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Abstract. Given an argumentation frameworkAF , we present a normal pro-
gram ΨAF , such that the preferred extensions of AF correspond exactly with
the pstable models ofΨAF . Moreover, we motivate the notion of suitable codi-
fications for developing metainterpreters of argumentation theory based on logic
programming.

1 Introduction

We are interested in finding suitable translators that maps an argumentation framework
into a logic programming in the same line as the metainterpreter proposed by Dung
[5]. To find suitable translators for argumentation theory based on logic programming
is close related to find suitable codifications of an argumentation framework as logic
program. This is because there is a strong relationship between the codification and the
logic programming semantics which will be considered for characterizing the abstract
argumentation semantics.

Nowadays, logic programming and non-monotonic reasoning (NMR) are solid ar-
eas in AI. For instance, during the last two decades, one of the most successful logic
programming approaches has been Answer Set Programming (ASP). ASP is the realiza-
tion of much theoretical work on Non-monotonic Reasoning and Artificial Intelligence
applications. It represents a new paradigm for logic programming that allows, using the
concept ofnegation as failure, to handle problems with default knowledge and produce
non-monotonic reasoning [2].

It has recently been shown thatG′3 logic can be used to express interesting non-
monotonic semantics [11]. More generally, two major classes of logics that can be suc-
cessfully used to model nonmonotonic reasoning are (constructive) intermediate logics
and paraconsistent logics [12, 10, 11]. The most well known semantics for NMR is the
stable semantics [6]. This semantics provides a fairly general framework for represent-
ing and reasoning with incomplete information. There are programs such asP0:
a ← ¬b.
a ← b.
b ← a:
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that do not have stable models. However each atom in{a, b} is a classical consequence
of P0 and hence this could be considered as an intended model of our program. This
is not exactly a problem of the stable semantics but sometimes we have applications
where we need a behavior closer to classical logic such as in the theory of argumenta-
tion (as we will soon see). The pstable semantics provides a solution to this situation.
This semantics is originally constructed based on paraconsistent logics but a remark-
able result is that it can expressed using only classical logic. Our paper follows this
alternative simpler presentation.

In this paper we show how to model an abstract argumentation frameworkAF in
terms of NMR. We show in particular the following interesting result. Given an argu-
mentation frameworkAF , we present a normal programΨAF , such that the preferred
extensions of AF correspond exactly with the pstable models ofΨAF . Moreover, we
motivate the notion of suitable codifications for developing metainterpreters of argu-
mentation theory based on logic programming.

The rest of the paper is divided as follows: In §2, it is presented some basic defi-
nitions of logic programming and pstable semantics. §3 presents the notion of suitable
codifications that is the motivation of our work. §4 presents our results. In §5 we present
an alternative argumentation semantics to deal with some problems reported about the
preferred argumentation semantics. We only present some interesting examples. Finally
in the last section, we present our conclusions.

2 Background

In this section, we define some basic concepts of logic programming and Pstable mod-
els. We assume familiarity with basic concepts in classic logic and in semantics of logic
programse.g.,interpretation, model,etc. A good introductory treatment of these con-
cepts can be found in [2, 7].

2.1 Logic programs: Syntax

A signatureL is a finite set of elements that we call atoms. A literal is an atom,a, or the
negation of an atom¬a. Given a set of atoms{a1, . . . , an}, we write¬{a1, . . . , an}
to denote the set of literals{¬a1, . . . ,¬an}. A normal clause is of the form:a0 ←
a1, . . . , aj ,¬aj+1, . . . ,¬an, whereai is an atom,0 ≤ i ≤ n. Whenn = 0 the normal
clause is an abbreviation of the facta0. A normal program is a finite set of normal
clauses. Sometimes, we denote a clauseC by a ← B+,¬B−, whereB+ contains all
the positive body literals andB− contains all the negative body literals. We also use
body(C) to denoteB+,¬B−. WhenB− = ∅, the clauseC is called definite clause. A
definite program is a finite set of definite clauses. We denote byLP the signature ofP ,
i.e. the set of atoms that occurs in P. Given a signatureL, we writeProgL to denote the
set of all the programs defined overL.

2.2 NMR: the Pstable and stable semantics

First to definite pstable semantics (introduced in [11]), we define some basic concepts.
Logical inference in classic logic is denoted by`. Given a set of proposition symbolsS



and a theory (a set of well-formed formulae)Γ , if Γ ` S if and only if ∀s ∈ S Γ ` s.
When we treat a logic program as a theory, each negative literal¬a is is regarded as the
standard negation operator in classic logic. Given a normal program P, ifM ⊆ LP , we
write P ° M when:P ` M andM is a classical 2-valued model ofP (i.e. atoms in
M are set to true, and atoms not inM to false; the set of atoms is a classical model of
P if the induced interpretation evaluatesP to true).

The Pstable semantics is defined in terms of a single reduction which is defined as
follows:

Definition 1. [11] Let P be a normal program and M a set of literals. We define

RED(P, M) := {l ← B+,¬(B− ∩M)|l ← B+,¬B− ∈ P}
Let us consider the set of atomsM1 := {a, b} and the following normal programP1:

a ← ¬ b,¬ c.
a ← b.
b ← a.

We can see thatRED(P, M) is:
a ← ¬b.
a ← b.
b ← a.

By considering the reductionRED, it is defined the semanticspstablefor normal
programs.

Definition 2. [11] Let P be a normal program andM a set of atoms. We say thatM
is a pstable model ofP if RED(P,M) ° M . We use Pstable to denote the semantics
operator of pstable models.

Let us consider againM1 andP1 in order to illustrate the definition. We want to
verify whetherM1 is a pstable model ofP1. First, we can see thatM1 is a model ofP1,
i.e. ∀ C ∈ P1, M1 evaluatesC to true. Now, we have to prove each atom ofM1 from
RED(P1,M1) by using classical inference,i.e.RED(P1, M1) ` M1. Let us consider
the proof of the atoma, which belongs toM1, from RED(P1, M1).

1. (a ∨ b) → ((b → a) → a) Tautology
2.¬b → a Premise fromRED(P1, M1)
3. a ∨ b From 2 by logical equivalency
4. (b → a) → a) From 1 and 3 by Modus Ponens
5. b → a Premise fromRED(P1, M1)
6. a From 4 and 5 by Modus Ponens

Remember that the formula¬b → a corresponds to the normal clausea ← ¬b which
belongs to the programRED(P1,M1). The proof for the atomb, which also belongs
to M1, is similar. Then we can conclude thatRED(P1, M1) ° M1. Hence,M1 is a
pstable modelof P1.

The well known stable semantics (see [2]) is defined as follows. First, for any theory
T , we writePos(T ) to denote the positive formulas ofT .



Definition 3. Let P be a normal program andM a set of atoms. ThenM is a stable
model ofP if M is a minimal model ofPos(RED(P, M)).

2.3 Argumentation theory

Now, we define some basic concepts of Dung’s argumentation approach. The first one is
an argumentation framework. An argumentation framework captures the relationships
between the arguments (All the definitions of this subsection were taken from the sem-
inal paper [5]).

Definition 4. An argumentation framework is a pairAF := 〈AR, attacks〉, whereAR
is a set of arguments, andattacksis a binary relation onAR, i.e. attacks⊆ AR×AR.

a b c a b c

a) b)

a b

Fig. 1. A single argumentation framework

Any argumentation framework could be regarded as a directed graph. For instance,
if AF := 〈{a, b, c}, {(a, b), (b, c)}〉, thenAF is represented as in Fig. 1. We say that
a attacks b(or b is attacked bya) if attacks(a, b) holds. Similarly, we say that a setS
of arguments attacksb (or b is attacked byS) if b is attacked by an argument inS. For
instance in Fig. 1,{a} attacksb.

Definition 5. A set S of arguments is said to be conflict-free if there are no arguments
A, B in S such that A attacks B.

Dung defined his semantics based on the basic concept ofadmissible sets.

Definition 6. (1) An argumentA ∈ AR is acceptable with respect to a set S of argu-
ments if and only if for each argumentB ∈ AR: If B attacks A then B is attacked by S.
(2) A conflict-free set of arguments S is admissible if and only if each argument in S is
acceptable w.r.t. S.

For instance, the argumentation framework of Fig. 1 has two admissible sets:{a}
and{a, c}. The (credulous) semantics of an argumentation framework is defined by the
notion of preferred extensions.

Definition 7. A preferred extension of an argumentation frameworkAF is a maximal
(w.r.t. inclusion) admissible set ofAF .

The only preferred extension of the argumentation framework of Fig. 1 is{a, c}.
The grounded semantics is defined in terms of acharacteristic function.



Definition 8. The characteristic function, denoted byFAF , of an argumentation frame-
workAF = 〈AR, attacks〉 is defined as follows:

FAF : 2AR → 2AR

FAF (S) = {A| A is acceptable w.r.t. S}
Definition 9. The grounded extension of an argumentation framework AF, denoted by
GEAF , is the least fixed point ofFAF

In order to illustrate the definition, let us consider the argumentation framework of
Fig. 1. Then

F 0
AF (∅) := {a},

F 1
AF (F 0

AF (∅)) := {a, c},
F 2

AF (F 1
AF (F 0

AF (∅))) := {a, c},

sinceF 1
AF (F 0

AF (∅)) = F 2
AF (F 1

AF (F 0
AF (∅))), thenGEAF = {a, c}. Therefore the

grounded extension ofAF is {a, c}.
Dung [5] defined some important conceptsw.r.t. the relationship between arguments

when they are taking part of a sequence of attacks.

– An argument Bindirectly attacksA if there exists a finite sequenceA0, . . . , A2n+1

such that 1)A = A0 andB = A2n+1, and 2) for eachi, 0 ≤ i ≤ 2n, Ai+1 attacks
Ai.

– An argument Bindirectly defendsA if there exists a finite sequenceA0, . . . , A2n

such that 1)A = A0 andB = A2n and 2) for each i,0 ≤ i ≤ 2n, Ai+1 attacksAi.
– An argument B is said to becontroversial w.r.t.A if B indirectly attacks A and

indirectly defeats A.
– An argument iscontroversialif it is controversialw.r.t. some argument A.

In [5], it was suggested a general method for generating metainterpreters in terms of
logic programming for argumentation systems. This is the first approach which regards
an argumentation framework as a logic program. This method is divided in two units:
Argument Generation Unit (AGU), and Argument Processing Unit (APU). The AGU
is basically the representation of the argumentation framework’s attacks and the APU
consists of two clauses:

(C1)acc(X) ← ¬d(X)
(C2)d(X) ← attack(Y,X), acc(Y )

The first one (C1) suggests that the argumentX is acceptable if it is not defeated
and the second one (C2) suggests that an argument is defeated if it is attacked by an
acceptable argument. Dung uses the predicatedefeatinstead of the predicated. We will
use the predicated(X) for denoting that “X is a defeated argument”.

Definition 10. Given an argumentation frameworkAF = 〈AR, attacks〉, PAF de-
notes the logic program defined byPAF = APU + AGU whereAPU = {C1, C2}
and

AGU = {attacks(A,B) ← |(A,B) ∈ attacks}



For each extensionE of AF (namely a set of arguments), m(E) is defined as follows:
m(E) = AGU ∪ {acc(A)|A ∈ E}

∪ {d(B)|B is attacked by some A ∈ E}

Theorem 1. [5] Let AF be an argumentation framework and E be an extension of AF3.
Then

1. E is a stable extension of AF if and only ifm(E) is a stable model of ofPAF

2. E is a grounded extension of AF if and only ifm(E) ∪ {¬d(A)|A ∈ E} is the
well-founded model ofPAF

3 Suitable codifications

We are interested in finding suitable translators that maps an argumentation framework
into a logic programming in the same line as the metainterpreter proposed by Dung. To
find suitable translators for argumentation theory based on logic programming is close
related to find suitable codifications of an argumentation framework as logic program.
This is because there is a strong relationship between the codification and the logic
programming semantics which will be considered for characterizing the abstract argu-
mentation semantics. For instance, Dung characterized the grounded semantics with
WFSand the stable semantics with answer set models (see Theorem 1).

Now, what is a suitable codification for generating translators for argumentation
theory? Based on the factthe grounded semanticsandthe preferred semanticsare the
main semantics for the argumentation community [13, 1], one can impose that a suitable
codification at least must be able to characterize these semantics. Moreover, since some
authors have been pointed out that these semantics have some drawbacks [13, 4, 3], it is
important that a suitable codification must allow to define extensions of these semantics.

Given an argumentation frameworkAF := 〈AR, attacks〉 and a logic programP ,
we will say thatP is a suitable codification ofAF if and only if:

1. there is a logic programming semanticsSEM such thatSEM(P)characterizes the
grounded semantics ofAF and

2. there is a logic programming semanticsSEMsuch that SEM(P)characterizes the
preferred semantics.

It is worth mentioning that when we define a suitable codification we are defining a
common point between tow kinds of reasonings (skeptical and credulous). In fact, the
only switch that it is required for developing a skeptical reasoning or a credulous redu-
lus in a metainterpreters for argumentation theory is to change the logic programming
semantics. Also, a suitable codification could be a useful tool for defining intermediate
argumentation semantics between the grounded semantics and the preferred semantics.
This means that it is possible to define an intermediate reasoning between the grounded
semantics and the preferred semantics.

3 Dung presented resultsw.r.t. another semantics, but we just cite the resultsw.r.t. stable exten-
sions and grounded extensions



The problem of characterizing abstract argumentation semantics does not only de-
pend of the codification but also in the logic programming semantics. In fact, to find a
suitable logic programming semantic is as important as to find a suitable codification
for characterizing a particular abstract argumentation semantics.

By Theorem 1, we have already seen that by usingPAF , WFSis a suitable logic pro-
gramming semantics for characterizing the grounded semantics. However,PAF could
not be considered as a suitable codification because there is not a well known logic pro-
gramming semantics which could characterize the preferred semantics by usingPAF .

To the best of our knowledge, the only logic programming semantics that has pro-
posed for characterizing the preferred semantic is based on minimal models [8]. In fact
this approach was used for proposing an extension of the preferred semantics [9]. How-
ever, we have to accept that by using minimal models, we lose an important property of
logic programming which is the use of negation by failure. For instance, let us consider
the single argumentation frameworkAF := 〈{a, b}, {(a, b)}〉 and its codification in
terms of normal programPAF which is (the process for getting this codification will be
described in the next section):

d(b) ← ¬d(a). d(b) ← >.

The intended meaning of the first clause is that the argumentb will be defeated if the
argumenta is not defeated and the last clause says that the argumentb is defeated. It is
clear the only minimal model of this program is{d(b)} which means that the argument
b is defeated. Therefore, by considering the complement of{d(b)}, it is deduced the
only preferred extension ofAF which is{a}. A natural extension of the programPAF

for inferring directly the acceptable arguments is to consider the following two clauses:

acc(a) ← ¬d(a). acc(b) ← ¬d(b).

Now, if we consider the minimal models of the program:

d(b) ← ¬d(a). d(b) ← >.
acc(a) ← ¬d(a). acc(b) ← ¬d(b).

we will get:{acc(a), d(b)} and{d(a), d(d)}. It quite obvious that the model{d(a), d(d)}
is not a desire model since this is suggesting that the empty set is a preferred extension.
However that is an error.

In the following sections, we will show thatpstable semanticsis able to characterize
the preferred semantics by using the suitable codification which was presented in [8].
Moreover, this semantics is able to usenegation by failurewithout being affected in the
characterization of the preferred semantics.

4 Mapping from argumentation frameworks to normal programs

In order to see an argumentation framework as a normal program, we start by defining a
mapping from an argumentation framework to a normal logic program. In our mapping,



we use the predicated(X), where the intended meaning ofd(X) is “X is a defeated
argument”. Also we use the predicateacc(X), where the intended meaning ofacc(X)
is “X is an acceptable argument”. We will denote byD(A) the set of arguments that
directly attacks the argumentA4. First, we define a transformation functionw.r.t. an
argument.

Definition 11. Let AF := 〈AR,Attacks〉 be an argumentation framework andA ∈
AR. We define the transformation functionΨ(A) as follows:

Ψ(A) := (
⋃

B∈D(A)

d(A) ← ¬d(B)) ∪ (
⋃

B∈D(A)

d(A) ←
∧

C∈D(B)

d(C))

In the programΨ(A), we can identify two parts for each argumentA ∈ AR:

1. The first part(
⋃

B∈D(A) d(A) ← ¬d(B)) suggests that the argumentA is defeated
when one of its adversaries is not defeated.

2. The last part(
⋃

B∈D(A) d(A) ← ∧
C∈D(B) d(C)) suggests that the argumentA is

defeated when all the arguments that defend5 A are defeated.

The direct generalization of the transformation functionΨ to an argumentation
framework is defined as follows:

Definition 12. Let AF := 〈AR, Attacks〉 be an argumentation framework. We define
its associated normal program as follows:

ΨAF :=
⋃

A∈AR

(Ψ(A) ∪ acc(A) ← ¬d(A).

Example 1.Let AF := 〈AR, attacks〉 be the argumentation framework of Fig. 1. We
can see thatD(a) = {}, D(b) = {a} andD(c) = {b}. Hence if we consider the normal
clausesw.r.t. argumenta, we obtain (in order to be syntactically clear we use uppercase
letters as variables and lowercase letters as constants):

(
⋃

B∈{} d(a) ← ¬d(B)) ∪ (
⋃

B∈{} d(a) ← ∧
C∈D(B) d(C)) ≡ ∅ ∧ ∅ ≡ ∅

It is quite obvious that since the argumenta has no attackers inAF , thend(a) /∈
HEAD(ΨAF ) becausea is directly an acceptable argument. Therefore any argument
which is attacked bya will be directly a defeated argumente.g.,argument b. The normal
clausesw.r.t. argumentb are:

(
⋃

B∈{a} d(b) ← ¬d(B)) ∪ (
⋃

B∈{a} d(b) ← ∧
C∈D(B) d(C)) ≡

(d(b) ← ¬d(a)) ∪ (d(b) ← ∧
C∈D(a) d(C)) ≡ (d(b) ← ¬d(a)) ∪ (d(b) ← >)

4 Given AF =〈AR, Attacks〉 andA ∈ AR. D(A) := {B|(B, A) ∈ Attacks}.
5 We say thatC defendsA if B attacksA andC attacksB.



It is important to remember that the conjunction of an empty set is the true value>,
thend(b) ← ∧

C∈D(a) d(C) ≡ d(b) ← >. The claused(b) ← > suggests that the
argumentb is defeated. Now, the normal clausesw.r.t. argumentc are

(
⋃

B∈{b} d(c) ← ¬d(B)) ∪ (
∧

B∈{b} d(c) ← ∧
C∈D(B) d(C)) ≡

(d(c) ← ¬d(b)) ∪ (d(c) ← d(a))

Then,ΨAF is:

d(b) ← ¬d(a). d(b) ← >. d(c) ← ¬d(b). d(c) ← d(a).
acc(a) ← ¬d(a). acc(b) ← ¬d(b). acc(c) ← ¬d(c).

In order to present our main results, we need the following definition. For each ex-
tensionE of AF (namely a set of arguments),tr(E) is defined as follows:

tr(E) = {acc(A)|A ∈ E}
∪ {d(B)|B is an argument and B 6∈ E}

One important result of our work is the following.

Theorem 2. Let AF be an argumentation framework andE a set of arguments. Then
E is a stable extension ofAF iff tr(E) is a stable model ofΨAF .

Proof (sketch).LetP beΨAF minus the positive rules of this translations. By the results
by Dung, one can immediately see thatE is a stable extensions ofAF iff tr(E) is a sta-
ble model ofP . Then one can verify thatPos(RED(P, M)) andPos(RED(ΨAF ,M))
have the same minimal models. The result is then immediate.

The main result of the paper is the following. Given an argumentation framework
AF , then the preferred extensions ofAF correspond exactly with the pstable models
of ΨAF . More formally:

Theorem 3. Let AF be an argumentation framework andE a set of arguments. Then
E is a preferred extension ofAF iff tr(E) is a pstable model ofΨAF .

Proof (sketch).Let tr1(E) = {d(A)|A is an argument and A 6∈ E}. Let P beΨAF

minus theacc rules of this translations. By the results by [8], one can immediately see
thatE is a stable extensions ofAF iff tr1(E) is a minimal model ofP . It is well known
that every pstable model is a minimal model of normal program (see [11]). Considering
the restricted syntax of this programs one can prove by contradiction that every minimal
model is also a pstable model. As a consequenceE is a stable extensions ofAF iff
tr1(E) is a pstable model ofP . Finally, by the simple negation as failure property of
pstable one can extend our final result fromtr1, P to tr, ΨAF respectively to obtain our
desired result, namely thatE is a preferred extension ofAF iff tr(E) is a pstable model
of ΨAF



5 Alternative Semantics

It is well-known that the preferred semantics has some problemsw.r.t. the treatment of
cycles [13, 3]. The authors in [13] underline:

“In fact, this seems one of the main unsolved problems in argumentation-based
semantics.”

Thus, it is an open research issue tofind an appropriate argumentation semantics
which could treat cycles without being affected by the length of the cycles. Based on the
fact thatΨAF and pstable models characterize the preferred semantics, we will present
an extension of the preferred semantics. This semantics is based on an alternative codi-
fication of an argumentation framework as a logic program. In particular, we will iden-
tify the arguments which do not belong to a cycles of attacks. These arguments will be
calledacyclic argument.

Definition 13. Let AF := 〈AR,Attacks〉 be an argumentation framework andA ∈
AR. A is an acyclic argument if there is not a sequence of attacksA0, . . . , An such that
1) A = A0 andA = An, and 2) for eachi, 0 ≤ i ≤ n− 1, Ai+1 attacksAi.

Essentially an acyclic argument is an argument which does not belong to a cycles of
attacks ofAF. By considering the concept of acyclic argument, it is defined a variation
of the normal programΨ(A) which makes a distinction between the arguments which
are acyclic and which are not.

Definition 14. Let AF := 〈AR,Attacks〉 be an argumentation framework andA ∈
AR. We define the transformation functionΦ(A) as follows:

If |D(A)| = 1 and A is an acyclic argument:

Φ(A) := (
⋃

B∈D(A)

d(A) ← ¬d(B))

otherwise

Φ(A) := (
⋃

B∈D(A)

d(A) ← ¬d(B)) ∪ (
⋃

B∈D(A)

d(A) ←
∧

C∈D(B)

d(C))

Notice that when an argument is acyclic and it has just one attack, it is omitted the
positive clause. The generalization of the transformation functionΦ to an argumentation
framework is defined as follows:

Definition 15. Let AF := 〈AR, Attacks〉 be an argumentation framework. We define
its associated normal program as follows:

ΦAF :=
⋃

A∈AR

Φ(A) ∪ acc(A) ← ¬d(A).

The extension of the preferred semantics will be defined as follows:



Definition 16. LetAF be an argumentation framework andE a set of arguments. Then
E is an acyclic preferred extension ofAF iff tr(E) is a pstable model ofΦAF .

In order to illustrate the acyclic preferred semantics, let us consider the following
examples:

Example 2.Let AF := 〈AR, attacks〉 be an argumentation framework, where AR :=
{a, b, c, d, e} and attacks :={(a, c), (c, b), (b, a), (a, d), (b, d), (c, d), (d, e)} (see Fig.
2). AF is a widely discussed argumentation framework [13, 3]. The interesting point
w.r.t. AF is that, intuitively, we can expect to gete as an accepted argument. However,
none of the Dung’s semantics could infere as an accepted argument. The grounded
extension is empty and the only preferred extension is empty.
Let us consider the normal programΦAF which is:

d(a) ← ¬d(b). d(a) ← d(c). acc(a) ← ¬d(a).
d(b) ← ¬d(c). d(b) ← d(a). acc(b) ← ¬d(b).
d(c) ← ¬d(a). d(c) ← d(b). acc(c) ← ¬d(c).
d(d) ← ¬d(a). d(d) ← d(b). acc(d) ← ¬d(d).
d(d) ← ¬d(b). d(d) ← d(c). acc(e) ← ¬d(e).
d(d) ← ¬d(c). d(d) ← d(a).
d(e) ← ¬d(d).

We can see thatΦAF has a pstable models which is{d(a), d(b), d(c), d(d), acc(e)}.
This means that the argumentation frameworkAF has anacyclic preferred extension
which is{e}.

Fig. 2. An argumentation framework with a three-length cycle.

In following example, it is presented another interesting argumentation framework
where there is a controversial argument.

Example 3.Let AF := 〈AR, attacks〉 be an argumentation framework, where AR :=
{a, b} and attacks :={(a, a), (a, b)} (see Fig. 3). We can observe that the argumenta
is a controversial argument. In this argumentation framework, we can expect to infer
the argumentb as an acceptable argument, since the only argument that attacksb is a,
but this argument is self defeated. Notice that the only preferred extension ofAF is the
empty set.
In this case the programΦAF is:



a b c a b c

a) b)

a b

Fig. 3. An argumentation framework with a self defeated argument.

d(a) ← ¬d(a). acc(a) ← ¬d(a).
d(a) ← d(a). acc(b) ← ¬d(b).
d(b) ← ¬d(a).

The only pstable models of this programΦAF is {acc(b), d(b)}. This means that the
acyclic preferred extension of the argumentation frameworkAF is {b}.

6 Conclusiones

Given an argumentation frameworkAF , we present a normal programΨAF , such that
the preferred extensions ofAF correspond exactly with the pstable models ofΨAF .
Our result is relevant for al least two reasons. First, it shows a very close relation be-
tween two well known NMR approaches. Second, it gives as a mechanism to compute
preferred extensions since it exists already an implementation of the pstable semantics.
We also presented an alternative argumentation semantics to deal with some problems
reported about the preferred argumentation semantics. We only present some interest-
ing examples and this is an open problem, namely how does behave our alternative
semantics?
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