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Abstract

We report our research on semantics for normal/disjunctive programs. One of the most
well known semantics for logic programming is the stable semantics (STABLE). How-
ever, it is well known that very often STABLE has no models. In this paper we study
the stable semantics and present some new results about it. Furthermore, we introduce a
new semantics (that we call D3-WFS-DCOMP) and compare it with STABLE. For nor-
mal programs, this semantics is based on a suitable integration of WFS and the Clark’s
Completion. D3-WFS-DCOM has the following appealing properties: First, it agrees with
STABLE in the sense that it never defines a non minimal model or a non minimal sup-
ported model. Second, for normal programs it extends WFS. Third, every stable model of
a disjunctive program P is a D3-WFS-DCOM model of P . Fourth, it is constructed using
transformations accepted by STABLE. We also introduce a second semantics that we call
D2-WFS-DCOMP. We show that D2-WFS-DCOMP is equivalent to D3-WFS-DCOMP
for normal programs but this is not the case for disjunctive programs. We also introduce
a third new semantics that insists in the use of implicit disjunctions. We briefly sketch
how these semantics can be extended to programs including: explicit negation, default
negation in the head of a clause, as well as a lub operator ( which is the generalization
of setof over arbitrary complete lattices). We sketch how to model this lub operator using
standard disjunctive clauses. However, we can not use the STABLE semantics but instead
any of our suggested semantics.

We emphasizes that the ultimate goal of our research is to understand better the STA-
BLE semantics and to suggest solutions to the drawbacks of the stable semantics (that
becomes undefined very often).

KEYWORDS: Answer Set Programming, Declarative Programming, Non-Monotonic Rea-
soning.

1 Introduction

One of the most well known semantics for logic programming is the stable semantics
(STABLE) (Gelfond and Lifschitz 1988). However, it is well known that very often
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STABLE is too strong, namely that there are programs that do not possess stable
models (You and Yuan 1994; Dix et al. 2001; Dix 1995). Let us consider the following
example.

Example 1
Let P be a disjunctive logic program:

d ∨ e← ¬a.
c← c.
b← a.
a← b.
a← ¬b,¬c.

In this program there are not stable models, however if we use our D3-WFS-
DCOMP semantics there is a model of the program P , i.e. {a,b}. We can argue that
this intended model makes sense as follows: Since a tautology such as c← c should
not matter1, we can delete it getting a semantically equivalent program that we call
P1. Then, since c does not appear in the head of any clause of P1, we can derive
¬c and so we can delete ¬c in the last clause to get a semantically equivalent
program P3

2. Then, since we have that:
a← b.
a← ¬b.

are clauses in P3 and by reasoning by cases we derive a.3 Then, we derive b by
simple modus ponens. Finally, d and e can be considered false since a is true.

It has been even argued that STABLE does not define the intended models of a
program(Przymusinski 1991). It is also possible that there is not a best semantics
(Dung 1992):

“The fact each approach to semantics of negation has its own strength and weakness
suggests that there is probably not a best semantics for logic programs”.

Nevertheless, STABLE satisfies interesting logic properties as it is shown in (Pearce
1999). In this paper we study the stable semantics and exhibit some properties that
it satisfies. Also we point out some problems with this semantics. With this base,
we made some variations to the semantics proposed in (Arrazola et al. 1999; Osorio
and Zacarias 2000). The obtained semantics, that we call D3 - WFS - DCOMP
satisfies the following main properties: First, it agrees with STABLE in the sense
that it never defines a non minimal model or a non minimal supported model.
Second, for normal programs it extends WFS. Third, every stable model of a dis-
junctive program P is a D3-WFS-DCOM model of P . Fourth, it is constructed
using transformations accepted by STABLE.

We also introduce two more semantics and prove some properties of them. We
show that our three proposed are equivalent for normal programs. In addition, our

1 In our point of view, what makes the given tautology to be specially harmless is that c does
not occurs in the head of any other clause

2 Note, that what we have done so far in this example is accepted by the STABLE semantics
3 Reasoning by cases is not accepted in STABLE.
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empirical research suggests that they are suitable for modeling the setof operator
of PROLOG. We have done an extensive research on this topic in (Osorio and Ja-
yaraman 1999; Osorio et al. 1999; Osorio and Zacarias 2000; Nieves and Jayaraman
2002).

Our paper is structured as follows: In §2, we review the basic foundations. In
§3 we prove some properties of stable model and define our new semantics. In §4
we show with modeling the setof operator of PROLOG with our semantics using
negation as failure also we present how to reduce programs with explicit negation
to programs without it. Finally, in §5 we present our conclusions.

2 Background

A signature L in a finite set of elements that we call atoms. A literal is an atom or
the negation of an atom a that we denote as ¬a. Given a set of atoms {a1, ..., an},
we write ¬{a1, ..., an} to denote the set {¬a1, ...,¬an}.

A theory is built up using the logical constants ∧,∨,→, and ¬. We may denote a
(general) clause C as: a1∨ . . .∨am ← l1, . . . , ln, 4 where m > 0, n ≥ 0, each ai is a
propositional atom, and each li is a propositional literal. When n = 0 the clause is
considered as a1∨ . . .∨am ← true5, where true is a constant atom with its intended
interpretation. Sometimes, is better to denote a clause C by A←B+, ¬B−, where
A contains all the head atoms, B+ contains all the positive body atoms and B−
contains all the negative body atoms. We also use body(C) to denote B+ ∪ ¬B−.
When A is a singleton set, the clause reduces to a normal clause. A definite clause
((Lloyd 1987)) is a normal clause lacking of negative literals, that is B− = ∅. A
pure disjunction is a disjunction consisting solely of positive or solely of negative
literals. A (general) program is a finite set of clauses. As in normal programs, we
use HEAD(P ) to denote the set of atoms occurring in the heads of P . Given a
signature L, we write ProgL to denote the set of all programs defined over L. We
use |= to denote the consequence relation for classical first-order logic. We will also
consider interpretations and models as usual in classical logic.

Given two theories T1, T2 we denote T1 ≡I T2 to say that these theories are
intuitionistically equivalent, i.e. ∀α ∈ T2, then T1 proves (using intuitionistic logic)
α and conversely.

It will be useful to map a program to a normal program. Given a clause C :=
A ← B+,¬B−, we write dis-nor(C) to denote the set of normal clauses:
{a ← B+,¬(B− ∪ (A \ {a})|a ∈ A}.

We extend this definition to programs as follows. If P is a program, let dis-nor(P)
denote the normal program:

⋃
C∈P dis − nor(C). Given a normal program P , we

write Definite(P ) to denote the definite program that we obtain from P just by
removing every negative literal in P . Given a definite program, by MM(P ) we
mean the unique minimal model of P (that always exists for definite programs, see
(Lloyd 1987)).

4 l1, . . . , ln represents the formula l1 ∧ . . . ∧ ln.
5 Or the simple formula a1 ∨ . . . ∨ am
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We assume to work with disjunctive programs, unless stated otherwise.
We use an example to illustrate the above definitions. Let P be the program:
p ∨ q← ¬r.
p← s,¬t.

Then HEAD(P ) = {p, q}, and dis− nor(P ) consists of the clauses:
p← ¬r,¬q.
q← ¬r,¬p.
p← s,¬t

Definite(dis− nor(P )) consists on the clauses:
p← true.
q← true.
p← s.

MM(Definite(dis-nor(P)))={p, q}.
What are the minimal requirements we want to impose on a semantics for dis-

junctive programs? Certainly, we want that disjunctive facts, i.e. clauses in the
program with empty bodies to be true. Dually, if an atom does not occur in any
head, then its negation should be true. These ideas are straightforward generaliza-
tions of the case on normal programs. Following the ideas of (Brass and Dix 1997),
we propose the following definition:

Definition 1 (Semantics)
• A scenario semantics over a given signature L, is a function such that for

every program P over L it associates a set of models.
• The sceptical semantics induced by a scenario semantics is the set of pure

disjunctions true in every model of the scenario semantics6. For any program
P we define:
SEMmin(P ) := {a| a ← true ∈ P} ∪{¬a|a ∈ L, a 6∈ HEAD(P )}

Given two theories P1, P2, we denote P1 ≡SEM P2 whenever the set of models
of P1 w.r.t. the scenario semantics SEM is equal to the set of models of P2 w.r.t.
the scenario semantics SEM .

Definition 2 (Supported model,(Brass and Dix 1997))
A two-valued model I of a (disjunctive) logic program P is supported iff for every
ground atom A with I |= A there is a rule A←B+ ∧ ¬B− in P with A ∈ A, I
|= B+ ∧ ¬B−, and I 6|= A \ {A}.

Definition 3 (STABLE, (Gelfond and Lifschitz 1988))
The Gelfond-Lifschitz transformation (GL-transformation) of a logic program P

w.r.t. an interpretation M is obtained from P by deleting

(i) each rule that has a negative literal ¬B in its body with B ∈ M , and
(ii) all negative literals in the bodies of the remaining rules.

6 The sceptical semantics derives every literal when its associated scenario semantics has no
models
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Clearly the program GL(P, M) resulting from applying the GL-transformation
is negation-free, so GL(P, M) has at least one model. M is a stable model iff M is
a minimal model of GL(P, M).

Recently, Pearce (Pearce 1999) has generalized the stable semantics to any propo-
sitional theory based on intuitionistic logic. Pearce showed the following (Pearce
1999):

“A formula is entailed by a program in the stable model semantics if and only if it
belongs to every intuitionistically complete and consistent extension of the program formed
by adding only negated atoms”.

From this characterization of the stable semantics, the generalization of STABLE
to arbitrary theories is immediate. From now on, we will assume this definition
whenever we mention the stable semantics of some given theory.

The following transformations are defined in (Brass and Dix 1997) and generalize
the corresponding definitions for normal programs.

Definition 4 (Basic Transformation Rules)
A transformation rule is a binary relation on ProgL. The following transformation
rules are called basic. Let a program P ∈ ProgL be given.

RED+: Replace a rule A ← B+,¬B− by A ← B+,¬(B− ∩HEAD(P )).
RED−: Delete a clause A ← B+,¬B− if there is a clause A′ ← true such that
A′ ⊆ B−.

SUB: Delete a clause A ← B+,¬B− if there is another clause A1 ← B+
1 ,¬B−1 such

that A1 ⊆ A, B+
1 ⊆ B+, B−1 ⊆ B−.

Example 2 (Transformation)
Let L = {a, b, c, d, e} and let P be the program:
a ∨ b← c,¬c,¬d.
a ∨ c← b.
c ∨ d← ¬e.
b← ¬c,¬d,¬e.

then HEAD(P ) = {a, b, c, d}, and SEMmin(P ) = {¬e}.
We can apply RED+ to get the program P1:
a ∨ b← c,¬c,¬d.
a ∨ c← b.
c ∨ d←true.
b← ¬c,¬d,¬e.

If we apply RED+ again, we get program P2:
a ∨ b← c,¬c,¬d.
a ∨ c← b.
c ∨ d← true.
b← ¬c,¬d.

Now, we can apply SUB to get program P3:
a ∨ c← b.
c ∨ d← true.
b← ¬c,¬d.
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The following transformations are defined in (Brass and Dix 1997).

GPPE: (Generalized Principle of Partial Evaluation) Suppose P containsA ←B+, ¬B−
and we fix an occurrence of an atom g ∈ B+. Then we replace A←B+, ¬B− by
the n clauses (i = 1, . . . , n)

A ∪ (Ai\{g})← (B+\{g}) ∪Bi
+, ¬B− ∪ ¬Bi

−

where Ai ←Bi
+, ¬Bi

− ∈ P, (for i = 1, . . . , n) are all clauses with g ∈ Ai. If no
such clauses exist, we simply delete the former clause.

TAUT: (Tautology) Suppose P contains a clause of the form: A ←B+, ¬B− and
A ∩ B+ 6= ∅, then we delete the given clause.

Let CS1 be the rewriting system which contains, besides the basic transformation
rules, the rules GPPE and TAUT. This system was introduced in (Brass and Dix
1997) and is confluent and terminating as shown in (Brass and Dix 1998). We write
resCS1(P ) to denote the residual program of P w.r.t. the transformations rules CS1.

Definition 5 (D’-WFS )
Give a program P , we define D’-WFS(P) = SEMmin(resCS1(P )).

We note that our definition of D’-WFS(P) is very similar to the definition of the
D-WFS semantics (Brewka et al. 1997). The difference is that D-WFS defines pure
disjunctions while D’-WFS(P) defines literals7.

Let us note that although the CS1 system has the nice property of confluence (and
termination), its computational properties are not so efficient. In fact, computing
the residual form of a program is exponential (even for normal programs, whereas it
is known that the WFS ((Gelder et al. 1991)) can be computed in quadratic time).

Definition 6 (Dloop)
(Arrazola et al. 1999) For a program P1, let unf(P1) := L \MM(Definite(dis −
nor(P1)). The transformation Dloop(dp) reduces a program P1 to P2:= {A ←
B+,¬B−| B+ ∩unf(P ) = ∅}. We assume that the given transformation takes place
only if P1 6= P2. We write P1 −→DloopA

P2 to denote that P1 transforms to P2 by
a dp transformation, where A := unf(P1).

Let Dsuc be the natural generalization of suc to disjunctive programs, formally:

Definition 7 (Dsuc)
(Arrazola et al. 1999) Suppose that P is a program that includes a fact a ← true

and a clause A ← Body such that a ∈ Body. Then we replace this clause by the
clause A ← Body \ {a}.

Definition 8 (CS2)
(Arrazola et al. 1999) Let CS2 be the rewriting system based on the transformations
SUB, RED+, RED−, Dloop and Dsuc.

7 The paper could be worked out without defining D’-WFS but using instead D-WFS.
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Theorem 1
[Confl. and termination of CS2](Arrazola et al. 1999) The system CS2 is conflu-
ent and terminating. It induces a semantics that we call D1-WFS and define as
D1-WFS(P)=SEMmin(resCS2(P )). If we consider only normal programs then its
induced semantics corresponds to the well-founded semantics.

D1-WFS generalizes a system introduced in (Brass et al. 1996) from normal to
disjunctive programs.

Let us consider again Example 2. As we noticed before, program P reduces to
P3. But P3 still reduces (by RED−) to P4, which is as P3 but the third clause
is removed. From P4 we can apply a Dloop reduction to get P5: the single clause
c ∨ d ← true. P5 is the residual form of the CS2 system.

For this example it turns out that D’-WFS is equivalent to D1-WFS, but this is
false in general. Take for instance, the following example:

Example 3
Let P be a disjunctive logic program:

x← ¬a. a← ¬b.
d← a. c ∨ b.
a← d. b← c.

Notice that D’-WFS(P)={x, b,¬d,¬c,¬a} but D1-WFS(P) = φ.

However for normal programs both systems are equivalent since they define WFS,
but note that the residual programs w.r.t. CS1 and CS2 are not necessarily the
same. An advantage of CS2 over CS1 is that the residual program w.r.t. CS2 is
polynomial-time computable.

3 Declarative semantics

We first state and prove some useful properties.

Lemma 1
Let P be a program. If M is a minimal model of P and a supported model of P then
M is a minimal supported model of P.

Proof
Our proof is by contradiction. Let M be a minimal model of P , M a supported
model of P and M not a minimal supported model of P . Then exists a proper
subset M ′ of M such that M ′ is a supported model of P . Thus M ′ is a model of P .
But since M ′ is a proper subset of M , M is not a minimal model of P , obtaining a
contradiction.

The converse of this lemma is false as the following example shows:
a ← ¬a.

a ← b.
b ← b.

Note that M := {a, b} is a minimal supported model of dcomp(P ) but M is not a
minimal model of P , and so it is not a minimal and supported model of P .
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Lemma 2
If P1 is a disjunctive program, P1 −→DloopA

P2 then: a ∈ A implies that for every
clause α ← Body ∈ P1 such that a ∈ α then Body ∩A 6= ∅.

Proof
It is a straightforward generalization for the case in normal programs (Brass et al.
1996).

Lemma 3
If P1 −→DloopA

P2 then Head(P2) ∩A = ∅.

Proof
By contradiction: Suppose Head(P2) ∩ A 6= ∅ therefore: exists a ∈ Head(P2) ∩ A.
Then there is a rule of the form: a ∨ α ← β ∈ P2. So a ∨ α ← β ∈ P1. As a ∈ A

then exists b ∈ β ∩A (by Lemma 2). Thus a∨ α ← β /∈ P2, by the construction of
P2. This leads a contradiction.

Lemma 4
Let T1 and T2 two theories then T1 ≡I T2 implies T1 ≡stable T2.

Proof
Follows immediately by Theorem 3.4 in (Pearce 1999)

Lemma 5
If P is a theory, I a set of atoms and M any stable model of P , then I ∩M = ∅ ⇒
P ≡stable P ∪ ¬I

Proof
Follows immediately by Theorem 3.4 in (Pearce 1999)

Lemma 6
(Brass and Dix 1997) Let P be program, if M is a stable model of P then M is a
supported model of P.

Lemma 7
Let P1 be a disjunctive program. If M is minimal model of P1 and P1 −→DloopA

P2

then M ∩A = ∅

Proof
Suppose M ∩ A 6= ∅ then b ∈ M and b ∈ A, so b is not in every minimal model
of definite(dir − nor(P )), then definite(dis − nor(P )) 6` b, so (dis − nor(P ) 6` b.
Therefore b 6∈ M for all M minimal model of dis − nor(P ), there after b 6∈ M for
all model of P then M is not minimal model.

Osorio et al. in (Osorio et al. 2001) proved that stable semantics is closed under
Dloop.



Weakening the Stable semantics 9

Theorem 2 (Dloop preserve stable)
(Osorio et al. 2001) Let P1 be a disjunctive program. If P2 = Dloop(P1) then P1

and P2 are equivalent under the stable semantics.

The following result was presented in (Osorio et al. 2001).

Lemma 8 (STABLE is closed under CS2 transformations)
(Osorio et al. 2001) Let P1 and P2 two programs related by any transformation in
CS2. Then P1 and P2 have the same STABLE models.

Definition 9
Let S a set of literals and P be a program. We define PSasfollows :

PS := {A ← α \ (α ∩ S) such that A ← α ∈ P and it is false that there is l ∈ α

and lc ∈ S}, where lc is the complement of the literal l.

An interesting property of the CS2 system is the following:

Lemma 9
Let P1 be a normal program and P2 be the residual program resulting w.r.t. the
CS2 system. Then P2 = PSEMmin(P2)

Proof
First note that if P is obtained from P1 by a single transformation T ∈ CS2

then PSEMmin(P ) = P
SEMmin(P )
1 . So, by a direct induction, we can verify that

P
SEMmin(P2)
2 = P

SEMmin(P2)
1 . But P2 = P

SEMmin(P2)
2 . So, by transitivity we get

the desired result.

Lemma 10
If P and P1 are two programs such that P1 is obtained from P by any transformation
T in CS2, then M is a supported model of P1 implies M is supported model of P .

Proof
Straightforward by checking each case of T .

The definition of our first semantics is:

Definition 10
Let P be a program. We define a D3-WFS-DCOMP model as a minimal model of
P that also is a supported model of resCS2(P ).

It is immediate to see that D3-WFS-DCOMP is more powerful than D1-WFS. Note
that sometimes STABLE is inconsistent, when D3-WFS-DCOMP is not. Consider
again the Example 1 where we saw that STABLE is inconsistent while D3-WFS-
DCOMP defines exactly one model, which is {a, b}.
Lemma 11
Let P be a program. If M is D3-WFS-DCOMP model of P then M is a supported
model of P.



10 J. C. Nieves and M. Osorio

Proof
Let M be D3-WFS-DCOMP model of P . So, M is a supported model of resCS2(P ).
Thus by Lemma 10 and a direct induction, M is a supported model of P .

Due to its construction, we see that D3-WFS-DCOMP is similar to STABLE. How-
ever, STABLE is inconsistent more often than D3-WFS-DCOMP. This comment is
formalized in the following theorem, which is one main result of this paper.

Theorem 3
Let P be a normal program.

1.-If M is a D3-WFS-DCOMP model of P , then M extends the WFS semantics
(i.e. M agrees in the true/false assignments with WFS).

2.- If M is a D3-WFS-DCOMP model of P , then M is a minimal model of P as
well as a minimal model of comp(P ).

3.- M is a STABLE model of P implies M is a D3-WFS-DCOMP model of P .

Proof
(1) follows by construction and Theorem 1. (2) follows by construction and lemmas
1 and 11. (3) Let M be a stable model of P . Hence (by Lemma 8) M is a stable
model of resCS2(P ). Hence by (Brass and Dix 1997), M is a supported model of
resCS2(P ). On the other hand, since M is stable model of P , it is well kwown that
M is a minimal model of P . So M is a minimal model of P as well as a supported
model of resCS2(P ). Finally (by definition) M is a D3-WFS-DCOMP model of P .

We define our second semantics D2-WFS-DCOMP.

Definition 11
Let P be a program. We define a D2-WFS-DCOMP model as a minimal model of
P that also is a supported model of PD′−WFS(P ).

Lemma 12
The semantics D3-WFS-DCOMP is not equivalent to D2-WFS-DCOMP.

Proof
Consider again our Example 3. With D3-WFS-DCOMP we obtain two models:
{a, b, d} and {b, x}. However, with D2-WFS-DCOMP we only obtain the model
{b, x}.

We conjecture the following: for every program P , every D2-WFS-DCOMP model
of P is a D3-WFS-DCOMP model of P .

We also suggest to study the following semantics. The motivation is to enforce
the interpretation of ∨ as inclusive disjunction. In (Greco 1999) the authors also
define a semantics based on this notion.
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Definition 12
Let P be a program, a w-supported model M of P is a model of P such that for
every a ∈ M , there is a clause A← body such that a ∈ A and the body is true in
M .

Definition 13
Let P be a program. We define a D3-WFS1-DCOMP model as a minimal model of
P that also is a w-supported model of PD1−WFS(P )

Theorem 4
Let P be any normal program, then D3-WFS-DCOMP(P)=D2-WFS-DCOMP(P)=D3-
WFS1-DCOMP(P).

Proof
Since D1−WFS(P ) = D′−WFS(P ) (for normal programs) and by Lemma 9 then
is immediate that D3-WFS-DCOMP(P)=D2-WFS-DCOMP(P). Since supported
models are the same as w-supported models (for normal programs) then D3-WFS-
DCOMP(P)=D3-WFS1-DCOMP(P).

Note that however, for disjunctive programs D3-WFS-DCOMP is (in general)
different to D1-WFS1-DCOMP. Take for instance, Example 2 in (Greco 1999).

4 Extensions

We sketch how to extend our semantics to consider programs with clauses allowing
an empty head, explicit negation, datalog programs and finally a lub operator.

• With respect to datalog programs, we first obtain the ground instantiation of
the program and then we proceed as with propositional programs. This is a
well known approach and we do not discuss it any more.

• With respect to programs with explicit negation, it is possible to reduce pro-
grams with explicit negation to programs without it. The idea is originally
considered in (Baral and Gelfond 1994).

• With respect to programs that include clauses with empty head we proceed
as follows: Say that we have the clause:
← α then simply translate it as: a← α, ¬a

where a is a new atom. Clearly, α is false in every D3-WFS-DCOMP model
of the program.

4.1 Semantics of lub-programs

A very interesting issue consists in modeling the setof operator of PROLOG. In
a meeting, whose aim was to get a clear picture of the current activities in Logic
Programming and its role in the coming years, Gelfond pointed out: “We need
to find elegant ways for accomplishing simple tasks, e.g. counting the numbers of
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elements in the database satisfying some property P. At the moment we have neither
clear semantics nor efficient implementation of setof of other aggregates used for
this type of problems” (Dix 1998). We consider the following example.
s(S) ← setof(X, p(X), S).

where the intended meaning is: s(S) is true when S = {X : p(X)}.
Several authors have suggested to translate the above expression using negation

as failure more or less as follows:
s(S) ← setof-s(S).

setof-s(S) ← try-s(S),¬ bad-s(S).

try-s(S) ← p(X), singleton-set(X,S).

try-s(S) ← try-s(S1), try-s(S2), union(S1,S2,S).

try-s(X) ← emptyset(X).

bad-s(S) ← p(X), ¬ member(X,S).

where union, member and singleton-set have their intended meaning. For instance,
singleton-set(X,S) is true if S = {X}. Given any normal program extended with
setof, if the translation is a stratified program, then the stratified model of the
program captures the “intended” semantics of the original program (Osorio and
Jayaraman 1999). However, when the program is not stratified then we can consider
using stable models. Several times the stable models still captures the intended
meaning but sometimes it becomes undefined.

Here is a simple but yet an interesting example about setof. Consider the definite
program:
a← true.
b← a, c.

represented as:
rule([a]).

rule([b,a,c]).

That is, rule([X|Y]) represents the clause X← Y. Think that we want to write a
program that computes the minimal model. Thinking in the fix-point semantics we
could write:
mm(S) ← setof(X, t-p(X), S).

t-p(X) ← rule(X,Y), mm(S), subset(Y,S).

That is, mm(S) is true (in the intended semantics) iff S is the minimal model of the
program represented by the EDB (extensional database) rule8. Note that mm and
t-p are mutually dependent. If we use the translation of setof to NF given above,
then STABLE has no models at all, while any of our proposed semantics in this
paper define the intended model.

The ideas of this part are taken from (Osorio and Jayaraman 1999) but adapted
to the more familiar environment of PROLOG. A LUB operator is a generalization
of setof over any complete lattice. The intuitive reading is that LUBL(X, p(X), S)

is true if S is the least upper bound of each X such that p(X).
Let P be a logic program:

8 It is however questionable if the above program should be considered legal.
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h(X, S) ← LUBL(C, n(X, C), S).
Now translate the program before as follows:

h(X, S) ← f=(X,S).

f≥(X, S) ← n(X, S).
In addition we need to add axioms that relate the predicate symbols f= with f≥ for
each functional symbol f. Let us consider again our example. The axioms for f in
this case are as follows:

(1) f=(Z, S) ← f≥(Z, S), ¬ f >(Z, S).

(2) f>(Z, S) ← f≥(Z, S1), S1 >L S.

(3) f≥(Z, S) ← f≥(Z, S1), S1 >L S.

(4) f≥ (Z, ⊥).
(5) f≥(Z, C) ← f ≥(Z, C1), f≥(Z, C2), lubL(C1, C2, C).

We understand that S1 >L S means that S1 ≥L S and S1 6= S. And lubL(C1, C2, C)
interprets that C is the least upper bound of C1 and C2. The first two clauses are
the same (modulo notation) as in definition 4.2 in (Gelder 1992). Clause (5) is not
useful for total-order domains.

Now we need to instantiate the translated program. In this paper we restrict our
attention to finite ground programs. By adding simple type declarations we can
ensure to get a finite ground program. In this case, we borrow the declaration style
of Relationlog, see (Osorio and Jayaraman 1999).

5 Conclusion and future work

We presented some useful results about the stable semantics STABLE. We propose
three semantics as alternative options for STABLE. The aim of our proposals is a
solution of some drawbacks of disjunctive (and normal) stable semantics that be-
comes undefined (inconsistent) very often. We also sketch some extensions, mainly
to allow at lub operator, a general form of setof. We noticed that STABLE could
not define the intended meaning of a simple program that uses our lub operator.

In (Nieves et al. 2005), we use stable models semantics in order to model the
Dung’s argumentation approach(Dung 1995) and also we present some extensions
of the Dung’s argumentation semantics. One of our future work is to explore the
application of the semantics presented in this paper in argumentation theory. For
instance in argumentation theory, there is a few work w.r.t. aggregation of argu-
ments, we believe that the axiomatization presented in Section 4.1 could be helpful
in order to handled aggregation between arguments. Moreover in (Nieves and Cortés
2006), we present some preliminary results, w.r.t. to use a similar axiomatization
of the Section 4.1 in order to infer the certain of an argument.
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