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Abstract

In this paper, by considering the idea that argumentation semantics can be

viewed as a special form of logic programming semantics with negation as failure,

we show that any logic programming semantics as the stable model semantics,

the minimal models, etc., can define candidate argumentation semantics. These

new argumentation semantics will overcome some of the problems of the Dung’s

argumentation semantics that have been discussed in the literature.

The new argumentation semantics are based on a new recursive framework for

logic programming semantics. This framework generalizes any logic programming

semantics in order to build logic programming semantics which are always defined,

satisfy the property of relevance and agree with the stable semantics for the class

of stratified programs.

1 Introduction

Argumentation theory has become an increasingly important and exciting research

topic in Artificial Intelligence (AI), with research activities ranging from developing
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theoretical models, prototype implementations, and application studies [5]. The main

purpose of argumentation theory is to study the fundamental mechanism, humans use

in argumentation, and to explore ways to implement this mechanism on computers.

Dung’s approach, presented in [13], is a unifying framework which has played

an influential role on argumentation research and AI. This approach is mainly orien-

tated to manage the interaction of arguments. The interaction of the arguments is sup-

ported by four abstract argumentation semantics: stable semantics, preferred seman-

tics, grounded semantics, and complete semantics. The central notion of these seman-

tics is the acceptability of the arguments. According to Bench-Capon and Dunne, the

three principal abstract argumentation semantics introduced by Dung are the grounded,

preferred and stable semantics. However, these semantics exhibit a variety of prob-

lems which have illustrated in the literature [30, 4, 6, 7, 5]. Authors as P. Baroni et

al, have suggested that in order to overcome Dung’s abstract argumentation seman-

tics problems, it is necessary to define flexible argumentation semantics which are not

necessarily based on admissible sets [4].

According to Baroni et al, in [4] the preferred semantics is regarded as the most

satisfactory approach; however, they have also pointed out that the preferred semantics

produces some questionable results in some cases concerning cyclic attack relations

[4]. For instance, let us consider the argumentation framework that appears in Figure

11. In this argumentation framework there are two arguments: a and b. The arrows in

the figure represent conflicts between the arguments. We can see that the argument a is

attacked by itself and the argument b is attacked by the argument a. Intuitively, some

authors as Prakken and Vreeswijk [30] suggest that one can expect that the argument

b can be considered as an acceptable argument since it is attacked by the argument a

which is attacked by itself. However, the preferred semantics is unable to infer the argu-

ment b as an acceptable argument — the only preferred extension of the argumentation

framework of Figure 1 is the empty set. In fact, none of the argumentation semantics

suggested by Dung is able to infer the argument b as acceptable.

Another interesting argumentation framework which has been commented on liter-

ature [30, 4] is presented in Figure 2. The preferred semantics w.r.t. this argumentation

1This argumentation framework has received special attention in the literature in order to commented

the problem of the self-defeated arguments [29, 30] and to point out some of the problems of the Dung’s

argumentation semantics [4].
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Figure 1: Graph representation of the argumentation framework AF =

〈{a, b}, {(a, a), (a, b)}〉.

framework is only able to infer the empty set. Some authors, as Prakken and Vreeswijk

[30], Baroni et al[4], suggest that the argument e can be considered as an acceptable

argument since it is attacked by the argument d which is attacked by three arguments:

a, b, c. Observe that the arguments a, b and c form a cyclic of attacks.

Figure 2: Graph representation of the argumentation framework AF =

〈{a, b, c, d, e}, {(a, c), (c, b), (b, a), (a, d), (c, d), (b, d), (d, e)}〉.

The stable argumentation semantics defined by Dung in [13] is also considered as

another proper argumentation semantics. However, this semantics has been criticized

by some authors as Bench-Capon and Dunne [5], Caminada [7] because frequently

this semantics is undefined . For instance, the argumentation framework of Figure

3 has no stable extensions; however, it has a preferred extension, {c} — in fact the

argumentation frameworks of Figure 1 and Figure 2 are two examples where the stable

argumentation semantics is also undefined.

The solutions to the problems of the argumentation semantics suggested by Dung

are really diverse some researchers have focused on improving the stable argumenta-

tion semantics [7], some other researchers have focused on improving the preferred

semantics [25], and still other researchers have focused on improving the concept of

admissible set which is the basis of the argumentation semantics suggested by Dung
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Figure 3: Graph representation of the argumentation framework AF =

〈{a, b, c}, {(a, a), (a, b), (b, c), (c, b)}〉.

[16, 4].

It is worth mentioning that since Dung’s approach was introduced in [13], it was

viewed as a special form of logic programming with negation as failure. For instance,

in [13] it was proved that the grounded semantics can be characterized by the well-

founded semantics [14] and the stable argumentation semantics can be characterized by

the stable model semantics [15]. Also in [9], it was proved that the preferred semantics

can be characterized by the pstable semantics. In fact, the preferred semantics can be

also characterized by the minimal models and the stable models of a logic program

[22, 23].

We can recognize two major branches for improving Dung’s approach. On the one

hand, we can take advantage of graph theory; on the other hand, we can take advantage

of logic programming with negation as failure.

With respect to graph theory, the approach suggested by Baroni et al, in [4] is

maybe the most general solution defined until now for improving Dung’s approach.

This approach is based on a solid concept in graph theory which is a strongly con-

nected component (SCC). Based on this concept, Baroni et al, describe a recursive

approach for generating new argumentation semantics. For instance, the argumenta-

tion semantics CF2 suggested in [4] is able to infer the argument b as an acceptable

argument of the argumentation framework of Figure 1. Also CF2 is able to infer the

extensions: {a, e}, {b, e}, {c, e} from the argumentation framework of Figure 2. This

means that CF2 regards the argument e as an acceptable argument.

As we commented, argumentation theory can be viewed as a special form of logic

programming with negation as failure [13, 22, 24, 23, 9]. In fact Dung in [13] intro-

duced a metainterpreter PAF for generating argumentation systems. When we have a

logic program which represents an argumentation framework, it is natural to think that
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we can split this program into subprograms where each subprogram could represent a

part of an argumentation framework. For instance, let us consider a single version of

the mapping ΨAF introduced in [22, 21, 23, 9] in order to represent the argumentation

framework of Figure 1 as the logic program P :

d(a) ← ¬d(a).

d(b) ← ¬d(a).

acc(a) ← ¬d(a).

acc(b) ← ¬d(b).

We want to point out that we are only considering the negative clauses of the mapping

ΨAF and two clauses more in order to infer the acceptable arguments by negation

as failure. This program can be also inferred from Dung’s mapping PAF [13] by

considering the grounding instance of PAF and applying the well-known principle of

partial evaluation to PAF . In fact, this codification can be regarded as the common

point between the mappings ΨAF and PAF .

The intended meaning of the first clause of P says that the argument a is defeated

if the argument a is not defeated. The second clause of P says that the argument b is

defeated if the argument a is not defeated. The third clause of P says that the argument

a is acceptable if the argument a is not defeated and the last clause of P says that the

argument b is acceptable if the argument b is not defeated.

Notice that the program P can be split into three subprograms, i.e. P1, P2 and P3,

where P1 is:

d(a) ← ¬d(a).

P2 is:

d(b) ← ¬d(a).

acc(a) ← ¬d(a).

and P3 is:

acc(b) ← ¬d(b).

We can see that P2 depends on P1 because the atom d(a) is defined in the program

P1. In the same way, P3 depends on P1 and P2. Hence, in order to infer the semantics
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of P2, we have to infer the semantics of P1 before. For instance, let us consider the

minimal models of P1. It is easy to see that the only minimal model of P1 is: {d(a)}.

Hence, in order to infer the semantics of P2 based on the minimal models of P1, we

can remove from P2 any clause that contains ¬ d(a) in their bodies — let P ′2 be the

reduced program. Notice that P ′2 is an empty program; hence, the only minimal model

of P ′2 is the empty model i.e. the atoms d(b) and acc(a) are considered as false. Now,

for inferring the semantics of P3, we consider the minimal models of P1 union the

minimal models of P ′2. We can infer the semantics of P3 based on the model {d(a)}—

let P ′3 be the reduced program by considering d(a) as true and d(b) as false. It is easy

to see that the only minimal model of P ′3 is: {acc(b)}. Therefore, the semantics of P

will be the union of the minimal models of P1 ({d(a)}) union the minimal models of

P ′2 (∅) union the minimal models of P ′3 ({acc(b)}). Hence, we have an unique model

for P which is {acc(b), d(a)}. This model suggests that we can consider the argument

b as acceptable and the argument a as defeated.

The idea of spitting a logic program into its component, in order to define logic

programming semantics, has been explored by some authors in logic programming

[12]. For instance, by splitting a logic program, Dix and Müller in [12] combine ideas

of the stable model semantics and the well-founded semantics in order to define a

skeptical logic programming semantics which satisfies the property of relevance and

the general principle of partial evaluation.

In the first part of this paper, we will formalize a recursive general schema for con-

structing new logic programming semantics. This recursive general schema is based on

the idea of splitting a logic program into its components. The new logic programming

semantics have as main properties that they are always defined for any logic program

and they satisfy the property of relevance.

In the second part of this paper, by considering the idea that argumentation seman-

tics can be viewed as a special form of logic programming semantics with negation as

failure and the schema presented in the first part of the paper, we show that any logic

programming semantics as the stable model semantics, the minimal models, etc., can

define candidate argumentation semantics. These new argumentation semantics will

overcome some of the problems of the Dung’s argumentation semantics that have been

discussed in the literature. In fact, we will see that some of our new argumentation se-

mantics have similar behavior to the argumentation semantics defined in terms strongly
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connected components [4].

The rest of the paper is divided as follows: In §2, we present some basic concept

w.r.t. logic programming and argumentation theory. In §3, we introduce our new recur-

sive general schema for defining new logic programming semantics. In §4, we define

how to construct new argumentation semantics based on the approach presented in §3.

In §5, we will point out some of the main common points between our approach and

Baroni et al’s approach. Finally in the last section, we present our conclusion and

ourline our future work.

2 Background

In this section, we define the syntax of the logic programs that we will use in this paper.

In terms of logic programming semantics, we present the definition of the stable model

semantics and the pstable model semantics. After that, we present a short description

of the Dung’s argumentation approach.

2.1 Logic programming: Syntax and some operations

A signature L is a finite set of elements that we call atoms. A literal is an atom, a

(positive literal), or the negation of an atom ¬a (negative literal). Given a set of atoms

{a1, ..., an}, we write ¬{a1, ..., an} to denote the set of atoms {¬a1, ...,¬an}. A

normal clause, C, is denoted as a ← l1, . . . , ln, where n ≥ 0, a is an atom, and each

li is a literal. When n = 0 the clause is an abbreviation of a ← >2, where > is ¬⊥.

Sometimes, we denote a normal clause C by a ← B+, ¬B−, where B+ contains all

the positive body atoms and B− contains all the negative body atoms. We also use

body(C) to denote B+ ∪ ¬B−. A normal program P is a finite set of normal clauses,

formally a normal program is a conjunction of its normal clauses. When B− = ∅, the

clause is called definite. A finite set of definite clauses is called definite program.

Given a normal program P , we will call non-trivial tautology C ∈ P if C is at one

of the following forms:

2or simply a.
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C = a ← (B+ ∪ {a}), ¬B− such that B+ 6= ∅ or B− 6= ∅ (1)

C = a ← (B+ ∪ {x}), ¬(B− ∪ {x}) such that x ∈ LP (2)

For instance, the clauses a ← a,¬b and b ← a,¬a are two non-trivial tautologies. The

clauses of the form x ← x will be called trivial tautologies.

We denote by HEAD(P ) the set {a|a ← B+, ¬B− ∈ P}. We denote by LP

the signature of P , i.e. the set of atoms that occur in P. Given a signature L, we write

ProgL to denote the set of all programs defined over L.

Remark 1 We want to point out that

• whenever we consider logic programs, our negation ¬ corresponds to the default

negation “not” used in Logic Programming;

• and whenever we treat a logic program as a theory, our negation ¬ corresponds

to the negation of classical logic.

A program P induces a notion of dependency between atoms from LP . We say

that a depends immediately on b if and only if b appears in the body of a clause in

P , such that a appears in its head. The two place relation depends on is the transitive

closure of depends immediately on. The dependencies of an atom x is defined by:

dependencies-of(x) is the set {a|x depends on a}

In order to illustrate this definition, let us consider the following normal program, de-

noted by RE (Running Example):
e ← e.

c ← c.

a ← ¬b, c.

b ← ¬a,¬ e.

d ← b.
We can see that LP = {a, b, c, d, e}. Now let us infer the dependency relations be-

tween the atoms of LP :
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dependencies-of(a) = {a, b, c, e}
dependencies-of(b) = {a, b, c, e}
dependencies-of(c) = {c}
dependencies-of(d) = {a, b, c, e}
dependencies-of(e) = {e}

We define an equivalence relation ≡ between atoms of LP as follows: a ≡ b if and

only if a = b or (a depends-on b and b depends-on a). We write [a] to denote the

equivalent class induced by the atom a. By considering again the normal program RE,

we can see that:

[a] = [b] = {a, b} [d] = {d}
[c] = {c} [e] = {e}

We take ≤P to denote the partial order induced by ≡P on its equivalent classes.

Hence, [a] ≤ [b] if and only if b depends-on a. For instance, by considering the

equivalent classes of the program RE, the following relations hold: {c, e} ≤ {a, b} ≤
{d}. By considering the relation ≤P , each atom of LP is assigned an order as follows:

• An atom a is of order 0, if [a] is minimal in ≤P .

• An atom a is of order n + 1, if n is the maximal order of the atoms of which a

depends such that n is the order of the atom b and b 6= a.

We say that a program P is of order n if n is the maximum order of its atoms. By

considering again the normal program RE, we can see that:

a is of order 1 d is of order 2

b is of order 1 e is of order 0

c is of order 0

this means that RE is a program of order 2.

We can also break a program P (of order n) into the disjoint union of programs Pi

(0 ≤ i ≤ n ) such that Pi is the set of rules such that the head of each atom is of order

i (with respect to P ). We say that P0, . . . , Pn are the relevant modules of P . In order

to illustrate these ideas, let us consider the following table, where RE0, RE1, RE2 are

the respective relevant modules of the normal program RE:
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RE RE0 RE1 RE2

e ← e. e ← e.

c ← c. c ← c.

a ← ¬b, c. a ← ¬ b, c.

b ← ¬a,¬ e. b ← ¬a,¬e.

d ← b. d ← b.

There is an interesting class of normal programs that is called stratified programs.

This class of normal logic programs satisfies certain syntactic conditions w.r.t. the

occurrence of their positive and negative literals. The stratified logic programs have

gained a lot of importance in connection with the search for nice declarative semantics

for logic programs and the treatment of negative information in logic programming

— the interested reader can find some interesting results w.r.t. stratified programs in

[19, 2]. The formal definition of a stratified logic program is defined as follows:

Definition 1 [2] Let P be a normal logic program. P is called a stratified logic pro-

gram if for any clause a ← l1, . . . , lm,¬lm+1, . . . ,¬lnn in Pi, 0 ≤ i ≤ n, then

1. for every lj , 1 ≤ j ≤ m there is a Pq such that lj ∈ LPq and q ≤ i, and

2. for every lj , m + 1 ≤ j ≤ nn, there is a Pq such that lj ∈ LPq and q < i.

Observe that the first condition only says that the positive literals of the clause can

appear in any component lower than or equal to Pi, and the second condition says

that the negative literals must appear in a clause which belongs to a component strictly

lower than Pi. For instance, one can see that the logic program RE, introduced above,

is not a stratified normal programs. However, the component RE0 is a stratified logic

program by itself.

Now we introduce a single reduction for any normal program. The idea of this

reduction is to remove from a normal program any atom which has already fixed to

some true value. In fact this reduction is based on a pair of sets of atoms 〈T ; F 〉
such that the set T contains the atoms which can be considered as true and the set F

contains the atoms which can be considered as false. Formally, this reduction is defined

as follows:

Let 〈T ;F 〉 be a pair of sets of atoms. The reduction R(P, 〈T ; F 〉) is obtained by 4

steps:
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1. We replace every atom x that occurs in the bodies of P by 1 if x ∈ T as well as

we replace every atom x that occurs in the bodies of P by 0 if x ∈ F ;

2. We replace every occurrence of ¬1 by 0 and ¬ 0 by 1;

3. Every clause with a 0 in its body is removed;

4. Finally we remove every occurrence of 1 in the body of the clauses.

Note that this is not the Gelfond-Lifschitz reduction (it will be presented in Section

2.2.1). For instance, let P be the normal program RE \RE0. This means that P is:

a ← ¬b, c.

b ← ¬a,¬e.

d ← b.

Then, R(P, 〈{c}; {e}〉) is:

a ← ¬b.

b ← ¬a.

d ← b.

2.2 Logic Programming: Semantics

Let P be a normal program. An interpretation I is a mapping from LP to {0, 1}, where

the generalization of I to connectives is as follows:

1. I(a ∧ b) = min{I(a), I(b)},

2. I(a ∨ b) = max{I(a), I(b)},

3. I(a ← b) = 0 if and only if I(b) = 1 and I(a) = 0,

4. I(¬a) = 1− I(a),

5. I(⊥) = 0,

6. I(>) = 1.

It is standard to use sets of atoms to represent interpretations. The set corresponds

exactly to those atoms that evaluate to 1. An interpretation M is called a (2-valued)
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model of P if and only if for each clause c ∈ P , M(c) = 1. Finally, M is a minimal

model of P if it does not exist a model M ′ of P such that M ′ ⊂ M [31].

A semantics SEM is a (partial) mapping from the class of all programs into de

powerset of the set of (2-valued) models. SEM assigns to every program P either a

set of (2-valued) models of P or remains undefined.

Given a set of interpretations Q and a signature L, we define Q restricted to L as

{M ∩ L|M ∈ Q}. For instance, let Q be {{a, c}, {c, d}} and L be {c, d, e}, hence Q

restricted to L is {{c}, {c, d}}.

Let P be a program and P0, . . . , Pn its relevant modules. We say that a semantics

S satisfies the property of relevance if for every i, 0 ≤ i ≤ n, S(P0∪· · ·∪Pi) = S(P )

restricted to LP0∪···∪Pi
.

Some logic programming semantics that we will consider are the minimal model se-

mantics (denoted by MM ), the stable semantics [15] (denoted by Stable), the revised

stable semantics [28] (denoted by RevStable) and the pstable semantics [26] (denoted

by Pstable). In the next subsections, we will define the stable model semantics and

the pstable model semantics. It is worth mentioning that the minimal model semantics

of a logic program P is given by the minimal models of P .

2.2.1 Stable model semantics.

The stable model semantics was defined in terms of the so called Gelfond-Lifschitz

reduction [15] and it is usually studied in the context of syntax dependent transforma-

tions on programs. The following definition of a stable model for normal programs was

presented in [15]:

Let P be any normal program. For any set S ⊆ LP , let PS be the definite program

obtained from P by deleting

(i) each rule that has a formula ¬l in its body with l ∈ S, and then

(ii) all formulæ of the form ¬l in the bodies of the remaining rules.

Clearly PS does not contain ¬. Hence S is a stable model of P if and only if S is a

minimal model of PS .

In order to illustrate this definition let us consider the following example:

12



Example 1 Let S = {b} and P be the following logic program:

b ← ¬a. b ← >.

c ← ¬b. c ← a.
We can see that PS is:

b ← >. c ← a.

Notice that PS has three models: {b}, {b, c} and {a, b, c}. Since the minimal model

amongst these models is {b}, we can say that S is a stable model of P .

2.2.2 Pstable model semantics.

Before to define the pstable semantics (introduced in [26]), we define some basic con-

cepts. Logical inference in classic logic is denoted by `. Given a set of proposition

symbols S and a theory (a set of well-formed formulae) Γ, Γ ` S if and only if ∀s ∈ S,

Γ ` s. When we treat a logic program as a theory, each negative literal ¬a is re-

garded as the standard negation operator in classic logic. Given a normal program P, if

M ⊆ LP , we write P ° M when: P ` M and M is a classical 2-valued model of P .

The Pstable semantics is defined in terms of a single reduction which is defined as

follows:

Definition 2 [26] Let P be a normal program and M a set of literals. We define

RED(P, M) = {l ← B+,¬(B− ∩M)|l ← B+,¬B− ∈ P}

Let us consider the set of atoms M1 = {a, b} and the following normal program P1:

a ← ¬ b,¬ c.

a ← b.

b ← a.

We can see that RED(P,M) is:

a ← ¬b.

a ← b.

b ← a.

By considering the reduction RED, it is defined the semantics pstable for normal

programs.
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Definition 3 [26] Let P be a normal program and M a set of atoms. We say that M

is a pstable model of P if RED(P,M) ° M . We use Pstable to denote the semantics

operator of pstable models.

Let us consider again M1 and P1 in order to illustrate the definition. We want to

verify whether M1 is a pstable model of P1. First, we can see that M1 is a model of

P1, i.e. ∀ C ∈ P1, M1 evaluates C to true. Now, we have to prove each atom of M1

from RED(P1,M1) by using classical inference, i.e. RED(P1,M1) ` M1 . Let us

consider the proof of the atom a, which belongs to M1, from RED(P1,M1).

1. (a ∨ b) → ((b → a) → a) Tautology

2. ¬ b → a Premise from RED(P1,M1)

3. a ∨ b From 2 by logical equivalency

4. (b → a) → a) From 1 and 3 by Modus Ponens

5. b → a Premise from RED(P1,M1)

6. a From 4 and 5 by Modus Ponens

The proof for the atom b, which also belongs to M1, is similar to the proof of the atom

a. Then we can conclude that RED(P1,M1) ° M1. Hence, M1 is a pstable model of

P1.

2.3 Argumentation Theory: Dung’s approach

The fundamental Dung’s definition is the concept called argumentation framework

which is defined as follows:

Definition 4 [13] An argumentation framework is a pair AF = 〈AR, attacks〉, where

AR is a finite set of arguments, and attacks is a binary relation on AR, i.e. attacks

⊆ AR × AR. We write AFAR to denote the set of all the argumentation frameworks

defined over AR.

Any argumentation framework could be regarded as a directed graph. For instance,

if AF = 〈{a, b, c}, {(a, b), (b, c)}〉, then AF is represented as in Figure 4. We say

that a attacks b (or b is attacked by a) if attacks(a, b) holds. We say that a set S of

arguments attacks b (or b is attacked by S) if b is attacked by an argument in S. For

instance in Figure 4, {a} attacks b.
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Figure 4: Graph representation of the argumentation framework AF =

〈{a, b, c}, {(a, b), (b, c)}〉.

Definition 5 [13] A set S of arguments is said to be conflict-free if there are no argu-

ments a, b in S such that a attacks b.

For instance, the sets {a}, {b}, and {a, c} are conflict-free sets w.r.t. Figure 4.

Definition 6 [13] (1) An argument a ∈ AR is acceptable with respect to a set S of

arguments if and only if for each argument b ∈ AR: If b attacks a then b is attacked by

S. (2) A conflict-free set of arguments S is admissible if and only if each argument in

S is acceptable w.r.t. S.

One of the semantics of the Dung’s approach which has played an influential role

on argumentation research is the preferred semantics. This semantics is defined as

follows:

Definition 7 [13] A preferred extension of an argumentation framework AF is a max-

imal (w.r.t. inclusion) admissible set of AF.

The admissible sets of Figure 4 are {a} and {a, c}, then the only preferred exten-

sion is {a, c}. Another interesting semantics which was introduced in [13] is the stable

semantics.

Definition 8 A conflict-free set of arguments A is called a stable extension if and only

if S attacks each argument which does not belong to S.

We can see that the only stable extension of the argumentation framework of Figure

4 is {a, c}.

Remark 2 Observe that there is a logic programming semantics that is called stable

model semantics (presented in Section 2.2.1) and an argumentation semantics that is

called stable semantics (Definition 8). Please be careful not to misunderstand each

concept.
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Dung suggested other two argumentation semantics, however we do not present

their definitions here.

3 Construction of new logic programming semantics

In this section we construct elaborated logic programming semantics based on a sim-

pler logic programming semantics. We have in mind that our new logic programming

semantics satisfy the following suitable properties:

1. They should be always defined. In both approaches logic programming and ar-

gumentation theory, it is appreciated that logic programming semantics (resp.

argumentation semantics) can be always defined [5, 8, 28, 12]. Hence, our new

logic programming semantics will be always defined.

2. They should satisfy the relevance property. The relevance property is an impor-

tant property in order to define well-behaved semantics in logic programming

[11, 12].

3. They should agree with Stable for the class of stratified programs. On the one

hand, stable model semantics is probably the most accepted logic programming

semantics in the last two decades, and on the other hand, the class of stratified

logic programs is the class of logic programs where the most accepted logic

programming semantics agree [2, 19].

4. They should be useful to model argumentation problems. As we commented in

§1, one of the main objectives of this paper is to suggest a general schema for

constructing argumentation semantics based on logic programming semantics.

We assume that every semantics S satisfies the following trivial property:

For every program P such that every atom that appears in P also occurs

as a fact of P then S(P ) is defined.

Every well known semantics satisfies this basic property such as Stable, MM , RevStable,

and Pstable. In fact in all these semantics there is exactly one intended model that is

LP . For instance, let P be the following program:
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a ← >. b ← >.

a ← b. b ← ¬a.

Observe that all the atoms of the program P appear as facts in P ; hence P will always

have the model {a, b}.

Remark 3 For the construction of our semantics we assume that our programs do not

include non-trivial tautologies (see §2) . If a program includes them, we simply remove

them in the very first stage of our construction of our semantics.

3.1 Semantics always defined

It is sometimes desirable that a semantics of a normal program is always defined; for

instance, the case when a program is modeling an argumentation problem. Given a

particular semantics S, we show how to construct a semantics based on S that is always

defined.

First of all, we will define some concepts w.r.t. the notion of generalized S model.

Definition 9 Let S be a logic programming semantics, P be a logic program and A be

a set of atoms (called abductives) such that A ⊆ LP .

• We say that MB is a generalized S model of P w.r.t. A if M ∈ S(P ∪B) where

B ⊆ A and M ⊆ LP .

• We define a partial order between generalized S models (w.r.t. A) of a program

according to the set inclusion w.r.t. the subindex B. We say that M is a minimal

generalized S model of P w.r.t. A if there exists a set of atoms B, such that MB

is a generalized S model of P w.r.t. A and MB is minimal w.r.t. the partial order

just defined.

• We write S∗ to denote the minimal generalized S semantics, where A = LP .

Namely S∗(P ) is the collection of minimal generalized S models of P w.r.t. LP .

Observe that in our definition we are not instantiating the definition to a particular

logic programming semantics.

The concept of generalized S model is closely related to the semantics of abductive

logic programming [18, 17], in particular to the concept of generalized answer set. It
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has also been explored for different logic programming approaches as in [1, 27]. For in-

stance, the authors in [27] consider two partial order relations between the generalized

models for defining minimal generalized models, one by considering the set inclusion

w.r.t. the subindexes of the generalized models (as in Definition 9) and another one

w.r.t. the cardinality of the subindexes of the generalized models3.

In order to illustrate Definition 9, take the program C:

p ← ¬p.

We can see that Stable(C) is undefined, however Stable∗(C) = {{p}}. Note that

{p}{p} is the unique generalized stable model of C. This is because {p} is a stable

model of C ∪ {p}. Moreover, {p} is the unique minimal generalized model of C.

Observe also that Pstable(C) = Pstable∗(C) = {{p}}.

Take the program D:

a ← ¬b.

b ← ¬c.

c ← ¬a.

Observe that Pstable(D) is undefined; however, one can see that {a, b} is a pstable

model of P ∪ {a}, {b, c} is a pstable model of P ∪ {b} and {c, a} is a pstable model

of P ∪ {c}. Since the models {a, b}{a}, {b, c}{b}, {c, a}{c} are the three minimized

generalized pstable models of D, Pstable∗(D) = {{a, b}, {b, c}, {a, c}}. The same

situation happens to Stable. Stable(D) is undefined; however, Stable∗(D) = {{a, b},
{b, c}, {a, c}}.

The following lemma insures that any semantics induced by Definition 9 will be

defined — the proof of the lemma is immediate thanks to the basic property defined at

the beginning of this section.

Lemma 1 For every semantics S and program P , S∗(P ) is defined.

One important property of the semantics induced by Definition 9 is that the concept

of generalized model will be important only in the case that the initial semantics S is

undefined.
3In [27], a generalized model is called a L-completion.
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Lemma 2 For every semantics S and program P . If S(P ) is defined then S∗(P ) =

S(P ).

Proof: If S(P ) is defined then it is clear that M ∈ S(P ) iff M{} is a minimal general-

ized S model of P .

This lemma insures that whenever a semantics S is defined, it will be the same to

S∗ e.g., Pstable(C) = Pstable∗(C) = {{p}}. The following lemma makes some

observations w.r.t. MM , RevStable, Stable, Pstable and their induced semantics

based on the concept of generalized model.

Lemma 3 MM and MM∗ are the same semantics. RevStable and RevStable∗

are the same semantics. Stable is different from Stable∗. Pstable is different from

Pstable∗. Stable∗, Pstable∗, and MM∗ are 3 different semantics.

Proof: MM is the same as MM∗ follows because MM is always defined (Lemma 2).

For the same reason RevStable and RevStable∗ are the same semantics. Note that

program C already defined shows that Stable is different from Stable∗. Program D

shows that Pstable is different from Pstable∗.

Consider Program E:

a ← ¬b.

b ← ¬a.

p ← ¬b.

p ← ¬p.

Stable∗(E) = Stable(E) = {{p, a}}. Pstable∗(E) = Pstable(E) = {{p, a}, {p, b}}.

MM∗(E) = MM(E) = {{p, a}, {p, b}}. This program shows that Pstable∗ is dif-

ferent from Stable∗ and that MM∗ is different from Stable∗

Consider Program F :

a ← ¬b.

b ← ¬a.

u ← a.

x ← ¬y, u.

y ← ¬z, u.

z ← ¬x, u.
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One can see that Pstable∗(F ) = {{b}} and MM∗(F ) = {{b}, {a, u, x, y}, {a, u, x, z},
{a, u, y, z}}. Hence, this program shows that Pstable∗ is different from MM∗.

3.2 Constructing relevant semantics

It is sometimes desirable that a semantics satisfies the relevance property. Relevance

is a fundamental property when we are interested in defining the semantics of a split

logic program. Given a semantics S we show how to construct a relevant semantics

based on S that we denote by Sr.

We assume in this subsection the following property:

For every program, if an atom occurs in a program then it should also

occur in the head of some rule.

Later, we show how to deal with programs that do not satisfy this property. Given Q

and R both sets of interpretations, we define

Q ∗R := {M1 ∪M2|M1 ∈ Q,M2 ∈ R}

Definition 10 Let S be a semantics that is always defined. We define the associate Sr

semantics recursively as follow: Given a program P of order 0, Sr(P ) = S(P ). For a

program P of order n > 0 we define

Sr(P ) =
⋃

M∈S(P0)

{M} ∗ Sr(R(P \ P0, 〈M ;LP0 \M〉))

For the reader who knows STABLErel’s definition presented in [12], we want

to point out that Sr is similar to STABLErel w.r.t. the relevance property; however,

STABLErel has a skeptical construction and Sr has a construction by scenarios.

Consider the program E defined before. We illustrate our definition to compute

Stable∗
r

(E). Recall that E is:

a ← ¬b.

b ← ¬a.

p ← ¬b.

p ← ¬p.

Then E0 is:
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a ← ¬b.

b ← ¬a.

Stable(E0) = {{a}, {b}}. Since Stable(E0) has two models, there are two cases to

consider:

1. First, consider M be {a}. We can see that E \ E0 is:

p ← ¬b.

p ← ¬p.

Moreover, we can see that R(E \ E0, 〈M ;LE0 \M〉) is:

p.

p ← ¬p.

Hence, Sr(R(E\E0, 〈M ;LE0\M〉)) is: {{p}}. So, {M}∗Sr(R(E\E0, 〈M ;LE0\
M〉)) is: {{p, a}}.

2. Now, consider M be {b}. In this case, we can see that R(E \E0, 〈M ;LE0 \M〉)
is:

p ← ¬p.

Observe that Stable∗ of this reduced program is {{p}}. Hence, Sr(R(E \
E0, 〈M ;LE0 \M〉)) is: {{p}}. So, {M} ∗ Sr(R(E \ E0, < M ;LE0 \M >))

is: {{p, b}}.

Therefore Stable∗
r

(E) = {{p, a}, {p, b}}.

3.2.1 The general case.

We have shown how to construct a relevant semantics for programs where every atom

in the signature of the program occurs in the head of some rule of that program. Now,

why is it important that every atom in the signature of the program must occur in the

head of some rule of that program? In order to answer this question, let us consider the

program J :

a ← ¬b.
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and let S be a logic programming semantics. Now, let us suppose we want to infer

Sr(J). Hence, the first step, in order to infer Sr(J), is to split J into its components.

Since a dependents on b, but d does not dependent on a, [b] ≤P [a]. This means that J

has to be split into two components: J0 and J1. Remember that J0 will contain all the

clauses whose head is the atom b and J1 will contain all the clauses whose head is the

atom b. It is obvious that J0 is an empty component, but this is a problem because we

cannot apply Definition 10 in order to infer Sr(J). A simple way to avoid this problem

is to add the tautology b ← b to J . For instance, let K be the program:

b ← b.

a ← ¬b.

Observe that like J , K has also two components; however, none of them is empty. This

idea will suggest a natural generalization of Definition 10 in order to infer Sr for any

logic program.

Definition 11 Let P be a normal logic program. We define

Sr(P ) = Sr(P ∪ {x ← x : x ∈ LP \HEAD(P )})

This completes our construction of relevant semantics. Consider again the program J :

a ← ¬b.

Since b does not occur in the head of some rule, we add the tautology b ← b, obtaining

K:

b ← b.

a ← ¬b.

Now we can proceed as before to obtain our intended semantics. MM∗r

(K) =

Stable∗
r

(K) = Pstable∗
r

(K) = {{a}}. Hence, MM∗r

(J) = Stable∗
r

(J) =

Pstable∗
r

(J) = {{a}}.

Observe that the logic programming semantics induced by Definition 11 are differ-

ent w.r.t. the logic programming semantics induced by Definition 9. For instance, the

following lemmas formalize the differences w.r.t. some semantics.

Lemma 4 Stable∗ is different from Stable∗
r

. Pstable∗ is different from Pstable∗
r

.
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Proof: Program E shows that Stable∗ is different from Stable∗
r

. Program F shows

that Pstable∗ is different from Pstable∗
r

.

Lemma 5 Stable∗
r

, Pstable∗
r

, and MM∗r

are 3 different semantics.

Proof:

Consider Program L:

a ← ¬b.

b ← ¬a.

p ← ¬b.

p ← ¬p.

b ← ¬p.

Then Stable∗
r

(L) = {{p, a}}. However Pstable∗
r

(L) = {{p, a}, {p, b}}. Hence

Stable∗
r

is different from Ptable∗
r

. This example also show that Stable∗
r

is different

from MM∗r

.

Consider Program R:

x ← ¬y.

y ← ¬z.

z ← ¬x.

x ← ¬u.

d ← ¬z.

u ← ¬d.

This example shows that Stable∗
r

is different from MM∗r

. Stable∗
r

(R) = {{x, y, d}}.

However {u, x, z} ∈ MM∗r

(R). This example also shows that Pstable∗
r

is different

from MM∗r

, since Pstable∗
r

(R) = Stable∗
r

(R).

As we commented in Section 2.1, the stratified logic programs define a class of

logic programs which have interesting properties w.r.t. the search for nice declarative

semantics. In particular we can observe that Stable, Pstable, MM∗r

, as well as all

our refined versions for Stable and Pstable agree with respect to the class of stratified

programs.
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Lemma 6 Let P be a stratified program. Hence,

Stable(P ) = Pstable(P ) = MM∗r

(P ) = Stable∗
r

(P ) = Pstable∗
r

(P )

Proof:

The proof is by induction on the number of components of P e.g., P = P0 ∪ · · · ∪
Pn.

Base Step By definition of stratified program, one can see that if P = P0, then P is

a definite program i.e. P does not have negative literals. Hence, MM(P ) =

Stable(P ) = Pstable(P ). Since MM(P ) is always defined, Stable(P ) =

Pstable(P ) = MM∗r

(P ) = Stable∗
r

(P ) = Pstable∗
r

(P ).

Inductive Step Now, let us suppose that P has n components.

Let us suppose that it is true that Stable(Pk) = Pstable(Pk) = MM∗r

(Pk) =

Stable∗
r

(Pk) = Pstable∗
r

(Pk) for some k < n.

By definition, Sr(P ) =
⋃

M∈S(P0)
{M} ∗ Sr(R(P \ P0, 〈M ;LP0 \M〉))

Observe that since P is a stratified program, hence for any M ∈ Sr(Pk), R(Pk+1\
Pk, 〈M ;LPk+1 \M〉) is a definite program. Therefore by inductive hypothesis,

Stable(P ) = Pstable(P ) = MM∗r

(P ) = Stable∗
r

(P ) = Pstable∗
r

(P ).

As final result of this subsection, we can introduce the following lemma whose

proof is immediate by Lemma 1.

Lemma 7 For every semantics S and program P , S∗
r

is defined.

This lemma insures that any logic programming semantics induced by Definition 9

and Definition 11 will be defined for any logic program.

Before to finish this section, we want to remember to the reader that there is an

important preprocessing that must be applied to any logic program in order to apply

the semantics introduced in this section. In Remark 3, we pointed out that we have

assumed that our programs do not include non-trivial tautologies. This preprocessing

has an important role in logic programming semantics as MM∗r

. For instance, let P

be the following logic program:
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a ← ¬b.

b ← a,¬a. (non-trivial tautology)

Observe that the atom b is implied by the formula a ∧ ¬a; hence, one can expect

not to infer the atom b from P . However, one can see that P has a minimal model

which contains the atom b. This means that MM∗r

= {{a, b}}; therefore, MM∗r

is

inferring an unexpect model. It is worth to comment that this problem does not happen

with semantics as Stable and Pstable — these semantics only infer from P the model

{a}.

In order to avoid some kind of unexpect models, one can remove from P any non-

trivial tautology. Observe that the clause b ← a,¬a is a non-trivial tautology. Hence

by removing this non-trivial tautology from P , we can get the logic program P ′:

a ← ¬b.

In this case like the semantics Stable and Pstable, MM∗r

only infers the model {a}
from P ′.

It worth to comment that the constructive definition of relevant semantics presented

in Definition 11 only considers trivial tautologies in order to insure that any atom of a

given program appears in the head of some clause.

4 Construction of abstract argumentation semantics

In the previous section, we have defined a recursive general schema for constructing

new logic programming semantics. As we mentioned in the introduction, we are inter-

ested in constructing new abstract argumentation semantics based on logic program-

ming semantics. In this section, we will show how to take advantages of our approach

for building new abstract argumentation semantics.

It is quite obvious that in order to regard an argumentation framework as a logic

program, we require a function mapping which constructs a logic program from an

argumentation framework. Hence letM be a mapping from the class of argumentation

frameworks (AFAR) to the class of logic programs (ProgL). M assigns to every

argumentation framework AF a logic program P . We are going to denote the image

of AF under M as PAF .
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Now, we will define how any logic programming semantics can induce a candidate

abstract argumentation semantics under a particular mapping.

Definition 12 Let AF = 〈AR, attacks〉 be an argumentation framework and S be

any logic programming semantics. The semantics S induces the candidate abstract

argumentation semantics SMArg as follows:

SMArg(AF ) = f(S∗
r

(PAF ))

such that f is a mapping from 2LPAF to 2AR.

Observe that for each model of PAF the mapping f is defining an extension for the

argumentation framework AF . Informally speaking we can say that SMArg is the can-

didate abstract argumentation semantics induced by the logic programming semantics

S under the mapping M.

The following lemma is immediate thanks to Lemma 1 and Lemma 7.

Lemma 8 For every logic programming semantics S, the candidate abstract argumen-

tation semantics SMArg is always defined

In order to illustrate our general schema for constructing abstract argumentation

semantics, let us introduce a simple mapping to regard an argumentation framework as

a normal logic program. In this mapping, we use the predicate d(x), where the intended

meaning of d(x) is: “the argument x is defeated”. This means that the argument x is

attacked by an acceptable argument.

Definition 13 Let AF = 〈AR, attacks〉 be an argumentation framework. We define:

PAF =
⋃

a∈AR

(
⋃

b:(b,a)∈attacks

d(a) ← ¬d(b))

The only condition which is captured by this program is that any argument will be

defeated when anyone of its adversaries is not defeated. Observe that essentially PAF

is capturing the basic principle of conflict-freeness (see Definition 5); hence, one can

insure that any candidate abstract argumentation semantics induced by PAF at least will

satisfy the principle of conflict-freeness. It worth to comment that according to Baroni
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and Giacomin in [3], the principle of conflict-freeness is the minimal requirement to be

satisfied by any argumentation semantics.

In order to illustrate the mapping PAF , let AF be the argumentation framework of

Figure 2. We can see that PAF is:

d(a) ← ¬d(b). d(d) ← ¬d(a). d(e) ← ¬d(d).

d(b) ← ¬d(c). d(d) ← ¬d(b).

d(c) ← ¬d(a). d(d) ← ¬d(c).

Two relevant properties of the mapping PAF are:

1. The stable models of PAF characterize the stable argumentation semantics (Def-

inition 8) (see [13, 20] for details) and

2. by Theorem 17 of [13] one can see that the well founded model [14] of PAF

characterizes the grounded semantics defined in [13] (see [20] for details).

In order to construct our abstract argumentation semantics induced by any logic

programming semantics and the mapping PAF . Let us point out thatLPAF = {d(a)|a ∈
AR}. Hence given any logic programming semantics S and an argumentation frame-

work AF :

f(S(PAF )) =
⋃

M∈S(PAF )

{a|d(a) ∈ LPAF \M}

We have already commented that the stable models of PAF characterize the stable

extensions of AF . For instance, we can see that the program PAF of the argumentation

framework of Figure 2 has no stable models, this means that this argumentation frame-

work has no stable extensions. However, let us consider the argumentation semantics

Stable∗
r

Arg w.r.t. AF .

First of all, we have to compute the semantics Stable∗
r

w.r.t. PAF . It is not difficult

to see that

Stable∗
r

(PAF ) = {{d(a), d(b), d(d)}, {d(b), d(c), d(d)}, {d(a), d(c), d(d)}}

Then we can see that

f(Stable∗
r

(PAF )) = {{a, e}, {b, e}, {c, e}}
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This means that

Stable∗
r

Arg(AF ) = {{a, e}, {b, e}, {c, e}}

Observe that the extensions suggested by the argumentation semantics Stable∗
r

Arg

are the same to the extensions suggested by the semantics CF2 introduced by P. Baroni

et al, in [4]. In fact MM∗r

Arg and Pstable∗
r

Arg also coincide with CF2 in this example.

a b c a b c

a) b)

a b

x

z d

u

y

r

s

j a b

a b c

Figure 5: Graph representation of the argumentation framework AF =

〈{x, y, z, u, d}, {(x, z), (z, y), (y, x), (u, x), (z, d), (d, u)}〉.

Now let us consider the argumentation framework of Figure 5. It is not difficult to

see that PAF w.r.t. the argumentation framework of Figure 5 is:

d(x) ← ¬d(y).

d(y) ← ¬d(z).

d(z) ← ¬d(x).

d(x) ← ¬d(u).

d(d) ← ¬d(z).

d(u) ← ¬d(d).

Observe that PAF is exactly (modulo notation) the program R which appears in the

proof of Lemma 5. Since Stable∗
r

(PAF ) = {{d(x), d(y), d(d)}}, therefore

Stable∗
r

Arg(AF ) = {{u, z}}. We can see that Stable∗
r

Arg coincides with the preferred

semantics, the stable argumentation semantics and Pstable∗
r

Arg in this example. Now

let us compute the argumentation semantics MM∗r

Arg . Since MM∗r

(PAF ) =

{{d(y), d(z), d(u)}, {d(x), d(z), d(d)}, {d(u), d(x), d(z)}, {d(x), d(y), d(d)}}
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then MM∗r

Arg(AF ) = {{x, d}, {y, u}, {y, d}, {z, u}}. Notice that MM∗r

Arg coincides

again with the argumentation semantics CF2.

We want to remark that the argumentation semantics MM∗r

Arg is really close to the

argumentation semantics CF2. Let us consider another example where MM∗r

Arg and

CF2 coincide. Let AF be the argumentation framework of Figure 64.

a b c a b c

a) b)

a b

x

z d

u

y

r

s

j a b

a b c

Figure 6: Graph representation of the argumentation framework AF =

〈{r, s, j, a, b}, {(r, j), (j, s), (s, r), (j, a), (a, b), (b, a)}〉.

In order to compute MM∗r

Arg(AF ), first of all we have to map AF to PAF :

d(r) ← ¬d(s).

d(s) ← ¬d(j).

d(j) ← ¬d(r).

d(a) ← ¬d(j).

d(a) ← ¬d(b).

d(b) ← ¬d(a).

As we can see, MM∗r

(PAF ) has five models which are:

{{d(r), d(s), d(a)}, {d(j), d(r), d(a)}, {d(j), d(r), d(b)},
{d(s), d(j), d(a)}, {d(s), d(j), d(b)}}

This means that:

MM∗r

Arg(AF ) = {{j, b}, {s, b}, {s, a}, {r, b}, {r, a}}

As commented before, MM∗r

Arg(AF ) = CF2(AF ).

4This argumentation framework was introduced in [4].
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5 Related work

As far this paper, we have commented that our approach for building new argumen-

tation semantics is close related to Baroni et al’s approach presented in [4]. In this

section, we will point out some of the main common points between our approach and

Baroni et al’s approach.

As we know, Baroni et al’s approach is based on a solid concept in graph theory

which is a strongly connected component (SCC)5. Based on the fact that any argumen-

tation framework AF can be represented by a directed graph, Baroni et al’s approach

consider the strongly connected components of AF in order to introduce a recursive

definition for argumentation semantics. The behavior of the argumentation semantics

will be mainly influenced by

• a basic argumentation semantics-specific function. This function is a pattern of

inference of arguments e.g., conflict-free sets, admissible sets, etc.

In §2, we saw that any logic program induces a notion of dependency between

atoms from LP . In fact, we saw that this dependency can define classes of atoms

such that theses classes of atoms form a partial order which encodes the dependencies

existing among the atoms. By considering theses classes of atoms, one can break any

logic program into a disjoint union of subprograms. Based on this disjoint union of

subprograms, we introduce a recursive definition for logic programming semantics.

In §4, we saw that by considering an argumentation framework as a logic program,

one can use the recursive definition for logic programming semantics presented in §3

in order to induce candidate argumentation semantics. The behavior of the induce

candidate argumentation semantics will be mainly influenced by two variables:

• the representation of an argumentation framework into a logic program and

• the basic logic programming semantics function e.g., the minimal model seman-

tics, the stable model semantics, the pstable semantics, etc.

Unlike to Baroni et al’s approach which always starts with the same representa-

tion of an argumentation framework into a directed graph, our approach allows to use
5A directed graph is called strongly connected if there is a path from each vertex in the graph to ev-

ery other vertex. The strongly connected components (SCC) of a directed graph are its maximal strongly

connected subgraphs [10].
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different representations of an argumentation framework in terms of logic programs.

These different representations could induce different dependencies of atoms of the

given logic program; therefore we can break a logic program into different disjoint

subprograms. This means that we can break an argumentation framework into differ-

ent components.

Even though one can consider different representations of an argumentation frame-

work in terms of logic programs, we can consider single mappings of an argumentation

framework into a logic program in order to split an argumentation framework similarly

as it is done by Baroni et al’s approach. For instance, let us consider the argumentation

framework AF of Figure 2. Observe that the graph representation of AF has three

strongly connected components:

SCC0
AF = {a, b, c}

SCC1
AF = {d}

SCC2
AF = {e}

By considering the relation of attack between sets of arguments and the so called di-

rectionality principle [4], Baroni et al’s approach defines a partial order between theses

strongly connected components (let us denote this relation as ≤SCC). ≤SCC defines

the following relations between the above strongly connected components:

{a, b, c} ≤SCC {d} ≤SCC {e} (3)

Essentially, these relations capture that SCC0
AF attacks SCC1

AF and SCC1
AF attacks

SCC2
AF . Since there is not a strongly connected component that attacks SCC0

AF ,

SCC0
AF is called initial.

Now, let us consider the representation of AF in terms of normal logic programs

according to the mapping presented in Definition 13. We can see that PAF is:

d(a) ← ¬d(b). d(d) ← ¬d(a). d(e) ← ¬d(d).

d(b) ← ¬d(c). d(d) ← ¬d(b).

d(c) ← ¬d(a). d(d) ← ¬d(c).

Observe that this program induces the following classes of atoms:

31



[d(a)] = {d(a), d(b), d(c)} [d(d)] = {d(d)} [d(e)] = {d(e)}
[d(b)] = {d(a), d(b), d(c)}
[d(c)] = {d(a), d(b), d(c)}

such that

d(a) is of order 0 d(d) is order 1 d(e) is of order 2

d(b) is of order 0

d(c) is of order 0

This means that we have the following relations of atoms:

{d(a), d(b), d(c)} ≤p {d(d)} ≤p {d(e)} (4)

Observe that we have very similar relations between the partial orders: ≤SCC (3)

and ≤p (4). In Baroni et al’s approach, the partial order ≤SCC is used for splitting an

argumentation framework in order to define a recursive construction of argumentation

semantics. In our approach, the partial order≤p is used for splitting a logic program in

order to define a recursive construction of logic programming semantics. If the given

logic program captures an argumentation framework AF (as it is done by PAF ), ≤p

will support the construction of an recursive construction of argumentation semantics

as well.

In Baroni et al’s approach, once an argumentation framework is partitioned into its

strongly connected components and the relation between them is defined, the possible

choices for extensions within each initial strongly connected component are determined

using a basic argumentation semantics-specific function e.g., conflict-free sets, admis-

sible sets, etc., which returns the extensions of the argumentation frameworks consist-

ing of a single strongly connected components. For instance, let us consider the initial

strongly connected component (SCC0
AF = {a, b, c}) of the argumentation framework

AF of Figure 2. SCC0
AF will define the following subargumentation framework:

AFSCC0
AF

= 〈{a, b, c}, {(a, c), (c, b), (b, a)}〉

Now let us consider as basic argumentation semantics-specific function, the function

which returns all the possible conflict-free sets (CF) of an argumentation framework.

Hence we can see that CF(AFSCC0
AF

) = {{a}, {b}, {c}}.
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Once a basic argumentation semantics-specific function Sarg was applied to all the

initial strongly connected component of an argumentation framework, for each choice

determined by Sarg

• the nodes directly attacked within subsequent strongly connected components

are suppressed and

• a distinction between defended and undefended arguments is taken into account.

This changes are done according to the reinstatement principle. This basic principle

prescribes that the arguments defeated by an extension E play no role in the selection

of the arguments to be included in E [4].

In our approach, once the partial order≤p is defined in terms of LPAF
, the program

PAF is split into its components. For instance, PAF is splint as follows:

P0 P1 P2

d(a) ← ¬d(b). d(d) ← ¬d(a). d(e) ← ¬d(d).

d(b) ← ¬d(c). d(d) ← ¬d(b).

d(c) ← ¬d(a). d(d) ← ¬d(c).

Observe that P0 can be constructed from AFSCC0
AF

. In fact P0 = PAF
SCC0

AF

. Let

us consider the minimal model semantics MM as basic logic programming seman-

tics function in order to illustrate the relations of our approach with Baroni et al’s

approach. The basic logic programming semantics function is applied recursively as it

is presented in Definition 10. Now observe that

MM(P0) = {{d(a), d(b)}, {d(b), d(c)}, {d(a), d(c)}}

thereforeF(MM(P0)) = {{a}, {b}, {c}}. This means thatF(MM(P0)) = CF(AFSCC0
AF

).

Like Baroni et al’s approach which reduces recursively the original argumentation

framework by considering the results of the basic argumentation semantics-specific

function, our approach applies a reduction to a logic program.

As we can see there are several key points that we can identified in common be-

tween Baroni et al’s approach and our approach, some them are:

1. Both approach consider an partial order for splitting the representation of an

argumentation framework i.e. graph representation or logic program.

33



2. Both approach use a recursive definition for constructing the desired semantics

(argumentation semantics / logic programming semantics).

A deep analysis is required in order to understand more about the relation between

Baroni et al’s approach and our approach. In fact some interesting questions that we are

going to consider in our future work are: What is the class of argumentation semantics

that can be characterized in both approaches? What are the logic programming seman-

tics that are more useful for building argumentation semantics? Which mappings of an

argumentation framework into a logic program defines useful argumentation seman-

tics?

With respect to the above questions, we know, by the moment, that the mapping of

Definition 13 is a practical mapping that by considering the logic programming MM∗r

is able to suggest an argumentation semantics similar to CF2. It is worth to comment

that CF2 is one of the most accepted argumentation semantics builded under the Baroni

et al’s approach [3].

As final comment, we want to comment that any of the candidate argumentation

semantics Sarg suggested under our approach can be explored their non-monotonic

properties in terms of the logic programming semantics which induces Sarg . This is

a relevant feature of our approach since many of the new argumentation semantics are

only motivated by particular examples; hence, the identification of the non-monotonic

reasoning properties, that a particular argumentation semantics satisfies, takes rele-

vance in order to support the well-behaviour of an argumentation semantics.

6 Conclusions

Authors as Baroni et al, have suggested that in order to overcome Dung’s abstract

argumentation semantics problems, it is necessary to define flexible argumentation se-

mantics which are not necessarily based on admissible sets [4]. For instance, Baroni

et al, have pointed out that in any admissibility-based semantics odd-length cycles ad-

mit only the empty extension. Based on the fact that logic programming offers a wide

liberty for modeling knowledge, we can construct abstract argumentation semantics

by specifying the basic conditions that our new argumentation semantics must satisfy.

For instance, the mapping introduced in Definition 13 only captures the restriction that
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any argument will be defeated when anyone of its adversaries is not defeated. This

single mapping is enough for characterizing argumentation semantics as the grounded

semantics and the stable argumentation semantics. In fact, we also defined the abstract

argumentation semantics MM∗r

Arg which is similar to CF2 — the semantics MM∗r

Arg is

constructed under the mapping of Definition 13 and the logic programming semantics

MM∗r

.

By considering the idea that argumentation semantics can be viewed as a special

form of logic programming semantics with negation as failure, we introduce a general

recursive approach for defining a new family of logic programming semantics which

induce a new family of abstract argumentation semantics.

We have in mind that our new logic programming semantics satisfy the following

suitable properties:

1. They should be always defined.

2. They should satisfy the relevance property.

3. They should agree with stable models semantics for the class of stratified pro-

grams.

4. They should be useful to model argumentation problems.

To study abstract argumentation semantics in terms of logic programming seman-

tics is not new. In fact, since Dung’s approach was introduced in [13], Dung proved

that the grounded semantics can be characterized by the well-founded semantics (WFS)

[14] and the stable argumentation semantics can be characterized by the stable model

semantics [15]. This result has at least two main implications:

1. It defines a general method for generating metainterpreters for argumentation

systems and

2. it defines a general method for studying abstract argumentation semantics’ prop-

erties in terms of logic programming semantics’ properties.

Although the study of abstract argumentation semantics in terms of logic program-

ming semantics has important implications, the only semantics that were studied be-

fore 2006 were the grounded semantics and the stable semantics. Nowadays, we know
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that the preferred semantics can be characterized in terms of minimal models [22, 23],

pstable models [9] and stable models [23].

In the process of characterizing an abstract argumentation semantics in terms of

logic programming semantics, we have seen that an abstract argumentation semantics

can be extended by considering logic programming semantics in order to overcome

some of their limitations. For instance in [24], we saw that the grounded semantics

can be extended based on WFS’s extensions in order to overcome some their problems

w.r.t. emptiness. An interesting property of the study done in [24] is that rewriting

systems can be used for defining a declarative calculus of argumentation frameworks

which allow to describe the interactions of arguments.

To explore the properties of the family of the abstract argumentation semantics

which are induced by our approach is an issue for argumentation research. In fact, it is

part of our future research. It is worth mentioning that thanks to the properties that the

logic programming semantics hold, we can study the argumentation semantics that are

constructed under these logic programming semantics e.g., Lemma 8.
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