
A Probabilistic Beam Search Approach to the

Shortest Common Supersequence Problem∗

1Christian Blum 2Carlos Cotta 2Antonio J. Fernández 2Francisco Gallardo

1Dept. Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya

Jordi Girona 1–3, Ω building, Campus Nord, E-08034 Barcelona (Spain)
cblum@lsi.upc.edu

2Dept. Lenguajes y Ciencias de la Computación
ETSI Informática, Universidad de Málaga

Campus de Teatinos, E-29071 Málaga (Spain)
{ccottap,afdez,pepeg}@lcc.uma.es

Abstract

The Shortest Common Supersequence Problem (SCSP) is a well-known hard com-
binatorial optimization problem that formalizes many real world problems. This paper
presents a novel randomized search strategy, called probabilistic beam search (PBS), based
on the hybridization between beam search and greedy constructive heuristics. PBS is
competitive (and sometimes better than) previous state-of-the-art algorithms for solving
the SCSP. The paper describes PBS and provides an experimental analysis (including
comparisons with previous approaches) that demonstrate its usefulness.

1 Introduction

The Shortest Common Supersequence Problem (SCSP) is a very well-known problem in the
area of string analysis. Basically, the SCSP consists of finding a minimal-length sequence s

of symbols from a certain alphabet, such that all strings in a given set L can be embedded in
s. The resulting combinatorial problem is enormously interesting for several reasons. Firstly,
the SCSP constitutes a formalization of different real-world problems. For example, it has
many implications in bioinformatics [10]: it is a problem with a close relationship to multiple
sequence alignment [16], and to probe synthesis during microarray production [15]. This does
not exhaust the practical usefulness of the SCSP though, since it also has applications in
planning [8] and data compression [17], among other fields.

Another reason the SCSP has attracted interest lies in its “cleanliness”, that is, it is
an abstract formulation of different real-world problems that can nevertheless be studied
from a theoretical point of view in a context-independent way. Indeed, theoretical computer

∗Christian Blum acknowledges support from the Spanish Ministry of Education and Science under the
project cicyt tin-2005-08818-C04-01 (oplink), and from the “Ramón y Cajal” program of the Spanish
Ministry of Science and Technology of which he is a post-doctoral research fellow.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41830522?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

scientists have analyzed in depth the problem, and we now have accurate characterizations
of its computational complexity. These characterizations range from the classical complexity
paradigm to the more recent parameterized complexity paradigm. We will survey some of
these results in next section as well, but it can be anticipated that the SCSP is intrinsically
hard [1, 11, 14] under many formulations and/or restrictions.

The practical impossibility of utilizing exact approaches for tackling this problem in gen-
eral motivates attention be re-directed to heuristic approaches. Such heuristic approaches
are aimed to producing probably- (yet not provably-) optimal solutions to the SCSP. Good
examples of such heuristics are the Majority Merge (MM) algorithm, and related variants
[3], based on greedy construction strategies. More sophisticated heuristics have been also
proposed, for instance, evolutionary algorithms (EAs) [3, 2, 5, 6]. In this work, we present a
novel randomized search strategy (or metaheuristic) to tackle the SCSP termed probabilistic
beam search (PBS). As the name indicates, this strategy is based in the framework of beam
search, but also borrows some heuristic ideas from the greedy constructive heuristics men-
tioned before. In the following we will show that this strategy can satisfactorily compete in
the SCSP arena, outperforming previous state-of-the-art approaches. As a first step, the next
section will describe the SCSP in more detail.

2 The Shortest Common Supersequence Problem

First of all, let us introduce some notation that we use in the following. We write |s| for
the length of string s (|s(1)s(2) . . . s(n)| = n, where s(j) ∈ Σ is the element at the j-th
position of s) and ε for the empty string (|ε| = 0). Abusing the notation, |Σ| denotes the
cardinality of set Σ. We use s D α for the total number of occurrences of symbol α in string s

(s(1)s(2) . . . s(n) D α =
∑

1≤i≤n,s(i)=α 1). We write αs for the string obtained by appending
the symbol α in front of string s. Deleting symbol α from the front of string s is denoted by
s|α, and is defined as s′ when s = αs′, or s otherwise. We also use the | symbol to delete a
symbol from the front of a set of strings: {s1, · · · , sm}|α = {s1|α, · · · , sm|α}. Finally, s ∈ Σ∗

means that s is a finite length string of symbols in Σ.
Let s and r be two strings of symbols taken from an alphabet Σ. String s can be said to

be a supersequence of r (denoted as s Â r) using the following recursive definition:

s Â ε , True

ε Â r , False, if r 6= ε

αs Â αr , s Â r

αs Â βr , s Â βr, if α 6= β

(1)

Plainly, s Â r implies that r can be embedded in s, meaning that all symbols in r are
present in s in the very same order (although not necessarily consecutive). For example, given
the alphabet Σ = {a, b, c}, aacab Â acb.

We can now state the SCSP as follows: an instance I = (Σ, L) for the SCSP is given by
a finite alphabet Σ and a set L of m strings {s1, · · · , sm}, si ∈ Σ∗. The problem consists of
finding a string s of minimal length that is a supersequence of each string in L (s Â si,∀si ∈ L

and |s| is minimal). For example, given I = ({a, b, c}, {cba, abba, abc}), a shortest common
supersequence of I is abcba.

The SCSP can be shown to be NP−hard, even if strong constraints are posed on L, or on Σ.
For example, it is NP−hard in general when all si have length two [17], or when the alphabet

2

size |Σ| is two [11]. In principle, these NP−hardness results would have to be approached
with caution, since they merely represent a worst case scenario. In this sense, a more sensible
characterization of the hardness of the SCSP is provided by the framework of parameterized
complexity [7]. This is done by approaching the problem from a multidimensional perspective,
realizing its internal structure, and isolating some parameters. If hardness (that is, non-
polynomial behavior) can be isolated within these parameters, the problem can be efficiently1

solved for fixed values of them. This is the case for several NP−hard problems such as Vertex
Cover [4, 12]; the term fixed-parameter tractable (FPT) is used to denote these problems.
Non-FPT problems will fall under some class in the W−hierarchy. Hardness for class W [1]
is the current measure of intractability.

Several parameterizations are possible for the SCSP. Firstly, the maximum length k of
the supersequence sought can be taken as a parameter. If the alphabet size is constant, or
another parameter, then the problem turns in this case to be FPT, since there are at most |Σ|k

supersequences, and these can be exhaustively checked. However, this is not very useful in
practice because k > max |si|. If the number of strings m is used as a parameter, then SCSP
is W [1]−hard, and remains so even if |Σ| is taken as another parameter [10], or is constant
[14]. Failure of finding FPT results in this latter scenario is particularly relevant since the
alphabet size in biological problems is fixed (e.g., there are just four nucleotides in DNA).
Furthermore, the absence of FPT algorithms implies the absence of fully polynomial-time
approximation schemes (FPTAS) for the corresponding problem.

3 Majority Merge Heuristics for the SCSP

The hardness results mentioned previously motivate the utilization of heuristics for tackling
the SCSP. One of the most popular algorithms for this purpose is Majority Merge (MM).
This is a greedy algorithm that constructs a supersequence incrementally by adding the
symbol most frequently found at the front of the strings in L, and removing these symbols
from the corresponding strings. More precisely:

Heuristic MM (L = {s1, · · · , sm})
1: let s ← ε

2: do

3: for α ∈ Σ do let ν(α | s) ←
∑

si∈L,si=αs′
i

1

4: let β ← argmax{ν(α | s) | α ∈ Σ}
5: let L ← L|β
6: let s ← sβ

7: until
∑

si∈L |si| = 0

8: return s

The myopic functioning of MM makes it incapable of grasping the global structure of strings
in L. In particular, MM misses the fact that the strings can have different lengths [3]. This
implies that symbols at the front of short strings will have more chances to be removed, since
the algorithm has still to scan the longer strings. For this reason, it is less urgent to remove
those symbols. In other words, it is better to concentrate in shortening longer strings first.
This can be done by assigning a weight to each symbol, depending on the length of the string

1Here, efficiently means in time O(f(k)nc), where k is the parameter value, n is the problem size, f is an
arbitrary function of k only, and c is a constant independent of k and n.

3

in whose front is located. Branke et al. [3] propose to use precisely this string length as
weight, i.e., step 3 in the previous pseudocode would be modified to have

ν(α | s) ←
∑

si∈L,si=αs′
i

|s′i| (2)

This modified heuristic is termed Weighted Majority Merge (WMM), and its empirical
evaluation indicates it can outperform MM on some problem instances in which there is no
structure, or the structure is deceptive [3, 5].

In this work we also consider look-ahead versions of the WMM heuristic. For that purpose
we use the notation LA-WMM(l), where l > 0 is a parameter that indicates the size (or
depth) of the look-ahead. For example, LA-WMM(0) denotes the standard WMM heuristic,
whereas LA-WMM(1) is obtained by choosing at each construction step the symbol that
corresponds to the first symbol in the best possible sequence of two WMM construction
steps. The value of a sequence of two construction steps is obtained by summing the two
corresponding WMM weights (see Equation 2). In the following we will refer to these look-
head values as the LA-WMM(l) weights.

4 Probabilistic Beam Search for the SCSP

In the following we present a probabilistic beam search (PBS) approach for the SCSP. This
algorithm is based on the WMM heuristic outlined before. Beam search is a classical tree
search method that was introduced in the context of scheduling [13]. The central idea behind
beam search is to allow the extension of partial solutions in more than one way. The version
of beam search that we implemented—see algorithm PBS below—works as follows: At each
step of the algorithm is given a set B of partial solutions which is called the beam. At the
start of the algorithm B only contains the empty partial solution ε (that is, B = {ε}). Let
C denote the set of all possible children of the partial solutions in B. Note that a child of a
string s is obtained by appending one of the symbols from Σ to it. At each step, kext different
(partial) solutions from C are selected; each selection step is either performed probabilistically
or deterministically. A chosen (partial) solution is either stored in set Bcompl in case it is a
complete solution, or in the new beam B otherwise. At the end of each construction step
the new beam B is reduced in case it contains more than kbw (called the beam width) partial
solutions. This is done by evaluating the partial solutions in B by means of a lower bound
LB(·), and by subsequently selecting the kbw partial solutions with the smallest lower bound
values.

Algorithm PBS(kext, kbw, sbsf, d)
1: let Bcompl = ∅
2: let B = {ε}
3: while B 6= ∅
4: let C ← Children of(B)
5: let B ← ∅
6: for k = 1, . . . , kext do

7: let st ← Choose From(C, d)
8: if LB(st) = |st| then

9: let Bcompl ← Bcompl ∪ {st}

4

10: if |st| < |sbsf| then sbsf ← st endif

11: else

12: if LB(st) ≤ |sbsf| then B ← B ∪ {st} endif

13: end if

14: let C ← C \ {st}
15: end for

16: let B ← Reduce(B,kbw)
17: end while

18: return argmin {|s| |s ∈ Bcompl }

In the following we explain the functions of algorithm PBS in more detail. First of all,
let us define the following function that will be useful to calculate lower bounds of partial
solutions:

s À ε , (ε, ε)

ε À r , (ε, r), if r 6= ε

αs À αr , (αre, rr), where (re, rr) = s À r

αs À βr , s À βr, if α 6= β

(3)

Intuitively, s À r = (re, rr) if re is the longest initial segment of string r embedded by s and
rr is the remaining part of r not embedded by s (i.e., r = rerr). Note that s Â r ⇐⇒ s À
r = (r, ε).

Function Children of(B) produces the set C of all possible children of the partial solu-
tions in B. Note that, given a partial solution st, at most |Σ| children can be generated by
appending each of the symbols from Σ to st. Children with unproductive characters (i.e., not
contributing to embedding any string in L) are not added to C.

Another important function of algorithm PBS is Choose From(C, d). Upon invocation,
this function returns one of the partial solutions from set C. This is done as follows. First,
we calculate for each st ∈ C a heuristic value η(st) as follows:

η(st) ←

|st|
∑

i=1

νr
(

st(i) | st(1)st(2) . . . st(i − 1)
)

−1

, (4)

where νr(α | s) is the rank of the weight ν(α | s) which the LA-WMM(l) heuristic assigns
to the extension α of string s (see Section 3). The rank of extending string s by symbol α

is obtained by sorting all possible extensions of string s with respect to their LA-WMM(l)
weights in descending order. Note that the sum shown in Equation 4 is the sum of the ranks of
the LA-WMM(l) weights that are used for constructing the partial solution st. For example,
in case st can be constructed by always appending the symbol suggested by the LA-WMM(l)

heuristic, the heuristic value of st is η(st) =
(

∑|st|
i=1 1

)−1
= (|st|)−1. This way of defining

the heuristic values has the effect that partial solutions obtained by mostly following the
suggestions of the LA-WMM(l) heuristic have a greater heuristic value than others. Given
the heuristic values we can define the probability of a (partial) solution st from C to be chosen
in function Choose From(C, d):

p(st) ←
η(st)

∑

sl∈C η(sl)
(5)

5

However, instead of always choosing a partial solution st ∈ C probabilistically, we employ
the following mixed strategy. First, a random number r ∈ [0, 1] is drawn. If r < d (where
d ∈ [0, 1] is a parameter of the algorithm), the partial solution s∗ to be returned by function
Choose From(C, d) is selected such that s∗ ← argmax{p(st) | st ∈ C}. Otherwise, a partial
solution is chosen by roulette-wheel-selection using the probabilities defined in Equation 5.

Finally, the lower bound LB(st) of a partial solution st is calculated as follows: First, we
calculate the set of remaining strings in L not embedded by st as follows:

R(st) = {ri | (se
i , ri) = st À si, si ∈ L} (6)

Let M(α, R(st)) be the maximum number of occurrences of symbol α in any string in R(st):

M(α, R(st)) = max{ri D α | ri ∈ R(st)} (7)

Clearly, every common supersequence for the remaining strings must contain at least M(α, R(st))
copies of the symbol α. Thus a lower bound is obtained by summing the length of the partial
solution st and the maximum number of occurrences of each symbol of the alphabet in any
string in R(st):

|st| +
∑

α∈Σ

M(α, R(st)) (8)

Note that we use algorithm PBS in a multi-start fashion, that is, given a CPU time limit we
apply algorithm PBS over and over again until the CPU limit is reached. The best solution
found, denoted by sbsf, is recorded. In fact, this solution is one of the input parameters of
algorithm PBS. It is used to exclude partial solutions whose lower bound value exceeds |sbsf|
from further consideration.

5 Experimental Evaluation

We implemented our algorithm in ANSI C++ using GCC 3.2.2 for compiling the software.
Our experimental results were obtained on a PC with an AMD64X2 4400 processor and 4 Gb
of memory.

Two different sets of benchmark instances have been used in the experimentation. The first
one—henceforth referred to as Set1—is composed of random strings with different lengths.
To be precise, each instance is composed of eight strings, four of them of length 40, and the
other four of length 80. Each of these strings is randomly generated, using an alphabet Σ.
The benchmark set consists of 5 classes of each 5 instances characterized by different alphabet
sizes, namely |Σ| = 2, 4, 8, 16, and 24. Accordingly, the benchmark set consists of 25 different
problem instances. The same instances were used for experimentation, for example, in [5].

A second set of instances is composed of strings with a common source. To be precise,
we have considered strings obtained from molecular sequences. The sequences considered
comprise both DNA sequences (|Σ| = 4) and protein sequences (|Σ| = 20). In the first case,
we have taken two DNA sequences of the SARS coronavirus from a genomic database2; these
sequences are 158 and 1269 nucleotides long. As to the protein sequences, we have considered
three of them, extracted from Swiss-Prot3:

2http://gel.ym.edu.tw/sars/genomes.html
3http://www.expasy.org/sprot/

6

• Oxytocin: quite important in pregnant women, this protein causes contraction of the
smooth muscle of the uterus and of the mammary gland. The sequence is 125-aminoacid
long.

• p53 :this protein is involved in the cell cycle, and acts as tumor suppressor in many
tumor types; the sequence is 393-aminoacid long.

• Estrogen: involved in the regulatin of eukaryotc gene expression, this protein affects
cellular proliferation and differentiation; the sequence is 595-aminoacid long.

In all cases, problem instances are generated by generating strings from the target sequence by
removing symbols from the latter with probability p%. In our experiments, problem instances
comprise 10 strings, and p ∈{10%,15%,20%}.

5.1 Algorithm tuning

First we wanted to find reasonable settings for the parameters of PBS. Remember that PBS
has 4 parameters:

1. kbw is the beam width;

2. kext is the number of children to be chosen from set C at each step;

3. d is the parameter that controls the extent to which the choice of children from C is
performed deterministically. If d = 1.0, this choice is always done deterministically,
whereas when d = 0.0 the choice is always done by rhoulette-wheel-selection;

4. Finally, l is the depth of the look-ahead function, that is, the parameter in LA-WMM(l)
(see Section 3).

In order to reduce the set of parameters to be considered for tuning we decided beforehand
to set kext = 2 · kbw. In preliminary experiments we found this setting to be reasonable.
Concerning the remaining parameters we tested the following settings: kbw ∈ {1, 10, 50},
d ∈ {0.0, 0.25, 0.5, 0.75, 0.95}, and l ∈ {0, 1, 2, 3}. First we studied the relation between
parameters kbw and d, fixing parameter l to the maximum value 3 (that is, l = 3). We applied
PBS with each combination of parameter values 5 times for 500 CPU seconds to each of
the problem instances of Set1. This provided us with 25 results for each instance class (as
characterized by the alphabet size). The averaged results for each instance class are shown
in the graphics of Figure 1. The results show that, in general, PBS needs some determinism
in extension of partial solutions (d > 0.0), as well as a beam width greater than 1 (d > 1).
However, in particular for the problem instances with a smaller alphabet size, the determinism
should not be too high and the beam width should not be too big. Therefore, we decided for
the settings d = 0.5 and kbw = 10 for all further experiments.

Finally we performed experiments to decide for the setting of l, that is, the parameter of
the look-ahead mechanism. We applied PBS with the four different settings of l (l ∈ {0, 1, 2, 3}
5 times for 500 CPU seconds to each of the problem instances of Set1. This provides us
with 25 results for each instance class. The averaged results for each instance class are shown
in the graphics of Figure 2. The results show that, in general, the setting of l = 3 is best.
Especially when the alphabet size is rather large, the performance of PBS is better the higher
l is. Only for Σ = 2, the setting of l does not play much of a role. Therefore, we decided for
the setting l = 3 for all further experiments.

7

 280
 290
 300
 310
 320
 330
 340
 350
 360

average result

0.0 0.25 0.5 0.75 0.9550

10

1

"performance"
 340
 320
 300
 280

average result

(a) Σ = 24

 250
 260
 270
 280
 290
 300
 310

average result

0.0 0.25 0.5 0.75 0.9550

10

1

"performance"
 300
 280
 260

average result

(b) Σ = 16

 190

 200

 210

 220

 230

average result

0.0 0.25 0.5 0.75 0.9550

10

1

"performance"
 230
 220
 210
 200
 190

average result

(c) Σ = 8

 150

 155

 160

 165

average result

0.0 0.25 0.5 0.75 0.9550

10

1

"performance"
 165
 160
 155
 150

average result

(d) Σ = 4

 110.6
 110.8

 111
 111.2
 111.4
 111.6
 111.8

 112
 112.2
 112.4

average result

0.0 0.25 0.5 0.75 0.9550

10

1

"performance"
 112
 112
 111
 110

average result

(e) Σ = 2

Figure 1: The z-axis of each graphic shows the average performance of PBS with the param-
eter settings as specified by the x-axis (parameter d) and the y-axis (parameter kbw).

5.2 Final Experimental Evaluation

We compare the results of PBS to 3 different algorithms: MM refers to a multi-start version
of the MM heuristic. This can be done as in case of ties during the solution construction
they are broken randomly. Furthermore, WMM refers to a multi-start version of the WMM
heuristic, and Hybrid MA-BS refers to an algorithm that is a hybrid between beam search
and a memetic algorithm. Note that Hybrid MA-BS is a current state-of-the-art technique
for the SCSP. The results for all three techniques are taken from [9]. The stopping criterion
of MM, WMM, and Hybrid MA-BS was 600 CPU time seconds on a Pentium IV PC with
2400 MHz and 512 Mb of memory. This corresponds roughly to the 350 CPU time seconds
that we allowed on our machine for PBS.

First, we present the results of PBS for the instances of Set1 in numerical form in Table 1.

8

 270

 275

 280

 285

 290

 295

 300

 305

 310

 315

 320

av
er

ag
e

re
su

lt

l=0 l=1 l=2 l=3

(a) Σ = 24

 235

 240

 245

 250

 255

 260

 265

 270

av
er

ag
e

re
su

lt

l=0 l=1 l=2 l=3

(b) Σ = 16

 185

 186

 187

 188

 189

 190

 191

 192

 193

 194

 195

 196

av
er

ag
e

re
su

lt

l=0 l=1 l=2 l=3

(c) Σ = 8

 143.5

 144

 144.5

 145

 145.5

 146

 146.5

 147

 147.5

 148

 148.5

av
er

ag
e

re
su

lt

l=0 l=1 l=2 l=3

(d) Σ = 4

 109

 109.5

 110

 110.5

 111

 111.5

 112

 112.5

 113

av
er

ag
e

re
su

lt

l=0 l=1 l=2 l=3

(e) Σ = 2

Figure 2: The y-axis of each graphic shows the average performance (and its standard devi-
ation) of PBS with the parameter setting of l as specified by the x-axis.

The results show that PBS is always better than the basic greedy heuristics. With respect
to the more sophisticated MA-BS algorithm, the results of PBS are roughly equivalent for
|Σ| = 2. In the remaining instances, PBS improves significantly over the results of Hybrid
MA-BS. Even the average performance of PBS is always better than the best performance of
Hybrid MA-BS.

As to the biological sequences, the results are shown in Table 2. Again, PBS can be
seen to be notoriously better than the greedy algorithms. With respect to MA-BS, PBS is
capable of performing at the same level in most instances, systematically finding the optimal
solutions. Only in the largest problem instances PBS starts to suffer from the curse of
dimensionality. Notice nevertheless that PBS has still room for improvement. For example,
using a larger beam width kbw = 100 (instead of kbw = 10), the results for the two harder

9

Table 1: Results for the instances of Set1.
MM WMM

|Σ| best mean ± σ i.% best mean ± σ i.%

2 112.0 112.0 ± 0.1 0.0 114.8 114.8 ± 0.0 -2.5
4 152.6 153.4 ± 0.7 0.0 157.8 157.8 ± 0.0 -2.8
8 212.4 213.8 ± 0.9 0.0 208.2 208.2 ± 0.0 2.6
16 283.8 286.1 ± 2.0 0.0 272.8 273.4 ± 0.5 4.4
24 330.2 333.9 ± 2.3 0.0 324.0 325.2 ± 0.7 2.6

Hybrid MA-BS PBS
|Σ| best mean ± σ i.% best mean ± σ i.%

2 110.6 110.7 ± 0.0 1.2 110.8 110.9 ± 1.7 1.0
4 145.6 146.4 ± 0.5 4.6 144.8 145.4 ± 1.5 5.2
8 191.6 192.6 ± 1.4 9.9 186.4 187.2 ± 1.7 12.4
16 242.8 244.0 ± 1.0 14.7 240.4 241.9 ± 3.4 15.4
24 280.2 281.2 ± 0.8 15.8 276.4 277.9 ± 4.0 16.8

SARS DNA instances are notably improved: for 15% gap, the mean result is 1269±0.0 (i.e.,
systematically finding the optimal solution); for 20% gap, the mean result is 1483±143.1 (best
result = 1294) which is much closer to optimal. Further fine-tuning of the parameters may
produce even better results.

6 Conclusions and future work

We have introduced PBS, a novel metaheuristic that blends ideas from beam search and
randomized greedy heuristics. Though relatively simple, and with just four parameters, PBS
has been shown to be competitive with a much more complex hybrid metaheuristic for the
SCSP that combines beam search and memetic algorithms. Furthermore, PBS has clearly
outperformed this latter algorithm in one set of instances. In all cases, PBS has been also
shown to be superior to two popular greedy heuristics for the SCSP.

The scalability of PBS is one of the features that deserves further exploration. As indicated
by current results, an adequate parameterization of the algorithm can lead to improved results.
The underlying greedy heuristic using within PBS, or the probabilistic choosing procedure
can be also adjusted. The possibilities are manifold, and work is currently underway in this
direction. An additional line of research is the hybridization of PBS with memetic algorithms.
A plethora of models are possible in this sense, and using the same algorithmic template of
the MA-BA hybrid would be a natural first step.

References

[1] H.L. Bodlaender, R.G. Downey, M.R. Fellows, and H.T. Wareham. The parameterized
complexity of sequence alignment and consensus. Theoretical Computer Science, 147(1–
2):31–54, 1994.

[2] J. Branke and M. Middendorf. Searching for shortest common supersequences by means
of a heuristic based genetic algorithm. In Proceedings of the Second Nordic Workshop on

10

Table 2: Results of the different algorithms for the biological sequences.
158-nucleotide SARS sequence

MM WMM Hybrid MA-BS PBS
gap% best mean ± σ best mean ± σ best mean ± σ best mean ± σ

10% 158 158.0 ± 0.0 158 158.0 ± 0.0 158 158.0 ± 0.0 158 158.0 ± 0.0
15% 160 160.0 ± 0.0 231 231.0 ± 0.0 158 158.0 ± 0.0 158 158.0 ± 0.0
20% 228 229.6 ± 1.8 266 266.0 ± 0.0 158 158.0 ± 0.0 158 158.0 ± 0.0

1269-nucleotide SARS sequence
MM WMM Hybrid MA-BS PBS

gap% best mean ± σ best mean ± σ best mean ± σ best mean ± σ

10% 1970 2039.9 ± 32.9 2455 2455.0 ± 0.0 1269 1269.0 ± 0.0 1269 1269.0 ± 0.0
15% 2151 2236.4 ± 30.4 2346 2346.0 ± 0.0 1269 1269.0 ± 0.0 1269 1303.8 ± 36.6
20% 2163 2180.2 ± 13.9 2207 2207.0 ± 0.0 1269 1269.0 ± 0.0 1571 1753.2 ± 61.0

125-aminoacid Oxytocyn sequence
MM WMM Hybrid MA-BS PBS

gap% best mean ± σ best mean ± σ best mean ± σ best mean ± σ

10% 126 126.0 ± 0.0 126 126.0 ± 0.0 125 125.0 ± 0.0 125 125.0 ± 0.0
15% 126 126.0 ± 0.0 126 126.0 ± 0.0 125 125.0 ± 0.0 125 125.0 ± 0.0
20% 132 132.0 ± 0.0 227 227.0 ± 0.0 125 125.0 ± 0.0 125 125.0 ± 0.0

393-aminoacid p53 sequence
MM WMM Hybrid MA-BS PBS

gap% best mean ± σ best mean ± σ best mean ± σ best mean ± σ

10% 393 393.0 ± 0.0 396 396.0 ± 0.0 393 393.0 ± 0.0 393 393.0 ± 0.0
15% 422 422.0 ± 0.0 832 832.0 ± 0.0 393 393.0 ± 0.0 393 393.0 ± 0.0
20% 612 677.1 ± 40.7 833 833.0 ± 0.0 393 393.0 ± 0.0 393 393.0 ± 0.0

595-aminoacid Estrogen sequence
MM WMM Hybrid MA-BS PBS

gap% best mean ± σ best mean ± σ best mean ± σ best mean ± σ

10% 628 628.0 ± 0.0 1156 1156.0 ± 0.0 595 595.0 ± 0.0 595 595.0 ± 0.0
15% 671 672.9 ± 2.0 1232 1242.1 ± 4.5 595 595.0 ± 0.0 595 595.0 ± 0.0
20% 1071 1190.3 ± 66.2 1324 1327.9 ± 4.6 595 595.0 ± 0.0 596 596.0 ± 0.0

Genetic Algorithms and their Applications, pages 105–114. Finnish Artificial Intelligence
Society, 1996.

[3] J. Branke, M. Middendorf, and F. Schneider. Improved heuristics and a genetic algorithm
for finding short supersequences. OR-Spektrum, 20:39–45, 1998.

[4] J. Chen, I.A. Kanj, and W. Jia. Vertex cover: further observations and further improve-
ments. In Proceedings of the 25th International Workshop on Graph-Theoretic Concepts

in Computer Science, number 1665 in Lecture Notes in Computer Science, pages 313–324,
Berlin Heidelberg, 1999. Springer-Verlag.

[5] C. Cotta. A comparison of evolutionary approaches to the shortest common superse-
quence problem. In J. Cabestany, A. Prieto, and D.F. Sandoval, editors, Proceedings of

the Eight International Workconference on Artificial Neural Networks, volume 3512 of
Lecture Notes in Computer Science, pages 50–58, Berlin, 2005. Springer-Verlag.

[6] C. Cotta. Memetic algorithms with partial lamarckism for the shortest common super-
sequence problem. In J. Mira and J.R. Álvarez, editors, Proceedings of the 1st Inter-

national Work-conference on the Interplay between Natural and Artificial Computation,
number 3562 in Lecture Notes in Computer Science, pages 84–91, Berlin Heidelberg,
2005. Springer-Verlag.

11

[7] R. Downey and M. Fellows. Parameterized Complexity. Springer-Verlag, 1998.

[8] D.E. Foulser, M. Li, and Q. Yang. Theory and algorithms for plan merging. Artificial

Intelligence, 57(2-3):143–181, 1992.

[9] J. E. Gallardo, C. Cotta, and A. J. Fernández. Hybridization of memetic algorithms with
branch-and-bound techniques. IEEE Transactions on Systems, Man, and Cybernetics,

Part B, 2006. in press.

[10] M.T. Hallet. An integrated complexity analysis of problems from computational biology.
PhD thesis, University of Victoria, 1996.

[11] M. Middendorf. More on the complexity of common superstring and supersequence
problems. Theoretical Computer Science, 125:205–228, 1994.

[12] R Niedermeier and P. Rossmanith. A general method to speed up fixed-parameter-
tractable algorithms. Information Processing Letters, 73:125–129, 2000.

[13] P. S. Ow and T. E. Morton. Filtered beam search in scheduling. International Journal

of Production Research, 26:297–307, 1988.

[14] K. Pietrzak. On the parameterized complexity of the fixed alphabet shortest common
supersequence and longest common subsequence problems. Journal of Computer and

System Sciences, 67(1):757–771, 2003.

[15] S. Rahmann. The shortest common supersequence problem in a microarray production
setting. Bioinformatics, 19(Suppl. 2):ii156–ii161, 2003.

[16] J.S. Sim and K. Park. The consensus string problem for a metric is NP-complete. Journal

of Discrete Algorithms, 1(1):111–117, 2003.

[17] V.G. Timkovsky. Complexity of common subsequence and supersequence problems and
related problems. Cybernetics, 25:565–580, 1990.

12

