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Abstract

In this work we define a class of non self–adjoint boundary value problems on finite networks
associated with Schrödinger operators. The novelty lies on the fact that on a part of the boundary
no data is prescribed, whereas in another part of the boundary both the values of the function as
of its normal derivative are given. We show that overdetermined partial boundary value problems
are the key for solving inverse boundary value problems on finite networks, since they provide
the theoretical foundations of the recovery algorithm. We analyze the uniqueness and existence
of solution of overdetermined partial boundary value problems through the non–singularity of the
partial Dirichlet–to–Neumann maps. These maps allow us to determine the value of the solution in
the part of the boundary where no data was prescribed. Afterwards, we execute a full conductance
recovery for spider networks.

Keywords: Boundary value problems, Inverse problem, Dirichlet–to–Neumann map, recovery of
conductances

1. Introduction

The Inverse Boundary Value Problem arised for the first time around 1950 due to Alberto
Calderón’s work. However, it was not until 1980 that he published “On an Inverse Boundary Value
Problem” [10] detailing his work on the subject. This problem appeared as a consequence of an
engineering problem on geophysical electrical prospection in which the objective is to deduce some
internal terrain properties from surface electrical measurements.

These works have motivated several developments in the inverse problem field until nowadays.
More recently, this problem has been also considered for medical purposes on Electrical Impedance
Tomography (EIT) [11], which is a medical imaging technique where an image containing visual
information of internal parts of the body is obtained from electrical measurements on the boundary.

The mathematical corresponding problem that Calderón proposed is whether it is possible
to determine the conductivity of a body by means of current and voltage measurements at its
boundary. This problem of recovering conductances from boundary or surface current and potential
measurements is a non–linear inverse problem and it is exponentially ill–posed [1, 17], since its
solution is highly sensitive to changes in the boundary data.

Since its appearance, Calderón’s Inverse Problems have been treated in many ways. For
instance, Sylvester and Uhlmann treated in [9, 18] the uniqueness of solution; Curtis, Ingerman and
Morrow have worked on critical circular planar networks conductivity reconstruction [12, 13, 14, 16];
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Borcea, Druskin, Guevara and Mamonov have gone into EIT problems in depth and their last works
on the subject treat numerical conductivity reconstruction [6, 7, 8].

Inverse boundary value problems have been considered both over the continuum and the
discrete fields. In this work we define a new class of boundary value problems on finite networks
associated with Schrödinger operators. The novelty lies on the fact that on a part of the boundary
no data is prescribed, whereas in another part of the boundary both the values of the function as
of its normal derivative are given. These problems are not self–adjoint, and hence we worry about
the study of existence and uniqueness through the adjoint problem.

We show that overdetermined partial boundary value problems are the key in the framework of
inverse boundary value problems on finite networks, since they provide the theoretical foundations
of the recovery algorithm. In fact, this type of problems were implicitly considered in some previous
works, but only for specific networks and boundary data, see [13, 14]. We analyze the uniqueness and
existence of solution of overdetermined partial boundary value problems through the non–singularity
of the partial Dirichlet–to–Neumann maps. These maps allow us to determined the value of the
solution in the part of the boundary with no prescribed data. Afterwards, we give explicit formulae
for the acquirement of boundary spike conductances on critical planar networks and execute a full
conductance recovery for spider networks. This algorithm is an adaptation of the one proposed in
[14] for the Combinatorial Laplacian and when the corresponding Dirichlet–to–Neumann map is
singular.

2. Preliminaries

Let Γ = (V, c) be a finite network; that is, a finite connected graph without loops nor multiple
edges, with vertex set V . Let E be the set of edges of the network Γ. Each edge (x, y) has been
assigned a conductance c(x, y), where c : V × V −→ [0,+∞). Moreover, c(x, y) = c(y, x) and
c(x, y) = 0 if (x, y) /∈ E. Then, x, y ∈ V are adjacent, x ∼ y, iff c(x, y) > 0.

The set of functions on a subset F ⊆ V , denoted by C(F ), and the set of non–negative functions
on F , C+(F ), are naturally identified with R

|F | and the nonnegative cone of R|F |, respectively. We

denote by

∫

F

u(x)dx the value
∑

x∈F

u(x). Moreover, if F is a non empty subset of V , its characteristic

function is denoted by χ
F
. When F = {x}, its characteristic function will be denoted by εx. If

u ∈ C(V ), we define the support of u as supp(u) = {x ∈ V : u(x) 6= 0}.

If we consider a proper subset F ⊂ V , then its boundary δ(F ) is given by the vertices of V \F
that are adjacent to at least one vertex of F . The vertices of δ(F ) are called boundary vertices
and when a boundary vertex x ∈ δ(F ) has a unique neighbour in F we call the edge joining them
a boundary spike. It is easy to prove that F̄ = F ∪ δ(F ) is connected when F is. Any function

ω ∈ C+(F̄ ) such that supp(ω) = F̄ and

∫

F̄

ω2(x) dx = 1 is called weight on F̄ . The set of weights is

denoted by Ω(F̄ ). We denote by κF ∈ C(δ(F )) the function κF (x) =
∑

y∈F

c(x, y).

We define the normal derivative of u ∈ C(F̄ ) on F as the function in C(δ(F )) given by

(

∂u

∂n
F

)

(x) =

∫

F

c(x, y)
(

u(x)− u(y)
)

dy, for any x ∈ δ(F ).
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Any function K ∈ C(F × F ) will be called a kernel on F . The integral operator associated
with K is the endomorphism K : C(F ) −→ C(F ) that assigns to each f ∈ C(F ), the function

K (f)(x) =

∫

F

K(x, y) f(y) dy for all x ∈ V . Conversely, given an endomorphism K : C(F ) −→

C(F ), the associated kernel is given by K(x, y) = K (εy)(x). Clearly, kernels and operators can be
identified with matrices, after giving a label on the vertex set. In addition, a function u ∈ C(F ) can
be identified with the kernel K(x, x) = u(x) and K(x, y) = 0 otherwise and hence with a diagonal
matrix that will be denoted by Du.

The combinatorial Laplacian of Γ is the linear operator L : C(V ) −→ C(V ) that assigns to
each u ∈ C(V ) the function defined for all x ∈ V as

L (u)(x) =

∫

V

c(x, y)
(

u(x)− u(y)
)

dy.

Given q ∈ C(V ) the Schrödinger operator on Γ with potential q is the linear operator Lq :
C(V ) −→ C(V ) that assigns to each u ∈ C(V ) the function Lq(u) = L (u) + qu. Since q is real, it
is well–known that any Schrödinger operator is self–adjoint. The relation between the values of the
Schrödinger operator with potential q on a connected subset F ⊆ V and the values of the normal
derivative at δ(F ) is given by the First Green Identity, proved in [5]

∫

F

v(x)Lq(u)(x) dx =
1

2

∫

F̄

∫

F̄

c
F
(x, y)(u(x) − u(y))(v(x) − v(y)) dxdy +

∫

F

q(x)u(x)v(x) dx

−

∫

δ(F )
v(x)

∂u

∂n
F

(x) dx,

where u, v ∈ C(F̄ ) and c
F
= c · χ

(F̄×F̄ )\(δ(F )×δ(F ))
. A direct consequence of the above identity is the

so–called Second Green Identity: for all u, v ∈ C(F̄ ),

∫

F

(

v(x)Lq(u)(x)− u(x)Lq(v)(x)
)

dx =

∫

δ(F )

(

u(x)
∂v

∂n
F

(x)− v(x)
∂u

∂n
F

(x)

)

dx.

We define the energy associated with F and q as the symmetric bilinear form EFq : C(F̄ ) ×
C(F̄ ) −→ IR given for any u, v ∈ C(F̄ ) by

EFq (u, v) =
1

2

∫

F̄

∫

F̄

c
F
(x, y)

(

u(x)− u(y)
) (

v(x)− v(y)
)

dx dy +

∫

F̄

q(x)u(x) v(x) dx.

From the First Green Identity, for any u, v ∈ C(F̄ ) we get that

EFq (u, v) =

∫

F

v(x)Lq(u)(x) dx +

∫

δ(F )
v(x)

[

∂u

∂n
F

(x) + q(x)u(x)

]

dx.

For any weight σ ∈ Ω(F̄ ), the so–called potential associated with σ is the function in C(F̄ )

defined as qσ = −σ−1L (σ) on F , qσ = −σ−1 ∂σ

∂n
F

on δ(F ). It is worth to note that the definition of

qσ is a discrete analogous of the Liouville transform, see [18]. These authors proved in [4] that the
Energy is positive semi–definite on C(F̄ ) if there exist λ ≥ 0 and σ ∈ Ω(F̄ ) such that q = qσ+λχδ(F )

.



Overdetermined Partial Boundary Value Problems 4

In this case, it is positive definite iff λ > 0. So, through this section, we will suppose that the above
condition q = qσ + λχ

δ(F )
holds with σ ∈ Ω(F̄ ) and λ ≥ 0. Therefore, for any g ∈ C(δ(F )) the

following Dirichlet problem

Lq(u) = 0 on F and u = g on δ(F ),

has a unique solution ug.

The map Λq : C(δ(F )) −→ C(δ(F )) that assigns to any function g ∈ C(δ(F )) the function

Λq(g) =
∂ug
∂n

F

+ qg is called Dirichlet–to–Robin map. In [4], the authors proved that the Dirichlet–

to–Robin map, Λq, is a self–adjoint, positive semi–definite operator whose associated quadratic form
is given by

∫

δ(F )
g(x)Λq(g)(x) dx = EFq (ug, ug).

Moreover, λ is the lowest eigenvalue of Λq and its associated eigenfunctions are multiple of σ. In
addition, if Nq ∈ C(δ(F ) × δ(F )) is the kernel of Λq, its associated matrix Nq is an irreducible
and symmetric M–matrix. Usually Nq is called the response matrix of the network. Given A,B ⊂
δ(F ) a pair of disjoint subsets, we consider the submatrix of the response matrix Nq(A;B) =
(

Nq(x, y)
)

(x,y)∈A×B
.

If A = {p1, . . . , pk} and B = {q1, . . . , qk}, there exist k paths, γ1, . . . , γk, such that γi starts at
pi ends at qi and γi \ {pi, qi} ⊂ F , since F is connected. The pair (A;B) is called connected trough
Γ, when there exist k paths connecting A and B that are mutually disjoint.

The network Γ = (F̄ , c
F
) is called a circular planar network if it can be embedded in a closed

disc D in the plane so that the vertices in F lie in
◦
D and vertices in δ(F ) lie on the circumference

C = ∂D. In this case, the vertices in δ(F ) can be labelled in the clockwise circular order. The pair
(A;B) of boundary vertices is called a circular pair if the set (p1, . . . , pk; q1, . . . , qk) is in circular
order. A circular planar network Γ is called well–connected if any circular pair (A;B) is connected
trough Γ. A critical circular planar network Γ = (F̄ , c

F
) is a circular planar network such that the

removal of any edge breaks a connection through Γ between pairs of boundary vertices.

In [4], we characterized those M–matrices that are the response matrix of a network, which
represent an extension of the previous work by Curtis et al.; see [12].

For any n = |δ(F )| ≥ 2, σ ∈ Ω(δ(F )) and λ ≥ 0, let Φλ,σ be the set of irreducible and
symmetric M–matrices of order n, M, for which λ is the lowest eigenvalue and σ is the eigenvector
associated with λ, satisfying the following condition

If M(A;B) is a k × k circular minor of M, then −M(A;B) is totally non–negative.

Suppose that Γ is a circular planar network with n boundary vertices, and π = π(Γ) is the set
of circular pairs (A;B) which are connected through Γ. A subset Φλ,σ(π) of Φλ,σ is defined by the
following condition: For each circular pair of indices (A;B) ∈ π iff (−1)kdetM(A;B) > 0. On the
other hand, when λ = 0 and σ = 1, Φ0,1(π) will be denoted simply by Φ(π).

Lemma 2.1. [12, Theorem 4] Suppose Γ = (F̄ , c
F
) is a critical planar graph with m edges and

π = π(Γ). Then, the map which sends c to Λ is a diffeomorphism of (R+)m onto Φ(π).
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Given M ∈ Φλ,σ, we say that u ∈ C(F̄ ) is M–harmonic iff L (u) = 0 on F , where L is the
combinatorial Laplacian with conductivity given by Lemma 2.1 with Λ = Dσ(M−λI)Dσ , where Dσ is
the diagonal matrix associated with σ. Observe that, Dσ(M−λI)Dσ ∈ Φ(π) since Dσ(M−λI)Dσ1 = 0

and
(

Dσ(M− λI)Dσ

)

(A;B) = Dσ(A;A)M(A;B)Dσ(B;B) for any (A;B) circular pair.

Let us recall here that any weight ω ∈ Ω(F̄ ) is always positive on F̄ . In addition, given a
weight on the boundary σ ∈ Ω(δ(F )), let σ̂ : F̄ −→ (0,+∞) be such that σ̂ = σ on δ(F ). Then,

we can define a new weight ω = kσ̂, where k =
(

∫

F̄
σ̂2(x) dx

)−1
. Notice that 0 < k < 1, since

k =
(

∫

F
σ̂2(x) dx+1

)−1
. Also, let us use the outer product ⊗ given by u⊗ v (x, y) = u(x)v(y) for

all u, v ∈ C(F̄ ) and x, y ∈ F̄ .

Theorem 2.2. [4, Theorem 12] For any n ≥ 2, σ ∈ Ω(δ(F )) and λ ≥ 0, suppose M is in Φλ,σ.
Then, there is a circular planar graph with conductance c such that for any ω ∈ Ω(F̄ ) satisfying
ω = kσ on δ(F ), M = Λq, where Λq is the Dirichlet–to–Robin map associated with the operator

Lq, with q = qω + λχ
δ(F )

and conductances cω =
c

ω ⊗ ω
. Moreover, if M ∈ Φλ,σ(π), then there is

a unique critical circular planar network with conductance c and a unique ω ∈ Ω(F̄ ), M–harmonic
function such that M = Λq, where Λq is the Dirichlet–to–Robin map associated with the operator Lq

with potential q = qω + λχ
δ(F )

and conductances given by cω.

3. Overdetermined Partial boundary value problems

We fix a proper and connected subset F ⊂ V and A,B ⊂ δ(F ) non–empty subsets such that
A ∩ B = ∅. Moreover we denote by R the set R = δ(F ) \ (A ∪ B), so δ(F ) = A ∪ B ∪ R is a
partition of δ(F ). We remark that R can be an empty set. We consider a new type of boundary
value problems in which the values of the functions and their normal derivatives are known at the
same part of the boundary, which represents an overdetermined problem, and there exists another
part of the boundary where no data is known. The limit case when B = R = ∅, the value of the
function on the boundary is null and the value of the normal derivative is constant, can be seen as
an extension of the so–called discrete Serrin’s Problem. The analysis of this problem was carried
out by the authors in [3]. For B = ∅, this kind of problem has been considered in the continuous
case as an extension of Serrin’s problem, see [15].

For any f ∈ C(F ), g ∈ C(A∪R) and h ∈ C(A), the overdetermined partial Dirichlet–Neumann
boundary value problem on F with data f, g, h consists in finding u ∈ C(F̄ ) such that

Lq(u) = f on F,
∂u

∂n
F

= h on A and u = g on A ∪R. (1)

Notice that as the values of u are known in A, the boundary condition
∂u

∂n
F

= h is equivalent

∂u

∂n
F

+ q u = h+ q g.

The homogeneous overdetermined partial Dirichlet–Neumann boundary value problem on F
consists in finding u ∈ C(F̄ ) such that

Lq(u) = 0 on F,
∂u

∂n
F

= u = 0 on A and u = 0 on R. (2)
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It is clear that the set of solutions of the homogeneous boundary value problem is a subspace
of C(F ∪B) that we will denote by V

B
. Moreover, if Problem (1) has solutions and u is a particular

one, then u+ V
B

describes the set of all its solutions. In addition, if u is a solution of Problem (1),
then for any x ∈ A we get that

∫

F

c(x, y)u(y)dy = g(x)κ
F
(x)− h(x).

Therefore, if u is a solution of Problem (2), then for any x ∈ A we get that
∫

F

c(x, y)u(y)dy = 0.

The adjoint problem of the overdetermined partial Dirichlet–Neumann boundary value problem (2)
on F is given by

Lq(v) = 0 on F,
∂v

∂n
F

= v = 0 on B and v = 0 on R. (3)

The subspace of solutions of the above problem will be denoted by V
A
. It is clear that V

A
⊂ C(F∪A).

The Second Green Identity leads to the following result.

Proposition 3.1. Problems (2) and (3) are mutually adjoint; that is
∫

F

v(x)Lq(u)(x) dx =

∫

F

u(x)Lq(v)(x) dx,

for any u, v ∈ C(F̄ ) such that
∂u

∂n
F

= u = 0 on A,
∂v

∂n
F

= v = 0 on B and u = v = 0 on R.

Proof. By the Second Green Identity we get that
∫

F

(

v(x)Lq(u)(x) − u(x)Lq(v)(x)
)

dx =

∫

δ(F )

(

u(x)
∂v

∂n
F

(x)− v(x)
∂u

∂n
F

(x)
)

dx

=

∫

B

u(x)
∂v

∂n
F

(x) dx −

∫

A

v(x)
∂u

∂n
F

(x) dx = 0,

obtaining the result.

Proposition 3.2 (Fredholm Alternative). Given f ∈ C(F ), g ∈ C(A ∪R), h ∈ C(A), the boundary
value problem

Lq(u) = f, on F,
∂u

∂n
F

= h on A and u = g on A ∪R

has solution if and only if
∫

F

f(x)v(x) dx+

∫

A

h(x)v(x) dx =

∫

A∪R
g(x)

∂v

∂n
F

(x) dx, for each v ∈ V
A
.

In addition, when the above condition holds, then there exists a unique solution of the boundary
value problem in V⊥

B
, i.e. a unique solution u, such that

∫

F∪B
u(x)z(x) dx = 0, for any z ∈ V

B
.
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Proof. First observe that Problem (1) is equivalent to the boundary value problem

Lq(u) = f − L (g) on F,
∂u

∂n
F

= h− gκ
F

on A and u = 0, on A ∪R (4)

in the sense that u is a solution of this problem if and only if u+g is a solution of Problem (1). Notice
that L (g) = Lq(g) since g = 0 on F . Consider now the linear operators F : C(F ∪B) −→ C(F ∪A)
and F∗ : C(F ∪A) −→ C(F ∪B) defined as

F(u) =











Lq(u), on F,

∂u

∂n
F

, on A,
and F∗(v) =











Lq(v), on F,

∂v

∂n
F

, on B,

respectively. Then, for any u ∈ C(F ∪B) satisfying Problem (4) and for any v ∈ C(F ∪A),
∫

F∪A
v(x)F(u)(x) dx =

∫

F

v(x)Lq(u)(x) dx +

∫

δ(F )
v(x)

∂u

∂n
F

(x) dx =

=

∫

F

u(x)Lq(v)(x) dx +

∫

δ(F )
u(x)

∂v

∂n
F

(x) dx =

∫

F∪B
u(x)F∗(v)(x) dx.

Clearly, kerF∗ = V
A
. Moreover, Problem (1) has a solution if and only if the function f̃ ∈

C(F ∪A) given by f̃ = f − L (g) on F and f̃ = h− gκ
F

on A satisfies that f̃ ∈ ImgF . Therefore,
the Fredlhom Alternative for linear operators implies that Problem (1) has solution if and only if
for any v ∈ V

A

0 =

∫

F∪A
f̃(x)v(x) dx =

∫

F

f(x)v(x) dx+

∫

A

h(x)v(x) dx −

∫

F

v(x)L (g)(x) dx

−

∫

A

v(x)g(x)κ
F
(x) dx =

∫

F

f(x)v(x) dx+

∫

A

h(x)v(x) dx −

∫

R∪A
g(x)

∂v

∂n
F

(x) dx.

Finally, the Fredholm Alternative also establishes that when the necessary and sufficient condition
holds there exists a unique w ∈ (kerF)⊥ such that F(w) = f̃ . Therefore, u = w + g is the unique
solution of Problem (1) such that for any z ∈ kerF = V

B
satisfies

∫

F∪B
u(x)z(x) dx = 0.

Observation 3.3. The Fredholm Alternative establishes the following formula

dimV
A
− dimV

B
= |A| − |B|.

On the other hand, the existence of solution for any data is equivalent to be V
A

= {0}; that is,
|B|−|A| = dimV

B
≥ 0. Moreover, uniqueness of solutions is equivalent to be |A|−|B| = dimV

A
≥ 0.

In particular, if |A| = |B|, the existence of solution of Problem (1) for any data f, g and h is
equivalent to the uniqueness of solution and hence it is equivalent to the fact that the homogeneous
problem has v = 0 as its unique solution.
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Now we give some basic examples in order to show all the possible situations we may find in
solving Problem (1). In Figure 1, we show some networks, all of them with sets A and B given
by the pictures and with R = ∅. The conductances are also given in the figures and we consider
q = qσ + 2χ

δ(F )
, where σ is the weight given in Table 1.

z3

z2

z4

4 1

z1 x

8

6

2

y

A

B

(a)

z2

z1

z3

27

z4y

4

2

3

2

x

B

A

(b)

x

2

1

4

3

2

y

BA

z2

z1

z4

z3

(c)

x

3

3

6

6

2

y

BA

z2

z1

z4

z3

7

3

(d)

Figure 1: Some examples of networks and sets A and B.

We analyze Problem (1) with different data in the above networks. Network (1a) has sets
VA = {0} and dim (VB) = 2. So, on this network Problem (1) has a solution for all data but it is
not unique. In fact, all the solutions are given by a particular solution plus all the solutions of the
homogeneous problem and as a consequence the set of solutions has also dimension two. Network
(1b) has VB = {0} and dim (VA) = 2, which means that there is uniqueness but not necessarily
existence. Network (1c) has |A| = |B| but VA,VB 6= {0}, and so we do not have existence, in
general, and finally Network (1d) has |A| = |B| and also VA = VB = {0}, which means that the
problem has a unique solution for any data.

On the Table 1 we give some particular examples of these conclusions. The values of all
functions are taken in the following order z1, z2, z3, z4, x, y.

As we can see on the first row of the table, for Network (1a) there is existence but not
uniqueness and the set of solutions has dimension 2; rows 2 and 3 show the uniqueness but not
necessarily existence on Network (1b); rows 4 and 5 show that we do not have existence in general
nor uniqueness and the last row of the table shows us existence and uniqueness of solution for this
set of data, as it is expected.

In order to study sufficient and necessary conditions so that V
B
= {0} and/or V

A
= {0}, it is

useful to introduce partial Dirichlet–to–Neumann maps. To achieve our purpose we consider again
the Dirichlet problem

Lq(ug) = 0 on F, ug = g on δ(F ).
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Network |A| |B| σ g h f u

Fig. (1a) 1 3
(

1
6
, 1
6
, 1
6
, 1
6
, 2
3
, 2
3

)

(3) (1) (0, 2)
(

3, a, b,− 149
8

− 4a− 3b, 11
4
,− 13

2

)

,
with a, b ∈ R

Fig. (1b) 3 1
(

1
6
, 1
6
, 1
6
, 1
6
, 2
3
, 2
3

)

(0, 1,−1) (2, 1,−1) (4, 3)
(

0, 1,−1,− 7
2
,− 1

2
,−1

)

(

1
6
, 1
6
, 1
6
, 1
6
, 2
3
, 2
3

)

(3, 0, 2) (0, 1, 1) (3, 1) none

Fig. (1c) 2 2
(

1
6
, 2
3
, 2
3
, 1
6
, 1
6
, 1
6

)

(−8, 2) (16, 54) (0, 1)
(

−8, 2, a,− 4355
2

− 2a,−16,−230
)

,
with a ∈ R

(

1
6
, 2
3
, 2
3
, 1
6
, 1
6
, 1
6

)

(1, 2) (0, 1) (−2, 1) none

Fig. (1d) 2 2
(

1
6
, 1
6
, 1
6
, 1
6
, 2
3
, 2
3

)

(1,−2) (2, 0) (7,−21) (1,−2, 3,−9, 0,−6)

Table 1: Some examples of overdetermined partial boundary value problems.

Therefore, we assume that there exist σ ∈ Ω(F̄ ) and λ ≥ 0 such that q = qσ + λχ
δ(F )

. Then, the
above problem has a unique solution for any data g ∈ C(δ(F )).

We define the partial Dirichlet–to–Neumann map as the linear operator Λ
A,B

: C(A) −→ C(B),
that assigns to any v ∈ C(A) the function

Λ
A,B

(v) =
∂uv
∂n

F

χ
B
.

We define Λ
B,A

in an analogous manner. Observe that uv = 0 on B ∪ R and hence Λ
A,B

(v) =
Λq(v) · χB

.

Proposition 3.4. Λ∗
A,B

= Λ
B,A

and, in addition, kerΛ
A,B

= V
A
· χ

A
and kerΛ

B,A
= V

B
· χ

B
.

Moreover, the kernels of Λ
A,B

and Λ
B,A

are Nq · χB×A
and Nq · χA×B

; and hence the associated
matrices are Nq(B;A) and Nq(A;B), respectively.

Proof. Given v ∈ C(A) and w ∈ C(B), then from the Second Green Identity

∫

B

w(x)Λ
A,B

(v)(x) dx =

∫

B

uw(x)
∂uv
∂n

F

(x) dx =

∫

δ(F )
uw(x)

∂uv
∂n

F

(x) dx =

=

∫

δ(F )
uv(x)

∂uw
∂n

F

(x) dx =

∫

A

uv(x)
∂uw
∂n

F

(x) dx =

∫

A

v(x)Λ
B,A

(w)(x) dx,

where we have taken into account that Lq(uv) = Lq(uw) = 0 on F .

Clearly, if v ∈ kerΛ
A,B

, then uv ∈ V
A

and v = uv · χA
. Conversely, if u ∈ V

A
then Lq(u) = 0

on F ,
∂u

∂n
F

= 0 on B and u = 0 on B ∪ R. Therefore, if we consider v = u · χ
A
, then u = uv and

clearly v ∈ kerΛ
A,B

. The equality for kerΛ
B,A

follows analogously.

Corollary 3.5. Problem (1) has solution for any data if and only if Λ
A,B

has maximum rank.
Moreover, Problem (1) has uniqueness of solutions for any data if and only if Λ

B,A
has maximum
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rank These problems are not self–adjoint, and hence we worry about the study of existence and
uniqueness through the adjoint problem. In particular, when |A| = |B|, Λ

A,B
is non–singular if and

only if Λ
B,A

is, and in this case Problem (1) has a unique solution for any data.

Let us study the kernel of the application Λ
A,B

in the above examples. For Networks (1a) and
(1b) the partial Dirichlet–to–Neumann map has maximum rank. As a consequence, on Network
(1a) there is existence and on Network (1b) there is uniqueness of solutions for Problem (1). For
Network (1c), we get that

Nq(z3, z1) = −
2

71
, Nq(z3, z2) = −

3

71
, Nq(z4, z1) = −

1

71
and Nq(z4, z2) = −

3

142
,

which implies that Λ
A,B

and Λ
B,A

are singular. Therefore, Problem (1) may have no solution for
any data and when it has, the solution is non unique. On the other hand, for Network (1d),

Nq(z3, z1) = −
80

21
, Nq(z3, z2) = −

121

7
, Nq(z4, z1) = −

4

7
and Nq(z4, z2) = −

51

14
,

which implies that Λ
A,B

and Λ
B,A

are non–singular. Therefore, Problem (1) has a unique solution
for any data.

Next result tell us which is the value on B of a solution of Problem (1) with data f = 0.

Proposition 3.6. Suppose that Λ
A,B

has maximum rank and let g ∈ C(A ∪R) and h ∈ C(A). If u
is a solution of problem

Lq(u) = 0 on F, u = g on A ∪R and
∂u

∂n
F

= h on A,

then the values of u on B are determined by the identity

Λ
B,A

(u) = h− Λ
A∪R,A

(g).

In addition, if |A| = |B|, then

u = Λ−1
B,A

(h)− Λ−1
B,A

◦ Λ
A∪R,A

(g).

Proof. If ψ = uχ
B

and ϕ = ψ + g, then u is the unique solution of the Dirichlet problem

Lq(u) = 0 on F and u = ϕ on δ(F ).

Moreover, from the superposition principle u = uψ + ug and hence

∂u

∂n
F

=
∂uψ
∂n

F

+
∂ug
∂n

F

.

Therefore,

h =
∂u

∂n
F

χ
A
= Λ

B,A
(u) + Λ

A∪R,A
(g)

and the result follows from the injectivity of Λ
B,A

.
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E.B. Curtis and J.A. Morrow proved in [14, Corollary 3.14] that for a circular planar network
Λ

A,B
is non–singular iff the pair (A;B) is connected through Γ. In particular, this happens if Γ

is well–connected. In the same reference they found the 4 types of basic well–connected planar
networks and then, described an algorithm for recovering the conductances. One of the keys of
the algorithm is the boundary spike formula, see [14, Corollary 3.16]; that allows to recover the
conductance on a boundary spike edge. The proof of this result can be easily adapted to the case
of Schrödinger operators and Dirichlet–to–Neumann maps.

Lemma 3.7. Let Γ = (F̄ , c) be a connected circular planar network. Suppose that Γ has a boundary
spike xy with x ∈ δ(F ) and y ∈ F . If contracting xy to a unique boundary vertex results in breaking
the connection through Γ between a circular pair (A,B), then

c(x, y) =
ω(x)

ω(y)

(

Nq(x;x)− Nq(x;B) · Nq(A;B)−1 · Nq(A;x)− λ
)

.

We would like to remark that all the results of this section (except for Lemma 3.7) hold for
general networks, not necessarily planar.

4. Recovering the conductances on Spider Networks

Now the goal is the complete recovery of the conductivity function of a family of networks
using only the information provided by the Dirichlet–to–Robin map. This algorithm represents an
extension of the one developed in [13, 14], since we consider not only the Laplacian but Schrödinger
operators. Although the guidelines are very similar to the ones in the above reference, we describe
the algorithm entirely to show the relevance of the above results on overdetermined partial boundary
value problems associated with positive semi–definite Schrödinger operators. Therefore, we will
assume that q = qσ + λχ

δ(F )
, σ ∈ Ω(F̄ ) and λ ≥ 0.

Well–connected spider networks are a subfamily of critical circular planar networks and were
first introduced in [14] because of their remarkable properties. However, we use the same definitions
and notations as in [2], where the Green function of this type of networks was given.

A well–connected spider network with n ≡ 3 (mod 4) radii and m =
n− 3

4
circles is a circular

planar network Γ = (F̄ , c) with n boundary vertices given by δ(F ) = {v1, . . . , vn} placed in the
circular order provided by ∂D. The vertices in F are distributed in the following way: place a
vertex x00 in the center of the boundary circle ∂D and draw a straight line from x00 to each vj.
This line is called the radius j. Now draw m different concentric circumferences with center x00

and such that all lie in
◦
D. We call each one of them the circle i, where the circles are labeled

from less to most diameter. Finally, place a vertex xji in the intersection of every circle i and
radius j. Then, F = {xji}i=1,...,m, j=1,...,n ∪ {x00}. The edges are the ones given by the radius and
the circles, see Figure 2. For the sake of simplicity, we define xj0 = x00 and xj m+1 = vj for all
j = 1, . . . , n. Also, we take the notation xji = xj−n i for any j > n. For each j = 1, . . . , n we
consider the boundary sets Aj = {v1+j , . . . , vn−1

2
+j} ⊂ δ(F ), Bj = {vn+1

2
+j , . . . , vn−1+j} ⊂ δ(F )

and Rj = {vj} ⊂ δ(F ). Notice that |Aj | = |Bj | =
n− 1

2
. Moreover, these boundary configurations

on a well–connected spider network guarantee that Aj and Bj are always connected through Γ and
indeed the set formed by the vertices in the paths that connect Aj and Bj coincides with V \ {vj}.
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vn
v1

v2

v3

x00

F

δ(F )

xji

circle i

radius j

vj

Figure 2: Structure of a spider network.

Therefore, if we contract the boundary spike vjxjm to a single boundary vertex then we break
the connection between Aj and Bj. Given an index i ∈ {0, . . . ,m + 1}, we consider the circular
layers of vertices Di = {xli ∈ V : l = 1, . . . , n} ⊂ V . In particular, D0 = {x00} and Dm+1 = δ(F ).
Therefore, the set π defined in Section 2, coincides with the whole set of circular pairs.

The recovery of conductances on a well–connected spider network is an iterative process, for
we are not able to give explicit formulae for all the conductances at the same time but we can give
a recovery algorithm instead. Hence, we describe the algorithm in steps, each of them requiring the
information obtained in the last one.

To start with let Nq ∈ Φλ,σ. Then, λ ≥ 0 is the lowest eigenvalue of Nq and σ ∈ Ω(δ(F )) is
the eigenvector associated with λ. In addition, we choose ω ∈ Ω(F̄ ) such that ω = kσ on δ(F ),
0 < k < 1.

Let us clarify here that the inputs of the recovery algorithm are given by the known information,
such as Nq, λ and ω, and the outputs are the conductances c such that Λq is the Dirichlet–to–Robin
map associated with the Schrödinger operator with potential q = qω + λχ

δ(F )
and cω, see Theorem

2.2. Also, it is important to remark that this recovery algorithm is equivalent to recovering q and
the data used is different from the one in [13], since in this reference the Dirichlet–to–Robin matrix
is assumed to be in Φ0,1. Notice, that the matrices in the last set are singular and weakly diagonally
dominant.

Step 0

In this step we do not recover any conductance. However, we set the necessary tools to obtain
them in future steps. We fix the index j ∈ {1, . . . , n} and consider the overdetermined partial
boundary value problem that consists in finding uj ∈ C(F̄ ) such that

Lq(uj) = 0 on F, uj = εvj on Aj ∪Rj and
∂uj
∂n

F

= 0 on Aj . (5)

There exists a large set of vertices of the well–connected spider network Γ where uj = 0. We denote
this set by

Z(uj) =
{

x ∈ F̄ : uj(x) = 0
}

= F̄ \ supp(u).

Clearly, Aj ⊆ Z(uj). The size of Z(uj), however, is much bigger than the size of Aj .
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Proposition 4.1. It is satisfied that

Z(uj) =
{

xli ∈ V : i = 0, . . . ,m+ 1, l = i+ j −m, . . . , 3m+ 2 + j − i
}

.

Proof. We divide the proof into different stages that lead to the result. So, we have to prove the
following claims:

(i) Hk =
{

xℓm−k ∈ V : ℓ = 1 + j + k, . . . , n−1
2 + j − k

}

⊆ Z(uj) for all k = 0, . . . ,m,

(ii) T1 =
{

xj+k−ℓm−k ∈ V : ℓ = 0, . . . , 2m− 2, k =
⌈

ℓ
2

⌉

, . . . ,m− 1
}

⊆ Z(uj),

(iii) T2 =
{

xn+1
2

+j−k+ℓm−k ∈ V : ℓ = 0, . . . , 2m− 2, k =
⌈

ℓ
2

⌉

, . . . ,m− 1
}

⊆ Z(uj),

and let Zj =
m
⋃

k=0

Hk ∪ T1 ∪ T2.

To prove (i), we perform induction on k. For k = 0 and ℓ = 1 + j, . . . , n−1
2 + j, it is satisfied

that vℓ ∈ Aj and hence

0 =
∂uj
∂n

F

(vℓ) = −c(vℓ, xℓm)uj(xℓm),

which means that uj(xℓm) = 0 for all ℓ = 1 + j, . . . , n−1
2 + j. Then, H0 ⊆ Z(uj). Let us assume

that (i) is true for any index l < k and we want to see that the result holds for k. If ℓ ∈ {1 + j +
k, . . . , n−1

2 + j − k}, then by induction hypothesis

0 = Lq(uj)(xℓm−k+1) = −c(xℓm−k+1, xℓm−k)uj(xℓm−k),

which means that uj(xℓm−k) = 0 and so (i) follows.

To prove (ii) we use double induction on ℓ and k. For ℓ = 0 and k = m− 1, using (i) we get
that

0 = Lq(uj)(xj+m 1) = −c(xj+m 1, xj+m−1 1)uj(xj+m−1 1)

and hence uj(xj+m−1 1) = 0. Now we assume that the result holds for ℓ = 0 and any index l > k
and we want to see that it also holds for k. Using (i) and the induction hypothesis,

0 = Lq(uj)(xj+k+1m−k) = −c(xj+k+1m−k, xj+km−k)uj(xj+km−k)

and so uj(xj+km−k) = 0. Therefore, the case i = 0 holds. The next phase is to suppose that (ii)
holds for any index l < ℓ and any k =

⌈

l
2

⌉

, . . . ,m − 1, and to prove that in this case it also holds

for ℓ and k ∈
{⌈

ℓ
2

⌉

, . . . ,m− 1
}

. By induction hypothesis,

0 = Lq(uj)(xj+k−ℓ+1m−k) = −c(xj+k−ℓ+1m−k, xj+k−ℓm−k)uj(xj+k−ℓm−k)

and hence uj(xj+k−ℓm−k) = 0, completing the double induction. In consequence, T1 ⊆ Z(uj). The
result in (iii) is proved analogously.

The inclusion Zj ⊆ Z(uj) is a direct consequence of (i), (ii) and (iii) if we rearrange the indices.
Moreover, suppose that there exists a vertex x ∈ δ(Zj) ∩ Z(uj). Then, using the same techniques
for equation Lq(uj) = 0 on F as in the proofs of (i) and (ii), we see that uj = 0 on F̄ . This is a
contradiction with u(vj) = 1 and hence δ(Zj) ⊂ supp(uj).
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Finally, notice that the k–connection between Aj and Bj covers any vertex of F̄ \ {vj} and
hence keeping in mind the strong alternating property, that was proved in [4, Theorem 8], we
conclude that F̄ \ Zj ⊂ supp(uj).

Actually, the set Z(uj) has a very characteristic shape. In Figure 3(a) we show this pattern.
In particular, there are exactly n − 2 vertices on D1 for which uj = 0 and exactly two vertices on
D1 for which uj 6= 0.

Step 1

Let us fix the index j ∈ {1, . . . , n} and let us consider the unique solution uj ∈ C(F̄ ) of
Problem (5). We already know that uj = 0 on Aj and uj = 1 on Rj . Moreover, we know the values
of uj on Bj are given by Proposition 3.6

u
Bj

= −Nq(Aj ;Bj)
−1 · Nq(Aj ; vj).

In consequence, we know uj on δ(F ). In Figure 3(b) we show all the information obtained at the
end of this step.

Step 2

Applying the boundary spike formula given in Lemma 3.7 and keeping in mind that all the
boundary edges are spikes, we know the values of the conductances of all the edges joining vertices
from Dm+1 and Dm. In Figure 3(c) we show all the information obtained at the end of this step.

Step 3

Again, let us fix the index j ∈ {1, . . . , n} in this step and let us consider the unique solution
uj ∈ C(F̄ ) of Problem (5). Then, we know all the values of uj on Dm, as the following result shows.

Lemma 4.2. The values of uj on Dm are given by

uj(xkm) =
1

c(vk, xkm)

(

λuj(vk)− Nq(vk; vj)− Nq(vk;Bj) · uBj

)

+
ω(xkm)

ω(vk)
uj(vk)

for all k = 1, . . . , n.

Proof. As before, we can express Problem (5) as the Dirichlet problem

Lq(u) = 0 on F and u = εvj + u
Bj

on δ(F )

with the additional condition
∂u

∂n
F

= 0 on Aj . Therefore, by the definition of the Dirichlet–to–Robin

map, for all vk ∈ δ(F ) it is satisfied that

Nq(vk; vj) + Nq(vk;Bj) · uBj
= Λq

(

εvj + u
Bj

)

(vk) =
∂uj
∂n

F

(vk) + q(vk)uj(vk)

=

(

λ+
ω(xkm)

ω(vk)
c(vk, xkm)

)

uj(vk)− c(vk, xkm)uj(xkm).
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Observe that all the terms of this equality, except the value uj(xkm), are already known. Therefore,
we get the result.

In Figure 3(d) we show all the data gathered from a well–connected spider network at the end
of this step.

Let us define the linear operator ℘ : C(F̄ ) −→ C(F \ {x00}) given by the values

℘(z)(xlk) = c(xlk, xl k+1)z(xl k+1) + c(xlk, xl+1 k)z(xl+1 k) + c(xlk, xl−1 k)z(xl−1 k)

for all z ∈ C(F̄ ) and xlk ∈ F \ {x00}. This operator will be useful in the following steps.

Step 4

In this step we give the conductances of all the edges with both ends in Dm. However, we
state a more general result.

Proposition 4.3. Let i ∈ {0, . . . ,m − 1}. For every j = 1, . . . , n, let us suppose that we know
the values of uj on Di+2 and Di+1. Also, we suppose that the conductances of all the edges joining
vertices from Di+2 and Di+1 are known. Then, the conductances c(xi+j−m+1 i+1, xi+j−mi+1) are
given by

c(xi+j−m+1 i+1, xi+j−mi+1) = −
uj(xi+j−m+1 i+2)

uj(xi+j−mi+1)
c(xi+j−m+1 i+1, xi+j−m+1 i+2).

Proof. We fix the indices i ∈ {0, . . . ,m− 1} and j ∈ {1, . . . , n}. Then, by Proposition 4.1,

uj(xi+j−m+1 i+1) = uj(xi+j−m+2 i+1) = uj(xi+j−m+1 i) = 0.

Hence,

0 = Lq(uj)(xi+j−m+1 i+1) = −c(xi+j−m+1 i+1, xi+j−m+1 i+2)uj(xi+j−m+1 i+2)

− c(xi+j−m+1 i+1, xi+j−mi+1)uj(xi+j−mi+1).

The value c(xi+j−m+1 i+1, xi+j−mi+1) is the only unknown term of this equality and by Proposition
4.1 we know that uj(xi+j−mi+1) 6= 0.

When i = m−1, Propositions 4.1 and 4.3 show that c(xjm, xj−1m) is known for all j = 1, . . . , n.
See Figure 3(e) in order to see all the known information at the end of this step.

Step 5

In this step we give the conductances of all the edges joining the vertices from Dm and Dm−1.
Furthermore, we state a more general result.

Proposition 4.4. Let i ∈ {0, . . . ,m− 1}. For every j = 1, . . . , n, let us suppose that we know the
values of uj on Di+2 and Di+1. Also, let us suppose that we know the conductances of all the edges
joining vertices from Di+2 and Di+1, and the ones of the edges with both ends in Di+1. Then, the
conductances c(xi+j−mi, xi+j−mi+1) are given by

c(xi+j−mi, xi+j−mi+1) =

(

℘(uj)(xi+j−mi+1)

uj(xi+j−mi+1)
−
℘(ω)(xi+j−mi+1)

ω(xi+j−mi+1)

)

·
ω(xi+j−mi+1)

ω(xi+j−mi)
.
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Proof. We fix the indices i ∈ {0, . . . ,m − 1} and j ∈ {1, . . . , n}. Observe that ℘(ω)(xi+j−mi+1)
and ℘(uj)(xi+j−mi+1) are already known. Then,

0 = Lq(uj)(xi+j−mi+1) =
uj(xi+j−mi+1)

ω(xi+j−mi+1)
℘(ω)(xi+j−mi+1)− ℘(uj)(xi+j−mi+1)

+
ω(xi+j−mi)

ω(xi+j−mi+1)
c(xi+j−mi+1, xi+j−mi)uj(xi+j−mi+1)

and hence c(xi+j−mi+1, xi+j−mi) is the only unknown term of this equality. Notice that Proposition
4.1 assures that uj(xi+j−mi+1) 6= 0.

In particular, when i = m−1, Propositions 4.1 and 4.4 show that c(xj−1m, xj−1m−1) is known
for all j = 1, . . . , n. See Figure 3(f) in order to see all the information gathered at the end of this
step.

Step 6

In this step we are able to obtain the values of uj on Dm−1 for all j = 1, . . . , n. In fact, let us
state a more general result.

Proposition 4.5. Let i ∈ {0, . . . ,m− 1}. For every j = 1, . . . , n, let us suppose that we know the
values of uj on Di+2 and Di+1. Also, let us suppose that we know the conductances of all the edges
joining vertices from Di+2 and Di+1, from Di+1 and Di and the ones of the edges with both ends in
Di+1. Then, the values of uj on Di are given by

uj(xk i) = −
uj(xk i+1)℘(ω)(xk i+1)

ω(xk i+1)c(xk i+1, xk i)
−
℘(uj)(xk i+1)

c(xk i+1, xk i)
−

ω(xk i)

ω(xk i+1)
uj(xk i+1)

for all k = 1, . . . , n.

Proof. Fixed two indices i ∈ {0, . . . ,m − 1} and j ∈ {1, . . . , n}, let xki ∈ Di with k ∈ {1, . . . , n}.
Observe that ℘(ω)(xk i+1) and ℘(uj)(xk i+1) are known. Then,

0 = Lq(uj)(xk i+1) = −
uj(xk i+1)

ω(xk i+1)
℘(ω)(xk i+1)− ℘(uj)(xk i+1)

− c(xk i+1, xk i)uj(xk i)−
ω(xk i)

ω(xk i+1)
c(xk i+1, xk i)uj(xk i+1)

and hence uj(xk i) is the only unknown term of this equality.

In particular, when i = m − 1, Propositions 4.1 and 4.5 show that uj is known on Dm−1 for
all j = 1, . . . , n. Observe that we already knew some of the values of uj on Dm−1, which are those
of the vertices in Z(uj). Figure 3(g) shows the information obtained until this step.

Step 7 and beyond

We keep repeating the same process to obtain more conductances; that is, we keep applying
Proposition 4.3 from Step 4, then Proposition 4.4 from Step 5 and then Proposition 4.5 from Step
6 for each i = m− 2, . . . , 0. We stop when applying Proposition 4.5 from Step 6 for i = 0. In fact,
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we obtain the value uj(x00) = 0 for all j = 1, . . . , n, which is already known because x00 ∈ Z(uj).
This is the last step of the process, since all the conductances are known at this point.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: The bold items are the ones known at the end of each step for the case n = j = 11.
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