes) there is a single execution path but, in general,

several ones will exist.

To compute the execution paths, we propose to represent the actions in the

operation as a model-based control flow graph (MBCFG), that is, a control flow graph

based on the model information instead of on the program code, as traditional control

flow graph proposals. MBCFGs have been used to express UML sequence diagrams

[9]. Here we adapt this idea to express the control flow of action-based operations.

For the sake of simplicity, we will assume that the group of actions defining the

operation behavior is defined as a structured SequenceNode (see the metamodel

excerpt in Fig. 4.1) containing an ordered set of ExecutableNodes, where each

executable node can be either one of the basic modification actions described in

Section 2 (other types of actions are skipped since they do not affect the result of our

analysis), a ConditionalNode, a LoopNode or an additional nested SequenceNode. We

also use two “fake” nodes, an initial node (representing the first instruction in the

operation) and a final node (representing the last one). These two nodes do not change

the operation effect but help in simplifying the presentation of our MBCFG.

Fig. 4.1. Fragment of UML metamodel.

The digraph MBCFGop= (Vop, Aop) for an operation op is obtained as follows:

- Every executable node in op is a vertex in Vop.

- An arc from an action vertex v1 to v2 is created in Aop if v1 immediately

precedes v2 in an ordered sequence of nodes.

- A vertex v representing a conditional node n is linked to the vertices v1…vn

representing the first executable node for each clause (i.e. the then clause, the

else clause,…) in n. The last vertex in each clause is linked to the vertex vnext

immediately following n in the sequence of executable nodes. If n does not

includes an else clause, an arc between v and vnext is also added to Aop.

- A vertex v representing a loop node n, is linked to the vertex representing the
first executable node for n.bodyPart (returning the list of actions in the body of

the loop) and to the vertex vnext immediately following n in the node sequence.

The last vertex in n.bodyPart is linked back to v (to represent the loop

behavior).

- A vertex representing an OperationCall action is replaced by the sub-digraph

corresponding to the called operation c like follows: (1) the initial node of c is

connected with the node that precedes the OperationCall node in the main

operation (2) the final node of c is connected with the node/s that follow the

OperationCall node and (3) the parameters of c are replaced by the arguments

in the call.

StructuredActivityNode

ExecutableNode

ConditionalNode SequenceNode LoopNode

Action

*

0..1

{ordered}

Operation submitPaper:

Operation endOfReview:

Operation dismiss:

Fig. 4.2. MBCFG of endOfReview, submitPaper and dismiss operations for the example.

Fig. 4.2 shows the MBCFGs for the operations in Fig. 2.2. Test conditions of

conditional and loop nodes are not shown since they are not part of our analysis2.

Given a MBCFGop graph G, the set of execution paths exop for op is defined as

exop=allPaths(MBCFGop) where allPaths(G) returns the set of all paths in G that start

at the initial vertex (the vertex corresponding to the initial node), end at the final node

and does not include repeated arcs (these paths are also known as trails [2]).

Each path in exop is formally represented as a sequence of <number,action> node

tuples where number indicates the number of times that the action action is executed

in that node. Vertices representing other types of executable nodes are discarded.
The number in the tuple is only relevant for actions included in loop nodes. For

other actions the number value is always ‘1’. For an action ac within a loop, number is

computed as follows: (1) each while-do loop in the graph is assigned a different

variable N,…,Z representing the number of times the loop may be executed. Do-while

loops are assigned the value 1+N,…,1+Z to express that the body is executed at least

once and (2) the number of ac is defined as the multiplication of the variable values of

all loop nodes we find in the path between ac and the initial vertex, i.e. ac will be

executed N times if ac is in a top-level loop, N*M if ac is part of a single nested loop,

and so forth. Fig. 4.3 shows the execution paths for the graphs in Fig. 4.2.

endOfReview:
 p1 = ø
 p2 = [<1,ReclassifyObject(self,[Rejected],[])>, <1,AddStructuralFeature(self,comments,com)>]
 p3 = [<1,ReclassifyObject(self,[Accepted],[])>, <1,AddStructuralFeature(self,accepDate,d)>]

submitPaper:
 p = [<1,p:=CreateObject(UnderReview)>, <1,AddStructuralFeature(p,title,tit)>,
 <N,CreateLink(IsAuthorOf,author,authors[i],paper,p)>]

dismiss:
 p = [<1,DestroyLink(WorksIn,person,self,department,self.department)>]

Fig 4.3. Execution paths of endOfReview, submitPaper and dismiss operations.

2 Detection of infeasible paths due to unsatisfiable tests conditions is out of scope of this paper.

This SAT-problem could be tackled with UML/OCL verification tools [3] adding the test

condition as an additional constraint and checking if the extended model is still satisfiable.

 p := CreateObject
 (UnderReview)

AddStructuralFeature
 (p,title,tit)

while
AddStructuralFeature
 (self,accepDate,d)

ReclassifyObject
(self,[Rejected],[])

 if

 if

 AddStructuralFeature
 (self,comments,com)

CreateLink
(IsAuthorOf,author,
authors[i],paper,p)

 ReclassifyObject
 (self,[Accepted],[])

DestroyLink

(WorksIn,person,self,
department,self.department)

5 Weak Executability

An operation is weakly executable when there is a chance that a user may successfully

execute the operation, that is, when there is at least an initial system state and a set of

arguments for the operation parameters for which the execution of the actions

included in the operation evolves the initial state to a new system state that satisfies all

integrity constraints. Otherwise, the operation is completely useless: every time a user

tries to execute the operation (and regardless of the input values provided to the

operation) an error will arise because some integrity constraint will become violated.

We define our executability property as weak executability since we do not require all

executions of the operation to be successful, which could be defined as strong

executability. Obviously, weak executability is a prerequisite for strong executability.

So, designers could check first our weak executability and then, if they think it is

necessary, they could apply other techniques (see the related work) to determine the

stronger property.

As an example, consider again the operations of Fig. 2.2. Clearly, dismiss is not

executable since every time we try to delete a link between a person p and a

department d, we reach an erroneous system state where p has no related department,

a situation forbidden by the minimum ‘1’ multiplicity in the WorksIn association. As

we will see later, in order to dismiss p from d we need to either assign a new

department d’ to p or to remove p itself within the same operation execution. Instead,

submitPaper is weakly executable since we are able to find an execution scenario

where the new paper can be successfully submitted (e.g. when submitting a paper

whose authors belong to a department that has not previously submitted any other

paper). Note that, as discussed above, classifying submitPaper as weakly executable

does not mean that every time this operation is executed the new system state will be

consistent with the constraints. For instance, if a person p passed as a value for the

authors parameter belong to a department with already 10 submissions, then, the

operation execution will fail because the constraint MaxPapersSent will not be

satisfied by the system state at the end of the operation execution.

The weak executability of an operation is defined in terms of the weak executability

of its execution paths: an operation is weakly executable if at least one of its paths is

weakly executable3. Executability of a path p depends on the set of actions included in

the path. The basic idea is that some actions require the presence of other actions

within the same execution path in order to leave the system in a consistent state at the

end of the execution. Therefore, to be executable, a path p must satisfy all action

dependencies for every action ac in p. Dependencies for a particular action are drawn

from the structure and constraints of the class diagram and from the kind of

modification performed by the action type. For example, the dismiss operation is not

weakly executable because its single path (see Fig.4.3) is not executable since the

action DestroyLink(WorksIn,person,p,department,d) must be always followed by

CreateLink(WorksIn,person,p,department,d’) or DestroyObject(p) to avoid violating

3 It is also important to detect and repair all non-executable paths. Otherwise, all executions of

the operation that follow one of those paths will irremediably fail.

the minimum multiplicity. The single path includes none of these actions and thus it is

not executable.

To determine if a path p is weakly executable, we proceed by (1) computing the

action dependencies for each action in p and (2) checking that those dependencies are

satisfied in p. If all dependencies are satisfied, then, we may conclude that p is weakly

executable. In the following, we explain in detail these two steps and provide an

algorithm that combines them to determine the executability of a path.

5.1 Computing the Dependencies

A dependency from an action ac1 (the depender action) to an action ac2 (the

dependee) expresses that ac2 must be included in all execution paths where ac1

appears to avoid violating the constraints of the class diagram. It may happen that ac1

depends on several actions (AND-composition) or that we have different alternatives

to keep the consistency of the system after executing ac1 (OR-composition; as long as

one of the possible dependee actions appears in the path, the dependency is satisfied).

Table 5.1 provides the rules to compute the dependencies for each kind of action,

linked with the AND and OR operators, if necessary. These rules are adapted from

[4]. The third column (Shareable) determines, for each dependency, if two or more

dependee actions can be mapped (i.e. share) to the same depender action in the path.

As an example, according to the table 5.1, a CreateLink action needs (when the rule

condition is true) a DestroyLink, a CreateObject or a ReclassifyObject action in the

same execution path. The first dependency is not shareable, since each CreateLink

needs a different DestroyLink to keep the system consistent. Instead, the alternative

dependency CreateObject (ReclassifyObject) is shareable since several create links

may rely on the same new (reclassified) object to satisfy the cardinality constraints.

Note that, to determine the dependencies we just take into account cardinality

constraints and disjoint and complete generalization constraints. Other constraints do

not affect the weak executability property, since we can always find a system state

and/or a set of arguments for which the execution of an action results in a consistent

state with respect to those constraints. For instance, constraints restricting the value of

the attributes of an object may be satisfied when passing the appropriate arguments as

parameters for the action (and similarly with constraints restricting the relationship

between an object and related objects). As seen before, MaxPapersSent constraint

(Fig. 2.1) does not affect the weak executability of submitPaper. It certainly restricts

the set of people that may be passed as authors for the submitted paper but it is easy to

see that there are many system states (and many possible values for the authors

parameter) over which the operation can be successfully executed.

Table 5.1. Dependencies for modification actions. Min(ci,as) and max(ci,as) denote the

minimum (maximum) multiplicity of ci in as (for reflexive associations we use the role name).

Depender Action Dependee Actions Share-

able

AddStructuralFeature(o,at,v) for each non-

derived and mandatory attribute at of c or of a

superclass of c

No

o := CreateObject(c)
AND <min(c,as),CreateLink(as,p,o,p2,o2)> for

each non-derived association as where c or a

superclass of c has mandatory participation

No

DestroyObject(o:c)

<min(c,as),DestroyLink(as,p,o,p2,o2)> for each

non-derived as where c or a superclass of c has

a mandatory participation

No

DestroyLink(as,p1,o1,p3,,o3) (if min(c2,as) <>

max(c2,as))
No

OR CreateObject(o1) Yes

CreateLink(as,p1,o1:c1, p2,o2:c2)

(when min(c1,as) = max(c1,as))

to be repeated for the other end
OR ReclassifyObject(o1,[c1],[]) Yes

CreateLink(as,p1,o1,p3,,o3) (if min(c2,as) <>

max(c2,as))
No

OR DestroyObject(o1) Yes

DestroyLink(as,o1:c1,o2:c2)

(when min(c1,as) = max(c1,as))

to be repeated for the other end
OR ReclassifyObject(o1,[],[c1]) Yes

AddStructuralFeature(o,at,v) - -

AddStructuralFeature(o,at,v) for each non-

derived and mandatory attribute at of each class

c ∈ nc

No

AND <min(c,as),CreateLink(as,p,o,p3,o3)> for

each c ∈ nc and for each non-derived

association as where c has a mandatory

participation

No

AND {ReclassifyObject(o,[],[c1]) OR

ReclassifyObject(o,[],[cn])} for each c ∈ nc

such that c is a subclass in a disjoint and

complete generalization G(superclass, c,

c1,…,cn) and not ∃ i | ci ∈ nc

Yes

AND <min(c,as),DestroyLink(as,p,o,p3,o3)> for

each c in oc and for each non-derived

association as where c has a mandatory

participation

No

ReclassifyObject(o,[nc],[oc])

AND {ReclassifyObject(o,[c1],[]) OR

…ReclassifyObject(o,[cn],[])} for each c ∈ oc

such that c is a subclass in a disjoint and

complete generalization G(superclass, c,

c1,…cn) and not ∃ i | ci ∈ oc

Yes

5.2 Mapping the Dependencies

Each single dependency d=<number,action> computed for a path must be satisfied.

Otherwise, d must be returned as a feedback to the user to help him/her to repair the

inconsistency. A dependency is satisfied if it can be successfully mapped to one of the

actions in the path.

A dependency d can be mapped onto a node n in the path when the following

conditions are satisfied: (1) d.action and n.action are the same (e.g. both are

CreateLink actions), (2) the model elements referenced by the actions coincide (e.g.

both create new links for the same association), (3) all instance-level parameters of

d.action can be bound to the parameters in n.action (free variables introduced by the

rules may be bound to any parameter value in n.action, while fixed ones must have the

same identifier in d and n) and (4) d.number ≤ 1 (for actions that are shareable) or

d.number ≤ n.number (for non-shareable actions). This comparison may include

positive integer abstract variables (when n is part of a loop, see Section 4). In those

cases, d can be mapped iff there is a possible instantiation of the abstract variables that

satisfies the inequality comparison d.number-n.number ≥ 0. This can be easily

expressed (and solved) as a constraint satisfaction problem [16].

5.3 Algorithm to Determine the Weak Executability of a Path

In the following, we present an algorithm for determining the weak executability of an

execution path path on a class diagram cd. For non-executable paths, the algorithm

returns a set of possible repair action alternatives (output parameter requiredActions)

that could be included in the path to make it executable4.
function weakExecutability (
in: path: List(<number:Integer,action:Action>),
in: cd: <Set(Class),Set(StructuralFeature),Set(Associat ion),
Set(GeneralizationSet),Set(Constraint)>,
out: requiredActions: Set(List<number:Integer,action:A ction>)): Boolean
{ node: <number:Integer,action:Action>;
 depLists: Set(List<number:Integer,action:Action>):= ø;
 //Loop 1: Computing the dependencies
 i: Integer:=1;
 while i ≤ path->size() do
 node:=getNode(path,i);
 updateDependencies(node,cd,depLists); i:=i+1;
 endwhile
 //Loop 2: Determining the required actions
 executable: Boolean:=false; i:=1;
 while i ≤ depLists->size() and ¬executable do
 requiredActions[i]:=mapping(depLists[i],path);
 if (requiredActions[i] = Ø) then executable:=true;
 else i:=i+1;
 endif
 endwhile
 return executable;}

4 Extending the path with this sequence is a necessary condition but not a sufficient one to

guarantee the executability of the path. Actions in the sequence may have, in its turn,

additional dependencies that must be considered as well.

Roughly, the algorithm works by executing two loops5. The first loop uses the

updateDependencies function to compute the dependencies for each action in the

input path. This function updates the variable depLists as follows: (1) computes the

dependencies for the action in node.action as stated in Table 5.1 (2) multiplies the

number value in each dependency by the value of node.number and (3) adds the

dependencies to the end of all lists in depLists (if all dependencies for node are AND-

dependencies) or forks all lists and adds to the end of each cloned list a different

dependency (in case of OR-dependencies) to represent the different alternatives we

have to satisfy the dependencies.

The second loop tries to map each dependency d onto the actions in path. The

mapping(depLists[i],path) function copies in requiredActions[i] the actions of

depLists[i] that either do not map in the path or that map with an insufficient number

value. In this latter case, the dependency is added indicating the additional number of

actions that are needed. In the former, number is directly extracted from d.number.

If at least one of the lists in depLists is fully satisfied the path is determined as

weakly executable. Otherwise, the algorithm returns in requiredActions a list of repair

actions for each possible way of satisfying the dependencies.

The execution of the executability function for the submitPaper and dismiss

operations (Fig. 2.2) is shown in Tables 5.3.1 and 5.3.2. EndOfReview is detailed in

Appendix C. v1…vn represent free variables introduced by the rules.

Table 5.3.1. Weak Executability for the submitPaper operation.

Input path
p = [<1,p:=CreateObject(UnderReview)>,
<1,AddStructuralFeature(p,title,tit)>, <N,CreateLink(IsAuthorOf,author,authors[i],paper,p)>]

Dependencies

depLists[0] = [<1,AddStructuralFeature(p,title,v1)>,
 <1,CreateLink(IsAuthorOf,person,v2,paper,p)>,
 <N,DestroyLink(IsAuthorOf,person,authors[i],paper,v3)>
depLists[1] = [<1,AddStructuralFeature(p,title,v1)>,
 <1,CreateLink(IsAuthorOf,person,v2,paper,p)>,
 <N,p:=CreateObject(UnderReview)>]

su
bm

itP
ap

er

Output
requiredActions = ø (depLists[1] maps correctly with input path p)

executability = TRUE

The only path of submitPaper operation is executable since all dependencies in

depLists[1] are satisfied by the path (when N takes the value 1, the last dependency

can be mapped to the first node in the path). Thus, the operation is weakly executable.

Table 5.3.2. Weak Executability for the dismiss operation.

Input path p = [<1,DestroyLink(WorksIn,person,self,department,self.department)>]

Dependencies
depLists[0] = [<1,CreateLink(WorksIn,person,self,department,v1)>]
depLists[1] = [<1,DestroyObject(self)>]

di
sm

is
s

Output

requiredActions[0] = [<1,CreateLink(WorksIn,person,self,department,v1)>]
requiredActions [1] = [<1,DestroyObject(self)>]
executability = FALSE

This path is not executable (and thus, neither the dismiss operation, since this is its

only path), because removing the link violates the multiplicity ‘1’ of WorksIn. Adding

a new link to the dangling object (with CreateLink(WorksIn,…)) or destroying it (with

DestroyObject(self)) would make the path executable, as reported by our method.

5 We could also mix both loops by checking partial satisfiability of depLists after each node

(more efficient but with a poorer feedback since only part of the required actions would be

returned).

6 Completeness

Users evolve the system state by executing the set of write actions defined in the

behavior elements of the UML model (the operations in the class diagram in our case).

Intuitively, we say that the set of actions in an UML model is complete when, all

possible changes (inserts/updates/deletes/…) on all parts of the system state can be

performed through the execution of those actions. Otherwise, there will be parts of the

system that users will not be able to modify since no behavioral elements address their

modification. For instance, the set of actions in the operations defined in Fig. 2.2 is

incomplete since actions to remove a person or to create and remove departments are

not specified, forbidding users to perform such kind of changes on the data.

We feel this property is important to guarantee that no behavioral elements are

missing in the model. Clearly, it may happen that a class diagram contains some

elements that designers do not want the users to modify but then those elements

should be defined, for instance, as derived information or read-only elements.

More formally, an operation set setop = {op1,…,opn} is complete when, for each

modifiable element e in the class diagram and each possible action ac modifying the

population of e, there is at least a weak executable path in some opi that includes ac.

A simple function for checking the completeness of setop is the following:
function completeness (in: cd: <Set(Class), Set(StructuralFeature),
Set(Association), Set(GeneralizationSet)>, in: op: Set(Operation), out:
feedback: Set(Action)): Boolean
{ requiredActionsSet, existingActionsSet: Set(Acti on):=Ø;
 action: Action; feedback:=Ø;
 existingActionsSet:=getExistingActions(op);
 requiredActionsSet:=getRequiredActions(cd);
 for each action ∈ requiredActionsSet do
 if action ∉existingActionsSet then feedback:=feedback U {action};
 endif
 endfor
 return (feedback = Ø);}

The parameters of the completeness function are the model elements of the class

diagram. The result indicates whether the set of operations is complete. For

incomplete operations sets, the output parameter feedback contains the set of actions

that should be included in some operation to satisfy the completeness property.

GetExistingActions simply retrieves all different actions of weak executable paths of

the operations set (op parameter). GetRequiredActions computes the set of actions that

the software system should provide to its users in order to be able to modify all parts

of the system state, depending on the structure and properties of the class diagram.

The set of actions returned by getRequiredActions is computed by first determining

the modifiable model elements in the class diagram (i.e. the elements whose value or

population can be changed by the user at run-time) and then deciding, for each

modifiable element, the possible types of actions that can be applied on it.

A class is modifiable as long as it is not an abstract class and it is not the supertype

of a complete generalization set (instances of such supertypes must be created/deleted

through their subclasses). An attribute is modifiable when it is not derived6. An

association is modifiable if none of its member ends are derived.

For each modifiable class c, users must be provided with the actions

CreateObject(c) and DestroyObject(o:c)7 to create and remove objects from c. For

each modifiable attribute at the action AddStructuralFeature(o,at,v) is necessary. For

each modifiable association as, we need the actions CreateLink(as,p1,o1,p2,o2) and

DestroyLink(as,p1,o1,p2,o2). For generalizations, we need a set of actions

ReclassifyObject(o,nc,oc) among the classes involved in them to specialize

(generalize) the object o to (from) each subclass of the generalization. As an example,

the result of getRequiredActions for our running example is provided in Appendix C.

7 Redundancy

An operation specification may be redundant at three different levels. We may have

that some actions in an execution path are redundant, that the complete execution path

is redundant or that the operation as a whole is itself redundant.

An action in an execution path is redundant if its effect on the system state is

subsumed by the effect of later actions in the same path (e.g. two updates on the same

attribute of the same object, the second overwrites the first one). We have identified

several patterns that detect such redundant actions (see Appendix B for details).

An execution path e1 is redundant with respect to an execution path e2 (of the same

or a different operation) when p1 is subsumed by p2, i.e. when all actions in p1 appear

in p2 with the same or lower number. This may be perfectly correct (e.g. p1 may

appear in a basic operation whose behavior is also included in a more complex one)

but it should be highlighted as suspicious, specially when it happens also that p2 is

redundant respect to p1, meaning that both paths have exactly the same actions.

Finally, we say that an operation op1 may be redundant when all its execution paths

are redundant, especially when all its paths are redundant respect to the paths of the

same operation op2. Even if both operations make sense, designer could probably

merge them to favor the simplicity of the schema.

8 Related work

There is a broad set of research proposals devoted to the verification of behavior

specifications in UML, focusing on state machines [15], [14], [18], interaction

diagrams [1], sequence diagrams [11], activity diagrams [8] or on the consistent

interrelationship between them and/or the class diagram [13], [5], [10], [25], [24],

[22], [6], among others. Nevertheless, many of these methods target very basic

correctness properties (basically some kind of well-formedness rules between the

6 Read-only attributes are considered modifiable because users must be able to initialize their

value (and similar for read-only associations).
7 Or a generic operation DestroyObject(o:OclAny) to remove objects of any class.

different diagrams) and/or restrict the expressivity of the supported UML models.

Most of the methods above do not accept the specification of actions in the behavior

specifications (a relevant exception is [23]), which is exactly the focus of our method.

Another major difference is the formalism used to perform the verification. To

check the executability of a behavior specification (or, in general, any property that

can be expressed as a Linear Temporal Logic formula - LTL [7]) previous approaches

rely on the use of model-checking techniques [12]. Roughly, model checkers work by

generating and analyzing all the potential executions at run-time and evaluating if for

each (or some) execution the given property is satisfied.

When compared with model-checking methods, our approach presents several

advantages. First of all, our analysis is static (no animation/simulation of the model is

required) and, thus, our method is more efficient. Model-checking methods suffer

from the state-explosion problem (i.e. the number of potential executions to analyze

grows exponentially in terms of the size of the model, the domains of the

parameters,…) even though a number of optimizations are available (as partial order

reduction or state compression). Therefore, in general, it is not possible to explore all

possible executions. This implies that results provided by these methods are not

conclusive, i.e. absence of a solution cannot be used as a proof: an operation classified

as not weakly executable may still have a correct execution outside the search space

explored during the verification. Another advantage of our method is the kind of

feedback provided to the designer when a property is not satisfied. Model-checking

based proposals provide example execution traces that do (not) satisfy the property. In

contrast, our method provides a more valuable feedback (for our correctness analysis)

since it suggests how to change the operation specification in order to repair the

detected inconsistency.

As a trade-off, our method is unable to verify arbitrary LTL properties. In this

sense, we believe our method could be used to perform a first correctness analysis,

basic to ensure a basic quality level in the actions specification. Then, designers could

proceed with a more detailed analysis adapting current approaches presented above to

the verification of behaviors specified with AS. For instance, example execution traces

that lead to an error state would help designers to detect particular scenarios not yet

appropriately considered.

Finally, we would like to remark that, to the best of our knowledge, our method is

the first one considering the completeness, redundancy and syntactic analysis of action

specifications.

9 Conclusions and Further Work

We have presented an efficient method for the verification of the correctness of AS

specifications. In particular, we have focused on the verification of actions specified

as part of the definition of the effect of imperative operation specifications, one of the

key elements in all MDD methods. Our approach can be easily extended to cope with

other kinds of behavioral specifications since all of them use AS for a fine-grained

behavior specification.

Our method is based on a static analysis of the dependencies among the actions; an

animation/simulation is not required. Thus, our method does not suffer from the state-

explosion problem as current model-checking methods. As a trade-off, our method is

not adequate for evaluating general LTL properties. Moreover, the feedback provided

by our method helps designers to correct the detected errors since our method is able

to suggest a possible repair procedure instead of just highlighting the problem.

Therefore, we believe that the characteristics of our method make it especially

suitable for its integration in current CASE and code-generation tools, as part of the

default consistency checks that those tools should continuously perform to assist

designers in the definition of software models.

As a further work, we would like to complement our techniques by providing an

automatic transformation between the UML AS specification and the input language

of a model-checker tool (as the PROMELA language [12]) so that, after an initial

verification with our techniques (simpler and which would efficiently provide a first

correctness result), designers may get a more fine-grained (though partial) analysis by

means of applying more complex model checking techniques. Also, we also plan to

implement/integrate these techniques into a CASE tool and validate them with a more

complex case study. In addition, we plan to empirically evaluate the computational

cost of each technique and compare them.

Acknowledgements. Thanks to the anonymous referees and the people of the GMC

group for their useful comments to previous drafts of this paper. This work has been
partly supported by the Ministerio de Educación y Ciencia and FEDER under project

TIN208-00444/TIN, Grupo Consolidado.

References

1. Baker, P., Bristow, P., Jervis, C., King, D., Thomson, R., Mitchell, B., Burton, S.:
Detecting and Resolving Semantic Pathologies in UML Sequence Diagrams.
ESEC/SIGSOFT FSE, 50-59 (2005)

2. Bollobas, B.: Modern graph theory. Springer (2002)
3. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: a tool for the formal verification of

UML/OCL models using constraint programming. ASE, 547-548 (2007)
4. Cabot, J., Gómez, C.: Deriving Operation Contracts from UML Class Diagrams. MoDELS,

LNCS, 4735, 196-210, (2007)
5. Gallardo, M.M., Merino, P., Pimentel, E.: Debugging UML Designs with Model Checking.

Journal of Object Technology, 1(2), 101-117 (2002)
6. Egyed, A.: Instant Consistency Checking for the UML. ICSE, 381-390 (2006)
7. Emerson, E. A.: Temporal and Modal Logic. Handbook of Theoretical Computer Science,

8, 995-1072 (1990)
8. Eshuis, R.: Symbolic Model Checking of UML Activity Diagrams. ACM Transactions on

Soft. Eng. and Methodology, 15(1), 1-38 (2006)
9. Garousi, V., Briand, L., Labiche, Y.: Control Flow Analysis of UML 2.0 Sequence

Diagrams. ECMDA-FA, LNCS, 3748, 160-174 (2005)
10. Graw, G., Herrmann, P.: Transformation and Verification of Executable UML Models.

Electronic Notes in Theoretical Computer Science, 101, 3-24 (2004)
11. Grosu, R., Smolka, S. A.: Safety-Liveness Semantics for UML 2.0 Sequence Diagrams.

ACSD, 6-14 (2005)

12. Holzmann, G. J.: The spin model checker: Primer and reference manual. Addison-Wesley
Professional (2004)

13. Knapp, A., Wuttke, J.: Model Checking of UML 2.0 Interactions. MoDELS Workshops,
LNCS, 4364, 42-51 (2006)

14. Latella, D., Majzik, I., Massink, M.: Automatic Verification of a Behavioural Subset of
UML Statechart Diagrams using the SPIN Model-Checker. Formal Aspects of Computing,
11(6), 637-664 (1999)

15. Lilius, J., Paltor, I. P.: Formalising UML State Machines for Model Checking.UML,
LNCS, 1723, 430–445 (1999)

16. Marriott, K., Stuckey, P. J.: Programming with Constraints: An Introduction. MIT Press
(1998)

17. Mellor Stephen J., Balcer Marc J.: Executable UML: A foundation for model-driven
architecture. Addison-Wesley (2002)

18. Ober, I., Graf, S., Ober, I.: Validating Timed UML Models by Simulation and Verification.
Int. Journal on Software Tools for Technology Transfer, 8(2), 128-145 (2006)

19. Object Management Group (OMG): UML 2.0 Superstructure Specification. OMG Adopted
Specification (ptc/07-11-02) (2007)

20. Object Management Group (OMG): Semantics of a Foundational Subset for Executable
UML Models RFP (ad/2005-04-02) (2005)

21. Olivé, A.: Conceptual Schema-Centric Development: A Grand Challenge for Information
Systems Research.CAISE, LNCS, 3520 (2005)

22. Rasch, H., Wehrheim, H.: Checking Consistency in UML Diagrams: Classes and State
Machines. FMOODS, LNCS, 2884, 229-243 (2003)

23. Turner E., Treharne H., Schneider S., Evans N.: Automatic Generation of CSP || B
Skeletons from xUML Models. ICTAC, LNCS, 364-379 (2008)

24. Van Der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.: Using Description Logic to
Maintain Consistency between UML Models. UML, LNCS, 2863, 326–340 (2003)

25. Xie, F., Levin, V., Browne, J. C.: Model Checking for an Executable Subset of UML. ASE,
333-336 (2001)

Appendix A. Analyzing Syntactic Consistency

Our analsysis of the WFRs relevant to the Action Packages has detected several flaws

that compromise the usefulness of these WFRs to ensure the syntactic correctness of

action specifications. Some example errors are the following:

- Syntactic errors: References to “forall” (instead of “forAll”) and “oclisKindOf”

(for “oclIsKindOf”) operations.

- UML 1.5 related errors: WFRs restricting the multiplicity of input and output

pins refers to a multiplicity attribute that does not longer exist in the UML

metamodel (in UML 2.0, pins are subtypes of MultiplicityElement and thus we

should use the upper and lower attributes instead). There is also a reference to

the now inexistent NavigableEnd metaclass.

- Semantic errors: The constraint “context WriteStructuralFeatureAction inv:

self.value.type = self.structuralFeature.featuringClassifier” forces the type of

the new value for the structural feature to be equal to the type of the Classifier

owning the feature. Clearly, this is plain wrong. The type of the new value

should be the same as the type of the structural feature, i.e. “self.value.type =

self.structuralFeature.type”.

- It is not clear the relationship between the InstanceSpecification,

ValueSpecification and Pin metaclasses. Since input and output pins must hold

InstanceSpecification (e.g. in the CreateObjectAction action) and

ValueSpecification (e.g. WriteStructuralFeature actions) values, both kind of

values need to be converted to instances of the Pin metaclass which is not

possible with the current metamodel structure.

Besides, several required WFRs are not predefined in the metamodel. For instance,

in actions of type WriteStructuralFeatureAction, we should check that the type of the

input object (i.e. the object whose feature will be modified) is compatible with the

classifier owning the feature (OCL definition: context WriteStructuralFeatureAction

inv: self.value.type = self.structuralFeature.type). Also, in CreateObjectAction, the

input classifier cannot be the supertype of a covering generalization set (in a covering

generalization, instances of the supertype cannot be directly created). Similar WFRs

must be defined to restrict the possible newClassifiers in the ReclassifyObjectAction.

For instance, we should check that the newClassifiers set and the oldClassifiers set are

disjoint sets. Additional rules are needed to check that values of readOnly attributes

are not updated after their initial value has been assigned, that the intersection between

the old and new classifiers in an object reclassification is empty and so forth.

Once the previous ill-defined WFRs are fixed and the new ones are added to the

metamodel specification, we can successfully analyze the well-formedness of action

specifications as a first step of our verification process.

Appendix B. Redundancy Patterns

As we have seen in section 7, an action in an execution path is redundant if its effect

on the system state is subsumed by the effect of later actions in the same path, that is,

the final system state when executing the operation following that path would be

exactly the same with or without the redundant action (e.g. two updates on the same

attribute of the same object, the second overwrites the first one).

We have identified several patterns (see Table B.1) that detect redundant actions in

execution paths (some of them are based on the concept of net effect for a database

transaction first). For each pattern, we identify a redundant path (first column) and

provide a possible non-redundant equivalent path (second column). The modification

of the original paths cannot be fully automatic since, for instance, the redundant action

may not be redundant in a different path also including that action or may affect the

execution of other actions in the path. Nevertheless, we believe it is worth to at least

point out these redundant actions to the designer.

Table B.1. Redundant patterns.

Redundant path Equivalent path Description

[…,AddStructuralFeature(o,at,v)
,…,
AddStructuralFeature(o,at,v2),…]

[…,
AddStructuralFeature(o,at,v2),
…]

The second update overwrites the

first one

[…,o:=CreateObject(Cl),…,
DeleteObject(o),…]

[…]
No need of creating an object that

it is going to be removed within

the same execution

[…,ReclassifyObject(o,[nc],[oc])
,…,DeleteObject(o),…]

[…]

No need of reclassifying an

object that it is going to be

removed within the same

execution

[…,CreateLink(as,p1,o1,p2,o2),…
,DeleteLink(as,p1,o1,p2,o2),…]

[…]
No need of creating a link that it

is going to be removed within the

same execution

[…,ReclassifyObject(o,[Cl],[Cl2]),
…,
ReclassifyObject(o,[Cl2],[Cl]), …]

[…]
The last reclassification removes

the effect of the first one

[…,ReclassifyObject(o,[Cl2],[Cl]),
…,
ReclassifyObject(o,[Cl3],[Cl2]),…]

[…,ReclassifyObject(o,[Cl3],[Cl])
, …]

Transitive property

Appendix C. Running example

This appendix contains the complete application of our method on the running

example shown in Fig. 2.1 and 2.2.

The input class diagram (Fig. C.1) represents part of a conference management

system. This class diagram is complemented with the definition of three operations:

endOfReview, submitPaper and dismiss (Fig. C.2). The first operation (endOfReview)

reclassifies a paper as rejected or accepted depending on the evaluation parameter.

The second one (submitPaper) creates a new “under review” paper and links the paper

with its authors. The last one (dismiss) deletes the WorksIn link between a person and

his/her department.

P ers on

n ame : S trin g { re ad On ly }
e mai l : S tring

P ape r

ti tl e : S trin g

Re je ct ed

co mme nts : S trin g

Acc ept ed

a cce pD ate : da te

De partm e nt

na me : Stri ng

UnderRe vie w

IsA uth or Of

 au thor

1 ..** W orksIn 1*

{d isjo int,com ple te}

context Department inv M axP apers Sent:
 self.person.p aper � asSe t() � size () <= 10

Fig. C.1. Excerpt of a conference management system class diagram.

context Paper::submitPaper(tit:String, authors:Person[1..*]) {
i: Integer := 1;
p: Paper;

 p := CreateObject(UnderReview);
 AddStructuralFeature(p,title,tit);
 while i <= authors->size() do
 CreateLink(IsAuthorOf,author,authors[i],paper,p);
 i := i+1;
 endwhile }

context Paper::endOfReview(com:String,d:Date,
evaluation:String) {
 if self.oclIsTypeOf(UnderReview) then
 if evaluation = ’reject’ then
 ReclassifyObject(self,[Rejected],[]);
 AddStructuralFeature(self,comments,com);
 else
 ReclassifyObject(self,[Accepted],[]);
 AddStructuralFeature(self,accepDate,d);
 endif
 endif }

context Person::dismiss() {
 DestroyLink(WorksIn,person,self,department,self.department); }

Fig. C.2. Specification of endOfReview, submitPaper and dismiss operations.

As we have seen in the previous sections, our method proceeds by doing several

steps: (1) analyzes the syntactic consistency of each action ac ∈ op, (2) computes all

possible execution paths in op, (3) determines the executability of each path, (4)

analyses the completeness of the whole operation set and (5) detects possible

redundancies. For each detected error, possible corrective procedures are provided to

the designer as a complementary feedback. In the next sub-sections, we show the

execution of these steps.

Step 1: Syntactic Correctness

The first step of our method analyzes the syntactic consistency of each action ac ∈ op.

In the running example, all actions included in operations satisfy the WFR. Thus, all

operations of our example are syntactically correct.

Step 2: Computing the Execution Paths

The second step of our method computes all possible execution paths in each

operation of our example. Firstly, we represent each operation in a MBCFG:

Operation submitPaper:

Operation endOfReview:

Operation dismiss:

Fig. C.3. MBCFG of endOfReview, submitPaper and dismiss operations for the example.

Next, we compute all execution paths for the previous graphs:

endOfReview:
 p1 = ø
 p2 = [<1,ReclassifyObject(self,[Rejected],[])>, <1,AddStructuralFeature(self,comments,com)>]
 p3 = [<1,ReclassifyObject(self,[Accepted],[])>, <1,AddStructuralFeature(self,accepDate,d)>]

submitPaper:
 p = [<1,p:=CreateObject(UnderReview)>, <1,AddStructuralFeature(p,title,tit)>,
 <N,CreateLink(IsAuthorOf,author,authors[i],paper,p)>]

dismiss:
 p = [<1,DestroyLink(WorksIn,person,self,department,self.department)>]

Fig. C.4. Execution paths for endOfReview, submitPaper and dismiss operations.

Step 3: Weak Executability

Applying the algorithm presented in section 5, we can determine the weak

executability of each path of the operations specified in the example.

In the following, the execution of the weakExecutability function for the execution

paths (Fig. C.4) is detailed step by step.

Table C.1. Weak Executability for the endOfReview operation.

Input path p1 = ø

Dependencies depLists = ø

en
dO

fR
ev

ie
w

Output
requiredActions = ø

executability = TRUE

 p := CreateObject
 (UnderReview)

AddStructuralFeature
 (p,title,tit)

while
AddStructuralFeature
 (self,accepDate,d)

ReclassifyObject
(self,[Rejected],[])

 if

 if

 AddStructuralFeature
 (self,comments,com)

CreateLink
(IsAuthorOf,author,
authors[i],paper,p)

 ReclassifyObject
 (self,[Accepted],[])

DestroyLink

(WorksIn,person,self,
department,self.department)

Input path
p2 = [<1,ReclassifyObject(self,[Rejected],[])>,

 <1,AddStructuralFeature(self,comments,com)>]

Dependencies

depLists[0] = [<1,AddStructuralFeature(self,comments,v1)>,

 <1,ReclassifyObject(self,[],[UnderReview])>]

depLists[1] = [<1,AddStructuralFeature(self,comments,v1)>,

 <1,ReclassifyObject(self,[],[Accepted])>]

en
dO

fR
ev

ie
w

Output
requiredActions[0] = [<1,ReclassifyObject(self,[],[UnderReview])>]

requiredActions[1] = [<1,ReclassifyObject(self,[],[Accepted])>]

executability = FALSE

Input path
p3 = [<1,ReclassifyObject(self,[Accepted],[])>,

 <1,AddStructuralFeature(self,accepDate,d)>]

Dependencies

depLists[0] = [<1,AddStructuralFeature(self,accepDate,v1)>,

 <1,ReclassifyObject(self,[],[UnderReview])>]

depLists[1] = [<1,AddStructuralFeature(self,accepDate,v1)>,

 <1,ReclassifyObject(self,[],[Rejected])>]

en
dO

fR
ev

ie
w

Output
requiredActions[0] = [<1,ReclassifyObject(self,[],[UnderReview])>]

requiredActions[1] = [<1,ReclassifyObject(self,[],[Rejected])>]

executability = FALSE

The execution path p1 is weak executable, since it does not contain any action.

Otherwise, the execution paths p2 and p3 are not weak executable since they always

violate the disjointness constraint of the generalization. The action required to become

the paths executable is ReclassifyObjectAction(self,Ø,UnderReview) in both cases.

Table C.2. Weakly Executability for the submitPaper operation.

Input path
p = [<1,p:=CreateObject(UnderReview)>,

<1,AddStructuralFeature(p,title,tit)>, <N,CreateLink(IsAuthorOf, author,authors[i],paper,p)>]

Dependencies

depLists[0] = [<1,AddStructuralFeature(p,title,v1)>,

 <1,CreateLink(IsAuthorOf,person,v2,paper,p)>,

 <N,DestroyLink(IsAuthorOf,person,authors[i],paper,v3)>

depLists[1] = [<1,AddStructuralFeature(p,title,v1)>,

 <1,CreateLink(IsAuthorOf,person,v2,paper,p)>,

 <N,p:=CreateObject(UnderReview)>]

su
bm

itP
ap

er

Output
requiredActions = ø (depLists[1] maps correctly with input path p)

executability = TRUE

The only path of submitPaper operation is executable since all dependencies in

depLists[1] are satisfied by the path (if N takes the value 1, the last dependency can be

mapped to the first node in the path), and thus, the operation is weakly executable.

Table C.3. Weakly Executability for the dismiss operation.

Input path p = [<1,DestroyLink(WorksIn,person,self,department,self.department)>]

Dependencies
depLists[0] = [<1,CreateLink(WorksIn,person,self,department,v1)>]

depLists[1] = [<1,DestroyObject(self)>]

di
sm

is
s

Output
requiredActions[0] = [<1,CreateLink(WorksIn,person,self,department,v1)>]

requiredActions[1] = [<1,DestroyObject(self)>]

executability = FALSE

This execution path is not executable (and thus, neither the dismiss operation since

this is its only path), because removing the link violates the cardinality constraint ‘1’

of WorksIn. Adding a new link to the dangling objects (with the

CreateLink(WorksIn,person,self,department,d’) action) or destroying it (with

DestroyObject(self)) would make the path executable, as reported by our method.

Step 4: Completeness

Applying the algorithm presented in section 6, we can determine the completeness of

the whole operation set.

In the following, the execution of the completeness function for our running

example (Fig. C.1 and Fig. C.2) is detailed.

The operation getRequiredActions returns the following set of actions:
requiredActionsSet = [
//One CreateObject(class) action for each modifiable class of the diagram:

CreateObject(Accepted), CreateObject(Rejected), CreateObject(UnderReview),

CreateObject(Person), CreateObject(Department),

//One DestroyObject(class) action for each modifiable class of the diagram:

DestroyObject(Accepted), DestroyObject(Rejected), DestroyObject(UnderReview),

DestroyObject(Person), DestroyObject(Department),

//One AddStructuralFeature(att) action for each modifiable attribute att:

AddStructuralFeature(title), AddStructuralFeature(accepDate),

AddStructuralFeature(comments), AddStructuralFeature(name),

AddStructuralFeature(email),

//One CreateLink(as) action for each modifiable association as:

CreateLink(IsAuthorOf), CreateLink(WorksIn),

//One DestroyLink(as) action for each modifiable association as

DestroyLink(IsAuthorOf), DestroyLink(WorksIn),

//One ReclassifyObject(o,[nc],[oc]) for each classes involved in the generalization to

specialize (generalize) the object o to (from) each subclass of the generalization:

ReclassifyObject(o,[Accepted],[UnderReview]),

ReclassifyObject(o,[Rejected],[UnderReview]),

ReclassifyObject(o,[Rejected],[]), ReclassifyObject(o,[Accepted],[]),

ReclassifyObject(o,[UnderReview],[])]

The operation getExistingActions retrieves all different actions of weak executable

paths of the operations endOfReview, submitPaper and dismiss:

existingActionsSet = [
ur:=CreateObject(UnderReview),

AddStructuralFeature(title), AddStructuralFeature(accepDate),

AddStructuralFeature(comments),

CreateLink(IsAuthorOf), DestroyLink(WorksIn),

ReclassifyObject(o,[Rejected],[]), ReclassifyObject(o,[Accepted],[])]

Therefore, the output parameter feedback contains the set of actions that should be

included in some operation to satisfy the completeness property.
feedback = [

CreateObject(Accepted), CreateObject(Rejected),

CreateObject(Person), CreateObject(Department), DestroyObject(Accepted),

DestroyObject(Rejected), DestroyObject(UnderReview), DestroyObject(Paper),

DestroyObject(Department), AddStructuralFeature(name),

AddStructuralFeature(email), CreateLink(WorksIn), DestroyLink(IsAuthorOf),

ReclassifyObject(o,[Accepted],[UnderReview]),
ReclassifyObject(o,[Rejected,[UnderReview]),

ReclassifyObject(o,[UnderReview,[])]

Step 5: Redundancy

The last step of our method detects possible redundancies in the operations.

Following the redundant patterns described in Appendix B, we can determine that

there is not any redundant path in the operations paths, and thus, we conclude that all

operations are not redundant.

