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Abstract

Cyclic butylene terephthalate (CBT®) oligomers are a relatively new class of material 

and are capable of polymerizing in an entropically-driven ring-opening polymerization 

into high-molecular-weight polymerized CBT (pCBT) in very short times, i.e. within 

minutes. The most important feature of CBT is its very low, water-like melt viscosity 

prior to polymerization which gives rise to an excellent impregnation of fibrous 

reinforcements in contrast to conventional, high viscous thermoplastic resins. This 

opens up new possibilities in the thermoplastic composite production since 

thermoplastic-based composites show some advantages over thermoset-based 

ones. Specifically, they have a higher toughness and impact strength and they can 

be welded, postformed and recycled due to their thermoplastic nature. CBT has the 

potential to substitute thermoset matrices in fibre reinforced composites and may 

solve some of the today´s recycling issues associated with thermoset-based 
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composites. Moreover, the low melt viscosity of CBT enhances the dispersion of 

nano- or conductive particles and can yield superior nano- and conductive 

composites. This article reviews the recent advances in processing–structure–

property relationship, physical and chemical modification of pCBT, as well as the 

preparation of fibre reinforced pCBT composites, pCBT nanocomposites and 

conductive pCBT composites. 

Keywords: Cyclic butylene terephthalate; pCBT; ring-opening polymerization; 

thermoplastic composite; nanocomposite, conductive polymer composite. 
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Macrocyclic oligomers (MCOs) have been gaining interest in recent years because 

they are starting materials for entropically-driven ring-opening polymerizations. The 

ring-opening polymerization route is very attractive since high-molecular-weight 

polymers can be obtained in very short times, i.e. in the order of minutes. Ring-

opening polymerization (ROP) is a polymerization mechanism in which cyclic 

molecules are opened into linear monomers or oligomers and subsequently bonded 

into high molecular weight polymers without generating by-products. Cyclic oligomers 

of condensation polymers have been known for many years. They are formed in 

small amounts during the condensation polymerization of many polymers, typically 

less than 2 wt.%, along with the high molecular weight linear chains.1-3 The formation 

of these cyclic oligomers is due to statistical reasons; they are formed either under 

kinetic conditions or in their equilibrium concentration from melt polymerization.4  

In the 1930s Carothers and co-workers5-6 were the first who prepared aliphatic 

cyclic oligomeric esters and carbonates by distillative depolymerization of linear 

polyesters. East and Girshab7 extracted cyclic oligomers from poly(butylene 

terephthalate) (PBT) and quantitatively determined them by high pressure liquid 

chromatography (HPLC). Most of the early work was only of academic interest which 

was due to the fact that syntheses were inefficient and purification of products was 

always necessary. Moreover, most of these oligomers have high melting points, 

sometimes even higher than their polymeric counterparts, which limits their melt 

processing.1, 4, 8 Since then, many cyclic oligomers of different polymers have been 

extracted and characterized by several researchers. The systematic synthesis and 

subsequent ring-opening metathesis polymerization of macrocyclic polyesters were 

first developed by Brunelle and his research group in the late 1980s at the General 

Electric Corporation.1 They initially explored macrocyclic polycarbonates (PC) but 

also developed the reactive processing of poly(ethylene terephthalate) (PET) and 
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PBT. The CBT technology passed on in 1999 to the Cyclics Corporation, USA, and is 

currently marketed under the tradename Cyclics®.9  

Among the various existing MCO families, cyclic oligoesters, especially cyclic 

butylene terephthalate oligomers are promising. Polymerized CBT (referred to as 

pCBT to distinguish from conventional PBT obtained by polycondensation reaction) is 

structurally equal to PBT, a semicrystalline polyester and important engineering 

thermoplastic. PBT is characterized by rapid crystallization kinetics, high stiffness and 

strength, high toughness at low temperatures and good processability. Due to these 

properties, PBT is widely used in the fields of electronics, automotive, 

telecommunication, machine components as well as food and medical applications.3,

10

Nowadays, other important research fields in polymer science are 

nanocomposites and fibre reinforced polymer (FRP) composites. FRPs are gaining 

importance as structural materials because of their better strength-to-weight and 

stiffness-to-weight ratios as compared to steel or aluminium. FRPs consist of a 

polymer matrix which may be a thermoset or thermoplastic polymer and a variety of 

reinforcements such as glass, carbon, aramid or natural fibres. On one hand, 

thermosets are commonly employed for composite production due to their 

straightforward processing. On the other hand, thermoplastics show some 

advantages over thermosets, namely a higher toughness and impact strength, faster 

manufacturing without releasing harmful volatiles as well as the possibility of welding, 

postforming and recycling due to their thermoplastic nature.11 The possibility of 

recycling is an increasingly important argument for thermoplastic composites (TPCs) 

in many markets, especially in the automotive sector. A TPC part can be grinded into 

fine particles at the end of its life cycle. The ground material (together with virgin 
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polymer) can then be injection moulded into new short fibre reinforced parts which 

then also can be recycled at the end of their life cycle. 

However, the main disadvantage in the production of TPCs is the need for 

high processing temperatures and pressures due to the high melt viscosity of the 

thermoplastic matrix which often results in products with poor fibre impregnation and 

high void content.11 The viscosity of thermoplastics during melt processing is orders 

of magnitude higher than that of thermosets, namely 103 to 106 Pa·s for 

thermoplastics versus 1 Pa·s or lower for thermosets.12 Impregnation can be 

improved by reducing the flow lengths of the thermoplastic matrix by intimate 

mingling of the reinforcement and the matrix prior to composite production. 

Nevertheless, this results in more expensive semi-finished products. On the other 

hand, fibre wet-out can be improved using reactive processing of TPCs. The fibre 

reinforcement is impregnated with low viscosity mono- or oligomeric precursors. The 

latter are then in situ polymerized after impregnation. Moreover, the low viscosity of 

the precursors allows for processing routes which are traditionally used in thermoset 

processing, such as vacuum infusion or resin transfer moulding. CBT exhibits a 

water-like melt viscosity and is thus a promising matrix material for the reactive 

processing of TPCs using liquid composite moulding techniques.13 Similarly, the low 

viscosity of the melted oligomers is advantageous for the production of polymer 

nanocomposites with improved properties since nanofiller distribution and dispersion 

is typically enhanced by reducing the matrix viscosity.14 Moreover, the intercalation 

and exfoliation of layered nanofillers such as organoclay or graphene is also 

enhanced if the matrix viscosity is decreased.15-16 

In this review article the recent advances in the processing–structure–

properties relationship of pCBT obtained by different processing routes is critically 

reviewed. Physical and chemical modification of CBT, pCBT micro- and 
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nanocomposites with different types of reinforcement, continuous fibre reinforced 

pCBT composites as well as conductive pCBT composites are addressed and 

discussed. 

2 
Cyclic butylene terephthalate (CBT) 

2.1 Synthesis 

Condensation polymerization is a step growth mechanism which involves 

intermolecular reactions between monomer, oligomer or polymer end groups. 

Nevertheless, for statistical reasons, intramolecular reactions between the end 

groups of the same molecule occasionally occur if the polycondensation is carried out 

at high concentrations, leading to cyclic oligomers. Unfortunately, conventional bulk 

condensation polymerization yields only small amounts of cyclic oligomers. Direct 

synthesis of cyclic oligomers as major products can be achieved using conditions of 

high dilution, pseudo-high dilution, polymer supported synthesis or cyclo-

depolymerization of linear high-molecular-weight polymers. Cyclo-depolymerization 

(CDP), also known as ring-closing depolymerization, uses linear polyesters to form 

cyclic oligomers and thus is a suitable technique for the recycling of polyesters. The 

cyclic formation mechanism via CDP is basically a transesterification mechanism and 

is simply the reverse of an entropically driven ring-opening polymerization.17 The 

synthesis of cyclic oligomers has been reviewed by several researchers1, 3-4, 8, 13, 18-21 

over the years and more recent review articles covering this topic have been 

published by Hodge.22-23 Cyclics Corporation produces the CBT oligomers as a 

Page 7 of 143

URL: http://mc.manuscriptcentral.com/bsms

Critical Reviews in Solid State and Materials Sciences



8 / 107 

 

mixture of dimer, trimer and larger cyclic oligomers via depolymerization of 

commercial PBT9, 24 and various patents are filed for this process (see for instance 

Refs.25-26).  

On the other hand, the cyclic dimer of CBT has been isolated from the extracts 

of the marine bacterial strain Cytophaga sp. AM13.1, although in very low yield 27. 

This makes the CBT dimer the first cyclic terephthalic acid ester extracted from a 

natural source. 

2.2 Structure 

The structure of CBT oligomers is displayed in figure 1. CBT is a mixture of oligomers 

having two to seven repeat units, i.e. ranging from cyclic dimer to cyclic heptamer28. 

An oligomer mixture has the advantage of melting point reduction, since pure, 

discrete cyclic have relatively high melting points. CBT softens at 140 °C and is 

completely molten at 160–190 °C, whereas the pure cyclic dimer melts at 196 °C1 

and the pure cyclic tetramer melts at 248 °C7. This results in an initial melt viscosity 

of 0.02 Pa·s at 190 °C29, whereas the dynamic viscosity of conventional PBT at 250 

°C was reported to be around 1000 Pa·s.30 

2.3 Ring-opening polymerization 

2.3.1 ROP mechanism 
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Ring-opening polymerizations are essentially the reverse of cyclo-depolymerizations. 

Both ROP and CDP are equilibration processes where the ester linkages are 

repeatedly broken and re-formed. Contrary to CDP however, reactions between 

oligomers are favoured over cyclizations in ROP because the equilibration is carried 

out at high oligomer concentrations. ROP exhibits some advantages over 

conventional step-growth polymerization, namely higher molecular weights (up to 300 

kg/mol) can be more readily achieved. Contrary to that, conventional step-growth 

polymerization typically yields molecular weights of 40–60 kg/mol.3 Since in ring-

opening polymerizations the broken bonds are simply re-formed, no exotherms or 

volatile organic compounds (VOCs) are released. The final molecular weight of the 

polymer solely depends on the molar ratio of cyclic oligoesters to linear end groups. 

Examples for linear end groups are a linear catalyst, humidity or remaining linear 

oligomers present in the system.1, 19 The molecular weight can rise quickly to a high 

value and since ROP is an equilibration process, the molecular weight dispersity is 

expected to be 2.0. 

Despite the numerous advantages, entropically-driven ring-opening 

polymerizations also have drawbacks. For instance, as the polymerization proceeds, 

the molecular weight and the viscosity rise which in turn can seriously slow down the 

polymerization. This means that the polymerization temperature (referred to as TP) 

should at least exceed Tm of the polymer in order to keep the viscosity low. Moreover, 

in the case of certain high performance polymers the high polymerization 

temperatures can lead to undesired side reactions. Another problem is that some 

small cyclics present in the cyclic oligomer families of some high performance 

polymers have very high melting points and very poor solubilities in the molten larger 

cyclic oligomers. Consequently, the small cyclics might not become fully incorporated 

into the linear polymer. 
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The ring-opening polymerization mechanism of CBT is displayed in figure 2. 

Although many types of compounds were reported to initiate the ROP of cyclic 

oligoesters, certain tin and titanium initiators were found to be most effective.28 The 

role of the different available catalyst systems for the ROP of CBT will be discussed 

more in detail in the following section. The ring-opening polymerization mechanism 

has been explained by various researchers28, 31-32 and comprises initiation and 

propagation steps. The catalyst is thought to operate by Lewis acid activation of a 

CBT ester group via complexation and then transferring an alkoxide ligand. This 

results in an active species which has a functional group originating from the initiator 

as the end group. Propagation proceeds by coordination of another cyclic oligomer to 

the active species, followed by insertion of the cyclic into the metal-oxygen bond by 

rearrangement of the electrons. The process is repeated and more cyclics are 

successively added to the propagating linear polymer chain. The propagation 

reactions continue until all cyclics are depleted and the ring-chain equilibration 

becomes degenerate. In this case, the initiator becomes built into the polymer, which 

is not terminated unless quenched.4, 28, 31 

Cyclic oligomers exhibit almost no ring strain due to their large size. Consequently, 

the polymerization is almost thermoneutral which leads to complete equilibration of 

ester groups. In other words, initiation, propagation, and chain transfer have nearly 

the same rates.4 Since the number of bonds in the linear polymer is essentially the 

same as in the starting oligomers and since the oligomers are not significantly 

strained, there is little or no change in enthalpy related to the equilibration. The 

conversion from cyclics to polymer is therefore mainly driven by the change in 

entropy. This means that the cyclic oligomers have only limited translational entropy 

as well as limited available conformations (‘conformational strain’) owing to their 
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cyclic nature. However, there is a significant increase in conformational entropy 

(although there is only a modest change in translational entropy) when the rings 

open.17 Three factors control the final degree of conversion from cyclics to polymer 

during ROP:28  

i) purity of the monomers

ii) complete mixing of the initiator and oligomers before ROP causes the

viscosity to increase to the point where mixing is inefficient

iii) polymerization at a high enough rate that polymerization is essentially

complete before crystallization occurs

2.3.2 Catalyst systems 

Tripathy and associates33 studied the effects of different catalysts and polymerization 

temperatures on the ROP of CBT. They melt blended CBT oligomers and catalyst at 

160 °C and conducted the ROP at 185–205 °C. The used catalysts were cyclic 

stannoxane (I), butyltin chloride dihydroxide (II), and tetrakis-(2-ethylhexyl) titanate 

(III); their chemical structures are shown in figure 3.  

The extent of polymerization was analyzed by monitoring the change in light 

transmittance intensity at several temperatures of polymerization, ranging from 185 to 

205 °C. Since the ROP was conducted below the pCBT melting temperature, it was 

assumed that crystallization followed polymerization (for the chosen TP). The 

crystallization resulted in the loss of light intensity due to scattering from 
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heterogeneous clusters of pCBT crystals. The authors reported that cyclic 

stannoxane was the fastest catalyst and completed the in situ polymerization within 

2–3 min at polymerization temperatures of 165 °C and above. On the other hand, 

about 15 min of induction time, which is desired for RTM processes, was reported for 

butyltin chloride dihydroxide and tetrakis-(2-ethylhexyl) titanate. Furthermore, gel 

permeation chromatography (GPC) was used to find the conditions for the highest 

possible conversion and highest molecular weight; results are shown in table 1. 

Initiator (III) gave the highest molecular weight among all used initiators, and 

the molecular weight remained the same irrespective of TP. The pCBT samples 

obtained using catalysts (II) and (I) have the lowest and the intermediate molecular 

weights, respectively (c.f. table 1). When cyclic stannoxane (I) was used as initiator, 

no decrease in molecular weight was observed with increasing catalyst level because 

no end groups were introduced.28 The ROP of CBT initiated with cyclic stannoxane is 

a ring-expansion mechanism which results in a macrocyclic pCBT, as shown in figure 

4. Macrocyclic pCBT is referred to as c-pCBT in order to distinguish it from linear

pCBT. 

Although the above results demonstrate that butyltin chloride dihydroxide (II) results 

in a relatively low molecular weight, the commercially available one-component 

CBT160® resin contains 0.45 wt.% butyl tin chloride dihydroxide as catalyst.34 The 

two-component CBT100® resin is provided with the same catalyst in form of Fascat® 

4105.35 
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2.3.3 Polymerization kinetics 

The polymerization kinetics of CBT mainly depends on the type and amount of 

catalyst as well as on the processing temperature and has been studied by various 

techniques. Hakmé et al.36 investigated the in situ monitoring of the ROP of CBT by 

dielectric sensing under isothermal conditions at different processing temperatures. 

Small electrical sensors were therefore introduced in the processing tool. The 

conductivity signal reflected the local viscosity of the molten CBT and decreased 

when the polymerization progressed or when the fraction of the amorphous phase 

decreased during crystallization. Therefore the change in conductivity depended on 

the increase of molecular weight but was also influenced by pCBT crystallization 

during or after polymerization. The electrical conductivities as measured by dielectric 

sensing are illustrated in figure 5.  

It was found that simultaneous polymerization and crystallization occurs below 200 

°C, whereas polymerization is followed by crystallization above 200 °C, and only 

polymerization occurs above 220 °C. Therefore it can be assumed that the 

processing conditions affect the crystal morphology (the influence of the morphology 

on the final properties of pCBT will be discussed later). At 220 °C only polymerization 

occurs, hence the small conductivity decrease was only related to the viscosity 

increase during the molecular weight build-up. At 210 °C the same small decrease 

related to the polymerization was observed, followed by another conductivity 

decrease related to the crystallization of the pCBT. Unfortunately, dielectric sensing 

could not distinguish between the polymerization and crystallization when they 
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occurred simultaneously at temperatures below 210 °C. Therefore, this technique is 

suitable only to some extent to measure the polymerization kinetics of CBT.  

In a more recent study, Zhang and associates37 investigated the correlation 

between the ROP of CBT and crystallization of pCBT. CBT was isothermally 

polymerized for 30 min during DSC scans performed at various temperatures ranging 

from 190 °C to 230 °C. Crystallization during polymerization occurred when TP was 

below 204 °C. Polymerization and crystallization were gradually separated with the 

increase of TP from 204 °C. Only polymerization took place above 212 °C. In other 

words, the crystallization-derived properties of pCBT are determined by the 

isothermal stage when TP is below 204 °C where the main crystallization of pCBT 

has finished. On the contrary, when TP is above 204 °C, crystallization of pCBT 

occurs mainly in the cooling stage. Uniform crystal size distributions were found when 

polymerization and crystallization occurred simultaneously below 204 °C. With the 

increase of TP above 204 °C, crystal size distributions became wider and led to more 

and more obvious double melting peaks during a DSC second heating scan.  

GPC is a more direct technique which measures the amount of unreacted 

oligomers as well as the amount of pCBT polymer; therefore the degree of 

conversion α can be determined. Steeg and co-workers30 studied the polymerization 

kinetics of CBT from over 200 single GPC measurements performed under 

isothermal conditions as well as from rheological measurements; results are depicted 

in figure 6. It can be seen that reasonable degrees of conversion (α > 0.8) are only 

achieved when CBT is polymerized at temperatures of 170 °C and above. Lower 

temperatures yield only partially polymerized pCBT and the ROP is considerably 

slower as compared to higher temperatures. 

Page 14 of 143

URL: http://mc.manuscriptcentral.com/bsms

Critical Reviews in Solid State and Materials Sciences



15 / 107 

 

2.3.4 Modeling of polymerization kinetics 

The polymerization kinetics can be also assessed by rheological measurements. 

Chen et al.31 used a rheometer as a chemical reactor to monitor the ROP of CBT 

initiated by butylchlorotin dihydroxide. The authors found that both the complex 

viscosity and the modulus variation could be efficiently used to determine the degree 

of polymerization. Figure 7 illustrates the variation of the complex viscosity of CBT 

polymerized at different temperatures and also the modelled polymerization kinetics 

deduced from the rheological measurements.  

They concluded from the viscosity measurements that it takes about 35, 16, 14, and 

9 min to reach the plateau at 220, 230, 240, and 250 °C, respectively (c.f. figure 7 a). 

The complex viscosity, elastic and viscous modulus during the polymerization served 

to build up a method to determine the molecular weight and polymer concentration 

variation versus the reaction time. Additionally, they developed polymerization 

kinetics equations in order to simulate the polymerization process (c.f. figure 7 b). 

These equations could fit the molecular weight variation calculated by viscoelastic 

functions at arbitrary temperature. By fitting the molecular weight variation with 

kinetics equations, polymerization rate constants were determined at various 

temperatures. The authors reported that the molecular weight increased faster with 

increasing temperature due to the high polymerization rate and it took a shorter time 

to reach constant values. As the temperature increased, it took approximately 30, 13, 

12, and 7 min for Mw (t)/Mw (∞) to reach steady values, respectively. This suggested 

that the weight average molecular weight did not change after that time. The trend is 
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consistent with the results evaluated from the time evolution of complex viscosity in 

figure 7 a. Nevertheless, the polymerization time based on molecular weight in figure 

7 b is systematically shorter as compared to the one from viscosity measurements. 

Steeg et al.30 measured conversion and viscosity of CBT using GPC and 

rheometer. The authors derived and optimized an Arrhenius-based conversion model 

from GPC results in order to predict the conversion of CBT under isothermal 

conditions. The results were validated and optimized by means of isothermal 

rheological measurements and the results of the modelling, shown in figure 8, were 

generated that predict conversion and dynamic viscosity for every thermal condition. 

2.4 Crystallization 

One of the main advantages of CBT over other reactive systems is that there are 

generally two processing routes, namely polymerization below or above the melting 

temperature of pCBT (≈225°C). In the latter case the ROP of CBT takes place in the 

molten state. Hence polymerization and crystallization are separate processes and 

the processing is non-isothermal. If the ROP is conducted below the Tm of pCBT, 

namely below 200 °C as stated in Ref.36, then crystallization during polymerization is 

possible and processing can be performed isothermally. 

2.4.1 Crystallization during polymerization 
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According to Wunderlich38-39, crystallization during polymerization can be either 

simultaneous or successive.  

In the first case both processes are truly simultaneous, i.e. a mobile oligomer is 

added to the growing pCBT crystal and both covalent bonds (due to the ROP) and 

secondary bonds (due to crystallization) are set at the same time. In the second 

case, polymerization is followed successively by crystallisation before polymerization 

is completed. The described scenarios result in different morphologies. While 

separate polymerization and crystallization usually produces folded chain lamellar 

crystals, crystallization during polymerization can produce fibrillar extended chain 

crystals, as schematically shown in figure 9. 

Zhang and co-workers40 described simultaneous polymerization and 

crystallization more in detail. Molten CBT undergoes ring-opening and chain 

propagation which results in living chain ends due to the built-in initiator, as 

schematically shown in figure 10 and discussed in section 2.3. Subsequently, the 

propagated chains crystallize preferentially but the living chain end connected with 

the metal atom of the catalyst cannot be accommodated in the crystal lattice of pCBT 

due to their incompatible lattice parameters.39, 41 The dangling living ends remain 

hanging off the surfaces of the crystal nuclei, which the authors termed as “living 

crystal seeds”. Recently ring-opened oligomers (which are still amorphous) do not 

need to move long distances towards to the fronts of crystal growth and can directly 

fold on the surface of these living crystal seeds according to the intramolecular 

crystal nucleation model.  

Harsch and co-workers42 studied the polymerization and crystallization of CBT by 

fibre Bragg grating (FBG) and normal force measurements under isothermal 
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conditions at 170 and 190 °C, respectively. Unfortunately, FBG and normal force 

measurements were only capable of sensing the crystallization-induced shrinkage 

but not the polymerization. The results from FBG and normal force measurements 

suggested that crystallization of pCBT is of stochastic nature and occurs in two steps; 

i.e. primary and secondary crystallization. They concluded that the polymerization is 

highly advanced or even completed before the crystallization starts. The primary 

crystallization rate is higher than the secondary one and was found to be higher at 

higher temperature. The activation energy of the primary crystallization was found 

between 80 and 150 kJ/mol by adopting an Arrhenius equation. This activation 

energy, estimated for the crystallization of in situ polymerized CBT, is far below that 

measured for pCBT crystallizing from the melt. The pCBT polymerized at a 

temperature of 190 °C had somewhat higher crystallinity and larger crystallite sizes 

than the pCBT polymerized at T = 170 °C, as determined by wide-angle X-ray 

scattering (WAXS) and differential scanning calorimetry (DSC) analysis. 

2.4.2 Crystallization kinetics 

Lehmann and Karger-Kocsis43 studied the crystallization kinetics of in situ 

polymerized CBT and conventional PBT by DSC both under isothermal and non-

isothermal conditions. The used materials were PBT B6550 and PBT B4520, two 

commercial PBT resins as well as two CBT resins, CBT-XB3-CA4 and CBT160. They 

have a slightly different composition, namely CBT160 contains more tetramer than 

CBT-XB3-CA4. The crystallization was analysed by adopting Avrami, Ozawa and 

Kissinger methods for the isothermal and non-isothermal crystallizations, 
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respectively. Crystallisation kinetics under isothermal conditions for various modes of 

nucleation and growth can be approximated by an Avrami equation:44-45 

)exp(
n

t
kt−−=Χ

(1) 

where Χt is the relative crystallinity at different crystallization times t, n is the Avrami 

exponent and depends on the mechanism of nucleation and the form of crystal 

growth. The Avrami rate constant k is the crystallization rate constant related to 

nucleation and growth parameters; and it depends on the shape (e.g. sphere-, disc- 

or rod shaped46) of the growing crystallites. Equation 1 can be linearised which yields 

ktn
t

loglog))1ln(log( +=Χ−−

(2) 

The plot of log(–ln(1– Χt )) against logt is referred to as the Avrami plot and is 

depicted in figure 11. 

From this plot, the Avrami constants n and k can be obtained as the slope of the 

straight line and the intersection with the y-axis, respectively.43 An Avrami exponent 

of n≈3 was found for polymerized CBT160 which corresponds to spherical crystal 

growth. Polymerized CBT XB3-CA4 exhibited an Avrami exponent of n≈2, indicating 

two dimensional plate-like crystal growth. The crystallisation half times of polymerized 

CBT160 were in the range of 0.5–1.5 min for isothermal crystallization at 190–195 
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°C, respectively, and increased with crystallization temperature. Slightly longer 

crystallisation half times were found for polymerized CBT XB3-CA4. The authors 

assumed that the molecular weight of pCBT XB3-CA4 was higher than that of 

pCBT160. This was deduced by the fact that the crystallisation half times increased 

with increasing crystallisation temperature stronger for pCBT XB3-CA4 than for the 

pCBT160.  

Similarly, Wu et al.47 used DSC analysis to study the isothermal crystallization 

kinetics of pCBT polymerized at 230 °C and crystallized at 190–215 °C. They 

analysed the crystallization kinetics and regime using the Avrami theory and the 

Hoffman and Lauritzen theory. The Avrami exponent ranged from 2.46 to 2.82, which 

was related to combined heterogeneous nucleation with a change in the spherulitic 

morphology. For an Avrami exponent n above 2.73, three-dimensional spherulitic 

morphology growth incorporated with boundary crystals was found at lower 

crystallization temperatures. The Avrami exponent decreased to 2.46 for 

crystallization temperatures greater than 200 °C, which corresponded to the 

disappearance of the boundary line and the irregular growth of the highly disordered 

spherulites was lost. The equilibrium melting temperature and glass transition 

temperature of pCBT were reported to be 257.8 °C and 41.1 °C, respectively.  

2.5 Processing 

2.5.1 Conditioning 
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The final molecular weight of the pCBT depends on the amount of linear end groups 

(e.g. humidity) present during polymerization. For this reason, a consequent drying of 

the CBT prior to processing is crucial. Steeg48 studied in cooperation with Cyclics 

Europe GmbH the conditioning of CBT granules and powder. They dried the CBT in a 

circulating air oven at 80 and 100 °C and measured then the CBT water content over 

drying time via Karl-Fischer-titration (c.f. figure 12 a). It was stated that a CBT water 

content of <200 and <125 ppm results in a molecular weight of >100 and >150 

kg/mol of the final pCBT, respectively. The lower limit of 125 ppm was reached after 

1.5 h drying time at 100 °C. When vacuum was added, this limit was already reached 

after 30 min. On the other hand, it took 5 h to reach a water content of 200 ppm at a 

drying temperature of 80 °C. Moreover, it was pointed out that excessive drying times 

(>36 h) lead to decreasing molecular weight and degree of conversion, probably due 

to catalyst inhibition. 

In a further step, the water absorption of CBT was measured. First, CBT was dried in 

the circulating air oven at 100 °C for 5 h. Then the dried CBT was conditioned in 

ambient atmosphere with a relative humidity of 60% and the water uptake was 

measured again using Karl-Fischer-titration. The results are shown in figure 12 b; 

hatched areas indicate the two humidity limits with corresponding achievable 

molecular weights, as mentioned above. Since powder particles exhibit a much 

higher surface-to-volume ratio as compared to pellets, the former adsorb humidity 

much faster. From a processing point of view, CBT powder exceeds the lower 

humidity limit of 125 ppm already after 4 min, whereas CBT pellets can be processed 

without the risk of catalyst inhibition even after being exposed to high humidity for 2 

h. 
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2.5.2 Processing techniques 

A variety of reactive processing routes can be used for TPC production with CBT and 

the interested reader is referred to the following reference 11 and the references 

therein. Most of these processing routes belong to the group of liquid composite 

moulding (LCM). The reactive processing of continuous fibre reinforced pCBT 

composite parts can be achieved by structural reaction injection moulding (SRIM), 

vacuum infusion (VI), also known as vacuum-assisted resin infusion (VARI), 

thermoplastic resin transfer moulding (TP-RTM) and resin film infusion (RFI) which is 

similar to prepreg production for thermoset composites using prepreg hand lay-up. 

RFI can be further enhanced using vacuum assistance.49-51 CBT-impregnated 

prepregs can be prepared by either sprinkling CBT powder on the reinforcement or 

by soaking the reinforcement in a solution of dissolved CBT with subsequent solvent 

evaporation. Furthermore, CBT can also be processed by compression moulding and 

pultrusion. The most important innovation is injection moulding (IM) of cyclic 

oligomers since cost effective mass production of functional lightweight components 

using automated IM has not been possible until now.52 The very low melt viscosity of 

cyclic oligomers allows high injection speeds at low injection pressures, the latter 

minimizing the risk of fibre preform displacement or distortion in the mould. ROP 

takes place in the mould which is operated at elevated temperatures. Possible 

reactive systems for high speed polymerization during injection moulding include 

anionic PA6, PA12, PC, PET and CBT oligomers, although some of these systems 

require variothermic process control or long reaction times. Solid caprolactam was 

first processed and injected using a reciprocating screw and a modified non-return 
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valve at the Fraunhofer Institute for Chemical Technology, Pfinztal, Germany in 

cooperation with IM machine maker Engel Austria GmbH. The injection unit of the IM 

machine was tilted at 30° to the horizontal in order to prevent the oligomer melt from 

running back down the gap between the barrel and screw flights into the feed zone. 

Engel Austria tested a near mass production ready manufacturing cell. One part of 

the process is the automated preform production, where laser cut glass fabric layers 

are placed on a stack in the manufacturing cell and fetched by a linear robot 

equipped with needle grippers. The first fabric layer is directly placed on the heated 

core and the following fabric layers are sprayed with a binder being fixed on the core 

by needles. Teflon rollers spread the fabrics out and the contour is thermally fixed. In 

a next step a six axis robot removes the preform and places it in the oil heated mould 

of the IM machine. A silicone profile runs around the mould and holds the preform in 

the desired position and provides a seal for the mould. Then the mould is closed and 

the cavity is filled within 2 s. After polymerization the part is demoulded by the robot 

arm and passed on to the subsequent trimming process. This technique paves the 

way to the mass production of highly cost-effective thermoplastic fibre reinforced 

composite parts having integrated stiffening and functional elements with advantages 

in respect of overall energy efficiency, welding and recyclability. 

2.5.3 Processing window 

Generally, the reactive processing of TPCs is targeted on direct impregnation of fibre 

reinforcements without the need for intermediate processing steps. A number of 

Page 23 of 143

URL: http://mc.manuscriptcentral.com/bsms

Critical Reviews in Solid State and Materials Sciences



24 / 107 

 

requirements have been defined for achieving direct fibre impregnation with a liquid 

matrix.11, 41, 53-54

i) The viscosity of the liquid matrix during impregnation is very low, i.e. η ≤ 1

Pa·s. 

ii) After impregnation, the matrix can be physically or chemically solidified in a

reasonably short time.

iii) The polymerization reaction should not produce any by-products.

iv) The matrix should exhibit good physical properties after solidification in order

to obtain composite parts with good mechanical properties.

v) Polymerization and crystallization should not produce large exotherms since

they may create hot spots and hence result in through-the-thickness property

variations.

The processing window can be defined as the time for the molten CBT to reach a 

viscosity of 1 Pa·s. Therefore, the processing window is mainly governed by the 

polymerization kinetics. Mohd Ishak and co-workers29 used rheological 

measurements to determine the melt viscosity increase with time and used the 

rheological data as an indirect tool to estimate the impregnation and apparent 

polymerization times; depicted in figure 13.  

A phase angle of almost zero indicated the total transformation of the polymerized 

CBT into a solid phase via crystallization and a tangent could be drawn to the phase 

angle curve. An apparent polymerization time could then be obtained from the 

intersection of the tangent to the curve; whereas the impregnation time was simply 
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the time when viscosity reached 1 Pa·s. A drastic reduction was found in the 

apparent polymerization time when the testing temperature increased from 150 to 

170 °C. They assumed a rapid ring-opening polymerization at high temperatures due 

to the short apparent polymerization times for temperatures 170°C and above. At a 

temperature of 210 °C, the viscosity limit of 1 Pa·s was already reached after around 

1 min, whereas the same viscosity was reached after almost 1 h at a low temperature 

of 145 °C. 

3 Polymerized cyclic butylene terephthalate (pCBT) 

3.1 Morphology 

The morphology of thermoplastics significantly influences their physical properties. 

This is also reflected in the matrix-governed properties of TPCs, such as transverse 

and shear properties, fracture toughness or fibre-matrix interface.55 For PBT, two 

different morphologies have been identified both on the unit cell level and on the 

spherulitic level. On the unit cell level, two triclinic polymorphs are known to exist (c.f. 

figure 14). The α-crystal with gauche-trans-gauche conformation of the butylene 

moiety is the stable form under standard conditions, whereas the β form with all-trans 

conformation develops only under stretching of unoriented crystals10, 56-59 or during 

crystallization at pressures above 2000 bar 60. This α to β crystal transition is 

completely reversible when the stress is removed.56-57, 59, 61  
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On the spherulitic level, two types of spherulites can be distinguished in PBT. Stein 

and Misra62 studied the morphology of PBT crystallized from the melt at various 

temperatures using small-angle light scattering (SALS), polarized light microscopy 

(PLM) and WAXS analysis. The two types of spherulites depend on the crystallization 

conditions. The usual type has its maltese cross parallel to the polarizers in PLM 

analysis and is formed at high temperatures or slow cooling rates, which results in 

increased spherulite size and crystallinity with increasing crystallization temperature. 

In contrast, the unusual type has its maltese cross at 45º to the polarizers in 

polarizing microscopy and is formed at low crystallization temperatures or fast cooling 

rates. 

Analogously, Wu et al.47 studied the isothermal crystallization morphology of 

pCBT polymerized at 230 °C using PLM. The PLM morphologies of pCBT 

corresponding to the crystallization temperature range of 190–215 °C are illustrated 

in figure 15. Four typical morphologic features of pCBT were reported; usual negative 

spherulite, unusual spherulite coexisting with boundary crystals, mixed birefringence 

spherulite coexisting with boundary crystals, and highly disordered spherulitic 

crystallites, corresponding to the crystallization temperature spectrum.  

Parton et al.63 examined the morphologies of PBT, pCBT isothermally processed at 

190 °C and reprocessed pCBT (referred to as RP-pCBT); their respective 

morphologies obtained by transmission electron microscopy (TEM) are shown in 

figure 16. 

It is apparent from figure 16 b that pCBT samples exhibited a microstructure with well 

defined, thicker and nicely oriented lamellae as compared to PBT. The transition from 

crystalline to amorphous regions is more pronounced and sharp in the pCBT 
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samples, which might indicate a reduction of tie molecules. Miller64 stated that the tie 

molecule density is influenced by simultaneous polymerization and crystallization. 

Parton et al 41, 63 assumed that the transesterification catalyst of pCBT which remains 

in the polymer might also influence the amount of tie molecules. The catalyst 

molecules cannot be included into the polymer crystal, but probably concentrate at 

the surface of the growing crystals. Such a local transesterification enhancement may 

drastically decrease the amount of tie molecules owing to the mechanical tensions 

arising from packing density differences at the crystal boundaries.  

3.2 Thermal properties of pCBT 

The thermal properties of CBT and pCBT have been studied by various researchers 

using DSC analysis, see for instance refs.29, 31-32, 41, 47, 63, 65-68 Mohd Ishak and co-

workers66 compared the thermal properties of injection moulded PBT (denoted as IM-

PBT), CBT as well as pCBT isothermally polymerized at 190 °C during compression 

moulding (referred to as ISP-PBT); the corresponding thermograms are depicted in 

figure 17. 

As can be seen from figure 17 a, CBT oligomers exhibited a broad melting range 

from about 120–170 °C together with a melting peak at 142 °C, as confirmed by other 

researchers.68-69 The broad melting range has been ascribed to the different melting 

temperatures of the oligomers present in the CBT.28 The ROP of CBT occurred 

during the first heating scan and a small pCBT melting peak was observed at 226 °C. 

However, the related melting enthalpy was insignificant. It was assumed that the 

reason for the absence of crystallization (and subsequent melting) during the first 

Page 27 of 143

URL: http://mc.manuscriptcentral.com/bsms

Critical Reviews in Solid State and Materials Sciences



28 / 107 

 

heating is of kinetic origin. CBT undergoes crystallization during polymerization in the 

temperature range of 170–200 °C, as discussed in section 2.3.3. However, no 

evidence of any exothermic process linked with the polymerization or crystallization 

was detected. In contrast, ISP-PBT and IM-PBT exhibited a broad endotherm with a 

single melting peak at 228 and 224 °C and a heat of fusion of 71 and 50 J/g during 

first heating, respectively. The relatively higher melting temperature and enthalpy of 

ISP-PBT is due to the different crystalline structure of the resulting PBT. More 

specifically, isothermal polymerization of CBT below Tm of pCBT leads to the 

formation of big, perfect crystals having a higher lamellar thickness, as was 

discussed by Parton.41 

Mohd Ishak et al. showed in an earlier publication29 that the heating rates play 

an important role in the exothermic process during the first heating of CBT. They 

found that at a much lower heating rate of 0.5 C/min, the DSC thermogram showed a 

prominent exothermic peak at 195 °C which corresponded to the crystallization of 

pCBT. It was concluded that high DSC heating rates hinder the crystallization of 

pCBT and consequently cause the missing melting peak. Regarding the first heating 

of ISP-PBT and IM-PBT, both samples showed a distinct polymer melting peak 

although ISP-PBT exhibited a higher melting enthalpy. This indicated that complete 

polymerization and crystallization of ISP-PBT have taken place during compression 

moulding.  

Figure 17 b shows the DSC second heating scans of CBT (polymerized during 

the first heating scan), ISP-PBT and IM-PBT. A broad endotherm with two melting 

peaks was observed for all samples. The double melting behaviour was ascribed to 

the melting of small and defective crystals, followed by their immediate 

recrystallization into more stable structures and their subsequent melting. This was 

confirmed in a further work67, where the authors used modulated DSC (MDSC) to 
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study the polymerization of CBT. They found that the onset of double melting of 

pCBT was strongly affected by the polymerization route, i.e. ROP below or above the 

melting temperature of pCBT. During cooling, the glass transition was observed at 40 

°C. Moreover, the authors could show that the polymerization of CBT is non 

athermic. The heat of polymerization derived from the non-reversing DSC trace was 

found to be around 22 J/g, but was overlapped with the endothermic melting of CBT 

at 140 °C. Therefore, the apparently athermic ROP is the result of polymerization-

related exothermic and melting-related endothermic effects.  

3.3 Physical properties of pCBT 

The morphology and resulting physical properties of pCBT are strongly influenced by 

the processing route. Various researchers prepared unreinforced pCBT; an excerpt 

of the physical properties is presented in table 2 with focus on different processing 

methods and polymerization conditions. 

Parton and associates63 studied the influence of the processing conditions of a 

thermoplastic RTM process on the properties of pCBT. One sample was isothermally 

processed at 190 °C (i.e. simultaneous polymerization and crystallization) whereas 

another sample was polymerized at 230 °C and then crystallized at 190 °C. The two 

samples were compared to injection moulded PBT. The authors reported that pCBT 

was brittle in contrast to conventional PBT, irrespective of the processing route. As 

shown in fig. 18, PBT did not break in flexural tests but showed a yield point, whereas 

pCBT broke in a brittle manner. Simultaneous polymerization and crystallization of 

CBT at 190 °C yielded an even more brittle and weaker pCBT. Both pCBT190 and 

pCBT230 exhibited a higher modulus than PBT due to the markedly higher degree of 
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crystallinity relative to PBT. Molecular weight and residual oligomer content were 

quite similar in all three samples. Both PBT and pCBT were reprocessed using 

injection moulding in order to decrease the degree of crystallinity, which in turn 

typically increases the toughness. As can be seen from table 2, the crystal fraction of 

RP-pCBT decreased to a similar level as PBT. Consequently, failure strain increased 

as the strength decreased. The latter might be attributed to the pronounced 

molecular weight reduction of RP-pCBT due to the reprocessing step. This reduction 

was also observed for PBT but to a much lesser extent.  

Baets70 also used a TP-RTM process for the isothermal polymerization of CBT 

at 190 °C and obtained similar results, i.e. a brittle pCBT (c.f. table 2).  

Several authors64, 71-73 employed compression moulding (CM) for the in situ 

polymerization of CBT at 240 and 250 °C with subsequent non-isothermal melt 

crystallization. Due to the latter, one might expect a less crystalline but tougher 

pCBT. While the pCBT crystal fraction was indeed lower than the ones obtained from 

TP-RTM, the pCBT was equally brittle. This is in contrast to the results in ref.63, 

where it was stated that crystallization of the melt (i.e. reprocessing of pCBT) yields a 

relatively tougher pCBT.    

Miller et al.64 used cyclic stannoxane as initiator of the ROP and obtained a 

macrocyclic c-pCBT. The crystal fraction and the molecular weight of c-pCBT were 

considerably higher than the ones of its linear counterparts. The higher molecular 

weight is due to the absence of linear end groups (coming from the initiator) during 

the ROP. Similarly, c-pCBT had a higher modulus as compared to PBT. 

Nevertheless, the macrocyclic c-pCBT exhibited an exceptionally low strength and 

failure strain. 

Zhang and co-workers40 polymerized CBT in a three neck flask under nitrogen 

atmosphere and then quenched the flask in ice water. Samples for tensile testing 
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were prepared by solution casting (SC). Stiffness and strength of solution casted 

pCBT were found to be inferior to the ones of pCBT prepared by other processing 

methods (c.f. table 2). 

Influence of morphology 

Ludwig and Eyerer74 discussed the influence of the processing conditions on 

morphology and deformation behaviour of PBT. Injection moulded samples were 

crystallized at mould temperatures of 60 and 118 °C and using sample thicknesses of 

3 and 5 mm, respectively. The low mould temperature led to unusual spherulites, 

whereas the higher one resulted in usual or mixed type spherulites. Tensile tests 

showed an increase in yield stress from 50 MPa for the usual type and 55 MPa for 

the unusual type spherulite while strain at yield was equal for both types. Slowly 

cooled PBT exhibited a relatively higher microhardness (148 N/mm2 versus 138 

N/mm2). Zhang and co-workers75 also studied the effect of the mould temperature on 

the mechanical properties during injection moulding of PBT. They found that tensile 

modulus and strength increased from 2.5 to 2.7 GPa and 54 to 58 MPa, respectively, 

when the mould temperature was increased from 20 to 120 °C. At the same time, 

failure strain decreased from 198 to 32%. 

Analogously, Yu et al.76 studied the effect of different crystalline morphologies 

on the mechanical properties of carbon fibre reinforced pCBT composites. They 

prepared stacked films of CBT powder and reinforcement, which were then 

polymerized during compression moulding at 230 °C. The mechanical properties of 

the pCBT composites were strongly affected by their crystalline morphologies and 

degree of crystallinity. The sample crystallized at 185°C exhibited a relatively low 
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crystal fraction, which resulted in a spherulitic superstructure with large 

spherulite/transcrystalline boundary regions. As a consequence, cracks tended to 

initiate and propagate along these weak spherulite/ transcrystalline boundaries, 

leading to low mechanical properties. The composite sample crystallized at 210 °C 

showed highly disordered spherulitic crystallites without spherulite/transcrystalline 

boundary lines or boundary crystals, which resulted in somewhat better mechanical 

properties. 

It can be recognized from table 2 that unmodified CBT yields an essentially brittle 

pCBT, irrespective of processing route, polymerization and crystallization 

temperature, molecular structure (i.e. linear versus macrocyclic pCBT), molecular 

weight, degree of conversion, degree of crystallinity or spherulitic morphology. 

Possible reasons for this brittleness will be discussed in the following section. 

3.4 Brittleness mechanisms of pCBT 

There a number of reasons for brittle behaviour of semicrystalline thermoplastics, 

namely:28, 40-41, 64, 77-78

• matrix defects such as voids and impurities, acting as stress concentrators

• very large spherulites, also acting as stress concentrators

• high degree of crystallinity

• low amount of intercrystalline tie molecules

• low molecular weight
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While impurities are less likely to occur in the case of a proper processing of CBT, 

voids may form in thick-walled parts during a pressure-less crystallization due to 

volumetric shrinkage. The pCBT brittleness has been ascribed to the formation of 

large spherulites together with a high degree of crystallinity and crystal perfection, 

which typically leads to a reduction of intercrystalline tie molecules28, 41, 63-64. The 

brittleness was more severe for simultaneous polymerization and crystallization 

below the melting temperature of pCBT. Besides the above mentioned reasons for 

brittleness, some researchers have focussed on the residual CBT oligomers after 

polymerization. Wu and Huang32 found some residual CBT crystals when the 

polymerization was performed at 190 °C in a hot stage. Xu and co-workers79-80 

showed that unpolymerized CBT was present in the form of large, well-developed 

oligomer crystals in a CBT/rubber matrix blend. It is also clear from literature that 

polymerization below Tm might not be high enough to melt all cyclics present in 

CBT.19-20 Zhang et al.40 confirmed this assumption when they studied the effects of 

these residual CBT crystals on the mechanical properties of pCBT. They 

demonstrated that CBT oligomer crystals with high melting points could not 

completely melt at 190 °C and appeared as well-developed crystals from nano- to 

micro-scale in the pCBT matrix, highlighted with ellipses in figure 19a.  

These crystals served as a self-compatible nucleating agent which reduced the 

induction time of crystallization during polymerization. Moreover, the crystals acted as 

stress concentration points and led to the brittleness of pCBT, as schematically 

shown in figure 20. The authors speculated that a high degree of crystallization and a 

perfect crystal structure together with a low density of intercrystalline tie molecules of 

pCBT is favoured by their so-called living lamellar crystal initiation mechanism, which 
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was discussed in section 2.4.1. Furthermore, they stated that the low viscosity of 

molten CBT may be favourable for entanglement reduction. Besides, polymerization 

at low temperatures may cause a decrease in the polymerization rate, leading to a 

low molecular weight.11, 19 

One might expect that a TP above Tm with subsequent non-isothermal melt 

crystallization increases the toughness. However, it was shown by various 

researchers41, 70-72 that the obtained pCBT is not significantly tougher (c.f. table 2). 

Since the ROP was conducted above Tm, it can be assumed that all CBT oligomer 

crystals were in the molten state. Therefore, remaining oligomer crystals cannot be 

the reason for brittleness of pCBT obtained by a non-isothermal processing route. A 

possible explanation might be a low molecular weight due to humidity which on one 

hand inhibits the catalyst1, 4, 36 and on the other hand can cause hydrolysis.81 

It is known that if the molecular weight is below a critical value or if the 

polymer contains a large amount of a very low-molecular-weight fraction mixed in 

with a high-molecular-weight fraction, the polymer will be extremely brittle and will 

have a lower-than-normal strength. At higher loads or elongations the weak low-

molecular-weight materials may break at considerably lower elongations than the 

high-molecular-weight polymers.82 Although a high molecular weight is obtained 

when the ROP is conducted under inert atmosphere or in closed moulds in TP-RTM 

processing, the resulting pCBT is still brittle.11, 63, 83 

3.5 Toughening of pCBT 
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A variety of methods to reduce the brittleness of semicrystalline thermoplastics are 

available and the chances of brittle failure can be decreased by:83-87  

• reducing the crystallinity

• adding rubbery polymers

• adding plasticizers

• increasing the molecular weight by chemical modification (chain

extension/branching)

• copolymerization with soft segments

• incorporation of nano-particles

Most of these toughening methods have been applied to pCBT; an excerpt of the 

reported physical properties of toughened pCBT is compiled in table 3.  

Reducing the crystallinity 

The large strain plastic deformation in semicrystalline polymers is mainly governed by 

chain sliding on crystallographic slip planes and the dominant energy-absorbing 

mechanism is shear yielding. The toughness of semicrystalline polymers decreases 

with increasing degree of crystallinity and perfection of the crystallites because shear 

yielding is hindered. An increasing spherulite size lowers the toughness because 

larger defects and voids are formed, and cracks propagate more easily along the 

interfaces between bigger spherulites.88 Decreasing the degree of crystallinity and 

thus introducing more tie molecules between adjacent crystals typically increases the 
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toughness. This can be achieved by changing the processing conditions, namely by 

applying a fast cooling after CBT polymerization instead of slow cooling or isothermal 

crystallization at e.g. 190 °C. Baets and co-workers89 developed a non-isothermal 

production process for basalt fibre-reinforced CBT composites and studied the 

influence of different cooling rates on the toughness. They found in three-point 

bending tests that the failure strain increased from 1.8% for slowly cooled composites 

to 2.6% for quench cooled samples. Moreover, fracture toughness mode II tests 

showed a twofold increase of the crack propagation energy for the quenched 

samples as compared to slowly cooled samples.  The difference in mechanical 

properties was related to the difference in the degree of crystal perfection. 

Adding rubbery polymers 

It is well known that the toughness of semicrystalline polymers can be enhanced by 

introduction of rubbery particles. They act as stress concentrators and initiate highly 

energy-absorbing mechanisms, namely massive crazing and shear band formation.88 

Dell’Olio et al.90 studied the impact of reactive and non-reactive additives on 

the ROP, crystallisation and final crystal structure of pCBT. The authors used DSC 

and rheological methods and correlated the results with the observed improvements 

in fracture toughness and tensile properties for both the neat pCBT as well as mode I 

and II fracture toughness of fibre-reinforced pCBT composites. The non-reactive 

modifiers were selected β nucleants and a ductile thermoplastic, poly(ethylene-co-

glycidyl methacrylate) (PEGMA). These modifiers were found to have little impact 

upon polymerization, crystal fraction and crystallization rate and the property 
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improvements were modest. The β nucleants had little impact upon the tensile 

properties, while the addition of PEGMA when added at high concentrations of 15–35 

wt.% increased the failure strain up to 290%. Nevertheless, the tensile modulus 

decreased by more than 100%. Moreover, the fracture toughness remained 

unchanged for PEGMA-modified pCBT, while the addition of β nucleants had a 

negative effect on fracture toughness. 

Adding plasticizers 

Another common method to toughen polymers is to increase the chain mobility by 

adding a plasticizer. It has been reported that pCBT can be effectively toughened by 

the addition of tetrahydrofuran (THF) prior to polymerization.91 The resultant pCBT 

was found to be tough, showing a strain at break of well above 100% in tensile tests. 

Other matrix properties, such as tensile modulus, tensile strength and glass transition 

temperature were not significantly altered by the addition of THF. It was found that 

the presence of THF enhanced the ROP, resulting in an increased molecular weight 

and a narrowed molecular weight distribution. Apparently, remaining oligomers after 

polymerization were extracted by the THF and a toughened oligomer-free pCBT was 

obtained. The samples became brittle after three months when subjected to a 

temperature of 80 °C. Hence this toughening method is impractical since the 

toughening action of THF is not permanent. Moreover, the very low melt viscosity of 

CBT allows for solvent-free processing routes which are preferred over the use of 

solvents. 
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Chemical modification 

Chemical modification is commonly used to improve certain properties of 

thermoplastics. It exploits the reactions of polymer functional groups with low 

molecular weight mono-, bi- or polyfunctional compounds.87, 92-96 Polyesters are 

especially accessible to chemical modification because they bear reactive functional 

groups in their main chain and chain ends, such as esters, hydroxyls and carboxyls 

as in the case of e.g. PET and PBT. The chemical modification of polyesters 

comprises four main techniques:87, 97 

• controlled degradation to decrease the molecular weight or to produce

monomers/oligomers

• capping of carboxylic end groups

• compatibilization of  partially miscible polymer blends

• chain extension/branching to increase the molecular weight by coupling of two

or more polymer chains

Reactive chain extension of polyesters with low molecular weight bi- or polyfunctional 

compounds is a suitable technique to improve the toughness, impact strength and 

hydrolytic stability.87-88 The reason therefore is that a higher molecular weight induces 

more tie molecules between crystallites and spherulites. The reactive agents, so-

called chain extenders, are preferably bifunctional and should react readily through 

an addition reaction without generating any by-products.93-94 Inata and Matsumura98-

103 studied a variety of electrophilic chain extenders for polyesters. Among the 
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studied compounds, epoxides, isocyanates, oxazolines, and carbodimides were 

found to be particularly effective. More recently, carbonylbiscaprolactam was found to 

also be a suitable chain extender for polyesters.104 Figure 21 depicts some of the 

chain extension reactions of these electrophilic compounds with carboxylic end 

groups. 

Systematically increasing the molecular weight of pCBT by adding chain extenders 

prior to ROP has been considered in patent literature.105-107 Our group has shown 

that reactive chain extension with low molecular weight bifunctional epoxy resins (EP) 

or isocyanates (NCO) is an effective and straightforward method to toughen pCBT.  

In the case of epoxy toughening71, CBT/EP dry blends with small amounts (1–

4 wt.%) of diepoxide were compression moulded in a hot plate press. A sevenfold 

failure strain was found in tensile tests for an EP content of 2 wt.%, compared to that 

of pristine pCBT, while stiffness and strength remained relatively unaffected by the 

chain extension reaction (c.f. table 3). GPC analysis confirmed the low molecular 

weight of unmodified pCBT, a possible explanation for brittleness. It also showed the 

remarkable increase in molecular weight when 2 or 3 wt.% epoxy resin was used. 

The diepoxide substantially reacts with the carboxyl end groups of pCBT in an 

esterification reaction as shown in figure 21 and yields a predominantly linear 

polymer, as suggested by proton nuclear magnetic resonance spectroscopy (NMR). 

On the other hand, when the epoxy content was higher than 2 wt.% some gel 

formation occurred, indicating a partially crosslinked structure of the chain extended 

pCBT. Thermal analysis of modified pCBT showed a slight decrease in glass 

transition, melting and crystallization temperature, and degree of crystallinity with 

increasing EP content. This was mainly attributed to the formation of branching and a 

minimal plasticizing effect of unreacted epoxy resin after ROP. SEM micrographs 
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suggested a more favourable adhesion of remaining oligomer crystals to the pCBT 

matrix when EP was used. The improved adhesion also contributed to the toughness 

increase of chain extended pCBT. 

In a complementary work, Dell’Olio et al.90 confirmed that the use of 

bifunctional epoxy modifiers copolymerized with CBT during ROP is an effective 

strategy to improve mechanical properties such as fracture toughness, tensile 

strength and strain to failure of pCBT. The authors melt blended CBT and epoxy 

resin at 140 °C for 5 min without premature polymerization of the CBT. The CBT/EP 

blends were cooled, ground, dried and then used for sample prduction in a hot plate 

press operated at 250 °C for 15 min followed by 200 °C for 85 min. The used epoxy 

resins were bisphenol A diglycidyl ether (DGEBA), butanediol diglycidyl ether 

(BDDGE) and bis[(glycidyl ether)phenyl)]-m-xylene (BGOP). Dynamic viscosity 

measurements at 200 °C showed that the addition of DGEBA and BGOP markedly 

increased the rate of polymerisation while the BDDGE reduced it. DSC confirmed 

that the epoxy resins retarded the pCBT crystallization rate and decreased the crystal 

fraction. Fracture toughness improved by 87%, 52% and 37% when pCBT was 

modified with BDDGE, DGEBA or BGOP, respectively. The flexible aliphatic BDDGE 

epoxy resin imparted the largest improvement in toughness but had the least amount 

of reaction with CBT and the least impact upon crystallinity. DGEBA and BGOP 

exhibited excellent fracture toughness improvement and similarly superior 

improvements in strength and elongation to failure due to an increased level of 

reaction with CBT and a greater impact upon the crystal structure. The improvements 

in fracture properties were attributed to the formation of an inherently tougher epoxy 

polyester copolymer, delaying crystallisation, reducing overall crystallinity and 

causing the crystallites to be more disordered, more diffuse and smaller.  
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Analogously, the reaction of CBT with three types of isocyanates has also 

been reported.108 The used isocyanates were a bifunctional aromatic type 

(hexamethylene diisocyanate; HDI), a bifunctional aliphatic type (4,4'- 

methylenebis(phenyl isocyanate); MDI) and a polymeric methylene diphenyl 

isocyanate (PMDI). All reactions took place in a Brabender batch mixer equipped with 

a torque measuring system at 230 °C, 60 rpm and under nitrogen atmosphere to 

minimise hydrolysis. This type of equipment is quite useful for small-scale CBT 

processing because it does not only allow continuous mixing during ROP, but also 

gives useful information about the torque and thus viscosity evolution with time.109 

Dry blends of CBT and the corresponding amount of each isocyanate (0.25, 0.5, 0.75 

and 1 wt%) were melt blended for 4 or 7 min, respectively. The isocyanate-modified 

samples showed a considerable torque increase compared to unmodified CBT, 

suggesting a higher molecular weight. Gel content measurements prior to 

compression moulding indicated a linear chain structure for the two bifunctional 

isocyanate-modified samples, whereas the polyfunctional PMDI-modified pCBT 

exhibited considerable gel formation at higher NCO contents. All compression 

moulded samples were completely soluble, indicating that the crosslinked structures 

in pCBT/PMDI samples changed to linear or branched structures during this second 

melting. Proton NMR analysis showed that the dominant chain extension reaction 

mechanism is the formation of thermally stable amide groups. DSC analysis showed 

a general depression of melting and crystallization temperatures as well as degree of 

crystallinity. A 22-fold to 28-fold increase in elongation at break was observed in 

tensile tests when the pCBT contained 0.75 to 1 wt% isocyanate. Stiffness and 

strength generally decreased by about 10% (table 3).  
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Other strategies to reduce the brittleness of thermoplastics include 

copolymerization with soft segments as well as well as physical modification with 

nano-particles and will be discussed in detail in the following sections. 

3.6 Copolymerization 

It is well known that the incorporation of even small amounts (10%) of flexible chain 

segments such as polytetrahydrofuran (polyTHF) in polyester macromolecules 

results in a decrease in mechanical strength and in an increase in elongation at 

break.110 The copolymer of PBT and polyTHF is known as copoly(butylene 

terephthalate-b-tetrahydrofuran) and belongs to the relatively new material class of 

thermoplastic elastomers (TPEs).104, 110-115 Polyether ester elastomers exhibit 

outstanding elasticity, tear strength, solvent resistance, low-temperature flexibility and 

strength at elevated temperatures. Due to these properties they were commercialized 

under the trademark Hytrel® by DuPont in 1972.104, 115

Analogously, several researchers have copolymerized CBT with poly(ethylene-

co-vinyl acetate) (EVA)116, poly(vinyl butyral)117, ε-caprolactone68, polycaprolactone 

(PCL)32, 118, hydroxyl terminated tetrabromobisphenol A119, bisphenol A diglycidyl 

ether119 and hydroxylated polydimethylsiloxane.119 Nevertheless, only some reports 

on the mechanical properties of these pCBT copolyesters are available and are 

summarized in table 3. Conventional PBT does not break in flexural tests but exhibits 

a yield point63 In tensile tests, PBT typically shows a failure strain of >50%.120 It is 

apparent from the failure strain in table 3 that in the case of CBT copolymerized with 

polytetrahydrofuran or PCL, a toughness similar to the one of conventional PBT could 
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not be achieved. Copolymerization with ε-caprolactone or EVA resulted in ductile 

materials which exhibited a yield point, necking, strain hardening and very high failure 

strains. On the other hand, stiffness and strength drastically decreased. This 

decrement of mechanical properties together with Tg and Tm reduction are the major 

disadvantages of copolymerization with soft segments as a toughening method. 

3.7 Physical blending 

Samsudin et al.121-123 prepared blends of CBT and styrene maleimide by solid-state 

dispersion with compositions ranging from 90 to 10 wt.% of CBT and subsequent in 

situ polymerization of CBT within styrene maleimide. It was found that the presence 

of 30 wt % and above of styrene maleimide impeded the crystallization of pCBT to 

such an extent that crystallization could not be detected under the conditions of the 

DSC experiment. The blend system exhibited a single composition-dependent Tg, 

which indicated the presence of miscibility. Furthermore, the negative value of the 

Flory–Huggins interaction parameter indicated that pCBT and styrene maleimide 

were thermodynamically miscible in the melt. 

As can be seen from table 3, the various toughening methods of pCBT allow tailoring 

the mechanical properties. The latter can range from rubber-like behaviour using 

copolymerization with EVA or ε-caprolactone to high stiffness and strength together 

with increased toughness using small amounts of polycaprolactone, epoxies or 

isocyanates. The physical modification of pCBT with nano-reinforcements will be 

discussed in the subsequent sections. 

Page 43 of 143

URL: http://mc.manuscriptcentral.com/bsms

Critical Reviews in Solid State and Materials Sciences



44 / 107 

 

4 pCBT nanocomposites 

Polymer nanocomposites, in which the reinforcement has at least one dimension in 

the nanometre range, have received increasing interest in the past years. It is well 

recognised that the behaviour of composites largely depends on interfacial 

interactions. This means that the smaller the size of the reinforcement, the greater 

the contribution of interfacial interactions to the composite properties. Thus, a major 

challenge in the development of high performance nanocomposites is the control of 

nano-reinforcement dispersion. The mechanical, thermal and physical properties are 

greatly enhanced by the incorporation of nano-particles of different sizes and aspect 

ratios, and in thermoplastic matrices they can increase toughness.83-85 These 

improvements can already be obtained with very low nano-reinforcement contents, 

usually less than 5 wt.%. Nevertheless, property improvements are typically only 

observed when the nano-particles are randomly and homogeneously dispersed on a 

nanoscale level in the polymer matrix. Thus, nanocomposites exhibit unique 

properties not shared by their micro- and macro-composite counterparts.124-126 CBT 

has been extensively used in nanocomposites due to the low melt viscosity prior to 

ROP which is advantageous for a good dispersion of the nano-reinforcement. Three 

types of nanocomposites can be distinguished, depending on how many dimensions 

of the dispersed particles are in the nanometre range.124 
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• two-dimensional (2D) nano-particles (i.e. having one dimension in the nano-

scale) such as layered silicates126 or graphene nano-platelets127-128 

• one-dimensional (1D) nano-particles such as carbon nanofibres129, carbon

nanotubes130
 or cellulose whiskers124 

• zero-dimensional (0D) nano-particles such as fullerenes  or polyhedral

oligomeric silsesquioxane (POSS) molecules131-133 

4.1 Nanocomposites with layered silicates 

Layered silicates for the preparation of polymer/layered silicate nanocomposites 

(PLS) belong to the general family of 2:1 layered or phyllosilicates.126 Montmorillonite, 

hectorite and saponite being the most commonly used. Their crystal structure 

consists of layers made up of two tetrahedrally coordinated silicon atoms fused to an 

edge-shared octahedral sheet of either aluminium or magnesium hydroxide. The 

layers have a thickness of around 1 nm and lateral dimensions from 30 nm to several 

microns or larger, depending on the layered silicate. 

Layered silicates are typically rendered organophilic in order to increase the 

compatibility between the hydrophobic polymer and hydrophilic silicate. This is 

achieved by ion-exchange reactions with cationic surfactants including primary, 

secondary, tertiary, and quaternary alkylammonium or alkylphosphonium cations. 

These ion-exchanged organic surfactants increase the interlayer spacing and lower 

the surface energy of the inorganic layered silicates which improves intercalation. 

Three methods for the preparation of PLS are reported:124, 126 
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• melt intercalation: silicate delamination via shear flow and dispersion in the

molten polymer 

• in situ intercalative polymerization: swelling of the layered silicate with the

liquid monomer/oligomer and subsequent polymerization 

• exfoliation adsorption: exfoliation of the silicate layers in a suitable solvent,

adsorbing the polymer onto the delaminated sheets and then solvent 

evaporation 

Many researchers studied PBT/organoclay nanocomposites obtained by traditional 

melt intercalation or in situ intercalative polymerization of PBT monomers.134-138 An 

increasing amount of reports on pCBT/organoclay nanocomposites can also be 

found.14, 65, 139-146 The low viscosity of molten or dissolved oligomers is utilized to 

obtain a CBT-intercalated organoclay. Subsequent ROP causes then an increase in 

interlayer distance along with the disintegration of the layered clay structure, as 

shown in figure 22. Only few reports on complete clay exfoliation of the final 

nanocomposites are available,139, 146 whereas intercalated or flocculated-intercalated 

structures are more commonly observed.141-145 Although the organoclay is 

successfully intercalated with CBT oligomers or even completely exfoliated before 

ROP, the silicate layers tend to reorganize due to the low viscosity of the molten CBT 

during ROP. Thus the exfoliated structure is lost and a flocculated-intercalated 

structure is obtained after polymerization.142, 144-145 

Tripathy and co-workers144 prepared pCBT/organoclay nanocomposites (using 

Cloisite® 20A) with a clay content of 2, 4 and 6 wt.%. CBT oligomers and organoclay 

were solvent blended for 20 h and then in situ polymerized. The thermal stability of 

these nanocomposites was found to increase by 8–10 °C in nitrogen atmosphere. 
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Karger-Kocsis et al.65 studied pCBT/organoclay nanocomposites using Cloisite® 

30B (referred to as Cl30B) with a clay content of 5 wt.% by modulated DSC analysis. 

The organoclay suppressed the crystallization of the pCBT produced during the first 

heating. However, the second heating suggested that more perfect crystallites were 

formed in the organoclay modified pCBT. The organoclay also affected the 

conversion and mean molecular mass of the resulting pCBT which were slightly lower 

than those of the neat pCBT polymerized under identical conditions. Moreover, they 

found that the organoclay hinders the cold crystallization of pCBT during the first 

heating scan. This was confirmed by Lanciano et al.142 who suggested that the 

presence of the montmorillonite shifts the ROP of CBT towards higher temperatures. 

Abt et al.147 reported the preparation of isocyanate-toughened 

nanocomposites made from CBT and Cl30B via melt and solvent blending. Ternary 

blends of pCBT/PMDI/Cl30B had an intercalated-flocculated structure which resulted 

in a higher toughness, but also led to a stiffness and strength similar to that of neat 

pCBT due to an antagonistic effect of organoclay reinforcement and isocyanate 

toughening. The compatibility between the pCBT matrix and clay was further 

increased by preparing PMDI-tethered intercalated organoclay. The modified 

organoclay then exfoliated during ROP and yielded true pCBT/clay nanocomposites. 

Thermal properties and stabilities were not significantly altered by the organoclay, 

although some nanocomposites showed a decreased degree of crystallinity. It was 

concluded that isocyanates can enhance the compatibility between pCBT and 

nanofiller as well as the degree of exfoliation. 

4.2 Nanocomposites with carbon nanotubes 
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Carbon nanotubes (CNT) are materials that can be thought as graphene sheets 

rolled into a cylindrical shape.148 They exist either as single-walled (SWCNT) or multi-

walled (MWCNT) types and have gained considerable interest due to their 

remarkable physical, mechanical and electronic properties as well as a thermal 

conductivity higher than diamond.149 Particularly, their exceptional mechanical 

properties combined with their low density make CNTs a promising nano-

reinforcement and many polymer/CNT nanocomposites including PBT/CNT have 

been prepared.149-150 However, only few pCBT/CNT nanocomposites have been 

reported in literature. 

Romhány et al.151 prepared pCBT/MWCNT nanocomposites by solid-phase 

high-energy ball milling of CBT with MWCNT with subsequent in situ polymerization 

during compression moulding. They reported that the MWCNTs did not significantly 

affect the crystallinity of the isothermally produced pCBT but acted as nucleation 

agents during crystallization. Dynamic mechanical thermal analysis (DMTA) revealed 

a reinforcing effect of the MWCNT and an increase of the Tg by 4–18 °C. The authors 

suggested that the increase in Tg is probably due to the formation of a 

transcrystalline-like interphase between MWCNT and pCBT in which the segmental 

motion of pCBT macromolecules is restricted. The pCBT/MWCNT nanocomposites 

apparently exhibited an optimum MWCNT content because flexural modulus, 

strength and Charpy impact strength (CIS) increased by up to 50% and went through 

a maximum. Optimum properties were found in the MWCNT range of 0.25–0.5 wt.%. 

Baets and associates83-84 dispersed small amounts of MWCNTs (up to 0.1 

wt.%) in CBT in order to increase the toughness of pCBT. The addition of 0.05 wt.% 

of MWCNTs to pCBT resulted in an increase in stiffness by 30%, strength by 80% 

and energy to failure by 30% while the failure strain was found to slightly decrease. 
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However, the molecular weight of pCBT decreased by around 30% when MWCNTs 

were present in the blends.  

 Wu and co-workers152-154 synthesized a novel cyclic initiator from dibutyl tin(IV) 

oxide and hydroxyl-functionalized MWCNTs. This initiator was solvent blended with 

CBT in THF with the aid of ultrasonification and polymerized. The reaction 

mechanism of CBT initiated by the MWCNT-supported initiator is depicted in figure 

23.  

Thermogravimetric analysis (TGA) confirmed a grafting ratio of pCBT on MWCNTs of 

59.3%. The pCBT grafted onto the MWCNTs enhanced the interfacial adhesion 

between the MWCNTs and the pCBT and thus improved the compatibility. The 

MWCNTs were found to be homogeneously dispersed in the matrix when the content 

was lower than 0.75 wt %, while higher MWCNT contents resulted in agglomeration. 

Intrinsic viscosity measurements showed that the molecular weight of the pCBT was 

not affected when the MWCNT-supported initiator was used. The thermal stability of 

the nanocomposites also remained unchanged. However, residual carboxyl groups of 

the MWCNTs facilitated the thermal degradation of the pCBT matrix. On the other 

hand, a combined Avrami/Ozawa analysis confirmed that the MWCNT-supported 

initiator acted as nucleation agent and significantly increased the crystallization rate 

of pCBT due to heterogeneous nucleation. The degree of crystallinity markedly 

increased with the addition of MWCNTs and the nanocomposites showed a nearly 

two-fold crystal fraction as compared to that of pCBT. Moreover, the crystallization 

temperature increased by 14–18 °C when 0.5–1.5 wt.% of MWCNT-supported 

initiator was used.  

Li and co-workers73 prepared pCBT/CNT mat composites. First, CBT was 

dissolved in chloroform and then a pre-stretched CNT mat was impregnated with the 

Page 49 of 143

URL: http://mc.manuscriptcentral.com/bsms

Critical Reviews in Solid State and Materials Sciences



50 / 107 

 

solution. After drying, the impregnated CNT mat was compression moulded at 250 °C 

for 15 min. Tensile modulus showed a 15-fold increase and the strength was 5 times 

higher for the composites containing 31 wt.% of CNT mat while the failure strain 

decreased by 60%, as compared to neat pCBT. Mechanical properties further 

increased when the CNT mat content was 64 wt.% in the composites; modulus and 

strength were 40 and 9 times higher respectively, while strain at break decreased by 

76%. Similar to randomly dispersed CNTs in pCBT, CNT mat also has a nucleation 

effect on pCBT as shown by DSC. Multiple crystallization peaks appeared during 

cooling and the crystallization temperatures increased with increasing CNT mat 

content. 

Kim and associates published a series of papers155-157 aimed on the electrical 

and thermal conductivity of pCBT/MWCNT nanocomposites prepared by a solvent-

free processing method. Similarly, Noh et al.158-159 used a CNT mat to impart 

conductivity. The conductivity results of these works will be further discussed in 

section 6. 

4.3 Nanocomposites with POSS 

Polyhedral oligomeric silsesquioxane, commonly referred to as POSS, is a class of 

0D-type nano-reinforcement and has attracted a great deal of attention in recent 

years. The term silsesquioxane refers to molecules, whose chemical structure follows 

the basic composition of RnSinO1.5n.
133 The R-group, also called the vertex group, 

may be hydrogen, alkyl, alkylene, aryl arylene, amine, glycidyl among others. These 

organic vertex groups are responsible for the functionality, solubility, polarity and 

reactivity of the POSS molecules and can be easily tailored. The interactions and/or 
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reactions of these organic functional groups with a polymer may result in the 

nanometric dispersion of POSS into the matrix.131-133 The molecular architecture of 

POSS can be divided into caged structures and non-caged structures as shown in 

figure 24 a and b, respectively. Non-caged structures can be further classified into 

random, ladder and partial-cage structures. 

Polymer/POSS nanocomposites have been prepared using traditional melt blending 

routes160-161, reactive blending162 as well as copolymerization or grafting163-165 via 

reactive R-groups of POSS. POSS has been successfully incorporated in various 

commodity162, 166, engineering160, 167 and high-performance168-169 thermoplastic 

polymers. The incorporation of POSS can lead to dramatic improvements of several 

properties such as increases in use temperature, oxidation resistance, as well as 

reductions in flammability and viscosity during processing.131-132, 170 

Many polyester/POSS nanocomposites have been prepared using PET171-176, 

polycarbonate160-161, 177 or PBT178-179 as matrix. Similar to other types of nano-

reinforcements, synergetic reinforcing effects of POSS were only observed when 

good compatibility existed. Otherwise aggregation occurred which led to a decrease 

in mechanical properties. 

Only few reports on pCBT/POSS nanocomposites are available. Wan et al.145 

used aminopropylisooctyl POSS as a surfactant for sodium montmorillonite and 

incorporated then CBT catalyst into the POSS-modified clay. This POSS-clay-

catalyst complex was used as initiator of the ROP of CBT and clay exfoliation even at 

10 wt.% of clay loading was achieved. The pCBT/POSS/clay nanocomposite was 

further used as a masterbatch for conventional PBT. While an increase in stiffness 

and strength was found for the PBT nanocomposites, no information on the 

mechanical properties of the pCBT nanocomposites was given.  
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Similarly, McLauchlin et al.143 prepared a masterbatch of pCBT and POSS-

modified clay which was subsequently melt blended with PBT to give 

nanocomposites containing 3 wt.% of clay. On one hand, an intercalated/exfoliated 

morphology with the related increase in stiffness and strength were observed for the 

PBT nanocomposite. On the other hand, the CBT catalyst present in the masterbatch 

caused a depolymerization of the PBT. 

Abt and co-workers180 melt blended pCBT in a batch mixer at 240 °C with 2.5 

and 5.0 wt.% of Octamethyl-POSS and Trisilanolphenyl-POSS, respectively. The 

obtained pCBT/POSS nanocomposites were ground, vacuum-dried and then 

compression moulded at 250 °C for 5 min. Both POSS types slightly decreased the 

pCBT melting temperature and the crystal fraction. Octamethyl-POSS somewhat 

increased the crystallization temperature, thus acting as a heterogeneous nucleation 

agent, while a small decrease in crystallization temperature was found for the 

pCBT/Trisilanolphenyl-POSS nanocomposites. TGA analysis showed that the latter 

POSS type releases chemically or physically bound water at a temperature of 237 

°C. Therefore it was assumed that hydrolysis took place during processing of the 

pCBT/Trisilanolphenyl-POSS nanocomposites. Energy-dispersive X-ray 

spectroscopy showed that a part of the POSS was well dispersed in form of small 

agglomerations with a size of about 1 µm but also larger POSS aggregates with a 

size of about 10 µm were observed. Due to the relatively low thermal stability of the 

used POSS types as compared to the one of neat pCBT, pCBT/POSS 

nanocomposites also exhibited a lower thermal stability relative to pCBT. 

Wu et al.181 reacted trisilanolisooctyl POSS with the butyltin trichloride initiator 

of CBT. This POSS-Sn initiator was used to prepare pCBT/POSS nanocomposites 

with up to 20 wt.% of POSS content. Glass transition temperature and crystallization 

temperature slightly increased with POSS loading and thermal stability of the 
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nanocomposites improved by up to 11 °C. However, molecular weight decreased due 

to the increasing amounts of catalyst bonded to the POSS. 

4.4 Nanocomposites with graphene 

Graphene (referred to as G) is a one-atom-thick layer of sp2-bonded carbon atoms 

densely arranged in a two-dimensional honeycomb crystal lattice and recently has 

received enormous attention due to its outstanding mechanical, thermal and electrical 

properties.127, 182-183 Graphene can be obtained from graphite intercalation 

compounds using the Hummers method.184 This method involves the oxidation of 

naturally occurring graphite using a water-free mixture of concentrated sulfuric acid, 

sodium nitrate and potassium permanganate and yields graphite oxide (commonly 

referred to as GO) with a C:O ratio of approximately 2:1. GO is highly oxygenated 

and bears epoxide, diol, ketone, hydroxyl and carboxyl functional groups on the basal 

plane and additional carbonyl and carboxyl groups located at the edges of the GO 

sheets. These functional groups render GO platelets highly hydrophilic, allowing them 

to readily swell and disperse in water127, 182-183 but direct exfoliation into non-aqueous 

solvents or hydrophobic polymer matrices is difficult.185 Exfoliated and reduced GO is 

then obtained by solution-based chemical reduction of GO183, 186 or most commonly 

by thermal shocking. The latter yields thermally reduced graphite oxide (TRGO) 

which retains some of the oxygenated functional groups originally present on the GO 

platelets.127 

Similar to other 2D-type reinforcements such as layered silicates, proper 

exfoliation and homogeneous dispersion of single graphene sheets in the polymer 

matrix is crucial for property improvements.127, 183, 187 However, G exfoliation remains 
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a major challenge due to the strong π–π stacking of the π orbitals of graphene.182-183 

Since the high melt viscosity of most thermoplastics complicates exfoliation, G is 

therefore commonly intercalated/exfoliated by solvents and/or monomers prior to melt 

blending with thermoplastics.127, 182-183, 185, 187-189 The low melt viscosity of CBT may 

be favourable for G exfoliation.  

Fabbri and associates189 prepared pCBT/G nanocomposites by solvent 

blending CBT oligomers and 0.5–1 wt.% of graphene nano-platelets in THF. Then the 

solvent was extracted and the dried compound was polymerized during melt blending 

at 200 °C for 30 min. Good graphene dispersion was observed but the pCBT 

molecular weight strongly decreased with increasing G content. Due to this low 

molecular weight the nanocomposites were too brittle for standard specimen 

preparation and nano-indentation was performed instead. It was found that the 

elastic modulus and indentation hardness increased for G contents lower than 0.75 

wt.%. Moreover, thermal stability in oxygen was improved by up to 20 °C and all 

prepared samples were electrically conductive. 

Balogh et al.190 used melt blending in a batch mixer at 200 °C and 180 min-1 

for 2 min to prepare CBT/G nanocomposites with G contents of 1–5 wt.%, without 

prematurely polymerizing the pCBT. The CBT/G blends were ground, dried and then 

in situ polymerized during compression moulding at 240 °C for 10 min. While poor G 

dispersion was obtained, it was found that G had a reinforcing effect on pCBT. DMTA 

storage modulus at room temperature increased by 39–89% and the heat 

conductivity was also markedly enhanced. Moreover, G was found to act as 

nucleating agent because crystallization temperatures and crystal fractions increased 

by up to 4 °C and 4%, respectively, for G contents of 1–5 wt.%. Graphene 

incorporation markedly enhanced the heat conductivity but did not alter the thermal 

stability of pCBT, due to G agglomeration. 
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Chen et al.188 prepared pCBT nanocomposites with TRGO by solvent blending 

in THF, vacuum drying and then polymerization at 200 °C. The rate and degree of 

CBT polymerization decreased with TRGO content, which was ascribed to the 

reaction between carboxyl groups of growing pCBT chains and hydroxyl/epoxy 

groups situated on the surface of TRGO as shown in fig. 25. The pCBT grafted onto 

TRGO was confirmed by various characterization techniques and the grafting content 

was found to be up to 53%. 

Noh and co-workers published a series of articles191-193 dealing with the 

electrical and thermal conductivity of pCBT/G nanocomposites prepared by a solvent-

free processing method, which will be further discussed in section 6. 

It is apparent that graphene is difficult to exfoliate and disperse homogeneously in 

the pCBT matrix. More importantly, it seems that G interferes with the ROP of CBT 

because the final pCBT molecular weight was rather low and the reported pCBT/G 

nanocomposites were brittle. On the other hand, it is clear from literature that 

chemical functionalization of graphene is of crucial importance in the synthesis of 

polymer-graphene nanocomposites with good dispersion.127, 182-183, 185, 187 The 

oxygen-containing functional groups of TRGO can be used to enhance the 

compatibility of the latter with various polymer matrices via chemical 

functionalization,127, 182 for instance with isocyanate compounds. In this chemical 

functionalization, organic isocyanates react with the hydroxyl and carboxyl groups of 

graphene oxide to form carbamate and amide functionalities, respectively. The 

functionalization reduces the hydrophilic character of GO and effectively prevents 

restacking of the exfoliated graphene sheets due to reduced π–π interactions. 

Moreover, it can be employed for covalent bonding of the polymer chains.185, 187 This 

has not yet been reported for pCBT/graphene nanocomposites. 
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5 Fibre-reinforced pCBT composites 

So far, continuous fibre reinforced composites made from CBT and glass fibres, 

carbon fibres, basalt fibres, kenaf fibres and more recently hybrid glass-carbon fibres 

have been reported. Various reinforcement architectures have been used for pCBT 

composites, most commonly unidirectional fibres and woven fabrics. 

5.1 Composites with glass fibres 

Glass fibres (commonly referred to as GF) are widely used in composite production 

due to their principal advantages such as low cost, high tensile strength, high 

chemical resistance, and excellent insulating properties. Their disadvantages are 

relatively low tensile modulus and high density, sensitivity to abrasion during 

handling, relatively low fatigue resistance and high hardness.194  

Mallon and co-workers195 investigated the VARTM and RTM processing of 

CBT. The authors used a flat heated mould together with a heated delivery system 

for transporting the molten resin from the melting unit to the mould. The fibre preform 

was bagged with a high temperature plastic film and sealing tape. Uncatalysed CBT 

was melted at 165 °C in a reactor, catalyst was added to the CBT melt and mixing 

continued for 2 min. The mould was then vacuum-infused and held at 170 °C for 40 

min in order to complete the ROP. In this manner flat panels were moulded using S2 
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glass fabric, S2 glass mat and carbon fabrics with fibre volume fractions over 45% in 

the case of GF, and up to 64% in the case of the carbon fabric. A one-dimensional 

heat transfer analysis was performed and transverse thermal conductivities were 

estimated to be 0.75 W/m�K and 1.5 W/m�K for glass and carbon fibre beds under 

vacuum, respectively. Moreover, the heat transfer analysis predicted a 40°C 

temperature drop from the mould surface to the top surface of the fibre preform. An 

insulating layer placed on top of the preform reduced the temperature drop across 

the preform to an acceptable value of 10°C. Comparison of DSC results between 

pCBT and pCBT composites indicated that the composition of the crystals was 

different in each case. GPC results revealed that the degree of conversion was only 

around 65%, suggesting that the mould temperature was too low and the processing 

time was too short. DMA tests on the moulded glass panels showed that the flexural 

storage modulus varied from approximately 18 GPa at room temperature to 9 GPa at 

150°C for the S2 glass fabric/pCBT composite. For the carbon fabric panels, flexural 

modulii up to 51 GPa were achieved, with flexural strengths of up to 450 MPa. 

Parton et al.41, 63, 69 prepared pCBT/GF composites using a lab-scale TP-RTM 

system. The authors used two different reinforcements; one was a unidirectional non-

crimp GF fabric and the other one was a non-crimp fabric which consisted of three 

plies, 0°, 90° and a random mat. Uncatalysed CBT was melted at 190 °C in a reactor, 

then 0.45 wt.% of a tin-based transesterification catalyst was added to the CBT melt. 

The latter was then vacuum infused into a closed mould which was preheated to 190 

°C and contained the reinforcement. The time for polymerization and crystallization 

was 30 min. As pointed out earlier, isothermal polymerization and crystallization 

below Tm,pCBT results in pCBT brittleness due to a high crystal fraction and perfection 

together with a low amount of intercrystalline tie molecules. The mechanical 

properties of the resulting composites were not affected in fibre dominated 
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orientations but the transverse strength on the other hand decreased to below the 

matrix strength due to the brittleness of the matrix (c.f. table 4). The authors showed 

that the presence of the fibres reduced the degree of conversion of the pCBT. Due to 

side reactions of the CBT resin with epoxide functional groups present in the sizing, 

partially crosslinked pCBT was formed.69 

Baets et al.70, 83-84, 118 employed a lab-scale TP-RTM system to prepare 

pCBT/GF composites and used different methods to increase the toughness. The 

addition of 7 wt.% of polycaprolactone to CBT increased the failure strain to twice 

that of pure pCBT. Moreover, the impact resistance was more than doubled with the 

addition of PCL.84 The addition of CNTs to CBT increased stiffness and strength, 

however, the failure strain decreased (table 4).  An inhomogeneous distribution of the 

CNTs in the pCBT/GF composite was found because the CNTs were stuck between 

the glass fibre bundles.  

Mohd Ishak and co-workers66 prepared woven GF fabric reinforced pCBT 

composites at 190 °C for 30 min during compression moulding. The authors used two 

approaches; displacement-controlled compression moulding and pressure-controlled 

compression moulding. The displacement-controlled approach involved downward 

steps of the upper hot plate from about 10–3 mm in order to facilitate the macro- and 

micro-impregnation processes. The pressure-controlled approach involved the 

application of pressure after 10 min. Similar to what has been reported by other 

researchers; it was found that the crystallinity of conventional injection moulded PBT 

is markedly lower than that of pCBT, rendering the latter more brittle. Both tensile and 

flexural properties as well as inter-laminar shear strength were enhanced when the 

moulding occurred under pressure-controlled conditions (c.f. table 4). SEM analysis 

showed uniform fibre dispersion in the matrix, excellent fibre wet-out and good 

interfacial bonding between the fibres and pCBT. 
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Mäder and co-workers studied the adhesion, interphases and failure behaviour 

of pCBT/GF composites.196 The authors used single fibre pull-out test, atomic force 

microscopy and ζ potential tests to show that the interfacial bond strengths in pCBT 

composites depend on the type of sizing formulation. The greatest adhesion strength 

was achieved using aminosilane sizings with epoxy resin film former. For these sizing 

systems, cohesive failure occurred and similar values of both interfacial adhesion 

strength (τd) and fracture energy release rate (Gic) were obtained, in which τd 

approached the shear yield strength of pCBT. The data indicated highly reactive 

alkaline amino groups dominating the fibre surface and were available at the 

interface for adhesional bonds with the pCBT matrix. By increasing the TP, the higher 

mobility of the polymer chains enabled enhanced bond formation and led to improved 

interfacial parameters. 

Durai Prabhakaran et al.197 studied the role of the processing on the 

mechanical properties of GF reinforced pCBT and PBT composites. Three different 

unidirectional composite laminates were manufactured by vacuum consolidation; a 

pCBT/GF composite polymerized at 230 °C and PBT/GF composites made from 

prepreg tapes as well as from commingled yarns. It was found that the compression 

modulus and strength of the commingled PBT/GF system displayed the highest 

values which were significantly higher than the ones observed for the PBT/GF 

prepreg and the pCBT/GF composite systems. Interestingly, the pCBT/GF system 

displayed the highest compression strain to failure, namely 1.8 %. On the other hand, 

the PBT/GF prepreg systems displayed higher flexural and interlaminar shear 

strengths than the commingled PBT/GF and the pCBT/GF systems. Flexural 

properties of the latter system are shown in table 4. SEM and optical microscopy 
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studies revealed that the pCBT/GF systems provided good fibre wetting, but also 

displayed some voids within the resin. 

5.2 Composites with carbon fibres 

The principal advantages of carbon fibres (referred to as CF) are their exceptionally 

high tensile strength to weight ratios as well as tensile modulus to weight ratios, very 

low coefficient of linear thermal expansion which provides dimensional stability, high 

fatigue strengths and high thermal conductivity. The main disadvantages are their low 

failure strain, low impact resistance and high electrical conductivity. So far, carbon 

fibres have been excluded from widespread commercial use due to their high cost. 

CF-based composites are mostly employed in the aerospace industry, where weight 

saving is considered more critical than cost.194 

As already mentioned earlier, Yu and co-workers76 studied the effects of 

different crystalline morphologies on the mechanical properties of pCBT/CF 

composites. Stacked films of CBT powder and reinforcement were polymerized 

during compression moulding at 230 °C. After 30 min the composites were quenched 

to crystallization temperatures of 185, 195 and 210 °C, respectively. The mechanical 

properties of the pCBT composites were strongly affected by their crystalline 

morphologies and crystal fraction; see table 4. The sample crystallized at 185°C 

exhibited weak spherulite/transcrystalline boundaries which led to low mechanical 

properties, whereas the composite sample crystallized at 210 °C showed highly 

disordered spherulitic crystallites without spherulite/transcrystalline boundary lines or 

boundary crystals. Hence, composites crystallized at 210 °C displayed the best 

tensile and flexural properties. 
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Agirregomezkorta and associates198-202 used vacuum infusion to produce 

woven CF fabric-reinforced pCBT composites and compared them to equally 

produced epoxy-based composites. The pCBT-based composite presented a higher 

shrinkage and void content than the epoxy-based one due to the volumetric 

shrinkage associated with pCBT crystallisation. Impact tests with nominal impact 

energies ranging from 0.3 to 60 J showed that the stiffness and the damage 

threshold of the pCBT/CF were lower than those of the epoxy-based composite. 

However, the peak load and penetration energy of pCBT/CF was twice of the 

epoxy/CF composite. The higher energy absorption capability of pCBT/CF was 

justified by its lower interlaminar shear strength (ILSS), as compared to the epoxy/CF 

composite. The epoxy-based composite matrix was characterized by a relatively 

brittle fracture, whereas the thermoplastic nature of the pCBT matrix induced 

delamination, which in turn improved the energy absorption capability and impact 

resistance 199. Moreover, the authors used quasi-static and low energy impact tests 

and found that the ILSS is strain rate dependent for both composites. All pCBT/CF 

composites failed by interlaminar shear, whereas epoxy-based samples broke in a 

mixed mode. The volume damaged during tests was higher in pCBT composites than 

in epoxy ones. However, the pCBT/CF composite showed a lower ILSS value 

(namely 19.8 MPa), probably due to its lower tensile strength and higher void 

content.201 

Archer and co-workers203 produced a three-dimensional woven CF fabric- 

reinforced pCBT composite using a multi-layer carbon fibre three-dimensional woven 

angle interlock fabric. The reinforcements were manufactured on a modified textile 

loom to produce fabrics with fibres orientated in the warp, weft and through-the-

thickness directions. Thermal and mechanical tests were conducted on the pCBT 

composite and comparisons were made to an epoxy-based composite with the same 
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weave architecture (table 4). It was found that a highly crystalline matrix was 

developed as a result of the standard fabrication process with microcracks formed 

throughout the matrix. These cracks reduced the tensile strength of the pCBT matrix 

and caused localised stresses on the specimen surface. Consequently, flexural 

strength and failure strain of the epoxy-based composite were 46% and 27% higher, 

respectively, as compared to the pCBT-based composite. Moreover, the apparent 

ILSS of the pCBT-based sample was approximately 10% lower. Reprocessing and 

annealing of the pCBT-based laminate reduced the crystallinity of the polymer 

structure. Although this was expected to improve toughness, it was found to have a 

detrimental effect on the composite stiffness and led to melting temperature 

depression.  

An increasing amount of work is focussed on improving the mechanical properties of 

continuous fibre reinforced pCBT composites by applying different toughening 

methods. Kim and associates204 used a novel fast manufacturing process to prepare 

CF fabric-reinforced pCBT composites. Samples were compression moulded at 250 

°C for 2 min using a pressure of 1 MPa. Annealing at 200 °C for 120 min resulted in 

improved mechanical properties and thermal stability of the pCBT. The tensile 

strength of samples compression moulded at 250 °C for 2 min was 440 MPa 

whereas that of the sample annealed at 200 °C C for 120 min after compression 

moulding was 500 MPa. In addition, the thermal stability of the annealed composites 

improved by 10 °C.  

Wu et al.205-209 proposed a new concept for binding and ex situ toughening of 

textile reinforced pCBT composites. First, an epoxy preforming binder in powder form 

was spread onto the surface of tri-axial GF fabrics and then thermally activated in a 

hot plate press. Three kinds of laminates were prepared. One reference laminate with 
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no binder, one laminate with binder as interlayer in textile preforms (simultaneous 

binding and ex situ toughening concept) and one laminate with binder premixed in 

molten CBT resin before impregnation of dry textile preforms (in situ toughening 

concept). The results showed that both in situ and ex situ toughening concept have 

great potential in toughening of textile reinforced pCBT composites.208 In situ 

toughening with 2 or 4 wt.% led to an improvement of about 18% in flexural strain. 

The flexural strength was improved by 26.7% in the case of 4 wt.% preforming binder 

while the flexural modulus remained nearly unchanged. As for the ex situ toughened 

samples, a toughening effect was only observed with 2 wt.% performing binder in the 

interply region, which illustrates an excellent toughening performance with an 

increase of 72.9% in flexural strain, 69.1% in flexural strength, and even 8.3% in 

flexural modulus respectively. An increase of preforming binder up to 4 wt.% 

appeared to have a negative influence on the toughening performance and 

mechanical properties (c.f. table 4). In a further step, the influence of the epoxy 

preforming binder on the thermal and rheological properties of CBT was studied.209 

DSC analysis showed that the crystallization temperature and the crystallinity of 

pCBT during cooling are both found to decrease with increasing filling fraction of 

preforming binder. The onset of crystallization, the crystallization rate and the crystal 

structures were influenced due to the addition of preforming binder. Furthermore, the 

processing time was found to be prolonged.   

In a follow-up work,207 the authors studied the influence of various commercial 

preforming binders on the interlaminar fracture properties, namely an epoxy-based 

binder, an acrylic-based binder and a binder based on a random terpolymer of 

ethylene, methyl acrylate and glycidyl methacrylate. It was found that the acrylic-

based binder showed the best performance in terms of the homogeneity of the pCBT 

laminate and the magnitude of the final fracture toughness. The mode II fracture 
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toughness was improved by 124–152% as compared to the reference laminate 

without binder.  

Abt et al.210 prepared toughened CF fabric-reinforced pCBT composites by 

chemical modification of CBT with small amounts of epoxy resin and isocyanates as 

chain extenders (in situ toughening concept). Homogeneous CBT/epoxy and 

CBT/isocyanate blends were prepared by melt blending the components in a lab-

scale batch mixer at low temperatures and high shear rate. Melt blending was 

stopped before the ring-opening polymerization of CBT could start. The modified CBT 

was the starting material for carbon fibre fabric-reinforced pCBT composites (fibre 

content at about 65 wt%) which were prepared by ROP during compression moulding 

using a simple powder prepreg method. Interlaminar shear strength, flexural strength, 

and failure strain of the chemically modified composites increased up to 60% with 

respect to unmodified pCBT composites (c.f. table 4). Nevertheless, the flexural 

moduli slightly decreased due to the toughening effect of the chain extender on the 

pCBT matrix. Drop weight impact tests revealed that the energy absorption of the 

modified composites was relatively higher as compared to unmodified pCBT 

composites. Moreover, critical energy and delamination threshold force were higher 

for modified composites. It was concluded that toughening of pCBT with epoxy or 

isocyanates, namely PMDI and HDI, is very effective for improving the mechanical 

properties, most importantly the toughness of fibre reinforced pCBT composites.  

Dell’Olio and associates90 prepared pCBT/CF composites modified with 

different types of epoxy resin (namely DGEBA, BDDGE and BGOP), as already 

mentioned in section 3.5. Composites were manufactured by sprinkling the CBT 

powder on the CF reinforcements, vacuum bagging and in situ polymerization during 

compression moulding at 250 °C for 15 min followed by 200 °C for 85 min.  The 

fracture toughness of the composites increased by factors of 2, 3 and 4 when the 
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composites were toughened with DGEBA, BDDGE and BGOP, respectively, as 

compared to unmodified pCBT composites. SEM analysis of the fracture surfaces 

showed tearing and stretching of the matrix, while unmodified pCBT/CF exhibited 

smooth surfaces without any pCBT elongation. 

Kim et al.204 suggested a novel fast manufacturing process using high-speed 

processing at 250 °C for 2 min. Structure and properties of the composites were 

altered by thermal annealing and the mechanical properties as well as thermal 

stability were improved as the remaining CBT oligomers were polymerized further. 

Annealing at 200 °C for 120 min was found to be the best annealing condition for 

improving the mechanical properties and thermal stability of pCBT due to the 

improvement in crystallinity. The tensile strength of the composites compression 

moulded at 250 °C for 2 min was 440 MPa and that of the ones annealed at 200 °C 

for 120 min after compression moulding was 500 MPa. In addition, the thermal 

stability of the annealed composites improved by 10 °C. In a follow-up work, Lee and 

co-workers211 designed and manufactured a microwave plasma equipment in order to 

improve interfacial bonding and mechanical interlocking between CF fabrics and the 

pCBT matrix. High-speed fabrication was used and the specimens were polymerized 

at 250 °C for 2 min. It was confirmed that the microwave plasma treatment did not 

induce chemical changes in the CF fabric, and that the chemical adsorption ability of 

the plasma-treated fabric was not altered. However, an increase in the surface 

roughness was induced by the micro-cavities, indicating that the mechanical 

interlocking ability between the plasma-treated CF fabrics and matrix was enhanced. 

The tensile strength of the as-received and plasma-treated pCBT/CF composites was 

enhanced by approximately 363% and 436%, respectively, compared with that of the 

pCBT matrix. The improvements were found to originate from an enhancement of the 
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interfacial bonding between the resin and reinforcement due to the enhanced 

mechanical interlocking between the resin and plasma-treated CF. 

5.3 Composites with natural fibres 

In recent years, a great deal of attention has been focussed on the development of 

sustainable natural (i.e. animal, vegetable or mineral) fibre reinforced composites. In 

particular, among the natural fibres that can be used as reinforcement, basalt fibres 

appear to be the most interesting due to their properties. Basalt is a natural material 

that is found in volcanic rocks originated from frozen lava, with a melting temperature 

comprised between 1500 and 1700 °C.212 Overall, the manufacturing process of this 

kind of fibre is similar to that of glass fibre, but with less energy consumed and no 

additives, which makes it cheaper than glass or carbon fibres.212 Nevertheless, only 

few basalt fibre-reinforced pCBT composites have been reported. 

Hao et al.213 studied the effect of the TP on the mechanical properties of woven 

basalt fabric-reinforced pCBT composites. Compression moulding was used to 

produce the composites at various polymerization temperatures, namely 220 °C, 230 

°C and 240 °C and the effect of different thermal histories during processing on the 

composites properties was investigated. Stiffness and strength of samples processed 

at 220 °C and 230 °C were quite similar, whereas the mechanical properties of the 

sample processed at 240 °C declined sharply due to depolymerisation (c.f. table 4). 

Baets and associates89 prepared basalt fibre reinforced pCBT composites 

using RTM processing. The aim was to reduce the inherent brittleness of isothermally 

processed pCBT composites by applying a non-isothermal production process, as 

already pointed out in section 3.5. Three-point bending tests were performed and it 
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was found that the flexural strength and failure strain of quench cooled composites 

increased by 33% and 44%, respectively, as compared to slowly cooled samples. 

Moreover, fracture toughness mode II tests showed a twofold increase of the crack 

propagation energy for the quenched samples as compared to slowly cooled 

samples. 

Many different types of vegetable fibres are available and examples are jute, 

flax, hemp, remi, sisal, coconut or banana fibre. All these fibres are grown as 

agricultural plants in various parts of the world and are commonly used for making 

ropes, carpet backing, bags, and so on. The components of natural fibres are 

cellulose microfibrils dispersed in an amorphous matrix of lignin and hemicellulose. 

Depending on the type of the natural fibres, the cellulose content is in the range of 

60–80 wt% and the lignin content is in the range of 5–20 wt%. In addition, the 

moisture content in natural fibres can be up to 20 wt%.194 Romão and co-workers214-

215 used TP-RTM to produce woven flax fabric fibre reinforced pCBT composites with 

a fibre volume fraction of 32%. Polymerization conditions of 190 °C and 30 min were 

chosen due to the relatively low thermal stability (about 200 °C) of the cellulosic 

component of natural fibres. Moreover, the used flax fibres were not surface treated. 

Consequently, weak and brittle composites with low interfacial adhesion were 

obtained. The tensile strength of neat pCBT was found to be 15 MPa, which 

increased to 20 MPa and 26 MPa when pCBT was reinforced with undried and dried 

fabrics, respectively. 

5.4 Hybrid composites 
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The term ‘hybrid composite’ generally refers to a matrix containing at least two types 

of reinforcements. More specifically, fibre hybrid composites contain at least two 

types of reinforcing fibres. Fibre hybridisation is a promising strategy to toughen 

composite materials by combining two or more fibre types because hybrid 

composites typically offer better strength versus toughness than non-hybrid 

composites. The failure strain and toughness can be dramatically increased if brittle 

fibres are replaced by ductile fibres. In this respect, metal fibres have the potential of 

high stiffness and large failure strain, nevertheless they are limited by their high 

densities.216  

Aurrekoetxea et al.202 reinforced pCBT/CF composites with 2.3% of 

superelastic shape memory alloy (SMA) wires and investigated the impact behaviour. 

NiTi SMA wires can improve impact properties of composites due to their high 

damping capacity related to the hysteresis of stress-induced martensitic 

transformation. The hybrid pCBT/CF/SMA composites were subjected to 

instrumented Charpy impact tests at impact velocities ranging from 0.33 to 2.32 m/s. 

It was found that the stress-induced martensitic transformation mechanism was not 

activated at the subcritical impact. Nevertheless, at the supercritical regime, the 

dissipated energy increased from 2.22 J of the reference composite to 4.68 J of the 

hybrid one. The contribution of the SMA wires to the higher impact performance of 

the hybrid composite was not only related to their energy absorbing capability but 

also to the high reversible force that acted as a healing force and improved the load 

bearing of the composite. 

Yang and co-workers217 prepared interply hybrid composites based on woven 

CF and GF fabrics and pCBT using a vacuum assisted prepregs process and 

subjected the composites to low-velocity impact. Finite element method simulation 

was also performed to investigate the hybridization effect on the composites under 
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impact velocity of 3 m/s, 5 m/s and 7 m/s. Experimental results showed that hybrid 

composites with a carbon to glass mass ratio of 37:63 could enhance significantly 

both impact resistance and perforation thresholds as compared to pCBT/CF 

composites. The progressive failure model developed in the simulation can be used 

to predict the failure of interplay hybrid composites based on glass and carbon woven 

fabrics.  

Wu et al.206 proposed a novel process for the manufacturing of fibre metal 

laminates with textile reinforced pCBT composites and aluminium alloy. To improve 

the adhesive bonding, prepregs were introduced as interlayer for a 2/1 preform 

configuration, which was composed of two layers of dry CF fabrics and one layer of 

aluminium alloy in between. The preform was impregnated with CBT melt in an 

isothermal VARI process. After manufacturing, the FML was subjected to mechanical 

characterizations. First, the influence of various surface treatment methods was 

studied and the best results were obtained with an aluminium plate treated with a 

combination of mechanical abrasion with 180 grit and alkaline degreasing with 10 

wt.% NaOH. Moreover, the optimal isothermal moulding temperature was found to be 

190 °C, which resulted in the highest ILSS and CIS of the fibre metal laminate 

samples.  

5.5 Recycling of pCBT composites 

Steenkamer and Sullivan218 investigated the recyclability of pCBT composites. The 

virgin composite was prepared by liquid moulding the CBT resin and a knitted glass 

fabric. The resultant high fibre content composite (58.7 wt.%) was ground, 

compounded with two grades of commercial PBT, and then re-processed by injection 
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moulding. A variety of physical and mechanical tests were then conducted on the 

blended pCBT composite and a baseline, short fibre reinforced PBT. In general, the 

recycled pCBT composite demonstrated comparable properties to the baseline 

material. The only exception was the ultimate tensile strain of the recyclate, which 

was almost 25% lower than that of the short fibre reinforced PBT.  

5.6 Applications of pCBT composites 

Several industrial applications of fibre-reinforced pCBT composites have been 

reported. A team comprised of Cyclics Corporation and various partners from 

university as well as from industry developed a program called “Cleanmould” which 

was partially funded by the European Commission219-222. The aim of the program was 

the development of novel GF-reinforced pCBT composites in order to produce thick-

section parts with large surface areas using VI and VARTM processes as well as 

modified versions of a vacuum bag consolidation process using CBT prepregs. 

Within the framework of this project, a 13.6 m flat bed semi-trailer (c.f. figure 26) as 

well as 5 m flat bottom boat hull (c.f. figure 27) with multi- and unidirectional fibre 

layers were successfully manufactured in CBT. To date, the semi-trailer is the largest 

single, high performance TPC moulding in the world. The base of the trailer has a 

wall thickness between 8 and 15 mm, weights over 600 kg and covers roughly 50 m2 

in area. The trailer is currently producing weight savings of approximately 1500 kg, 

generating over 700 litres of fuel savings per year as compared to the steel trailer 

that it has replaced. Regarding the 5 m flat bottom boat hull, this case study is the 

first reported application of a structural thermoplastic composite in a balsa-cored 

sandwich panel. 

Wind turbine blades are another important application of pCBT composites. A 

R&D program called “GreenBlade” was developed by Cyclics Corporation, 

ÉireComposites, Mitsubishi Heavy Industries and Ahlstrom Glassfibre to produce 

blades made of pCBT/GF composites.223-226 A 12.6m long wind blade was 

manufactured in one shot with no adhesives in six hours (c.f. figure 28). CBT was 

applied as a film onto the surface of a glass fabric and unidirectional tapes were used 
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for the spar cap and webs and biaxial 0/90 fabrics for the skins. These semi-prepregs 

were layed up into moulds and enveloped in a sacrificial vacuum bag. The assembly 

was heated to 200 °C for polymerization. The sacrificial vacuum bags melted into the 

layup and the component parts joined to create a one-shot 500 kg blade with a fibre 

volume fraction of 50%.  

6 Conductive composites 

Conductive polymer composites (CPCs) have generated significant academic and 

industrial interest for many years since most polymers are not conductive. 

Conductive fillers have been incorporated into various polymers to fabricate CPCs. 

With increasing conductive filler content, a jump in conductivity can be observed 

when a critical filler content is reached in the polymer matrix and this phenomenon is 

often termed the electrical percolation threshold, pc. As shown by both theoretical and 

experimental studies, pc generally decreases with increasing filler aspect ratio. 

Therefore, efforts have been made to build conductive networks in a polymer matrix 

using large aspect ratio conductive fillers. Recently, since the advent of large aspect 

ratio and multifunctional conductive fillers, such as CNTs and graphene, this area has 

attracted increasing amounts of attention. Three different methods for the production 

of CPCs are available: melt blending, solvent blending and in situ polymerization.227 

Hence an increasing number of conductive pCBT composites can be found in 

literature because the very low melt viscosity of CBT is considered favourable for the 

dispersion of conductive fillers. 

Li et al.73 prepared pCBT/CNT mat composites by dissolving CBT in 

chloroform and then impregnating a pre-stretched CNT mat with the solution. After 
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drying the impregnated CNT mat was compression moulded at 250 °C for 15 min. 

The thermal conductivity of pCBT containing 64 wt.% of pre-stretched CNT mat was 

around 90 W/m�K at room temperature and decreased as the CNT mat content 

decreased. When the CNT mat content was 15 wt.%, the thermal conductivity at 

room temperature of the composite dropped to 15 W/m�K. This is due to the fact that 

pCBT resin is a poor thermal conductor (thermal conductivity of pCBT is 0.15 W/m�K 

according to Ref.191), and phonon modes within CNTs can be damped and scattered 

by the polymer matrix, reducing the thermal conductivity of the CNTs themselves. 

While pCBT has a high electrical resistivity of approximately 1015 Ω�m, the electrical 

resistivity of the composite was dramatically enhanced to 1.9 x 10-5 Ω�m by 

introducing an aligned CNT mat. 

Noh and associates published various papers155-159, 191-193 on the thermal and 

electrical conductivity of pCBT. Carbon black (CB), CNT, CNT mat and G were used 

as conductive fillers and the pCBT nanocomposites were prepared using solvent-free 

powder mixing and subsequent in situ polymerization during compression moulding 

at 250 °C.157 The electrical conductivity of the nanocomposites was measured with 

respect to the MWCNT content and to three types of surface treatment of the 

MWCNTs, including acid, hydrogen peroxide and heat treatments. Results indicated 

that a lower resistivity and a higher electrical conductivity of MWCNTs were obtained 

for MWCNTs with structures that more closely resembled that of complete graphite. 

However, the electrical conductivity of the MWCNT/pCBT nanocomposites was not 

consistent with those results, which indicated that a correlation between the electrical 

conductivity of MWCNT fillers and MWCNT/pCBT nanocomposites was a minor 

factor. The acid treatment generated primarily carboxylic acid groups on the surface 

of the MWCNTs, and the hydrogen peroxide treatment generated primarily alcohol 

groups on the MWCNTs. The degree of functionalization of the heat treated 
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MWCNTs was limited because the surface was slightly altered by the treatments. 

The different functionalities of the MWCNTs with different surface treatments altered 

the dispersion state of the incorporated MWCNTs in the MWCNT/pCBT 

nanocomposites, and the dispersion state was found to be the dominant physical 

factor that determined the electrical percolation behaviour of the nanocomposites. 

For the nanocomposites that contained pristine MWCNTs the percolation threshold 

was observed at a MWCNT loading of 3 wt%. The percolation threshold of the 

hydrogen peroxide treated MWCNT/pCBT nanocomposites was lower than 1 wt%, 

whereas the one of the heat treated MWCNT/pCBT nanocomposites was observed 

at the lowest MWCNT loading. In a follow-up work,155-156, 191-192 the thermal 

conductivities of pCBT composites containing nanofillers such as G, CNT and CB 

were experimentally and theoretically investigated. The experimentally measured 

thermal conductivity of those composites was compared with the predicted values 

obtained from micromechanics models, accounting for the effect of both wavy 

nanofillers and multiple heterogeneities. The theoretical results obtained from a 

modified Mori-Tanaka method micromechanics model corresponded well with the 

results obtained through experimentation. The low bulk thermal conductivity of pCBT 

nanocomposites was found to be due to the waviness of the incorporated MWCNTs 

and the weak interface between the MWCNTs and the matrix. Consequently, the 

thermal conductivity of polymeric composites is profoundly determined by the shapes 

of the conductive fillers.155 In case of pCBT/G nanocomposites, the in-plane thermal 

conductivity of composites containing 20 wt.% of G was found to reach a maximum 

value of 1.98 W/m�K.191 Moreover, the same authors193 found that the thermal 

conductivity of composite materials can be synergistically enhanced by the 

simultaneous incorporation of well-dispersed pitch-based CF and G nanoplatelets 

into the matrix. The isotropic and in-plane thermal conductivity of the composite 
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containing both uniformly dispersed 5 wt.% of CF and 15 wt.% of G achieved 

improvements of 82% and 183% when compared to those containing 20 wt% of G, 

and improvements of 65% and 74% when compared to those containing 20 wt% of 

CF, respectively. The synergistic improvement of the thermal conductivity was 

maximized at the optimized composition due to the most efficient formation of 

thermally-conductive pathways and internal structures favourable for phonon 

transport. 

Song et al.228 studied the rheological properties, morphology, mechanical 

properties, electrical resistivity and electromagnetic interference shielding 

effectiveness of CBT/graphite/CB composites. After the addition of 50 % of graphite, 

the electrical resistivity of the pCBT/graphite composite was found to be reduced to 

1.85 Ω�m. As the graphite content increased to 60 %, the electrical resistivity of 

PBT/graphite composite was further dropped to 0.33 Ω�m. This was related to the 

formation of more conductive paths in PBT composites. A large decrease in electrical 

resistivity appeared when some graphite was replaced by carbon black. For 50 % of 

filler composites, the electrical resistivity of the pCBT composites decreased to 0.19 

Ω�m when 5 % of graphite was replaced by the 5 % of CB, which indicated that the 

CB has major effect on the conductivity properties of the pCBT composite. The 

minimum electrical resistivity appeared at the composite with 35 % of graphite and 15 

% of carbon black with 0.04 Ω�m. 

Chen et al.188 prepared pCBT nanocomposites with TRGO by solvent blending 

in THF and subsequent polymerization at 200 °C. The pCBT grafted onto TRGO was 

confirmed by various characterization techniques and the grafting content was found 

to be up to 53%. The percolation threshold was found to be 1.6 wt.% of TRGO and 

the electrical conductivity was around 10-7 S/m when the TRGO content was 3 wt.%. 
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7 Miscellaneous use of CBT 

7.1 Impact modifier 

Due to its low melt viscosity and thermoplastic nature, CBT can be used as additive 

for various thermoset resins, thermoplastics as well as for rubbers. Wang et al.229 

synthesized a novel organotin initiator with amino-terminated hyperbranched 

polysiloxane (HSiSn) for the ROP of CBT. Compared with a traditional initiator, 

butyltin chloride dihydroxide (BCD, structure (II) in fig. 3), HSiSn had a moderate 

initiate speed, lower toxicity and good reactivity. Moreover, the pCBT initiated by 

HSiSn had better thermal stability than that by BCD. A series of CBT-toughened 

bismaleimide (BD) resins (HSiSn/CBT-BD) were prepared through the in situ 

formation of pCBT during the prepolymerization of BD resin with HSiSn. Compared 

with BCD/CBT-BD and BD resins, HSiSn/CBT-BD resins with small loadings of CBT 

(≤5 wt %) had remarkably improved integrated performances, including higher impact 

strengths, improved flexural, and tensile properties, better dielectric properties, and 

excellent heat resistance. These attractive performances were attributed to the 

unique cross-linked structure induced by HSiSn.  

Davoodi and co-workers230 studied the effect of CBT on the impact properties 

of hybrid kenaf/glass epoxy composites. The epoxy resin was mixed with 5 wt.% of 

CBT at a temperature of 220 °C. Then a hardener was added, the blend was sprayed 

on the fibre reinforcements and the composite was cured at 85 °C in a hot plate 

press. It was found for the CBT-toughened composite that the Izod impact resistance 

improved by 54% while tensile and flexural properties decreased. 
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A hydrogenated nitrile rubber (HNBR) was modified with CBT and the 

HNBR/CBT hybrids exhibited improved mechanical and triblogical properties 

compared to pristine HNBR.79-80, 231 It was found that the CBT in the blends only 

partly polymerized at 190 °C and the CBT was predominantly recrystallized from its 

molten state. The well developed prism- and platy-like, micron-scaled CBT crystals 

effectively reinforced the HNBR/CBT hybrid. 

7.2 Viscosity modifier 

Uncatalysed CBT can be also used as a viscosity modifier for various highly viscous 

thermoplastic resins due to its inherently low melt viscosity. Tzounis et al.232 studied 

the influence of CBT on the processability and thermoelectric properties of 

polycarbonate/MWCNT nanocomposites. Preliminary TGA analysis of the carboxyl-

functionalised MWCNT (referred to MWCNT-COOH) revealed that melt blending was 

limited to low temperatures due to thermal decomposition of the MWCNT functional 

groups. Therefore, PC was mixed with 2.5 wt% MWCNT-COOH (PC/MWCNT-

COOH) at 240 °C and 270 °C. In order to reduce the polymer melt viscosity, 

uncatalysed CBT was utilized as a low molecular weight additive, improving 

additionally the electrical conductivity of the nanocomposites. The melt rheological 

characterization of neat PC and PC/CBT blends demonstrated a significant decrease 

of the complex viscosity due to the addition of CBT (10 wt.%). Optical microscopy 

and TEM showed an improved MWCNT dispersion in the PC/CBT blend. The 

electrical conductivity was remarkably higher for the PC/MWCNT-COOH/CBT 

composites as compared to the PC/MWCNT-COOH ones. 
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7.3 Blend compatibilizer 

The fast polymerization kinetics and high reactivity of CBT are advantageous for the 

compatibilization of partially miscible polymer blends. Tripathy and co-workers117 

prepared pCBT/poly(vinyl butyral) (PVB) blends with varying compositions and 

compared them with physical blends of conventional PBT and PVB. It was found that 

the in situ prepared blend of pCBT/PVB exhibited one glass transition temperature 

and showed evidence of miscibility. In contrast, the conventional blend of PBT/PVB 

showed incompatibility after blending. The cause of miscibility in the pCBT/PVB 

blends was thought to be the formation of a graft copolymer.  

8 Concluding remarks 

Cyclic butylene terephthalate oligomers are a promising alternative for thermoset 

matrices employed in fibre reinforced composites and also for conventional 

thermoplastic matrices in nanocomposites due to their remarkably low melt viscosity 

prior to polymerization. This unique property of CBT allows for facile impregnation of 

both fibrous and nano-reinforcements. Moreover, isothermal processing of CBT with 

simultaneous polymerization and crystallization is possible. Nevertheless, the 

brittleness of pCBT is considerably higher as compared to conventional PBT, 

especially when processed isothermally below the melting temperature of pCBT 

(~225 °C). For this reason, the toughening of pCBT has become of great interest 

Page 77 of 143

URL: http://mc.manuscriptcentral.com/bsms

Critical Reviews in Solid State and Materials Sciences



78 / 107 

 

because brittleness is an undesired property for structural materials and various 

toughening methods for pCBT are available. Since the ring-opening polymerization is 

conducted in situ, CBT can be readily used as building blocks for copolymerization as 

well as for chemical modification. The excellent wetting characteristics of CBT allow 

the production of nanocomposites based on carbon nanotubes, carbon black, 

graphite or graphene with good electrical and thermal conductivity. Unpolymerized 

CBT can be used as impact modifier, viscosity modifier or blend compatibilizer for 

various thermoplastic and thermoset resins due to its ultra-low melt viscosity. Another 

important advantage of CBT used in long fibre reinforced composites is that 

composite parts can be milled at the end of their life cycle and used as feedstock for 

short fibre reinforced PBT. Recently the automated injection moulding of cyclic 

oligomers has been developed. This technique paves the way to the mass production 

of highly cost-effective thermoplastic fibre reinforced composite parts with integrated 

stiffening and functional elements. In this respect, CBT could cover a wide range of 

applications, especially in sectors where weight reduction may be achieved through 

fibre reinforced thermoplastic composites on CBT basis. 
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BCD Butyltin chloride dihydroxide 

BD Bismaleimide 

CB Carbon black 

CBT Cyclic butylene terephthalate (tradename, Cyclics Inc.) 

CDP Cyclo-depolymerization 

CF Carbon fibre 

CIS Charpy Impact Strength 

Cl30B Cloisite 30B (tradename, Southern Clay Products Inc.) 

CM Compression moulding 

CNT Carbon nanotube 

CPC Conductive polymer composite 

c-pCBT Macrocyclic polymerized CBT 

DMTA  Dynamic mechanical thermal analysis 

DSC Differential scanning calorimetry 

EP Epoxy resin 

EVA Poly(ethylene-co-vinyl acetate) 

FBG Fibre Bragg grating 

FRP Fibre reinforced polymer 

G Graphene 

GF Glass fibre 

GO Graphite oxide 

GPC Gel permeation chromatography 

HDI Hexamethylene diisocyanate 

HNBR Hydrogenated nitrile rubber    

HPLC High pressure liquid chromatography 

HSiSn  Amino-terminated hyperbranched polysiloxane 
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ILSS  Interlaminar shear strength 

IM  Injection moulding   

IM-PBT Injection moulded PBT 

ISP-PBT In situ polymerized PBT 

LCM  Liquid composite moulding 

MCO  Macrocyclic oligomer 

MDI  4,4"-methylenebis(phenyl isocyanate) 

MDSC  Modulated DSC  

MWCNT  Multiwalled carbon nanotubes 

MWCNT-COOH Carboxyl-functionalised MWCNT 

NCO  Isocyanate 

NMR  Nuclear magnetic resonance spectroscopy 

PA Polyamide 

PBT  Poly(butylene terephthalate) 

PC Polycarbonate 

pCBT  polymerized cyclic butylene terephthalate 

PCL  Polycaprolactone 

PEGMA  Poly(ethylene-co-glycidyl methacrylate) 

PET  Poly(ethylene terephthalate) 

PLM   Polarized light microscopy 

PLS  Polymer/layered silicate nanocomposites 

PMDI  Polymeric methylenebis(phenyl isocyanate) 

polyTHF Polytetrahydrofuran 

POSS  Polyhedral oligomeric silsesquioxane (tradename, 

HybridPlastics) 

PVB  Poly(vinyl butyral) 
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RFI Resin film infusion 

ROP Ring-opening polymerization 

RP-pCBT Reprocessed pCBT 

SALS Small-angle light scattering 

SC Solution casting 

SMA Superelastic shape memory alloy 

SRIM Structural reaction injection moulding 

SWCNT Single-walled carbon nanotube 

TEM Transmission electron microscopy 

TGA Thermogravimetric analysis 

THF Tetrahydrofuran 

TP Polymerization temperature 

TPC Thermoplastic composite 

TPE Thermoplastic elastomer 

TP-RTM Thermoplastic resin transfer moulding 

TRGO  Thermally reduced graphite oxide 

VARI Vacuum-assisted resin infusion 

VI Vacuum infusion 

VOC Volatile organic compound  

WAXS Wide-angle X-ray scattering 
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Figure Captions 

Fig. 1:  Chemical structure of CBT oligomers. Adapted with permission from Ref. 28. 

Copyright 1998 American Chemical Society. 

Fig. 2:  Initiation and propagation steps during the ring-opening polymerization of 

CBT using a tin-based catalyst. Adapted with permission from Ref. 31. Copyright 

2012 John Wiley and Sons. 

Fig. 3:  CBT catalyst systems stannoxane (I), butyltin chloride dihydroxide (II) and 

tetrakis-(2-ethylhexyl) titanate (III). Reprinted with permission from Ref. 33. Copyright 

2005 American Chemical Society. 

Fig. 4: Incorporation of cyclic stannoxane initiator into CBT and ring-expansion 

mechanism of macrocyclic c-pCBT. Reprinted with permission from Ref. 28. 

Copyright 1998 American Chemical Society. 

Fig. 5: In situ monitoring of the electrical conductivity by dielectric sensing at 10 Hz 

for several polymerization temperatures. Reprinted from Ref. 36 with permission from 

Elsevier.  

Fig. 6: Conversion data for isothermal polymerization of CBT based on GPC data. 

Reprinted from Ref. 30. 

Fig. 7: Variation of complex viscosity of CBT with time (a) and variations of the 

relative molecular weight Mw (t)/Mw(∞) with time at different temperatures. Reprinted 

with permission from Ref. 31. Copyright 2012 John Wiley and Sons. 

Fig. 8: Polymerization kinetics modelled with first order ordinary differential equation 

model from isothermal GPC data. Reprinted from Ref. 30. 

Fig. 9: Possible chain conformations in polymers. Reprinted with permission from 

Ref. 39. Copyright 1968 Springer.  
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Fig. 10: Schematic representation of the evolution of living lamellar pCBT crystals. 

Reprinted from Ref. 40 with kind permission from Springer Science and Business 

Media. 

Fig. 11: Avrami plot of CBT160, CBT XB3-CA4, PBT B4520 and PBT B6550 as 

obtained at 195 °C. Reprinted from Ref. 43 with kind permission from Springer 

Science and Business Media. 

Fig. 12: Conditioning of CBT160 powder (●) and pellets (■) at 80 and 100 °C. CBT 

water content over drying time (a) and water uptake of dry CBT in ambient 

atmosphere at 60% relative humidity over time. Reprinted from Ref. 48. 

Fig. 13: Effect of testing temperatures on the variation of melt viscosity with time (a) 

and impregnation time and apparent polymerization time as a function of temperature 

(b). Reprinted with permission from Ref. 29. Copyright 2006 John Wiley and Sons. 

Fig. 14: Elementary cells of PBT: (a) α-form and (b) β-form. Reprinted with 

permission from Ref. 58. Copyright 1976 American Chemical Society. 

Fig. 15: PLM morphologies of pCBT corresponding to the crystallization temperature 

range of 190–215 °C. Reprinted with permission from Ref. 47. Copyright 2010 John 

Wiley and Sons. 

Fig. 16: TEM micrographs of PBT (a), pCBT (b) and reprocessed RP-pCBT (c). 

Reprinted from Ref. 63 with permission from Elsevier. 

Fig. 17: DSC thermograms of CBT, injection moulded PBT (denoted as IM-PBT) and 

isothermally polymerized pCBT (denoted as ISP-PBT). First heating scan (a), second 

heating scan (b). Heating and cooling rates: 5 °C/min. Reprinted from Ref. 66 with 

permission from Elsevier. 

Fig. 18: Typical 3 point bending stress–strain curves for pCBT and PBT. Reprinted 

from Ref. 63 with permission from Elsevier. 
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Fig. 19: Remaining cyclic oligomer crystals after polymerization at 190 °C for 30 min; 

PLM image (a) and SEM image (b). Reprinted from Ref. 40 with kind permission from 

Springer Science and Business Media. 

Fig. 20: Brittleness mechanism of remaining cyclic oligomer crystals in pCBT. 

Reprinted from Ref. 40 with kind permission from Springer Science and Business 

Media. 

Fig. 21:  Reactions of carboxylic groups with various electrophilic groups. Reprinted 

with permission from Ref. 87. Copyright 2005 John Wiley and Sons. 

Fig. 22: Schematic representation of nanocomposite formation by ROP of cyclic 

ethylene terephthalate oligomers in between silicate layers. Reproduced from ref. 14 

with permission of Elsevier Science Ltd., UK. 

Fig. 23: Synthesis route of MWCNT-grafted pCBT. Reproduced from ref. 153 with 

permission of John Wiley and Sons. 

Fig. 24:  Chemical structures of POSS; cage structure (a) and partial cage structure 

(b). Reproduced from ref. 133 with permission of Elsevier. 

Fig. 25: Polymerization mechanism of TRGO and CBT. Reproduced from ref. 188 

with permission of Elsevier. 

Fig. 26: World’s first lightweight and aerodynamic thermoplastic composite trailer. 

Reproduced from ref. 219. 

Fig. 27: Flat bottom boat case study manufactured from pCBT/GF composite and a 

balsa-cored sandwich panel. Reproduced from ref. 219. 

Fig. 28: 12.6 m long pCBT/GF wind turbine blade manufactured at 200 °C, (a) 

removing moulded blade from tool; and (b) a 4.0 m moulded section of the blade, 

showing the spar-cap and shear-webs moulded in a “one-shot” process. Reproduced 

from ref. 223 
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Tables 

Table 1:  Molecular weights and polydispersities of pCBT polymerized at different 

temperatures and with different catalysts. Reprinted with permission from Ref. 32. 

Copyright 2005 American Chemical Society. 

catalytic amount Tp conversion α Mn PDI 

system [wt.%] (°C) [%] [kg/mol] [Mw/Mn] 

0.25 175 83 45.0 2.7 

0.25 180 84 41.6 2.9 

stannoxane (I) 0.25 185 84 41.0 2.9 

0.25 190 92 41.8 2.7 

0.25 195 94 42.2 2.8 

0.3 185 65 31.6 2.6 

0.3 190 77 34.8 2.6 

butyltin chloride dihydroxide (II) 0.3 195 93 46.6 2.6 

0.3 200 94 46.2 2.6 

0.3 205 97 50.1 2.6 

0.3 185 84 54.8 2.5 

0.3 190 87 55.1 2.4 

tetrakis-(2-ethylhexyl) titanate (III) 0.3 195 94 57.7 2.5 

0.3 200 95 54.7 2.5 

0.3 205 92 52.0 2.6 

Page 100 of 143

URL: http://mc.manuscriptcentral.com/bsms

Critical Reviews in Solid State and Materials Sciences



101 / 107 

Table 2:  Physical properties of PBT, pCBT and macrocyclic c-pCBT. 

Sample 
Processing TROP Tcool 

Testing 
E σ ε Χc, DSC** Mn Mw α 

Ref. 
method [°C] [°C] [GPa] [MPa] [%] [%] [kg/mol] [kg/mol] [%] 

PBT IM 250 non-iso flexural 2.2 ± 0.1 73 ± 11 *3.3 ± 0.3 35 33.8 69.3 98.8 [58] 

RP-PBT IM 250 non-iso tensile 2.5 ± 0.2 50 ± 1 16–225 34 32.3 66.3 98.7 [58] 

pCBT190 TP-RTM 190 190-iso flexural 3.2 ± 0.1 54 ±5 1.6 ± 0.2 47 29.3 61.4 98.2 [58] 

pCBT230 TP-RTM 230 190-iso flexural 3.1 ± 0.2 73 ± 14 2.3 ± 0.7 42 35.0 73.3 98.7 [58] 

RP-pCBT IM – – tensile 2.3 ± 0.2 46 ± 7 3–70 35 20.5 40.6 97.9 [58] 

pCBT TP-RTM 190 190-iso flexural 3.5 ± 0.1 61 ± 3 1.9 ± 0.1 44 36 78 99 [65] 

pCBT CM 240 non-iso tensile 2.1 ± 0.3 57 ± 13 3.2 ± 1.1 33 – 67.6 98.5 [67] 

pCBT CM 240 non-iso tensile 2.8 ± 0.4 57 ± 5 7 ± 3 32 10.0 22.0 96.6 [66] 

c-pCBT CM 190 190-iso tensile 3.0 46 2 50 ~100 ~300 – [59]

pCBT CM 250 non-iso tensile 2.4 ± 0.4 67 ± 10 3.8 ± 0.8 – – – – [68] 

pCBT SC 190 quenched tensile 1.3 ± 0.1 17.3 ± 0.7 5.3 ± 0.1 – – – – [38] 

* strain at yield; no break.

** calculated from first heating 

IM: Injection moulding 
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TP-RTM: Thermoplastic resin transfer moulding 

CM: Compression moulding 

SC: Solution casting 
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Table 3:  Physical properties of modified pCBT. 

Modifier Modifier content Testing E σ εbreak ΧC, DSC* Mn Mw α Ref. 

[wt.%] [GPa] [MPa] [%] [%] [kg/mol] [kg/mol] [%] 

pTHF 10 flexural 2.1 ± 0.1 27 ± 4 1.3 ± 0.4 48 22 44 99 [79] 

EVA 75 tensile 0,003 4 1030 – – – 96 [111] 

EP 2 tensile 2.8 ± 0.1 62 ± 1 49 ± 25 24 9,4 65 92 [66] 

PMDI 1 tensile 2.6 ± 0.2 51 ± 1 215 ± 28 30 41,1 137,6 – [103]

MDI 1 tensile 2.7 ± 0.2 55 ± 1 79 ± 11 32 – – – [103]

HDI 1 tensile 2.8 ± 0.2 54 ± 1 109 ± 21 33 – – – [103]

CL 20 tensile 0,06 13,9 368 36 29 72 – [63] 

CL 30 tensile 0,17 18,9 704 32 – – – [63] 

CL 40 tensile 0,05 8,2 397 19 31 68 – [63] 

CL 50 tensile 0,02 5,3 690 16 48 110 – [63] 

CL 70 tensile 0,0004 3,6 820 – – – – [63] 

PCL 7 flexural 2.7 ± 0.1 95 ± 7 5 ± 0.8 32 34 77 99 [113] 

PCL 7,5 tensile 1,25 27 6 32 – – – [67] 
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* calculated from second heating. polyTHF: Polytetrahydrofuran; EVA: Poly(ethylene-co-vinyl acetate); CL: ε-caprolactone; PCL:

Polycaprolactone; EP: Diepoxide; HDI: Hexamethylene diisocyanate; MDI: 4,4'-methylenebis(phenyl isocyanate); PMDI: 

Polymeric methylene diphenyl diisocyanate. 
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Table 4:  Flexural properties and interlaminar shear strength (ILSS) of continuous fibre reinforced pCBT composites. 

Modifier Fibre fraction 

Processing Modifier content TROP Tcool Fiber Fiber Composite wf vf Void content Ef σfM εfB ILSS Ref. 

method [wt.%] [°C] [°C] type architecture lay-up [wt.%] [vol.%] [%] [GPa] [MPa] [%] [MPa] 

RTM – – 190 190 glass unidirectional 0° – 54 – 38.3 ± 1.2 766 ± 113 – – [58] 

RTM – – 190 190 glass multidirectional 0°/90°/random – 52 – 37.8 ± 1.3 901 ± 64 – – [58] 

RTM – – 190 190 glass unidirectional 0° – 54 4.2 ± 1.7 37.6 ± 1.3 775 ± 118 2.3 ± 0.3 – [64] 

RTM – – 190 190 glass unidirectional 0° – 48 – 32 ± 2 680 ± 62 2.9 ± 0.3 – [113] 

RTM PCL 7 190 190 glass unidirectional 0° – 48 – 31 ± 4 613 ± 57 2.5 ± 0.3 – [113] 

CM(DC) – – 190 non-iso glass bidirectional 0°/90° – 54.4 4.7 22.3 ± 0.1 482 ± 13 – 28.2 ± 1.5 [61] 

CM(PC) – – 190 non-iso glass bidirectional 0°/90° – 53.6 <1 24.5 ± 0.3 578 ± 8 – 34.3 ± 1.1 [61] 

VI – – 230 non-iso glass unidirectional 0° – 50.8 – – – 6.1 ± 0.5 48 [191] 

CM – – 230 185 carbon bidirectional 0°/90° – 51 0.4 43.6 ± 2.4 403 ± 8 – 54.1 ± 1.2 [71] 

CM – – 230 195 carbon bidirectional 0°/90° – 51 0.4 42.4 ± 1.0 407 ± 9 – 55.2 ± 1.0 [71] 

CM – – 230 210 carbon bidirectional 0°/90° – 51 0.4 45.1 ± 3.3 508 ± 13 – 59.7 ± 0.4 [71] 

VI – – 205 205 carbon bidirectional 0°/90° 61 – – 26.5 ± 2.5 421 ± 21 1.6 ± 0.1 – [202] 

VI EP 2 205 205 carbon bidirectional 0°/90° 61 – – 28.7 ± 0.9 712 ± 31 2.8 ± 0.2 – [202] 

VI EP 4 205 205 carbon bidirectional 0°/90° 61 – – 21.5 ± 1.7 347 ± 11 1.7 ± 0.3 – [202] 

CM – – 230 non-iso carbon bidirectional 0°/90° 67 – 0.8 35.3 ± 7.0 453 ± 31 1.1 ± 0.1 29.6 ± 2.0 [204] 

CM EP 3 230 non-iso carbon bidirectional 0°/90° 67 – 0.6 37.7 ± 5.5 736 ± 86 1.5 ± 0.2 40.8 ± 3.3 [204] 

CM PMDI 1 230 non-iso carbon bidirectional 0°/90° 71 – 1.5 34.7 ± 6.8 668 ± 79 1.4 ± 0.2 42.2 ± 3.2 [204] 

CM HDI 1 230 non-iso carbon bidirectional 0°/90° 68 – 1 34.1 ± 5.9 680 ± 152 1.3 ± 0.3 42.5 ± 2.0 [204] 

RTM – – 190 non-iso carbon 3D woven fabric 0°/90° – 48 – 49.0 ± 2.2 560 ± 59 1.5 ± 0.01 40.5 ± 1.7 [197] 

CM – – 220 non-iso basalt bidirectional 0°/90° – – – 16.7 446 – 38.5 [207] 
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CM – – 230 non-iso basalt bidirectional 0°/90° – – – 17.3 467 – 44 [207] 

CM – – 240 non-iso basalt bidirectional 0°/90° – – – 15.4 305 – 21.1 [207] 

RTM – – 240 non-iso basalt bidirectional 0°/90° – 43 – 28 ± 1 593 ± 32 2.6 ± 0.4 – [84] 

CM: Compression moulding 

CM(DC): Displacement-controlled compression moulding 

CM(PC): Pressure-controlled compression moulding 

RTM: Resin transfer moulding 

VI: Vacuum infusion 

vf: Fibre volume fraction 

wf: Fibre weight fraction 
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Fig. 1:  Chemical structure of CBT oligomers. Adapted with permission from Ref. 28. Copyright 1998 
American Chemical Society.  
67x65mm (600 x 600 DPI)  
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Fig. 2:  Initiation and propagation steps during the ring-opening polymerization of CBT using a tin-based 
catalyst. Adapted with permission from Ref. 31. Copyright 2012 John Wiley and Sons.  

81x44mm (300 x 300 DPI)  
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Fig. 3:  CBT catalyst systems stannoxane (I), butyltin chloride dihydroxide (II) and tetrakis-(2-ethylhexyl) 
titanate (III). Reprinted with permission from Ref. 33. Copyright 2005 American Chemical Society.  

64x28mm (600 x 600 DPI)  
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Fig. 4: Incorporation of cyclic stannoxane initiator into CBT and ring-expansion mechanism of macrocyclic c-
pCBT. Reprinted with permission from Ref. 28. Copyright 1998 American Chemical Society.  

49x14mm (600 x 600 DPI)  
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Fig. 5: In situ monitoring of the electrical conductivity by dielectric sensing at 10 Hz for several 
polymerization temperatures. Reprinted from Ref. 36 with permission from Elsevier.  

71x51mm (600 x 600 DPI)  
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Fig. 6: Conversion data for isothermal polymerization of CBT based on GPC data. Reprinted from Ref. 30. 
98x64mm (600 x 600 DPI)  
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Fig. 7: Variation of complex viscosity of CBT with time (a) and variations of the relative molecular weight Mw 
(t)/Mw(∞) with time at different temperatures. Reprinted with permission from Ref. 31. Copyright 2012 

John Wiley and Sons.  
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Fig. 8: Polymerization kinetics modelled with first order ordinary differential equation model from isothermal 
GPC data. Reprinted from Ref. 30.  
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Fig. 9: Possible chain conformations in polymers. Reprinted with permission from Ref. 39. Copyright 1968 
Springer.  

113x86mm (600 x 600 DPI)  
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Fig. 10: Schematic representation of the evolution of living lamellar pCBT crystals. Reprinted from Ref. 40 
with kind permission from Springer Science and Business Media.  

49x14mm (600 x 600 DPI)  
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Fig. 11: Avrami plot of CBT160, CBT XB3-CA4, PBT B4520 and PBT B6550 as obtained at 195 °C. Reprinted 
from Ref. 43 with kind permission from Springer Science and Business Media.  
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Fig. 12: Conditioning of CBT160 powder (●) and pellets (■) at 80 and 100 °C. CBT water content over drying 

time (a) and water uptake of dry CBT in ambient atmosphere at 60% relative humidity over time. Reprinted 
from Ref. 48.  

170x60mm (300 x 300 DPI)  
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Fig. 13: Effect of testing temperatures on the variation of melt viscosity with time (a) and impregnation time 
and apparent polymerization time as a function of temperature (b). Reprinted with permission from Ref. 29. 

Copyright 2006 John Wiley and Sons.  
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Fig. 14: Elementary cells of PBT: (a) α-form and (b) β-form. Reprinted with permission from Ref. 58. 

Copyright 1976 American Chemical Society.  
119x123mm (300 x 300 DPI)  

Page 121 of 143

URL: http://mc.manuscriptcentral.com/bsms

Critical Reviews in Solid State and Materials Sciences



Fig. 15: PLM morphologies of pCBT corresponding to the crystallization temperature range of 190–215 °C. 
Reprinted with permission from Ref. 47. Copyright 2010 John Wiley and Sons.  
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Fig. 16: TEM micrographs of PBT (a), pCBT (b) and reprocessed RP-pCBT (c). Reprinted from Ref. 63 with 
permission from Elsevier.  
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Fig. 17: DSC thermograms of CBT, injection moulded PBT (denoted as IM-PBT) and isothermally 
polymerized pCBT (denoted as ISP-PBT). First heating scan (a), second heating scan (b). Heating and 

cooling rates: 5 °C/min. Reprinted from Ref. 66 with permission from Elsevier.  

156x203mm (600 x 600 DPI)  
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F
Fig. 18: Typical 3 point bending stress–strain curves for pCBT and PBT. Reprinted from Ref. 63 with 

permission from Elsevier.  
77x59mm (600 x 600 DPI)  

Page 125 of 143

URL: http://mc.manuscriptcentral.com/bsms

Critical Reviews in Solid State and Materials Sciences



Fig. 19: Remaining cyclic oligomer crystals after polymerization at 190 °C for 30 min; PLM image (a) and 
SEM image (b). Reprinted from Ref. 40 with kind permission from Springer Science and Business Media.  
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Fig. 20: Brittleness mechanism of remaining cyclic oligomer crystals in pCBT. Reprinted from Ref. 40 with 
kind permission from Springer Science and Business Media.  
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Fig. 21:  Reactions of carboxylic groups with various electrophilic groups. Reprinted with permission from 
Ref. 87. Copyright 2005 John Wiley and Sons.  
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Fig. 22: Schematic representation of nanocomposite formation by ROP of cyclic ethylene terephthalate 
oligomers in between silicate layers. Reproduced from ref. 14 with permission of Elsevier Science Ltd., UK. 
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Fig. 23: Synthesis route of MWCNT-grafted pCBT. Reproduced from ref. 153 with permission of John Wiley 
and Sons.  
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Fig. 24:  Chemical structures of POSS; cage structure (a) and partial cage structure (b). Reproduced from 
ref. 133 with permission of Elsevier.  
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nlyFig. 25: Polymerization mechanism of TRGO and CBT. Reproduced from ref. 188 with permission of Elsevier. 
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Fig. 26: World’s first lightweight and aerodynamic thermoplastic composite trailer. Reproduced from ref. 
219.  

52x18mm (600 x 600 DPI) 
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Fig. 27: Flat bottom boat case study manufactured from pCBT/GF composite and a balsa-cored sandwich 
panel. Reproduced from ref. 219.  
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Fig. 28: 12.6 m long pCBT/GF wind turbine blade manufactured at 200 °C, (a) removing moulded blade 
from tool; and (b) a 4.0 m moulded section of the blade, showing the spar-cap and shear-webs moulded in 

a “one-shot” process. Reproduced from ref. 223  
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