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Abstract The so-calledAir Quality Index (AQI), expresses the quality of atmospheric
air. The overall AQI is determined from the AQIs of some reference air pollutants,
which are calculated by a transform of the respective concentrations. Concentrations
of air pollutants are compositional data; they are expressed as part of mass of each
pollutant in a total air volume or mass. Therefore, air pollution concentration data,
as compositional data, just provide ratio information between concentrations of pol-
lutants. Operations involved in the computation of overall AQI are not admissible
operations in the framework of compositional data analysis, as they destroy the origi-
nal ratio information. Consequently, the standard methodology should be reviewed for
such calculations, taking into account the principles and operations of compositional
data analysis. The objective of this article is to present a first approach to incorporate
compositional perspective to air quality expression. For this, it is proposed to use a
balance log-contrast of concentrations expressed in µg/m3 to define a new kind of air
quality indicator. Furthermore, the geometric mean of the concentrations is applied
to obtain a new and simple scale air quality index, avoiding definition of piecewise
linear interpolations used in the standard AQI computation. As an illustrative exam-
ple, statistical analysis of atmospheric pollution data series (2004–2013) of the city of
Madrid (Spain) has been carried out.
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1 Introduction

In recent years, air quality has become a social concern due to its consequences on
population’s health. Nowadays, there is a clear society demand to live with reasonable
environmental quality, and one of the most important environmental factors is air
quality. According to TheWorld Bank (2013), more than half of the human population
is living in urban areas. In big cities, where there is a large concentration of population,
a reasonable good air quality is then required. On top of this, there is a call for timely
and reliable information on air quality, for good data management and measures to
protect the health of population.

In this context, air quality must be defined, measured and expressed in an adequate
and comprehensible way. Authorities must undertake a proper air quality manage-
ment and people should be able to understand measures taken in order to keep air
quality under thresholds. To quantify air quality, some indices have been defined, all
related to pollutants’ concentration in air. Themost commonly used pollutants for AQI
computation are ozone (O3), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen
dioxide (NO2) and suspended particles classified by their maximum diameter (PM2.5,
PM10). The most common air quality indices have been analyzed: AQI defined by
the US Environmental Protection Agency (http://www.epa.gov/), the CAQI defined
in the European project CITEAIR (van den Elshout et al. 2008) and the revised AQI
proposed by Plaia et al. (2013). Plaia and Ruggieri (2011) review air quality indices
and Bishoi et al. (2009) do a comparative study of them. Russo and Soares (2014),
after a review of concepts on air pollution, introduced a predictive spatiotemporal
model. In most cases, the compositional nature of air pollution data is not taken into
account neither in the scientific research context nor in the guidelines for environ-
mental authorities. This contribution is aimed at giving methodological suggestions
on how compositional data principles may be applied in future developments.

Air quality indices are commonly based on air pollutant concentrations and, thus,
functions transforming air pollutant concentrations into indexes are required. Most of
air quality index computingmethods use a similar algorithm involving piecewise linear
functions, which transforms concentrations into normalized indexes. The intervals are
defined by breakpointswhich are chosen to fit both observed and subjectively evaluated
health impacts. The piecewise linear function in this case is

AQI(P) = AQIHI − AQILO
BPHI − BPLO

(C(P) − BPLO) + AQILO,

BPLO ≤ C(P) < BPHI, (1)

where AQI(P) is the AQI value for pollutant P; C(P) is the average pollutant P
concentration; BPHI is the breakpoint that is greater thanC(P); BPLO is the breakpoint
that is less than or equal to C(P); AQIHI is the AQI value corresponding to BPHI and
AQILO is the AQI value corresponding to BPLO. Such breakpoints are specified by
pollutant and differ depending on the country. Air quality index values are divided
into different ranges, and each one is assigned a descriptor and a color code (Table 1;
Fig. 1).
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Table 1 AQI breakpoints and corresponding color codes

Fig. 1 Piecewise linear function assigning AQI values to concentration of pollutant (µg/m3)

Standardized public health alert protocols are associated with each AQI range. The
presence of pollutants in air is expressed by their concentration, usually in µg/m3 and
sometimes in parts per million of mass (ppm) or in parts per billion of mass (ppb).
Daily andmonthly averages of concentrations are carried out using the arithmeticmean
of the corresponding measured values for each element and over the corresponding
period of time. These average values are used to assign the corresponding AQI values
for each pollutant. The final air quality report usually contains the maximum AQI
of different air pollutants, the average of the two greatest ones and the arithmetic
mean (average) of all AQIs, the so-called overall AQI. As a comment, note that AQI
indexes express the degree of pollution and, strictly speaking, not the quality of the
air. Certainly, the larger the AQI, which means the larger the pollution, the worse does
the air quality get. Nevertheless, the term “quality” is maintained for the standard air
quality indices.
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Concentrations of air pollutants are compositional data. They describe the parts in
which the whole amount (volume or mass) of air is decomposed. This means that the
information provided by this kind of data comes from the ratios between different
parts. The analysis of compositional data must be done according to some principles
(Aitchison 1986; Aitchison and Egozcue 2005; Egozcue 2009). For instance, scale
invariance principle requires that a change of units in concentrations, for example,
from proportions to ppm, does not change the result of the analysis; subcompositional
coherence principle preconizes that results obtained from the analysis of a composition
cannot be contradictory with those obtained from the analysis of a subcomposition.
Violation of some of these principles may lead to inconsistent results. Pearson (1897),
one of the founders of modern statistics, who pointed out the spurious correlation
phenomenon, did the very first reference of such problems.

In the eighties, Aitchison (1986) put forward the so-called log-ratio approach, defin-
ing suitable techniques to deal with compositional data. From then on, there have been
significant advances in the formal aspects of the analysis that allow greater system-
atization of his methods. To sum it up, statistical analysis of compositional data can
be stated as a three-step process: (1) transforming data in log-ratio coordinates; (2)
performing statistical analysis of those coordinates as real variables; (3) interpreting
the results on the coordinates or back transforming them into compositional data.
However, the usage of this process is not as widespread as it deserves (Egozcue and
Pawlowsky-Glahn 2011b).

The main goal of this paper is to contribute to improve analysis, interpretation
and management of air quality using compositional data techniques. Particularly, the
interest is focused on the formulation of a new air quality index that satisfies the
requisites of compositional data analysis. Other advanced aspects of the analysis of
air quality are out of the scope of this contribution. For instance, evolution in space
using geostatistics (Russo and Soares 2014) or applying differential equations in the
simplex (Egozcue and Jarauta-Bragulat 2014). Further research should be necessary
to get a complete, coherent and comprehensive air quality approach, considering the
perspective of compositional data analysis.

2 Compositional Approach

The methodological aspects will be demonstrated using a data set granted by the
Ayuntamiento de Madrid (Spain). The monthly mean concentrations of air pollutants
O3, PM2.5, PM10, CO, SO2, NO2 are taken from the years 2004 to 2013, constituting
a sample of n = 117 monthly data points.

The first step in the analysis was to compare averages of pollutant concentrations
and averages of corresponding AQIs. Note that the NO2 data values are removed for
this comparison because this pollutant, for low concentrations, gives null values of the
corresponding AQI. As the functions relating concentrations to AQIs are piecewise
linear functions of the pollutant concentrations (Eq. 1), it is reasonable to expect a good
correlation between the arithmetic average of pollutant concentrations and arithmetic
average of AQIs, which is the overall AQI.
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Figure 2a shows time evolution of the arithmetic mean of pollutant concentrations
and the arithmetic mean of pollutant AQIs. Figure 2b shows the scatterplot of pollutant
concentration arithmetic average versus AQI arithmetic average, with the correlation
coefficient for these two variables being 0.579, which is a value smaller than expected.
Moreover, the shape of the two curves in Fig. 2a is different.

Fig. 2 a Pollutant concentration (µg/m3) arithmetic mean (green) and AQI arithmetic mean (purple) as a
function of time (months). b Scatterplot of pollutant concentration (µg/m3) arithmetic mean versus AQI
arithmetic mean. Data set Madrid 2004–2013
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Figure 3a shows time evolution of the geometric mean of pollutant concentrations
and the geometric mean of pollutant AQIs. Figure 3b shows the scatterplot of pollutant
concentration geometricmean versusAQI geometricmean. The correlation coefficient
for these two variables is 0.999, and the shape of the two curves fits quite well. These
examples, presented in Fig. 3a, b, suggest that geometric mean is a better centrality
estimator than arithmetic mean when dealing with concentrations for this data set.

Fig. 3 a Pollutant concentration (µg/m3) geometric mean (green) and AQI geometric mean (purple) as a
function of time (months). b Scatterplot of pollutant concentration (µg/m3) geometric mean versus AQI
geometric mean. Data set Madrid 2004–2013
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Table 2 Correlation matrices of air pollutants in Madrid showing the effect of spurious correlation

(a) When concentrations of pollutants are expressed in ppb of mass; (b) when concentrations of pollutants
are expressed of proportions in mass in the subcomposition O3, PM2.5, PM10, CO, SO2

This is in accordance with well-known facts in compositional data analysis (Aitchison
1986; Aitchison and Egozcue 2005).

The concentrations of air pollutants constitute a compositional vector, a composi-
tion for short. Compositions represent parts of a whole, which, in this case, are total
micrograms in a cubic meter of air. The information conveyed by a composition is
summarized in the ratios between different parts. Therefore, when multiplying a com-
position by a constant, information does not change and the two vectors are equivalent
as compositions. For instance, expressing air pollutants in µg/m3 is equivalent to
expressing them in other units, for instance in g/m3.

Another characteristic of compositions is the subcompositional coherence: analysis
made in a subset of parts of the original composition should not produce different
results referred to common parts. For instance, the analysis without taking into account
NO2 must be coherentwith the one obtained includingNO2.Anexample of violation of
this principle is shown in Table 2 which shows two correlationmatrices of air pollution
data set computed on the whole composition and computed on the subcomposition
containing the pollutants O3, PM2.5, PM10, CO, SO2. See that correlation CO-PM10
in case (a) is 0.583, meaning that when CO increases PM10 also increases. In case
(b) the correlation is −0.624, meaning that when CO increases PM10 decreases, an
incoherent interpretation.

A proper compositional data analysis should be performed through functions of
concentrations that are invariant under change of units or multiplication by constants
(Egozcue 2009). On the other hand, the scale of ratios is commonly treated taking
logarithms, as proposed in Aitchison (1986). Compositional data can be properly
analyzed and represented using the expressions called log-contrasts. For a composition
x = (x1, x2, . . . , xn), a log-contrast (Egozcue and Pawlowsky-Glahn 2011a) is a linear
combination of logarithms of parts where the sum of the coefficients is zero, that is

n∑

i=1

ai log(xi ) = log

(
n∏

i=1

xaii

)
,

n∑

i=1

ai = 0, (2)
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which is a scale invariant function. Some of the ai are positive, call them bi , and the
rest are negative, call them −ci , or null, call them −di . Then, Eq. (2) can be written
as

log

(
n∏

i=1

xaii

)
= log

⎛

⎝
p∏

j=1

x
b j
j

n∏

k=p+1

x−ck
k

⎞

⎠ = log

(
xb11 · · · xbpp
x
cp+1
p+1 · · · xcnn

)
,

b1 + · · · + bp = cp+1 + · · · + cn .

A very important and interesting property of any log-contrast is that, if a change of
units is applied to one or more components of the numerator or denominator, the only
resulting change in the log-contrast is the addition of a known constant. That is

log

(
(αx1)b1 · · · xbpp

(βxp+1)
cp+1 · · · xcnn

)
= log

(
αb1

βcp+1

)
+ log

(
xb11 · · · xbpp
x
cp+1
p+1 · · · xcnn

)
.

When working with given air pollutant concentrations, the original composition
is made of concentrations of pollutants and a fill-up value, consisting of other air
components. If they are expressed in ppb, they add up to 109, as it was done in Table
2a. Calling the fill-up value xn , the log-contrast

log

(
xbnn

xc11 · · · xcn−1
n−1

)
, (3)

can be used as a index of air pollution or, as in the AQI terminology, an air quality
index for given coefficients bn , ci , i = 1, 2, . . . , n − 1 satisfying bn = ∑

ci . These
coefficients canbeused toweight the impact of each consideredpollutant onpopulation
health. As a first approach, the log-contrast

bAQ(x) = log

(
xn

x1/(n−1)
1 · · · x1/(n−1)

n−1

)
= log

(
xn

gn−1(x̂)

)

= log(xn) − log(gn−1(x̂)), x̂ = (x1, x2, . . . , xn−1), (4)

can be taken as an index of air quality, denoted bAQ, as it is a balance (Egozcue
and Pawlowsky-Glahn 2005) between non-polluted air and considered air pollutants
equally weighted. In Eq. (4), gn−1(·) is the geometric mean of n−1 first components,
in the example n − 1 = 6 pollutants. Note that bAQ is dimensionless, that is, it
does not depend on the units in which concentrations are expressed. However, both
xn and gn−1(x̂) have the units of concentrations, for instance, µg/m3, ppm or ppb.
In practice, log(xn) is almost constant across the sample, and therefore, bAQ can be
approached as − log gn−1(x̂) up to an additive constant. The quantity − log gn−1(x̂)
is not dimensionless and is only useful to compare different pollutant concentration
values, as the additive constant cancels out. Figure 4 shows how bAQ and− log gn−1(x̂)
differ approximately in a constant term.
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Fig. 4 Log-contrast bAQ (blue) and log(10,000)−log gn−1(x̂) (red). Small and almost constant differences
are shown between the two curves. Data set Madrid 2004–2013

From the point of view of compositional data analysis, the use of log-contrasts is
muchmore suitable and coherent than using concentrations or even log-concentrations.
On top of this, air quality indexes can be redefined using the log-contrast bAQ or its
approximation by geometric mean of pollutant concentrations. The main advantage
of this approach is that bAQ is dimensionless and does not depend on the units of
concentrations. Moreover, changing units of concentrations, modifying the value of
− log gn−1(x̂) gets even adding a constant.

3 A New Kind of Air Quality Indexes

The common practice in air quality evaluation consists of computing AQI values
for each pollutant and these values are then combined to obtain a global AQI: for
instance, the arithmetic average of all pollutant-AQI, the maximum pollutant-AQI and
the average of the two maximum pollutant-AQI values. Some authors (Bruno and
Cocchi 2002; Plaia et al. 2013) have suggested defining the global air quality indexes
as functions of pollutant concentrations and not through the pollutant AQIs. In order
to define a new kind of global air quality index directly based on the air pollutant
concentrations, the log-contrast bAQ is a natural choice from the compositional point
of view, once the pollutants are given. However, the fill-up value on the composition
(non-polluted air) is almost never reported and so bAQ is not easily computed. Instead,
it is proposed to use the geometric mean of pollutant concentrations gn−1(x̂). This
new kind of air quality index, here denoted AQI∗, is proposed to be proportional to
that geometric mean of pollutant concentrations, that is

AQI∗(x) = k∗gn−1(x̂), (5)
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where the coefficient k∗ value depends on the units of concentrations and also of the
considered pollutants. Once units of concentration are fixed, for example µg/m3 in
this case, the value of the constant k∗ also depends on the desired scale for AQI values.

Table 3 shows the breakpoint values used to compute the US Environmental Pro-
tection Agency index. It also shows the AQI values corresponding to breakpoints of
each pollutant, the geometric mean of pollutant concentrations (NO2 excluded) and
the proposed new AQI∗. In order to give a reasonable value to k∗, Table 3 is revisited.
The AQIs are computed for each pollutant, and the maximum AQI, called conditional
AQI, is the one corresponding to the so-called conditional pollutant. It results that the
conditional AQI is not sensitive to those pollutant AQIs that are not the maximum
one. For instance a PM10 concentration of 154.0µg/m3 (Table 3, second row) and
values for other pollutants, as in the breakpoints in the first row of Table 3, correspond
to a conditional AQI of 100 and the conditional pollutant is PM10. However, when
all pollutants have concentrations as specified in the second row of Table 3, the con-
ditional AQI is still 100, although the quality of the air has decreased considerably.
This undesirable behavior of the conditional AQI is compensated by considering two
additional indexes: the average of the two maximum pollutant AQIs and the average
of all (positive) single pollutant AQIs. As discussed previously the AQI (arithmetic)
average has an unclear relation with the arithmetic mean of pollutant concentrations
(Fig. 2) and represents a poor subjective correction to the conditional AQI. Similar
arguments are valid for the average of the two worst pollutant AQIs.

The seventh row of Table 3, corresponding to 500 AQI values, gives concentrations
of pollutants that, when appearing simultaneously, correspond to an almost incredible
pollution of the air. Let us take these concentrations inµg/m3, and their geometricmean
2268.7µg/m3, as a reference of 100 for a suitableAQI∗. Accordingly, if concentrations
of pollutants are expressed in µg/m3, a choice of an index AQI∗ ranging from 0 to
100 requires the choice of k∗ = 100/2268.7, so that

AQI∗(x) = 100

2268.7
gn−1(x̂). (6)

Table 3 Columns from O3 to NO2, concentration pollutants breakpoints (µg/m3)

Traditional AQI values corresponding to breakpoints. GM geometric mean of pollutant concentrations
excluding NO2. AQI*, scaled from 0 to 100
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Fig. 5 AQI∗ values vs AQI values at the traditional breakpoints (blue dots). Fitted line (red)

Fig. 6 AQI values (red) and AQI∗ values (blue) in time (months). Data set Madrid 2004–2013

Note that NO2 was not used for assessing the scale of AQI*, but the value
2268.7µg/m3 including NO2 in the geometric mean is an almost incredible air pollu-
tion situation.

Equation (5) is maintained as the definition of AQI∗ although the geometric mean
includes NO2. Figure 6 shows a comparison between AQI and AQI∗ values computed
for the reference data set (Madrid, 2004–2013); a secondary scale is used, as the corre-
sponding scales are different although they are almost linearly related (Fig. 5). Figure
6 also shows that air pollution in Madrid was in general very low (AQI roughly ranges
from 10 to 30 and AQI* from 0.7 to 2.5). The AQI∗ ranging from 0 to approximately
100 is proposed, so that the AQI∗ is easily interpreted. For instance, for the Madrid
data set it is said that the AQI∗ values are in the interval (0.7,2.5) pollution over 100.
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4 Conclusions

Measures of air quality are based on concentrations of some given pollutants and
concentrations of suspended particles classified by size. Those concentrations are
compositional data and, consequently, they are properly analyzed using log-ratio
approaches. These analyses are based on log-contrasts, as they are scale invariant.

The log-contrast between concentration of non-pollutant components over pollu-
tant components is taken as a proper dimensionless index of air pollution. A good
approximation of this index is the logarithm of the geometric mean of concentrations
of air pollutants. The scale of this geometric mean is comparable to the traditional
AQI scale.

A first approach to a new air quality index ranging from 0 to 100 is proposed as
AQI∗(x) = k∗gn−1(x̂), where k∗ is a constant depending on the units of pollutant
concentrations and gn−1(·) is the geometric mean of air pollutants concentrations.

Further modifications of the proposed index would require to determine weighting
coefficients of the proposed log-contrast according to health indicators.
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