
CONSTANT VARIANCE TRANSVERSAL FILTERING FOR ADAPTIVE CHANNEL 
EQUALIZATION 

1.- INTRODUCTION 

G. Vazquez, A. Gasull, J.J. Sanchez, M.A. Lagunas 

Departament de Teoria del Senyal i Comunicacions 
E.T.S.E. Telecomunicaci6 de Barcelona (U.P.C.) 

Jordi Girona Salgado, sin, 08034 Barcelona, SPAIN 

This paper addresses the problem of channel equalization in communications and channel 
identification in the context of sonar. In both cases, the study comes from the optimal linear filtering 
theory, taking out the useful information contained in the received data, that used to be noisy. In this 
sense, the equalization of a channel in analog or digital communications consists of the characterization 
of the channel behaviour in such a way that it is possible to correct its frequency response and besides, 
to reduce the degradating effects of the noise that we are going to consider additive, but not necesarily 
gaussian. The objective in the problem of channel identification is clearly different. In this case we 
search for a model of the channel and the desired Information remains just in the coefficients of the 
model. What is really important is that the two refered topics can not be acomplished by the same 
techniques. For instance, some kind of gradient-based adaptive algorithms performs much better for 
equalizing than for identifying the channel, that is, the filtering error exhibits a different convergence
time than the filter weights. 

As it is well known, the common strategy for the design of adaptive systems is the minimization of 
a mean square error function. The gradient-based systems used to be generated from sthocastic cost 
functions, and the recursive solutions, usually related to the Kalman filter, as the consecuencie of 
minimizing deterministic expressions of a mean square error. This paper deals with the second case, 
generating a solution that is obtained under a maximum likelihood criteria, using the complete set of 
data that is supplied to the filter. The paper shows that a weighted mean square error cost objective 
deals and thus, it is necessary to weight the filtering error sequence by a factor that, basically, 
depends on the probability density function of the error sequence and on its first derivate. As it is well 
known, this kind of information used to be not available and other proposals must be made. 

Some kind of data-dependent weighting functions have been refered in the literature, and all them 
in the context of linear prediction [1] or parametric spectral analysis [8]. but never in the context of 
optimal linear filtering. The paper discusses the design of this weighting factor for Including some kind 
of data-selection mechanism for the final filter weight-vector solution design. 

The underlying of the proposal is the search of algorithms achieving better robustness in front of 
non-gaussianity in the data we are handling, as it happens in a number of actual situations. The main 
trouble of our proposal is that the M.L. objetive leads to a non-linear problem, but under some specific 
conditions it is possible to give a recursive and linear estructure to the solution, but as a matter of 
fact it becomes and open research line with now possible guesses. 

The main contribution of this paper is an attractive new Newton adaptive algorithm with a clear 
improvement in the behaviour for narrow band conditions. 

This work was supported by the PRONTIC number 105/88 
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2.- OBJECTIVE DEFINITION 

As it is describes in figure I and figure 11 given a finite impulse response N-order 
digital filter with coefficients {wi} 1 !>i!>N• we try to estimate the samples of a known 

reference sequence (or training sequence) {d(k)}o~k~n as a linear combination of the 

received data samples {x(k)}o~k~n· For each reference samples d(k), we commit an error 

en(k) given by the expression : 

( 1 ) 

that is, the diference between the desired sample and the estimate obtained by the inner 
product between the coefficient or weight filter vector Yf(n) and the data vector the filter 
has received X(k). 
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Figure I. Diagram for channel equalization. 
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Figure 11. Diagrama for channel identification 

The vector solution W(n) will be designed in such a way that the filter behaviour will be 
optimal under a given criteria. Let's consider a meassure of the likelihood degree of the 
error sequence given a filter coefficients vector W(n) and conditioned to the received data. 
Thus, we will use the following conditioned joint probability density function : 
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«l>(en(.);W.(n)/X(.)) = p(en(O),en(1), ... , en(n)/x(O), x(1), ... , x(n)) (2) 

the design equation for the filter coefficient vector under a M.L. criteria becomes : 

W(n) max «t>(en(.);W(n)/X(.)) (3) 

W.(n) 

If the error sequence {en(k)} is distributed following the probability density function 

f(e ;W.(n)), the cost function (3) leads to the conditional log likelihood function given by : 

n 
W.(n) max I In f(en(k);W.(n)) (4) 

k=O 
W(n) 

where the error term en (k) is defined in ( 1) 

lt is easy to prove that (4) is equivalent to the following weighted least square problem 

'J:!._(n) 

n 

mfn L, len(k)l2 r n (en(k)) 

k=O 
W.(n) 

(5) 

where each error term becomes weighted by the factor r n (.) that depends on the 

distribution of the error and on its first derivate : 

f'(e ;W.( n)) 
r (e) - -

n - e f(e;W..(n)) 
(6) 

Unfortunately, it is difficult to known the statistic behaviour of the error, either of the 
data we are handling. 11 is very common to try a characterization from second order 
statistics and in most of the cases it is not sufficient. Thus, not to know this lateral 
information makes the computation of the weighting factor (6) impossible. As we will see, 
for most of the usual distributions this factor tries to penalize the higher energy terms in 
the expression (5) considering them unlikely ones. 

3.- STATISTIC KNOWLEDGE. DESIGN OF THE WEIGHTING FACTOR 

From equations (5) and (6), the evaluation of the weighting factor implies the 
resolution of a transcendental equation. lt is possible to see that for a number of non
gaussian symmetric density functions decreasing monotonically with lel. that the weighting 
factor is also a monotonically decreasing function with lel, symmetric and positive. As a 
consecuence, the effect of the weighting factor is to penalize the higher order terms in the 
accumulated square error (5), keeping unaffected the error samles with smaller energy. 
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Kay [1] proposes a non linear function of the error for the design of the weighting 
factor (6), in the form of a "time domain" Butterworth filter, that is : 

+ b (7) 

where parameters {a,b,ec.~l are determined for each statistic distribution to approach. 

The method consists in a two step one, where first, the weighting factor is assumed to 
be constant supplying an initial filter vector solution. Then the "a posteriori" error samples 
are computated and the least square error problem is re-initialized with each error term 
weighted by expression (7). 

The main handicaps for this proposal are that the computation cost increase, the 
determination of parameters {a,b,ec.~l is not clear enough and finally, that it is not 

possible to give a recursive diagram to the algorithm. 

The underlying of our proposal is that in spite of the non-gaussianity for the involved 
data, the error (1) tends to gaussianity when the filter order increasses. Under this 
condition it is possible to evaluate the weighting factor (6) 

(8) 

Where on2(k) is the variance of the error sample en(k) : 

(9) 

The consecuence of substituting (8) in (5) is that the square error terms are normalized by 
the estimate of the error sample variance, leading to constant variance error samples. If 
the measure of the variance if high, the sample is removed in the objetive function (5) and 
it is classified as an unlikely one. The problem now is how to estimate the variance (9) of 
each error sample. 

4.- CONSTANT VARIANCE CRITERIA 

Let's proceed as in the Kalman filter theory. If we denote the ideal solution by 't:J....". the 
variance of an error sample en(k) is given by : 

( 1 0) 

where ~(.) is the coefficients vector covariance matrix 
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( 11} 

and ~2 min is the mean power of the error for the ideal solution : 

):2 2 
~ mfn = E (len(k)l ) ( 1 2) 

Y{(n) = w_* 

Thus, the maximum likelihood criteria leads to the following least square problem 

W(n) 
n len(k)l2 

mfn L 
k=O an 2(k) 

W(n) 

( 1 3) 

where an 2 (k) is given by ( 1 0). The physical meaning of the constant variance criteria is 

clear. Recovering the definition of the error (1 ), we have that given a known data vector 
X(k) and a known sample of the reference sequence d(k), the error term is only a function 
of the coefficient vector Y{(n). 

Besides, vector 't:/._(n) is obtained in the minimization of the deterministic objective 
(13), where the complete set of data samples and reference samples are considered. The 
question is the relative to the degree of dependence or the sensibility exhibed by the error 
(1) to any change in the coefficient vector W.(n). If one data vector X(k) is degradated, it 
shows a different structure than the rest of the data, and an increase in the variance of its 
associated error is expected. As a consequence, the contribution of the error term due to 
this data is removed in the cost function . If this idea is true, the error variance estimate 
will depent on the data vector we are using in the evaluation of the error and also of the 
rest of the data and the relation between them. In this way, the statistic behaviour of the 
complete data set must be reflected in the expression of the variance. 

Until now, all the development has been rigorous and exact. The last aspect to define is 
the evaluation of the coefficient vector covariance matrix of the filter [11]. 

Due to the fact that matrix (11) is positive definite, the estimate of the error variance 
(7) appears, except a constant factor, as an inner product of the considered data vector 
X(k), in the metric of the coefficient vector covariance matrix (11 ). 

"Data selection" will take this matrix (11) as a reference in such a way that we hope 
that it will include the information about the statistic behaviour of all the previous received 
data vectors, that is, all them except the data vector we are selecting X(k). 

lt is very common to consider the error variance as a constant one to avoid the 
computation of matrix (11 ). This is equivalent to assume that the coefficient vector 
covariance matriz is a null one, and this is absurd. 1t is evident that the succesive updating 
of the coefficients improves the quality of the solution we obtain and this making better of 
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the equalizer must be reflected in the coefficient vector covariance matrix. Therefore, the 
inclussion of the data selection gets a clear meaning. 

5.- WEIGHT-VECTOR COVARIANCE MATRIX ESTIMATION 

The coefficient vector covariance matrix is obtained in the resolution of a 
transcendental equation and then without a high computation cost. Our proposal begins 
considering that the searched solution respons to a Newton diagram, as in Kalman filtering, 
that is : 

( 1 4) 

where ·~· is the 'step-size' and ~(n) is an ergodic estimate of the data autocorrelation 

matrix 

n 

f3(n) = L X(k) X H (k) ( 1 5) 

- k=O 

In this case, it is easy to obtained an expression for the covariance matrix ( 11 ), that is : 

( 1 6) 

Thus, the variance for an error sample ( 1 0) becomes to be : 

( 1 7) 

An the final cost function is given by 

n 

'J::l.(n) mlnL 
1 +XH(k) ~- 1 (n-1 }X(k) 

( 1 8) 

't{(n) 

For the moment, it is not known a recursive solution for ( 18) and a block analysis is 

required. In spite of the non-recursivity of the solution, matrix ~- 1 (n-1) is known for the 

'n' instant due to the fact that it has been computated for obtaining W (n-1) in the previous 
update, and the global computation is not so intensive. 

Nevertheless, our proposal includes another alternative, much more simple and 
efficient. Approaching expression (17) by : 

( 1 9) 
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the objetive can be writen in a recursive way and it presents a recursive resolution : 

W(n) 

n 

mfnL 
k::O 

YY._{n) 

1 +XH(k)~- 1 {k-1 )_K{k) 
(20) 

In this approach the covariance matrix {11) is sample by sample updated and it tries to 
emphasises the more recent received data in front of the older ones, which is logical in an 
adaptive system because the quality of the solution improves in the succesive updating. 

6.- FINAL ALGORITHM AND LAST COMMENTS 

The objective {20) can be solved as an exact least square one. Minimizing with respect 
to the coefficients and ordering the terms of the expression, the final updating equation is 
given by : 

{21.a) 

with: 

{21.b) 

where R(.) is evaluated by : = 
n 

_B{n) = ~ -
2
1 

X(k) XH(k) 
- L..; Tt (k) 

(21.c) 

k=O 

which inverse matrix is updated by the matrix inversion-lemma, that is 

(21.d) 

the analysis of the final solution proofs all the initial considered hypothesis, which are the 
following : 

{ 1 )- From {11), {16) and (21.c) the coefficient vector covariance matrix only depends 
on the previous received data vector and it doesn't include the data vector under 
selection. 
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( 2)- The final coefficient-vector updating equation (21.a) is a Newton diagram. 

( 3)- Parameter 112(n) in (21.b) is a data selector into the updating equation, increasing 
the speed of the adaptive algorithm for data vectors which are parallel to the 
signal eigenvectors of the data autocorrelation matrix (21.c) and 'bracking' the 
update when the supplied data vectors are parallel to the noise subspace. 
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