
Formalism for a Multiresolution Time Series Database Model

Aleix Llusà Serraa,∗, Sebastià Vila-Martaa, Teresa Escobet Canala

aDepartment of Electronic System Design and Programming
Universitat Politècnica de Catalunya

Av. Bases de Manresa 61–73, 08242 Manresa, ES-CT

Abstract

We formalise a specialized database management system model for time series using a multiresolution approach. These

special purpose database systems store time series lossy compressed in a space-bounded storage. Time series can be

stored at multiple resolutions, using distinct attribute aggregations and keeping its temporal attribute managed in a

consistent way.

The model exhibits a generic approach that facilitates its customization to suit better the actual application require-

ments in a given context. The elements the meaning of which depends on a real application are of generic nature.

Furthermore, we consider some specific time series properties that are a challenge in the multiresolution approach.

We also describe a reference implementation of the model and introduce a use case based on real data.

Keywords: Time series, database systems, multiresolution, lossy compression, approximate queries

1. Introduction

Data collection processes proliferate due to the emer-

gence of embedded systems and sensor networks, provid-

ing opportunities to collect large amounts of data. These

data should be analysed and processed by information sys-

tems to be useful. A typical processing, for instance, is to

detect eventual sensor failures or malfunctions and, if it

is possible, to reconstruct the faulty data. The acquired

data instances hold a timestamp. Therefore, correctness

criteria must include both data values and their times-

tamps. The sequences of data values collected at specific

timestamps are formalised as time series.

A time series is a collection of chronological observa-

tions. In general, we continuously acquire a time series

from phenomena monitoring. On the one hand, we can

∗Corresponding author

Email addresses: aleix@dipse.upc.edu (Aleix Llusà Serra),

sebastia.vila@upc.edu (Sebastià Vila-Marta),

teresa.escobet@upc.edu (Teresa Escobet Canal)

record observations at regular intervals, such as hourly or

daily ones, resulting in equally spaced time data. On the

other hand, we can record observations at irregular inter-

vals, such as recording when a pump is open or closed,

resulting in unequally spaced time data. Time series data

are often voluminous [1, 2], thus efficiently storing and

accessing them can be complex. Moreover, this is espe-

cially critical when developing small embedded systems

with constrained resources (capacity, energy or process-

ing power) [3]. Additionally, unequally spaced time data

increases the difficulty of processing.

The literature describes several attempts to build sys-

tems devoted to managing and store time series data.

These systems are generically known as Time Series

Database Management Systems (tsms), [4, 5]. However,

as shown below, most of them exhibit some drawbacks

when trying to solve the challenging issues of time series

in the temporal data domain.

Time series can be stored and managed by relational

Preprint submitted to Information Systems August 18, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41830303?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

database management systems that are usually queried us-

ing Structured Query Language (sql). Nonetheless, some

authors [4, 6–8] notice that the use of sql systems as a

time series backend suffers from some drawbacks.

nosql or newsql products are being developed to in-

crease the performance and flexibility of sql systems [7–

10]. It is natural to consider them to store time series data.

Indeed, the continuous acquisition nature of the time se-

ries poses an issue when trying to store and analyse all the

data [11].

We can apply compression techniques in two distinct

styles to face the challenges posed by time series data.

First, to get an approximation to the original signal

that facilitates to do pattern search analysis or finding

similarities[1, 5, 12]. Second, as a compression and aggre-

gation approach that leverages the storage of massive data

streams [13, 14]. Nonetheless, handling time series like

data streams neither considers adequately the time dimen-

sion nor computes the evolution of aggregated parameters

along the time, which is interesting for monitoring pur-

poses.

RRDtool [15] is a system that stores time series aggre-

gated using different resolutions. These characteristics al-

low to compact the data and facilitates faster visualisa-

tions. In spite of this, because RRDtool is a particular

application, aggregation operations are limited to network

monitoring.

1.1. Contributions

This paper formalises a model for tsms that stores and

manages time series data. This model exhibits several un-

usual characteristics:

• It organises the data in an aggregated way and it al-

lows to store time series using different time resolu-

tions. We name this feature multiresolution. Thus,

being multiresolution the most salient characteristic

of our model, we call the formalised system Mul-

tiresolution Time Series Database Management Sys-

tem (mtsms). The model is designed to satisfy the

requirements of bounded storage computers such as

sensor systems.

• It is a lossy storage solution. Multiresolution allows

for a lossy storage solution that selects only the rel-

evant data. In some sense, multiresolution is close

to the lossy compression methods used in multimedia

applications, that discard meaningless data in favour

of size.

• It considers the time sampling irregularities of time

series and operates coherently with the time dimen-

sion of time series.

• It offers a degree of genericity to cope with the se-

mantic characteristics of the actual data.

Multiresolution requires aggregating several data in-

stances into a single one. We abstracted this through

an aggregation function bound to the precise seman-

tics of the actual data. Because of this, aggregation

functions are set as an independent object of the main

model. Users can define new aggregation methods

better suited for particular fields.

The model also formalises the concept of time series

representation function. This concept allows users to

define different operators considering the behaviour

of time series in different contexts. This issue is im-

portant to manage the precise semantics of the stored

time series.

• It is soundly formalised using set algebra and, partic-

ularly, relational algebra.

Our model shares some of its characteristics with other

known approaches. The analysis of RRDtool [15] inspired

the multiresolution. However, we provide a sound formali-

sation that lacks in [15] and a degree of genericity unavail-

able in RRDtool. Based on this facility, in our model we

can define particular time series aggregations like those of

2

RRDtool. To formalise time series we follow the same ap-

proach used to formalise bitemporal data for a relational

dbms. The model favours more recent data over the older

one, which is in common with some other methods, like

that of Cormode et al. [13].

We remark that the only goal of the model formalised

here is to manage time series data. In practical applica-

tions, it would be usual to complement this model with

a standard database system to handle all the remaining

data if needed. For instance, time series metadata such

as units of values, sensor localization or classification tags

would be stored in a standard dbms.

1.2. Outline

This manuscript is organised as follows. Section 2 in-

troduces previous work that concerns tsms and mtsms.

The motivation for multiresolution is set out in Section 3.

We describe the model in two steps. First, in Section 4

we formalise a tsms model devoted to the basic elements

and operations of time series. Second, in Section 5 we for-

malise a mtsms model that extends the previous one with

multiresolution capabilities. In Section 6 we describe an

implementation of the integrated tsms and mtsms model.

Section 7 is devoted to a real data multiresolution database

example. Finally, Section 8 offers some conclusions.

2. Previous work

For the sake of completeness here we describe some pre-

vious work related to time series storage. We organise

this in three subsections. First, we introduce some previ-

ous approaches to database management systems for time

series. Second, we explain how some authors applied com-

pression techniques to leverage time series storage. Third,

we review time series storage systems based on the data

streams paradigm.

2.1. Database approaches

According to some authors, tsms should be consid-

ered as a specialised relational dbms [5]. Segev and

Shoshani [16] propose a structured language for querying

tsms. Their time series structures include the notion of

regularity and temporal representation and their opera-

tions are sql-like. Dreyer et al. [4] suggest the require-

ments of a particular purpose tsms and base the model on

five basic structural elements: events, time series, groups,

metadata and time series basis. They implement a tsms

named Calanda which includes calendar operations, it al-

lows grouping of time series, and it operates with simple

queries. They exemplify it using financial data. In [6]

Calanda is compared with temporal systems designed for

time series.

Other authors consider array database systems well

suited to tsms. SciDB [7] and SciQL [8] are array

database systems intended for science applications, in

which time series play a principal role. They structure

time series into arrays to achieve multidimensional analy-

sis and they store other data into tables. SciDB is based

on arrays which, according to the authors, allow to repre-

sent time series. In contrast, SciQL defines time series as

a mixture of array, set, and sequence properties and ex-

hibits some managing characteristics for time series that

include dealing with regularities, interpolation or correla-

tion queries.

Bitemporal dbms, sometimes referred directly as tempo-

ral data, is a database field that inherently considers tem-

poral dimension of data. Bitemporal data manages histor-

ical data and events in databases by associating pairs of

valid and transaction time intervals to data. Bitemporal

data and time series data are not exactly the same, and

so they cannot be treated interchangeably [6], however,

there are some similarities that can be considered. dbms

research represents bitemporal data as relations extended

with time intervals attributes and enlarge relational oper-

ations to deal with time related aspects [17, 18].

3

2.2. Compression approaches

Oetiker’s RRDtool [15, 19] is a free software database

management system designed for monitoring systems. Be-

cause of this, it is focused on a particular kind of data,

gauges and counters, and it lacks general time series op-

erations. RRDtool can store data at diverse time resolu-

tions. Plonka et al. [20] evaluated RRDtool performance

and found limitations when storing a vast number of dif-

ferent time series. They suggested a caching system on

top of RRDtool as a solution. Weigel et al. [21] advocate

for a similar approach that caches queries by aggregate pa-

rameters. In Weigel’s paper, the authors state that other

systems only show subsets of data, but they also consider

necessary to show data in their complete time span. They

developed the software package known as TSDS that fully

stores time series and then query them by date ranges or

by applying different filters and operations to the data.

Deri et al. [22] suggested Tsdb, a lossless compression

storage tsms for time series that share the same time in-

stants of acquisition. Different series are stored grouped

by the acquisition time instead of in an isolated way. Deri

et al. compared Tsdb, RRDtool, and a relational product.

They found that as a consequence of its structure, Tsdb

achieves a better measure store time but a worse measure

retrieval time than other products. The need to be con-

tinuously regrouping data is the cause of the differences.

However, when the measures share the same time, Tsdb

considers them as the same time series and measure re-

trieval time improves. In these circumstances, it would be

interesting to use the Tsdb implementation architecture of

shared time arrays in a mtsms to achieve a better storage

performance.

Some of the lossy compression techniques for time series

pursuit an optimal approximation representation. They

seek to balance between the least amount of data that

can reconstruct the original signal and the data that gives

the least error. Keogh et al. [12] cite some possible ap-

proximation representations for time series such as Fourier

transforms, wavelets, symbolic mappings or piecewise lin-

ear representation. They remark the last one as very

usual due to its simplicity and develop a system called

iSAX [2, 23] to analyze and index massive collections of

time series. They argue that the main problem is the

indexing of time series, and they propose some efficient

methods. The first method proposed is based on a con-

stant piecewise approximation. The time series represen-

tation obtained with iSAX allows to reduce the stored

space and faster indexing while maintaining the quality

achieved by more sophisticated methods. These compres-

sion techniques are candidates for being used as attribute

aggregate functions in the mtsms model.

2.3. Data stream approaches

Cougar [14] is a sensor database system that maintains

two main structures: a relational structure for sensor prop-

erties and a set of data sequences for time series coming

from sensors. Cougar time series have specific operations

that can combine relations and sequences. Cougar target

field is sensor networks, where data are stored distributed

in different locations. Queries in Cougar are resolved by

combining sensor data in a data stream abstraction. Ac-

cording to the authors, this improves the processing per-

formance.

To compute statistical aggregates, some authors con-

sider time series as data streams. Cormode et al. [13]

developed some aggregation techniques that give more

weight to recent data and that allow to run fast approxi-

mate queries on compressed data.

Dou et al. [24] create index structures as multiresolu-

tion aggregates, like average, count, or top, for historical

data managed in a flash storage. They consider a specific

storage solution based on a register with pointers similar

to the multiresolution storage in RRDtool [19].

4

3. Multiresolution motivation

An important characteristic of the model formalised in

this paper is multiresolution. In a previous work, we anal-

ysed the requirements, and we summarised the main target

for multiresolution systems [25].

In this section, we motivate the advantages of the mul-

tiresolution approach. First, we intuitively introduce the

concept of multiresolution through an example. Then, we

discuss the benefits of this formulation.

Figure 1 shows an example of the multiresolution ap-

proach. In the upper part, there is a representation of a

signal being monitored. The signal values range from 0

to 10 along the time. There are two specific time instants

marked in the figure:

1. The first, marked with the word init. It refers to the

instant when the database started to receive signal

samples.

2. The second, marked with the word now. It refers to

the instant when the process made the snapshot.

Note that time coordinates are assumed to be positive

for the time instants after init and negative otherwise. The

time before now corresponds to the past and the time after

now to the future. The data before init are unknown to

the database.

At the bottom of Figure 1 there is a diagram that shows

how multiresolution works. The first row displays the sig-

nal’s sample values that correspond to the above plot. The

sampling frequency is of one unit of time. The second and

the third rows show an actual schema of a multiresolution

database. It consists of two summaries for the time series

resolutions. Every summary has a distinct resolution. The

first of the rows computes the mean of the sampled values

every three units. The second computes the mean every

five units. In this example, the aggregation function cor-

responds to a statistical mean. The values before init are

not acquired, and they are marked as unknown (u). Future

values are also marked as unknown u until time advances.

-5

•

5

-4

•

4

-3

•

3

-2

•

2

-1

•

1

0

•

0

1

•

1

2

•

2

3

•

3

4

•

4

5

•

5

6

•

6

7

•

7

8

•

8

9

•

9

10

•

10

u u 3 u
8

u u 2 5 8 u

time

–5

–10

init now

futurepast
unknown

sample every 1 u.t.

mean every 3 u.t.

mean every 5 u.t.

Figure 1: Multiresolution snapshot diagram with regular sampling

Therefore, the first summary for the original signal at time

instant now corresponds to values {u, u, 2, 5, 8, u}.
The multiresolution approach enhances tsms features in

several aspects:

• Voluminous data. The monitoring systems capture

an enormous amount of data from sensors. To be

able to process these data, their volume must be re-

duced. The multiresolution approach allows to select

and store only the most interesting segments of data.

We understand these segments as different resolution

views for the same time series. The user can configure

how these segments are extracted and summarised by

defining different time steps and functions. Multireso-

lution also facilitates the graphing of huge time series.

It allows to select the best time range and time step

that makes the graph fit on the screen. Because we

cannot appreciate more data on the screen, there is

no need to render it.

• Data validation. The use of monitoring systems to

capture data is a current practice. However, the na-

ture of these systems has some drawbacks that have

an impact on the obtained data. Quevedo et al. [26]

note that the main problems arise when the moni-

5

toring system cannot capture data, producing errors

known as gaps, or when the monitoring system cap-

tures data erroneously. The multiresolution attribute

functions are designed to cope well with validation,

filtering and reconstruction of these unknown data to

keep a consistent history.

• Data time regularisation. To monitor with a non-

constant sampling rate has a side effect that induces

irregularities in data. According to Kopetz [27] there

are two main reasons for sampling rate variation: ei-

ther sampling jitters in periodic sampling or non-

periodic rates caused by event-based sampling. Mul-

tiresolution regularises the time interval while pro-

cessing a time series. As a consequence, every ob-

tained time series segment has a regular time reso-

lution. This feature can also be used to query the

time series using some other resolution. For instance,

a daily acquired time series can be queried using a

yearly step.

• Data summaries. A goal of a database system is to

answer the user queries about the stored information.

The multiresolution approach allows a lossy compres-

sion storage solution. In some sense, it is an online

way to compute and store data summaries, i.e. data

of interest. These stored data summaries allow faster

queries of voluminous data. However, we should de-

termine the organization of the summaries a priori,

and we should consider the context where the future

queries will be issued.

4. Time series model

Following the traditional database models, a tsms

model consists of two components: a data model and a

set of operations. Measures and time series are the main

objects of our tsms model. In this section, we describe

and formalise the tsms model.

4.1. Data model

Roughly speaking a time series is a set of observations

collected at specific time instants. An observation may

consist of a single value or multiple values collected at the

same time instant. We refer a pair of time and observed

values as a measure. Then, a time series is a correspon-

dence between times and values. Additionally, time series

are also described as a set of measures.

We name time domain the set T of all the possible time

values. T can be either a finite or an infinite set and usu-

ally it is a closed set. Although time is a complex issue

[28], in this paper we will assume that T is the set of

affinely extended real numbers R̄ = R ∪ {+∞,−∞}. This

assumption avoids the complex details of time modelling

while being powerful enough for our purposes. Next, we

define the main time-related concepts using this naive ap-

proximation.

Definition 1 (Time concepts). Let T = R̄ be the do-

main of time. We name an element t ∈ T as time instant.

Let s, t ∈ T be two time instants. We define the duration

of time between s and t as the value d ∈ T which measures

the distance in time units between the two time instants,

that is d = |s− t|.

The value is an attribute that indicates the magnitude

of a measure. The domain for the values can be of any

data type. Valid domains for values include integers, real

numbers, strings, and richer data structures such as arrays,

lists, or even other time series. In the sequel, the domain

for values will be denoted by V. Without loss of generality,

in this paper we will assume that the domain of values is

the set of projectively extended reals R∗ = R ∪ {∞}.
A measure represents an actual value measured at a par-

ticular time instant. We define it below.

Definition 2 (Measure). Let v ∈ V be a value and let

t ∈ T be the time instant when the value was acquired. We

define a measure m as the tuple m = (t, v). The domain

6

of a measure m, written as domm, is the domain of its

value.

Let m = (t, v) be a measure. In what follows, V (m)

denotes the value v and T (m) denotes the time t.

Order between measures plays a significant role. Given

two measures we define two distinct order relations.

Definition 3 (Semitemporal order). Let m and n be

two measures. We name semitemporal order the binary

relation written m ≤ n, defined as m ≤ n ⇐⇒ (T (m) <

T (n) ∨ (T (m) = T (n) ∧ V (m) = V (n))).

Definition 4 (Temporal order). Let m and n be two

measures. We name temporal order the binary relation

written m ≤t n and defined as m ≤t n ⇐⇒ T (m) ≤
T (n).

Note that the semitemporal order is a partial order and

the temporal order is a total order.

Intuitively speaking, a time series is an ordered set of

measures of the same phenomena. Sometimes they are

also called time sequences [29]. We define it as follows.

Definition 5 (Time series). Let S = {m0, . . . ,mk} ⊂
T × V be a finite set of measures of the same type. Then,

S is a time series iff ∀i, j : i, j ∈ [0, k] ∧ i 6= j : T (mi) 6=
T (mj). We define the domain of a time series S as the

domain of its measures, denoted by domS.

Observe that although measures in S are expected to

be of the same phenomenon, from a formal standpoint we

only require the domain of all values to be the same.

A time series does not contain two measures at the same

time. Therefore, taking account of the temporal order, a

time series is a totally ordered set.

The cardinality of a time series S = {m0, . . . ,mk}, noted

as |S|, is the number of measures that it contains. An

empty time series is noted as ∅. Needless to say, |∅| = 0.

Although we defined values as scalars, it is easy to ex-

tend the concept. Following [30], a time series can record

more than one phenomenon if they share the same ac-

quisition time instants. This kind of series is known as

multivalued time series. Let S be a multivalued time se-

ries and let its domain be domS = V1 × · · · × Vn. Then,

we write its measures as m = (t, v1, v2, . . . , vn).

A time series is regular when its measures are

evenly spaced in time, according to [29]. Let S =

{m0,m1, . . . ,mk−1,mk} be a time series, where T (m0) <

T (m1) < · · · < T (mk−1) < T (mk), and let d ∈ T be a time

duration. Then S is regular when d = T (m1) − T (m0) =

· · · = T (mk)− T (mk−1).

4.2. Operations

We can manipulate time series using the operations de-

fined in this section. Like the relational model operations,

operations over time series ignore the actual semantics

of the data. In a real application, it should be decided

whether an operation is semantically coherent or not and

thus if it should be applied. For example, the addition

of values coming from two different phenomena could be

semantically wrong.

In this section, we formalise three groups of operations,

one in each of the subsections that follow. The set op-

erations, that consider times series as sets; the sequence

operations, that consider time series as sequences; and the

temporal operations, that manipulate the time series as-

suming they are representations of functions.

4.2.1. Set operations

In what follows, we describe how to apply common set

operators to time series. We rely on how the relational

model of dbms describes operations based on set alge-

bra [31].

Consider a time series S. S is a finite ordered set (by the

temporal order). Then, if S nonempty, S has a maximum

and a minimum. The maximum of S, denoted as maxS, is

an element of S such that ∀m ∈ S : maxS ≥t m. Because

maxS is not defined when S = ∅, we are interested in the

concept of supremum.

7

Recall that the time domain is the set of affinely ex-

tended real numbers R̄. Then, for an empty subset T = ∅
of R̄ we know that its supremum is sup(T) = −∞ [32].

Following the affinely extended reals, we apply the con-

cept of supremum to sets of measures, i.e., time series.

Assume that m is an infinite measure. To be consistent

with the affinely extended reals supremum, we consider

T (m) = −∞. V (m) could be any arbitrary value. How-

ever, we choose an infinite value for simplicity. Then, we

define an infinite measure m as m = (−∞,∞).

Henceforth, we say that the supremum of a time series

S, noted as supS, is the measure defined as follows:

supS =

maxS when S nonempty

(−∞,∞) otherwise

Dually, we can define the minimum of S, noted as minS,

and the infimum of S, noted as inf S.

The membership operation defines when a measure be-

longs to a time series. We define two distinct membership

operations which consider the semitemporal order (Defi-

nition 3) and the temporal order (Definition 4). The two

distinct membership definitions will induce two different

ways to consider time series and its operations.

Let S be a time series and m be a measure. We say that

m belongs to S (plain membership), denoted as m ∈ S,

when ∃x ∈ S : x = m. We also say that m belongs tem-

porally to S (temporal membership), denoted as m∈t S,

when ∃x ∈ S : T (m) = T (x).

The two distinct membership criteria induce two mean-

ings for inclusion. Let R and S be two time series. We

say that R is included in S, written R ⊆ S, when all the

elements of R belong to S. Analogously, we say that R

is included temporally in S, noted R⊆t S, when all the

elements of R belong temporally to S.

The union of two sets is a set containing elements from

both sets. The traditional set union operations do not

apply to time series because the result time series may have

repeated time values. Thus, we give a slightly modified

(1, 1)

(5, 1)

(1, 1)

(5, 1)

(2, 2)

(6, 2)

(4, 0)
(3, 1) (3, 2)

R ∪ S

(2, 2)

(6, 2)

(2, 2)

(6, 2)

(1, 1)

(5, 1)

(4, 0)
(3, 1) (3, 2)

S ∪R

(1, 1)

(5, 1)

(2, 2)

(6, 2)

(4, 0)
(3, 1) (3, 2)

R ∪t S

Figure 2: Venn diagrams for set and temporal set union operations

of tsms

concept for the union.

The union operation requires both time series to have

the same domain, as is also true with the union operation

of relational algebra [31].

Let R and S be two time series and let domR = domS.

The union of R and S, noted R ∪ S, is a new time series

R ∪ S = {m|m ∈ R ∨ (m ∈ S ∧m /∈tR)}. The temporal

union of R and S, noted R∪t S, is a time series R∪t S =

{m|(m ∈ R ∧ m ∈ S) ∨ (m ∈ R ∧ m /∈t S) ∨ (m ∈ S ∧
m /∈tR)}. It is interesting to emphasise that the union is

a non-commutative operation while the temporal union is

a commutative one.

Example 1. Let R = {(1, 1), (3, 1), (4, 0), (5, 1)} and S =

{(2, 2), (3, 2), (4, 0), (6, 2)} be two time series. The union of

R and S is R∪S = {(1, 1), (2, 2), (3, 1), (4, 0), (5, 1), (6, 2)}.
Because union is not symmetric, S ∪ R = {(1, 1), (2, 2),

(3, 2), (4, 0), (5, 1), (6, 2)}. The temporal union results in

R∪t S = S ∪tR = {(1, 1), (2, 2), (4, 0), (5, 1), (6, 2)}. Fig-

ure 2 shows Venn diagrams for all three cases, where the

8

coloured area depicts the result time series. In every dia-

gram, the central intersection area contains measures that

share both time and value attributes, as it is measure

(4, 0). The left central area contains the measures in R

that only share the time attribute with a measure in S,

as it is measure (3, 1). The right central area has a sym-

metrical meaning. The left and right outer areas are the

remaining measures of R and S respectively.

Time series difference can also be defined. Similar to

the union, the difference requires both time series to have

the same domain. Let R and S be two time series and let

domR = domS. The difference between R and S, written

R− S, is a time series R− S = {m|m ∈ R ∧m /∈ S}. The

temporal difference between R and S, denoted R −t S, is

a time series R−t S = {m|m ∈ R ∧m /∈t S}.
Based on union and difference we can define intersection

as R∩S = R−(R−S) and symmetric difference as R	S =

(R − S) ∪ (S − R). We can also define the corresponding

temporal operations.

Relational dbms extend the set operators by some more,

such as selection, rename or join. This kind of operators

also makes sense for time series. To illustrate this possi-

bility we define the join operator.

Roughly speaking, the join of two time series is the

combination of measures sharing the same time attribute.

Let R and S be two time series. The join of R and

S, denoted R on S, is a multivalued time series R on

S = {(t, v1, v2)|(t, v1) ∈ R ∧ (t, v2) ∈ S}. Note that

dom(R on S) = domR × domS. Noted that join requires

both time series measures to share exactly the same times.

When time series diverge, the temporal function opera-

tions explained later can be applied to adjust the time

instants to join requirements.

A dbms requires computational operators to enable cal-

culations between pieces of data. Relational dbms supply

operators such as extend, aggregate or summarise [31]. For

time series, we define the more general computational op-

erators map and fold.

The map operator transforms a time series S into a new

time series R by applying a function to every measure.

Let S and R be two time series, let V = domS and V ′ =

domR, and let f : T × V → T × V ′ be a function over

a measure returning a measure. The map of f over S

is a new time series defined as map(S, f) = {f(m)|m ∈
S}. Note that dom(map(S, f)) = V ′. In order to be as

generic as possible, we do not impose any restrictions on

defining f . As a consequence, when f operates with time

attributes the result of the map operation may be invalid

as a time series. However, when f only operates with value

attributes the result is always valid. Therefore, the user

must assure the proper definition for f .

The fold operator recursively combines every measure

of a time series. Assuming that P(C) is the powerset of

C, we define fold as follows. Let S = {m0, . . . ,mk} and

R be two time series, let V = domS, let V ′ = domR and

let f : P(T × V ′) × (T × V) → P(T × V ′) be a function

over a time series and a measure, which returns a time

series. The fold of S by f with initial value R is a new

time series defined as fold(S,R, f) = f(· · · (f(f(f(R,m0),

m1),m2) · · ·),mk).

The classical aggregation operator combines the data of

a time series into a single value. It is worth noting that it

is a special case of fold.

Let S = {m0, . . . ,mk} be a time series, let V = domS,

let m be a measure with domm = V, and let f : (T ×V)×
(T ×V)→ T ×V be a function over two measures returning

a measure. The aggregate of S by f with initial value

m is a new time series defined as aggregate(S,m, f) =

f(· · · (f(f(f(m,m0),m1),m2) · · ·),mk).

Example 2. Let S = {(1, 1), (2, 3), (4, 1)} be a time se-

ries. Map operator allows computing a new time series

whose values result from time attribute plus a duration of

time. We define the map function f(t, v) = (t, t+5). Then

map(S, f) = {(6, 1), (7, 3), (9, 1)}. As we will use it later,

we name this operation translation of a time series.

The fold operator allows, for instance, to select the mea-

9

sures having its value equal to one. We define the fold

function f(R,m) = R ∪ R′ where R′ = {m} if V (m) = 1

or R′ = ∅ otherwise. Let m be any measure, note that

f(∅,m) = R′. Then fold(S, ∅, f) = {(1, 1), (4, 1)}.
The aggregate operator allows, for example, to compute

the measure that results from the sum of all the values. To

illustrate it, we define the aggregate function f(m,n) =

(0, V (m) + V (n)). Now, aggregate(S, (0, 0), f) = (0, 5),

where 5 is the sum of all the values of S. Note that time

is meaningless in this computation.

Finally, we describe how using the operators defined be-

fore, we can implement binary computational operators

between two time series. This implementation illustrates

the power of the operators defined so far.

The strategy requires first to join the two time series

and then apply the computational operations. Let S and

R be two time series and � be a binary operator on the

value domain. We can extend the operator � to the time

series as S � R = map(S on R, f) being f the function

f(t, v, w) = (t, v � w). The extended operator allows to

extend real binary operations such as sum, R+S, to time

series.

Example 3. Let R = {(1, 2), (2, 2), (4, 0)} and S =

{(1, 1), (2, 2), (4, 1)} be two time series. The sum of R

and S is defined as R + S = map(S on R, f) being f

the function f(t, v, w) = (t, v + w). Then the sum results

R+ S = {(1, 3), (2, 4), (4, 1)}.

As binary computational operators depend on join oper-

ator, it must be recalled that join requires both time series

measures to share exactly the same times. As aforemen-

tioned, when time series diverge, the temporal function

operations explained later can be applied to adjust the

time instants to join requirements.

4.2.2. Sequence operations

Sequence operations manipulate time series considering

measures as being totally ordered by time. We define three

basic operations: slice, successor and concatenation.

The classical interval concept can be applied to the time

domain. In this context, given two time instants s and t,

we use the notation [s : t], (s : t), [s : t) and (s : t] re-

spectively for the closed interval, open interval, right open

and left open interval. Following [29], to slice a time se-

ries S means to extract a new time series R ⊆ S con-

strained to a given time interval. We denote this operation

as the original time series followed by the interval, there-

fore, S[s : t] = {m|m ∈ S ∧ T (m) ∈ [s : t]}. We can use

other intervals to slice a time series in the same fashion,

for instance S(s : t] = {m|m ∈ S ∧ T (m) ∈ (s : t]}.
The ordinary time order allows to define the concepts

of successor and predecessor for the measures of a time

series. Let S = {m0, . . . ,mk} be a time series and m be

an arbitrary measure. We say that mi = nextS(m) is the

measure next to m in S if and only if mi = inf(S(T (m) :

+∞]). We also say that mi = prevS(m) is the measure

previous to m in S if and only if mi = sup(S[−∞ : T (m))).

Infinite measures are obtained when next and previous are

applied to supremum and infimum measures respectively:

nextS(supS) = (+∞,∞) and prevS(inf S) = (−∞,∞).

To concatenate two time series means to compute a

new time series with the measures of the first time se-

ries followed in time order by the measures of the sec-

ond one. The concatenation requires both time series

to share the same domain. Let R and S be two time

series and let domR = domS. The concatenation of

R and S, denoted as R||S, is a time series that con-

tains all the measures of R together with those of S that

do not intersect with the time interval of R. That is,

R||S = R ∪ (S − S[T (inf R) : T (supR)]).

4.2.3. Temporal function operations

We can think a time series as a discrete representation

of an original temporal function. In this section, we devise

some operations that manage time series according to this

point of view. Then, these temporal function operations

10

may return new measures that are not contained in the

time series.

Let S ⊂ T ×V be a time series. A temporal representa-

tion function for S is a function f defined as f : T → V.

Let S be a time series. Assume that we want to obtain

f , a temporal representation function for S. It is easy to

see that there is not an unique temporal representation

function for S. We denote as S(t)r the temporal repre-

sentation function of S obtained by applying the method

r.

Below, we exemplify the concept of representation func-

tion using two different methods based on impulse and

constant piecewise functions.

Definition 6 (Dirac representation). Dirac delta

(dd) is a method of representation based on the Dirac

delta function. Let S be a time series. We define S(t)dd

as the following dd representation function:

S(t)dd =

V (m) if ∃m ∈ S : t = T (m)

0 otherwise

Definition 7 (Zohe representation). Zero-order hold

everted (zohe) is a method of representation based on

the zero-order hold signal reconstruction method. It is a

piecewise constant function built from left-continuous step

functions. Let S be a time series. We define S(t)zohe as

the following representation function:

S(t)zohe =

V (m) if ∃m ∈ S : t ∈
(
T (prevS(m)) : T (m)

]
0 if t > T (max(S))

The graph of a function allows to obtain and interpret

the continuous nature of a time series. When we can plot

the domain of time and value attributes, then the graph is

equivalent to a graphical representation. Let S be a time

series, let r be a representation method and let T be the

time domain. The graph of a time series S, denoted as

graph(S), is the set of pairs graph(S) = {(t, S(t)r)|t ∈ T }
where S(t)r is a temporal representation function for the

time series S.

We use the concept of representation to formalise some

set and sequence operators as temporal operators.

We define a temporal interval operation to introduce this

concept. Let S be a time series, let [s : t] be an interval

of two time instants and let r be a representation method.

The temporal interval, denoted as S[s : t]r, returns a new

time series with measures in the interval temporal range.

That is, S[s : t]r = S(u)r for all u ∈ [s : t]. This is

a general definition difficult to implement, therefore for

every representation a particular temporal interval must

be interpreted:

• Let S(t)dd be the dd representation for S. The dd

temporal interval is S[s : t]dd = S[s : t] ∪ {m} ∪ {n}
where m = (s, 0) and n = (t, 0).

• Let S(t)zohe be the zohe representation for S. The

zohe temporal interval is S[s : t]zohe = S(s : t]∪ {m}
where m = (t, v) and v = V (inf(S[t : +∞])).

From temporal interval, we can define other operators

such as temporal selection, temporal concatenation, or

temporal join. As an example, we give the definition of

the temporal selection and the temporal join operations.

The temporal selection over a time series allows to

change the resolution in the context of a representation

function. Let S be a time series, let T = {t0, t1, . . . , tk}
be a set of time instants, and let r be a representation

method. The temporal selection, denoted as S[T]r, is

a time series of measures in T and times computed in

coherence with the representation method r. That is,

S[T]r = S[t0 : t0]r ∪ S[t1 : t1]r ∪ · · · ∪ S[tk : tk]r. If t is a

time instant, note that the temporal selection depends on

the temporal interval operation S[t : t]r, which is equiva-

lent to the notion of temporal representation function over

a single time instant. That is, S[t : t]r = {(t, S(t)r)}.
The temporal selection operation also allows to regu-

larise an irregular time series. Let S be a time series, let

d, e ∈ T be the desired regularity parameters, and let k ∈
N be a limit for the scope of the range. A regularised S can

11

be obtained with S[T]r where T = {e+nd|n ∈ N∧n ≤ k}
is a set of evenly spaced time instants.

Another use case for the temporal selection is for joining

two time series that do not share the same times. Let R

and S be two time series that do not share times, i.e. their

time sets are dissimilar {t|(t, v) ∈ R} 6= {t|(t, v) ∈ S}.
Then, we can not apply the previously defined R on S.

However, we can define a more elaborated join based on

the temporal selection, which we name temporal join. Let

r be a representation method and let T = {t|(t, v) ∈ R} ∪
{t|(t, v) ∈ S} be the union of both time sets. The temporal

join, denoted as R onr S, returns a new time series R onr

S = R[T]r on S[T]r.

Using the temporal join, we can also implement the bi-

nary operations for time series that have dissimilar time

sets. Next, we redo Example 3 to extend the binary sum

using temporal join.

Example 4. Let R = {(1, 2), (2, 2), (4, 0)} and S =

{(1, 1), (3, 2), (4, 1)} be two time series and let r = zohe

be a representation method. The sum of R and S is de-

fined as R + S = map(S onr R, f) being f the function

f(t, v, w) = (t, v + w).

The union of both time sets is T = {1, 2, 3, 4}. The

corresponding temporal selection over both time series is

R[T]r = {(1, 2), (2, 2), (3, 0), (4, 0)} and S[T]r = {(1, 1),

(2, 2), (3, 2), (4, 1)}. The temporal join of both is R onr

S = {(1, 2, 1), (2, 2, 2), (3, 0, 2), (4, 0, 1)}. Then the sum

results R+ S = {(1, 3), (2, 4), (3, 2), (4, 1)}.

5. Multiresolution model

In Section 3 we intuitively introduced the concept of

multiresolution through an example. In this section, we

formalise a model for mtsms. At the end of the section,

we will offer some illustrative examples of the previous

formalisation.

A mtsms is a tsms that stores time series using a lossy

compression approach. The mtsms model is based on the

Multiresolution time series

...

resolution subseries

R0

buffer

disc

resolution subseries

Rd

buffer

disc

Time series

measure

Figure 3: Architecture of mtsms model

concepts of measures and time series as defined in Sec-

tion 4. A mtsms stores a time series as a structure that we

call multiresolution time series. A multiresolution time se-

ries is a collection of resolution subseries that store a view

of the original time series in a given resolution. The oper-

ator that adds data to a resolution subseries requires ac-

cumulating transient measures in a buffer. This procedure

allows to aggregate original data to obtain the expected

resolution and finally store them in a disc.

Figure 3 shows the architecture of a mtsms for a sin-

gle multiresolution time series. The original time series

gets stored in multiple resolution subseries. Each reso-

lution subseries has a particular time resolution and at-

tribute aggregation policy. Discs are size bounded so they

only contain a fixed amount of measures. When a disc be-

comes full, it discards a measure. Thus, a multiresolution

database is bounded in size and the time series gets stored

in several storage bounded time subseries.

Regarding operations, the mtsms model requires two

kinds of operators. Some operators should be devoted to

set up the time intervals between measures and to aggre-

gate the attributes. Some other operators should be dedi-

cated to query the multiresolution schema and to extract

the time series data.

Following, we define the mtsms model structure, its

structural operators, the operations to query a multires-

12

olution time series, and the attribute aggregate functions.

Although schema manipulation operations could be de-

fined, in this paper we exclusively focus on structure and

data query operators.

5.1. Structure

A buffer is a container for a time series. The aim of a

buffer is to regularise the time series using a constant res-

olution step and an attribute aggregate function. We name

the regularisation action as consolidation. We defined the

attribute aggregate functions in Section 5.3.

Definition 8 (Buffer). Let S be a time series, let τ ∈ T
be the last consolidation time, let δ ∈ T be the resolution

step and let f be an attribute aggregate function. We

define a buffer B as the tuple B = (S, τ, δ, f).

An empty buffer B is defined as B = (∅, t0, δ, f), i.e.,

an empty time series, an initial consolidation time t0 ∈ T ,

a resolution step δ, and a function f . Given a buffer,

all the consolidation time instants can be determined as

τn = t0 + nδ for all n ∈ N.

A buffer has two main structural operations. The first

one adds a measure to the buffer, and the second one con-

solidates the buffer.

Let B = (S, τ, δ, f) be a buffer and let m be a measure.

The addition of m to B, noted as addB(B,m), returns a

new buffer addB(B,m) = (S′, τ, δ, f) where S′ = S ∪{m}.
Let B = (S, τ, δ, f) be a buffer. The consolidation of

B, noted as consB(B), returns a new buffer and a new

measure consB(B) = (B′,m′) where B′ = (S[τ + δ :

+∞], τ + δ, δ, f) and m′ = f(S, τ, δ). This resulting mea-

sure summarises the data of S comprised in the given in-

terval. After the consolidation, we can remove from the

buffer the consolidated part of the time series. Therefore,

we discard historical data.

We apply the consolidation of a buffer to the first non-

consolidated time instant. We obtain the total consolida-

tion by successive applications of the operator. Consolida-

tion requires the measures to be added by time order and

to consolidate the buffer when the time of some measure

is bigger than the buffer’s next consolidation time. Let

B = (S, τ, δ, f) be a buffer, and let m = supS be the max-

imum measure of B. We say that B is consolidable if and

only if T (m) ≥ τ + δ.

A disc is a finite capacity container of measures. A time

series stored in a disc has its cardinal bounded. When the

cardinal of the time series is to overcome the limit, some

measures need to be discarded.

Definition 9 (Disc). Let k ∈ N and S, |S| ≤ k, be a

time series. We define a disc D as the tuple D = (S, k).

An empty disc is noted as (∅, k). It is the tuple of an

empty time series and a bound k.

The main operation on a disc is to add a measure while

keeping under control the cardinal of the times series. Let

D = (S, k) be a disc and let m be a measure. The ad-

dition of m to D, written as addD(D,m), is a new disc

addD(D,m) = (S′, k) where

S′ =

S ∪ {m} if |S| < k

(S − {minS}) ∪ {m} otherwise

A resolution subseries is a structure that regularises and

aggregates a time series. This structure is composed of a

buffer, which contains the time series to be regularised,

and a disc, which contains the regularised time series.

Definition 10 (Resolution subseries). Let B be a

buffer and let D be a disc. We define a resolution sub-

series R as the tuple R = (B,D).

The operators of a resolution subseries extend the buffer

and disc ones. Let R = (B,D) be a resolution sub-

series, and let m be new a measure. The addition of

m to R, noted as addR(R,m), is a new resolution sub-

series addR(R,m) = (B′, D) where B′ = addB(B,m) is

the addition of the measure to the buffer. The consolida-

tion of R, noted as consR(R), is a new resolution subseries

consR(R) = (B′, D′), where (B′,m′) = consB(B) is the

13

consolidation of the buffer, and D′ = addD(D,m′) is the

addition of the consolidated measure to the disc. A res-

olution subseries is consolidable only when its buffer is

consolidable.

A multiresolution time series is a set of resolution sub-

series referred to the same time series. We store a time

series regularised with distinct resolutions across the reso-

lution subseries, as previously shown in Figure 3.

Definition 11 (Multiresolution time series). Let

M = {R0, . . . , Rk} be a finite set of resolution subseries.

Then M is a multiresolution time series.

Therefore, to define a multiresolution time series we

must define the number of resolution subseries and its cor-

responding parameters (δ, τ, f, k). Usually, there are no

repeated pairs of (δ, f) parameters among a multiresolu-

tion series, thus they act as key attributes.

The operators of a multiresolution time series apply

to every resolution subseries contained. Let M = {R0,

. . . , Rk} be a multiresolution time series and let m be

a measure. The addition of a measure to every resolu-

tion subseries, noted as addM(M,m), is a new multires-

olution time series addM(M,m) = {R′0, . . . , R′k} where

R′i = addR(Ri,m). The consolidation of all resolution sub-

series, noted as consM(M) is a new multiresolution time

series consM(M) = {R′0, . . . , R′k} where

R′i =

consR(Ri) if Ri consolidable

Ri otherwise

5.2. Queries

There are two basic time series queries for a mtsms: a

query to extract a time subseries from a resolution sub-

series, and a query to obtain a total time series from all

consolidated data.

Let M be a multiresolution time series and let (δ, f)

be a pair of key attributes. The query operator

denoted as SerieDisc(M, δ, f) computes a time series

such that ∃(B,D) ∈ M : B = (S, τ, δ, f) ∧ D =

(SerieDisc(M, δ, f), k) where S, τ, k are bound variables.

We assume that there are no repeated (δ, f) pairs in M .

Let M = {R0, . . . , Rk} be a multiresolution time se-

ries and let S0, . . . , Sk be the time series corresponding to

the resolution subseries R0, . . . , Rk. Assume that the at-

tribute aggregation functions of all Ri are the same and

the resolution steps of all Ri are distinct. We define the

query operator TotalSeries(M), the time ordered concate-

nation of all time subseries, as follows. TotalSeries(M) =

Si0 ||Si1 || · · · ||Sik where i0, . . . , ik is a permutation of [0, k]

such that δi0 < δi1 < · · · < δik , being δi the resolution step

of the resolution subseries Ri. Recall that R||S is the con-

catenation of two time series R and S, which we defined

in Section 4.2.2.

The operator TotalSeries obtains the better possible res-

olution.

Using these basic time series queries, we can define

more elaborated queries for a mtsms by using tsms op-

erations. For example, let L and M be two multireso-

lution time series with the same multiresolution parame-

ters. We can compute the sum of both as TotalSeries(L)+

TotalSeries(M). Recall that R+S is the sum of the values

of two time series R and S that we defined in Example 3

as a binary computational operator.

When two multiresolution time series do not have the

same multiresolution parameters, then TotalSeries(L) +

TotalSeries(M) must be solved using temporal join, as we

showed in Example 4. Nevertheless, dealing with temporal

join operations can be cumbersome as they depend on a

representation method. In this regard, we can consider

some multiresolution enhancements:

• If L and M share a resolution subseries with the same

τ and δ parameters, then it is possible to compute

SerieDisc(L, δ, f1) + SerieDisc(M, δ, f2) with the ba-

sic join. The uninstantiated variables f1 and f2 are

any attribute aggregate functions, although usually it

makes more sense to be the same f1 = f2.

14

• If L and M share a resolution subseries with only

the same δ, then the previous point can be applied

if one time subseries is be translated. Let R =

SerieDisc(L, δ, f1) and S = SerieDisc(M, δ, f2) be the

time subseries desired and let τR and τS be the cor-

responding last consolidation time for each δ. Let

f(t, v) = (t, t + τR − τS) be a map function and let

S′ = map(S, f) be the result of the translation opera-

tion, as we showed in Example 2. Then, we can apply

R+ S′ with the basic join.

• Otherwise, when L and M do not share any res-

olution subseries with the same δ, the temporal

join must be used in the sum TotalSeries(L) +

TotalSeries(M). However, as L and M are lossy stor-

age solutions for the original time series they repre-

sent, TotalSeries(L) + TotalSeries(M) computes less

data than applying the sum directly to the original

time series.

5.3. Attribute aggregate function

Attribute aggregate functions are a particular case of

tsms aggregate operations used to summarise time series

data while consolidating a buffer.

Let S be a time series, let δ be a resolution step and let

τ be a consolidation time. An attribute aggregate function

f calculates a new measure m = f(S, τ, δ). From τ and δ,

we obtain the time interval [τ : τ + δ]. Then, the resulting

measure m is interpreted to summarise the measures of S

for the time interval [τ : τ + δ].

An attribute aggregation function follows this general

scheme. First, it obtains a time subseries S′ according to

the consolidating interval using a slice operator. For exam-

ple, S′ = S[τ : τ+δ]. Second, it applies a tsms aggregation

function on this time subseries to obtain m. For instance,

m = aggregate(S′, n, f), being f an aggregation function

and n an initial measure, as defined in Section 4.2.1.

We can use many different attribute aggregate functions

to summarise a time series. For instance, it is possible to

calculate a statistical indicator of the time series such as

the average or a more complex digital signal processing

operation as proposed in [8]. Furthermore, during the ag-

gregation process we can consider the representation of a

time series and some of its pathologies.

Given the diversity of attribute aggregate functions, no

global assumptions can be made about them. Each user

should decide which combination of aggregation and repre-

sentation fits better to the measured phenomenon. There-

fore, the mtsms model must have a generic design that

allows the users to define their aggregate functions.

In what follows we will give some examples of usual at-

tribute aggregation functions. These functions compute a

new measure given a set of known measures. Then, an

attribute aggregation function should compute a new time

and a new value from the set of known measures.

Usually, an attribute aggregation function returns mea-

sures that match the buffer consolidating times. Assume,

for instance, that f is an attribute aggregation function

and let m = f(S, τ, δ). Then, the time of m is usually

computed as T (m) = τ + δ. However, in some cases it

is preferable for T (m) not to match the buffer consoli-

dating times. For instance, the resulting measure can be

aggregated from a time subseries S′ using an open inter-

val S′ = S(τ : τ + δ), a closed interval S′ = S[τ : τ + δ],

or other combinations as it is S′ = S(τ − d : τ + δ − d],

where d is a time duration that delays the consolidation

to T (m) = τ + δ−d. This time offset can also be variable.

For example, consider an aggregate function that returns

the first measure of the interval m = min(S[τ : τ + δ)),

then the resulting time fulfils that τ ≤ T (m) < τ + δ.

Assume that f is an attribute aggregation function and

let m = f(S, τ, δ). An attribute aggregation function f

should compute the value of m. Next, there are some

examples that illustrate how to compute V (m) based on

the temporal function time series operators. That is, the

time series aggregated is interpreted by the temporal rep-

resentation function S(t)r as has been described in Sec-

15

tion 4.2.3. In these example functions, we leave the time

series representation r uninstantiated.

• The maximum computes V (m) as V (m) =

max
∀t∈[τ :τ+δ]

S(t)r. It summarises S with the maximum

of the measure values in the interval [τ : τ + δ].

• The last computes V (m) as V (m) = S(τ + δ)r. It

summarises S with the value at τ + δ time instant.

• The mean computes V (m) as V (m) = 1
δ

τ+δ∫
τ

S(t)rdt.

It summarises S with the mean of the function in the

interval [τ : τ + δ].

We can instantiate the time series representation in the

previous examples in several ways. In what follows, we

exemplify this by instantiating r as dd and zohe.

Dirac delta attribute aggregation functions interpret the

resulting time as centered on the interval T (m) = 2τ+δ
2 .

The resulting value V (m) depends on the attribute. Let

S′ = S[τ : τ + δ]dd be the selection of measures by Dirac

delta temporal interval. Then,

• The maximumdd is such that V (m) =

max
(
0, max
∀n∈S′

V (n)
)
.

• The lastdd is such that V (m) = V (maxS′).

• The meandd is such that V (m) = 1
δ

∑
∀n∈S′

V (n). Note

that for the Dirac delta function
∫
dd(t)dt = 1. Note

that
∑
∀n∈S′

V (n) is a sum of values that could be im-

plemented as aggregate(S′, (0, 0), f) where f(m,n) =

(0, V (m) + V (n)), as shown in Example 2.

zohe attribute aggregation functions interpret the re-

sulting time as the right limit of the interval T (m) = τ+δ.

The resulting value V (m) depends on the attribute, let

S′ = S[τ : τ + δ]zohe be the selection of measures by zohe

temporal interval. Then,

• The maximumzohe is such that V (m) = max
∀n∈S′

V (n).

• The lastzohe is such that V (m) = V (maxS′).

• The meanzohe is such that V (m) = 1
δ

[
(T (o)−τ)V (o)+∑

∀n∈R
(T (n)− T (prevS n))V (n)

]
where o = minS′ and

R = S′ − {o}. Note that meanzohe is a sum of

values that could be implemented as meanzohe =

1
δ aggregate(S′, (0, 0), f) where f(m,n) = (0, V (m) +

v) and

v =

(T (n)− τ)V (n) if n = minS′

(T (n)− T (prevS′ n))V (n) else

RRDtool, [15], uses an aggregation function similar to

meanzohe to summarise velocity counter data by keeping

the area below the original signal.

It is interesting to note that some attribute aggrega-

tion patterns are very similar. For instance, the maximum

and last attribute aggregation schemes differ basically in

the interval selection operation. However, other patterns

have a more elaborated interpretation depending on the

actual representation used, as it is the case of meanzohe

and meandd.

To summarise the model we have formalised in this sec-

tion, we show a basic multiresolution example.

Example 5. We define a multiresolution schema for a

time series, we consolidate the database and we query its

data. Let S = {(1, 6), (5, 2), (8, 5), (10, 0), (14, 1), (19, 6),

(22, 11), (26, 6), (29, 0)} be a time series and let M =

{R0, R1} be a multiresolution time series where each res-

olution parameters are τ0 = 0 , δ0 = 5, f0 = meanzohe,

k0 = 4 and τ1 = 0, δ1 = 10, f1 = maximumzohe, k1 = 2.

Therefore R0 will be consolidated at time instants 5, 10,

15, 20, 25, 30. . . and R1 at 10, 20, 30. . .

We add all measures of S to M , and then we consolidate

it until it can not be consolidated further. As T (maxS) =

29, the last consolidation times are τ0 = 25 and τ1 = 20,

so let M29 be the multiresolution time series at this state.

Then, the two time subseries consolidated are ob-

tained by querying SerieDisc(M29, 5,meanzohe) =

{(10, 3), (15, 2), (20, 7), (25, 8)} and SerieDisc(M29, 10,

16

maximumzohe) = {(10, 6), (20, 11)}. Regarding buffers,

let S0 and S1 be the M29 buffer’s time series, note that

S0 = {(26, 6), (29, 0)} and S1 = {(22, 11), (26, 6), (29, 0)}.
In this particular example, TotalSeries(M29) =

SerieDisc(M29, 5,meanzohe) as R0 has twice the resolution

of R1 and k0 is bigger than k1.

We extend the previous example to show some of the

mtsms enhancements. We exemplify what happens when

we add a new measure to a previously consolidated mul-

tiresolution time series.

Example 6. Let S, M and M29 be the same entities de-

fined in the previous example. Now, consider that we ac-

quire a new measure. Let m = (31, 4) be this new measure,

and let S′ = S ∪ {m} be the updated time series.

We add this measure to the previously consolidated mul-

tiresolution time series and, as now it is again consolidable,

we consolidate it. Then, let M31 = consM(addM(M29,m))

be the multiresolution time series at this new state.

Alternatively, following the same procedure as in Ex-

ample 5, we can add all measures of S′ to M , and then

consolidate it as many times as possible. This procedure

also results in the multiresolution time series M31. How-

ever, this approach does not notice that M29 has already

been defined.

Whichever approach is taken, we can query the

two new consolidated time subseries by applying

SerieDisc(M31, 5,meanzohe) = {(15, 2), (20, 7), (25, 8),

(30, 2)} and SerieDisc(M31, 10,maximumzohe) = {(20, 11),

(30, 11)}.
This example shows that the new state of the multires-

olution time series can be computed online. Following the

acquisition stream of the time series, we can add the mea-

sure m to the previously computed multiresolution time

series M29 and then consolidate it to obtain M31. There

is no need to store either the original time series S or S′.

Furthermore, the successive states of M store compacted

summaries of the original data. At any time during the

acquisition of the original time series, we can query the

consolidated time subseries and visualise them immedi-

ately.

6. Reference implementation

In this section, we briefly describe a reference implemen-

tation of the models offered in Sections 4 and 5. We give

this implementation as a proof of concept. It does not

attempt to be either an efficient or a complete database

system. We implement the tsms and mtsms models using

the Python [33] programming language.

The implementations of the two models, tsms

and mtsms, are organised respectively in two sepa-

rated Python libraries: Pytsms and RoundRobinson.

RoundRobinson strongly depends on Pytsms following the

dependency of mtsms on tsms. The code of this imple-

mentation can be found in [34].

The reference implementation follows the object orien-

tated paradigm, and it observes a clear mapping between

the model and the object classes. We use Unified Modeling

Language (uml) diagrams to define the class structures.

We realized the model operations as object methods that

we do not present in uml diagrams, due to space limita-

tions.

6.1. Pytsms

Pytsms is the reference implementation of the model

concepts of measure, time series, and temporal rep-

resentation function. Figure 4 shows the relation-

ships among these objects in a uml diagram. A

TimeSeries object is an aggregation of Measure objects.

TimeSeries and Representation objects are associated,

i.e., each TimeSeries has a default representation, and a

Representation operates over a TimeSeries.

A TimeSeries object has many methods. We classify

them based on their functionality. First, a TimeSeries ob-

ject includes methods to manipulate the structural model.

17

Matplotlib

0..*

1 1
TimeSeries

Measure

Representation

Zohe Dd

RegularProp Storage

Figure 4: Pytsms uml class diagram

We implemented TimeSeries as a subclass of the prede-

fined set Python type. Second, a TimeSeries object has

methods that implement set, sequence, and temporal func-

tion operators, as described in Section 4.2. Third, acces-

sory operations of TimeSeries are grouped into two vis-

itor objects: RegularProp, that includes the operations

to regularize, and Storage, that has the methods for stor-

ing and retrieving time series from the file system. Recall

that visitor is a design pattern that allows to add new

functionality to objects without modifying them [35, 36].

Figure 4 displays two specialisations for the

Representation abstract class that refer to the rep-

resentation functions given in Section 4.2.3. Each

specialisation defines the graph and the temporal interval

operations. Besides, a Representation has also a method

to plot a coherent graphical representation of a time

series. For this purpose, we use the Python Matplotlib

library.

Example 7. In this example we reproduce an interpreter

session working with Pytsms. First, we define the two time

series r and s from Example 1, and after that we apply

to the series some operations: union, temporal union, con-

catenation, closed interval, zohe temporal interval, zohe

temporal selection, and the test of regular property. Note

that we abbreviated Measure to m. The log of the session

is as follows:

Import the required objects

>>> from pytsms import TimeSeries, Measure as m

>>> from pytsms.representation import Zohe

>>> from pytsms.properties import isRegular

Define the two time series

>>> r = TimeSeries([m(1,1),m(3,1),m(4,0),m(5,1)])

>>> s = TimeSeries([m(2,2),m(3,2),m(4,0),m(6,2)])

Manipulate the two time series

>>> r.union(s)

TimeSeries([m(1,1), m(2,2), m(3,1),

m(4,0), m(5,1), m(6,2)])

>>> r.union_temporal(s)

TimeSeries([m(1,1), m(2,2), m(4,0), m(5,1), m(6,2)])

>>> r.concatenate(s)

TimeSeries([m(1,1), m(3,1), m(4,0), m(5,1), m(6,2)])

>>> s.interval_closed(2,5)

TimeSeries([m(2,2), m(3,2), m(4,0)])

>>> s.interval_temporal(2,5,Zohe)

TimeSeries([m(3,2), m(4,0), m(5,2)])

Check for regularity

>>> s.accept(isRegular())

False

regularise to {0,2,4} by ZOHE method

>>> sr = s.selection_temporal(range(0,6,2),Zohe)

>>> sr

TimeSeries([m(0,2), m(2,2), m(4,0)])

>>> sr.accept(isRegular())

True

6.2. RoundRobinson

RoundRobinson is the reference implementation of the

multiresolution time series model. It includes objects like

resolution subseries, buffers, discs, and attribute aggregate

functions. Figure 5 exhibits the relationships among these

objects in a uml diagram. A MultiresolutionSeries

object is an aggregation of Resolution objects. A

18

aggregators

Pytsms

1

1

1

1

1

MultiresolutionSeries

Resolution

Buffer Disc

Function

s,i

TimeSeries

Storage

Plot

Figure 5: RoundRobinson uml class diagram

Resolution object is composed by one Buffer object

and one Disc object. We associate each Buffer object

to one TimeSeries object, from the Pytsms library. We

also associate each Disc object to one TimeSeries. Both

TimeSeries objects correspond respectively to the buffer’s

and the disc’s time series in the mtsms model. Further-

more, we associate each Buffer to one attribute aggregate

function. We define an aggregate function as a Python

function with two parameters: a TimeSeries s and a con-

solidation time interval i.

MultiresolutionSeries is a subclass of the prede-

fined set Python class. It adds some operations grouped

into two objects: Storage and Plot. The methods of a

Storage object are devoted to store and retrieve multires-

olution time series from the file system. The methods of a

Plot object are employed to plot the time subseries of the

multiresolution schema.

We apply the method addResolution of a

MultiresolutionSeries object to define the mul-

tiresolution schema structure by adding resolution

subseries. We configure a new resolution using four

parameters: delta, k, f, and tau. These parameters

allow to create the corresponding buffer and disc. A

MultiresolutionSeries object relies on the methods

add, consolidable, and consolidate, to operate on

the corresponding methods of the contained resolution

subseries.

We can query a MultiresolutionSeries object us-

ing one of two methods: seriedisc and totalseries.

The method seriedisc returns the TimeSeries object

that corresponds to the disc identified by the parame-

ters delta and f. The method totalseries returns the

TimeSeries object that results from the concatenation of

all seriedisc objects sorted by delta.

In the module aggregators, we implemented some de-

fault attribute aggregate functions. However, users can

define new aggregators as well. For instance, we defined

the zohe aggregate functions explained in Section 5.3,

which basically aggregate data over the temporal interval

s.interval_temporal(s,t,Zohe). The Example 7 shows

this aggregate function.

Example 8. In this example, we use Pytsms to set the

time series S. Also, we employ RoundRobinson to define

the multiresolution time series M obtained from Exam-

ple 5. Then, we apply consolidation, and we query the

result.

Import the required objects

>>> from pytsms import TimeSeries, Measure as m

>>> from roundrobinson import MultiresolutionSeries

>>> from roundrobinson.aggregators import mean_zohe,

... maximum_zohe

Define the original time series

>>> s = TimeSeries([m(1,6),m(5,2),m(8,5),m(10,0),

... m(14,1),m(19,6),m(22,11),

... m(26,6),m(29,0)])

Define the multiresolution time series

>>> M = MultiresolutionSeries()

Define the multiresolution schema

>>> M.addResolution(delta=5,k=4,f=mean_zohe,tau=0)

19

>>> M.addResolution(delta=10,k=2,f=maximum_zohe,tau=0)

Add the measures

>>> for m in s: M.add(m)

M is consolidable

>>> M.consolidable()

True

Consolide until no more consolidable

>>> while M.consolidable():

... M.consolidate()

Query the consolidated discs

>>> M.seriedisc(5,mean_zohe)

TimeSeries([m(10,3), m(15,2), m(20,7), m(25,8)])

>>> M.seriedisc(10,maximum_zohe)

TimeSeries([m(10,6), m(20,11)])

Query the total time series

>>> M.totalseries()

TimeSeries([m(10,3), m(15,2), m(20,7), m(25,8)])

7. Case study

In this section, we introduce a real case study. Actual

data come from a temperature distributed sensor moni-

toring system [37]. We focus on the data of a particular

sensor. We use Pytsms and RoundRobinson implementa-

tions to create a mtsdb and to query it.

Data. Figure 6 shows the original data for one year and

a half. The plot interpolates the measures linearly. In

this plot, we can see that there are missing data and some

outlying observations. There are 146 709 stored values.

Schema. We design a mtsdb schema that stores a mul-

tiresolution time series with higher resolution at recent

times and with lower resolution at older times. Figure 7

illustrates this schema. At the top, there are four different

discs and, at the bottom, there is a timeline showing the

resolution subseries along the time. The configuration of

the discs is as follows: (i) a measure every 5 h in the fourth

disc, which has a capacity of 24 measures and thus it spans

5 days; (ii) a measure every 2 days in the third disc, with a

May 2010
Aug 2010

Dec 2010
Mar 2

011
Jun

2011
Oct 2

011

270

280

290

300

310

320

Time (UTC)

T
em

p
er
a
tu

re
(K

)

Figure 6: Example of a temperature time series data

50 days"!
bbbbbbbb b b b b

6��
∨

15 days"!
bbbbbbbb b b b b

6��
∨

2 days"!
bbbbbbbbbbbbbb b b bbbb

6��
∨

5 hours"!
bbbbbbbbbbbbbbbbb b b b bbbb

6��
∨

now600 days back

600 days

180 days

40d

5d

Figure 7: Schema of multiresolution

capacity of 20 measures and thus spanning 40 days; (iii) a

measure every 15 days in the second disc, with a capacity

of 12 thus spanning 180 days and; (iv) a measure every 50

days in the first disc that, with a capacity of 12 measures

results in a span of 600 days. The last span is longer than

the original time series, then at least one resolution keeps

some data about the complete original time interval.

Attribute aggregate functions. To illustrate this example

we consolidate all the resolution subseries using the mean

zohe aggregate function, and the two highest resolution

subseries using the maximum zohe aggregate function.

Consolidation. Figure 8 shows the time subseries after

consolidating the mtsdb. Each graphic corresponds to the

possible SerieDisc queries, i.e., every resolution disc time

series from the mtsdb. Each title shows the resolution

subseries and its cardinal, and each attribute aggregate

function has a different colour. Time series are plotted us-

ing zohe representation function S(t)zohe. The time axis

has utc units rounded to nearest time points, and temper-

ature axis has Kelvin units. In the plot, we mark outliers

20

13–1
2:00

14–0
0:00

14–1
2:00

15–0
0:00

15–1
2:00

16–0
0:00

16–1
2:00

17–0
0:00

17–1
2:00

18–0
0:00

18–1
2:00

285

290

295

300
RD: 5h |24|

Sep
06

Sep
11

Sep
16

Sep
21

Sep
26

Oct 0
1

Oct 0
6

Oct 1
1

Oct 1
6

290

295

300

RD: 2d |20|

Apr 2
5

May 15
Jun

04
Jun

24
Jul

14
Aug 03

Aug 23
Sep

12
Oct 0

2
Oct 2

2

290

300

310

320

(2938)
RD: 15d |12|

May 2010
Aug 2010

Dec 2010
Mar 2

011
Jun

2011
Oct 2

011

280

300

320
(2938)

Time (UTC)

RD: 50d |12|

meanzohe maximumzohe

Figure 8: Resolution subseries in the MTSDB

as discontinuities. The fourth plot’s 2938 K maximum il-

lustrates this.

In all the four plots, we can see that the mean aggregate

function has filled missing data and filtered outlier obser-

vations because the aggregate function comes from a zohe

interpretation. In the 50 days step resolution, the first data

point consolidated is previous to the original time series.

However, it is consolidated with the first known data as

its aggregation comes from zohe interpretation.

Figure 9 shows the TotalSeries queries for the mean zohe

aggregate function resolution and for the maximum zohe

resolution. Each resulting time series is plotted by interpo-

lating its measures linearly. Note that this linear rendering

seems displaced to the right because of zohe aggregation.

Comparing this figure with the original series in Figure 6,

we observe that it resembles an incremental low-pass filter,

since we applied mean aggregation. Also, the maximum

aggregation resembles an envelope function.

In conclusion, this mtsdb schema does not store the

complete original data, but a compression of the original

function that contains more data for recent times. Each

of the SerieDisc time series is regular with δ. Although

May 2010
Aug 2010

Dec 2010
Mar 2

011
Jun

2011
Oct 2

011

270

280

290

300

310

320

Time (UTC)

T
em

p
er
a
tu

re
(K

)

original mean max

Figure 9: TotalSeries for the meanzohe and maximumzohe resolutions

TotalSeries is not a regular time series, it has piece-wise

regularity as a concatenation of every disc’s δ. The pur-

pose of this example is to show how we compute the mul-

tiresolution for a time series. In this case, we acquired the

bulk data previously, and thus we calculated multiresolu-

tion offline. However, a mtsms is designed to consolidate

while the original data are being acquired so that the mul-

tiresolution computation spreads along the acquisition and

the computing time becomes less critical.

8. Conclusions

In this paper, we formalised a mtsms model. The foun-

dation of mtsms is the tsms model, which we also for-

malised. We structured our models based on set theory,

and heavily inspired on relational algebra. We have gone

a bit further, and we proposed a tsms model that includes

set, sequence, and temporal function behaviour. We also

motivated the interest of multiresolution and its advan-

tages. As a reference implementation, we developed a

Python package focused on the basic algebra, i.e., with-

out the extended dbms capabilities.

The main purpose of a mtsms is to store compactly a

time series and to operate its temporal dimension con-

sistently. It stores time series using multiresolution time

series, that is, it stores a time series at multiple resolu-

tions called resolution subseries. Any resolution subseries

has two key features: its resolution step and its attribute

21

aggregate function, that is used to compact the data. Ac-

cording to this structure, a multiresolution time series is

configured with a few parameters. These parameters are

the number of resolution subseries, and for every subseries:

the resolution step, the initial consolidation time, the at-

tribute aggregate function, and the capacity. If we tune

these parameters properly, a multiresolution database can

keep the desired data from a time series.

We have shown some aggregation functions examples

with simple aggregation statistics, mean and maximum,

and simple representation methods, dd and zohe. More

attribute aggregation functions could be designed based on

methods from other fields, such as data streaming or time

series data mining. Especially, it would be interesting to

design aggregations that coped with uncertain data. The

model allows users to customise a multiresolution database

according to the actual requirements of a given context.

The queries over mtsms obtain time series from stored

multiresolution time series. In this way tsms operators

can be applied if needed. The SerieDisc time series be-

ing regular facilitates these operations. However, the lossy

storage implies that some operations will give approximate

queries and that not every tsms operation will be seman-

tically correct for a multiresolution time series. There-

fore, the correct planning of the multiresolution schema is

mandatory.

Compared to other tsms, we introduce a compression

solution that stores only the data that can be required in

later queries. We do not intend to reconstruct the original

signal. Our multiresolution solution copes well with some

difficult aspects of time series: regularity, data validation

and data volume. The decompression time is minimal as

data in discs get stored directly as a time series. As a con-

sequence, computing a query has a small time cost. More-

over, if the query is an aggregation or resolution already

calculated in a mtsms consolidation, then the response is

immediate.

We formalised our model using set algebra without spec-

ifying any particular query language. Because of this, our

model is independent of specific implementations or query

languages. In future work, a particular query language

might be defined that facilitates the comparison of our

multiresolution solution with other approaches. As our

model is heavily inspired on relational algebra, we may im-

plement this query language using academically relational

query languages, such as Tutorial D [31]. An additional

benefit of this procedure will be to illustrate whether the

multiresolution time series use cases are cumbersome when

we use relational languages.

When we apply a mtsms to store time series data, we

discard some data given its lossy nature. In future work, it

would be interesting to apply information theory to mea-

sure the information lost depending on the configuration

of the multiresolution schema. We think that it is possible

to get inspired by the approaches used by some authors

on multimedia lossy compression techniques. For exam-

ple, we could evaluate whether a human can distinguish

some specific features in a time series visualisation based

on the original time series and based on some multireso-

lution time series. Alternatively, given a query, we could

compare the difference between the results obtained by

applying the query to a multiresolution time series or ap-

plying the query to the original time series.

Acknowledgements

We would like to thank the anonymous reviewers.

The research presented in this paper has been supported

by Spanish research projects tec2012-35571 and dpi2014-

58104-r, and Universitat Politècnica de Catalunya predoc-

toral grant.

[1] T.-C. Fu, A review on time series data mining, Engineering

Applications of Artificial Intelligence 24 (1) (2011) 164–181.

doi:10.1016/j.engappai.2010.09.007.

[2] J. Shieh, E. Keogh, iSAX: Indexing and mining terabyte sized

time series, in: Proceedings of the 14th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining,

KDD’08, ACM, Las Vegas, 2008, pp. 623–631.

22

http://dx.doi.org/10.1016/j.engappai.2010.09.007

[3] Y. Yao, J. Gehrke, The Cougar approach to in-network query

processing in sensor networks, SIGMOD Record 31 (3) (2002)

9–18. doi:10.1145/601858.601861.

[4] W. Dreyer, A. K. Dittrich, D. Schmidt, Research perspectives

for time series management systems, SIGMOD Record 23 (1)

(1994) 10–15. doi:10.1145/181550.181553.

[5] M. Last, Y. Klein, A. Kandel, A. K, Knowledge discovery in

time series databases, IEEE Transactions on Systems, Man, and

Cybernetics, Part B: Cybernetics 31 (1) (2001) 160 –169. doi:

10.1109/3477.907576.

[6] D. Schmidt, A. K. Dittrich, W. Dreyer, R. W. Marti, Time se-

ries, a neglected issue in temporal database research?, in: Proc.

of the International Workshop on Temporal Databases: Recent

Advances in Temporal Databases, Workshops in Computing,

Springer, Zürich, Switzerland, 1995, pp. 214–232.

[7] M. Stonebraker, J. Becla, D. J. DeWitt, K.-T. Lim, D. Maier,

O. Ratzesberger, S. B. Zdonik, Requirements for science data

bases and SciDB, in: Proc. of the Fourth Biennial Conference

on Innovative Data Systems Research, CIDR’09, CIDR, 2009.

URL http://www.cidrdb.org

[8] Y. Zhang, M. Kersten, M. Ivanova, N. Nes, SciQL: bridging

the gap between science and relational dbms, in: Proceedings

of the 15th Symposium on International Database Engineering

& Applications, IDEAS’11, ACM, 2011, pp. 124–133. doi:10.

1145/2076623.2076639.

[9] P. Atzeni, C. S. Jensen, G. Orsi, S. Ram, L. Tanca, R. Torlone,

The relational model is dead, SQl is dead, and i don’t feel so

good myself, SIGMOD Record 42 (1) (2013) 64–68. doi:10.

1145/2503792.2503808.

[10] M. Stonebraker, SQL databases v. NoSQL databases, Com-

munications of the ACM 53 (4) (2010) 10–11. doi:10.1145/

1721654.1721659.

[11] E. Keogh, P. Smyth, A probabilistic approach to fast pattern

matching in time series databases, in: Proceedings of the 3rd

ACM SIGKDD International Conference on Knowledge Discov-

ery and Data Mining, KDD’97, ACM, NewPort Beach, Califor-

nia, 1997, pp. 24–20.

[12] E. Keogh, K. Chakrabarti, M. Pazzani, S. Mehrotra, Locally

adaptive dimensionality reduction for indexing large time se-

ries databases, in: Proceedings of ACM SIGMOD International

Conference on Management of Data, SIGMOD’01, ACM, Santa

Barbara, California, USA, 2001, pp. 151–162.

[13] G. Cormode, F. Korn, S. Tirthapura, Time-decaying aggregates

in out-of-order streams, in: Proceedings of the 27th ACM Sym-

posium on Principles of Database Systems, PODS’08, ACM,

2008, pp. 89–98. doi:10.1145/1376916.1376930.

[14] P. Bonnet, J. Gehrke, P. Seshadri, Towards sensor database

systems, in: Proceedings of the Second International Conference

on Mobile Data Management, MDM’01, Springer-Verlag, Hong

Kong, 2001, pp. 3–14. doi:10.1007/3-540-44498-X_1.

[15] T. Oetiker, RRDtool, round robin database (1998–2013).

URL http://oss.oetiker.ch/rrdtool

[16] A. Segev, A. Shoshani, Logical modeling of temporal data, in:

Proceedings of the Association for Computing Machinery Spe-

cial Interest Group on Management of Data, SIGMOD’87, ACM

Press, 1987, pp. 454–466. doi:10.1145/38713.38760.

[17] C. S. Jensen, R. T. Snodgrass, Temporal data management,

IEEE Transactions on Knowledge and Data Engineering 11 (1)

(1999) 36–44. doi:10.1109/69.755613.

[18] C. J. Date, H. Darwen, N. A. Lorentzos, Temporal Data and the

Relational Model, Morgan Kaufmann, San Francisco, US-CA,

2002. doi:10.1016/B978-155860855-9/50047-7.

[19] T. Oetiker, MRTG the multi router traffic grapher, in: Proceed-

ings of the 12th Systems Administration Conference, LISA’98,

USENIX Association, Boston, Massachusetts, 1998, pp. 141–

148.

[20] D. Plonka, A. Gupta, D. Carder, Application buffer-cache man-

agement for performance: Running the world’s largest MRTG,

in: Proceedings of the 21st Systems Administration Conference,

LISA’07, USENIX Association, Dallas, Texas, 2007, pp. 63–78.

[21] R. Weigel, D. Lindholm, A. Wilson, J. Faden, TSDS: high-

performance merge, subset, and filter software for time series-

like data, Earth Science Informatics 3 (1) (2010) 29–40. doi:

10.1007/s12145-010-0059-y.

[22] L. Deri, S. Mainardi, F. Fusco, Tsdb: A compressed database

for time series, in: Proceedings of the 4th International Con-

ference on Traffic Monitoring and Analysis, TMA’12, Springer-

Verlag, 2012, pp. 143–156. doi:10.1007/978-3-642-28534-9_

16.

[23] A. Camerra, T. Palpanas, J. Shieh, E. J. Keogh, iSAX 2.0:

Indexing and mining one billion time series, in: Proceedings

of the 10th IEEE International Conference on Data Mining,

ICDM’10, IEEE, Sydney, Australia, 2010, pp. 58–67.

[24] A. Dou, S. Lin, V. Kalogeraki, D. Gunopulos, Supporting his-

toric queries in sensor networks with flash storage, Inf. Syst. 39

(2014) 217–232. doi:10.1016/j.is.2012.04.002.

[25] A. Llusà Serra, T. Escobet Canal, S. Vila Marta, A model for

a multiresolution time series database system, in: Proceedings

of the 12th International Conference on Artificial Intelligence,

Knowledge Engineering and Data Bases, AIKED’13, WSEAS

Press, Cambridge, UK, 2013, pp. 55–60.

URL http://www.wseas.us/e-library/conferences/2013/

CambridgeUK/AISE/AISE-08.pdf

[26] J. Quevedo, V. Puig, G. Cembrano, J. Blanch, J. Aguilar, D. S.

ang G. Benito, Validation and reconstruction of flow meter data

in the barcelona water distribution network, Control Engineer-

23

http://dx.doi.org/10.1145/601858.601861
http://dx.doi.org/10.1145/181550.181553
http://dx.doi.org/10.1109/3477.907576
http://dx.doi.org/10.1109/3477.907576
http://www.cidrdb.org
http://www.cidrdb.org
http://www.cidrdb.org
http://dx.doi.org/10.1145/2076623.2076639
http://dx.doi.org/10.1145/2076623.2076639
http://dx.doi.org/10.1145/2503792.2503808
http://dx.doi.org/10.1145/2503792.2503808
http://dx.doi.org/10.1145/1721654.1721659
http://dx.doi.org/10.1145/1721654.1721659
http://dx.doi.org/10.1145/1376916.1376930
http://dx.doi.org/10.1007/3-540-44498-X_1
http://oss.oetiker.ch/rrdtool
http://oss.oetiker.ch/rrdtool
http://dx.doi.org/10.1145/38713.38760
http://dx.doi.org/10.1109/69.755613
http://dx.doi.org/10.1016/B978-155860855-9/50047-7
http://dx.doi.org/10.1007/s12145-010-0059-y
http://dx.doi.org/10.1007/s12145-010-0059-y
http://dx.doi.org/10.1007/978-3-642-28534-9_16
http://dx.doi.org/10.1007/978-3-642-28534-9_16
http://dx.doi.org/10.1016/j.is.2012.04.002
http://www.wseas.us/e-library/conferences/2013/CambridgeUK/AISE/AISE-08.pdf
http://www.wseas.us/e-library/conferences/2013/CambridgeUK/AISE/AISE-08.pdf
http://www.wseas.us/e-library/conferences/2013/CambridgeUK/AISE/AISE-08.pdf
http://www.wseas.us/e-library/conferences/2013/CambridgeUK/AISE/AISE-08.pdf

ing Practice 18 (6) (2010) 640–651.

[27] H. Kopetz, Real-Time Systems, 2nd Edition, Real-Time Sys-

tems Series, Springer, New York, US, 2011. doi:10.1007/

978-1-4419-8237-7.

[28] B. Dowden, Time supplement — the internet encyclopedia of

philosophy (IEP) (2010) [cited 2013-12-10].

URL http://www.iep.utm.edu/time-sup/

[29] M. L. Hetland, A survey of recent methods for efficient retrieval

of similar time sequences, in: M. Last, A. Kandel, H. Bunke

(Eds.), Data mining in time series databases, no. 57 in Series in

Machine Perception and Artificial Intelligence, World Scientific,

Singapore, 2004, Ch. 2, pp. 23–41.

[30] J. Aßfalg, Advanced analysis on temporal data, Ph.D. thesis,

Fakultät für Mathematik, Informatik und Statistik der Ludwig

Maximilians Universität München (2008).

URL http://edoc.ub.uni-muenchen.de/8798

[31] C. J. Date, An Introduction to Database Systems, 7th Edition,

Addisson-Wesley, Boston, US-MA, 2000.

[32] D. W. Cantrell, Affinely extended real numbers (2012) [cited

2014-02-06].

URL http://mathworld.wolfram.com/

AffinelyExtendedRealNumbers.html

[33] Python Software Foundation, The Python standard library –

Python 2.7.7 documentation [cited 2014-06-13].

URL http://docs.python.org/2/library/

[34] A. Llusà Serra, RoundRobinson and Pytsms code v0.3 (2012–

2014) [cited 2014-07-20].

URL http://escriny.epsem.upc.edu/svn/rrb/src/

roundrobinson/tags/0.3/

[35] T. Ziadé, Expert Python Programming, Packt Publishing,

Birmingham, UK, 2008.

[36] R. C. Martin, Agile Software Development: Principles, Pat-

terns, and Practices, Prentice Hall, 2002.

[37] C. Alippi, R. Camplani, C. Galperti, A. Marullo, M. Roveri,

An hybrid wireless-wired monitoring system for real-time rock

collapse forecasting, in: 7th International Conference on Mobile

Adhoc and Sensor Systems, MASS’10, IEEE, 2010, pp. 224 –

231. doi:10.1109/MASS.2010.5663999.

24

http://dx.doi.org/10.1007/978-1-4419-8237-7
http://dx.doi.org/10.1007/978-1-4419-8237-7
http://www.iep.utm.edu/time-sup/
http://www.iep.utm.edu/time-sup/
http://www.iep.utm.edu/time-sup/
http://edoc.ub.uni-muenchen.de/8798
http://edoc.ub.uni-muenchen.de/8798
http://mathworld.wolfram.com/ AffinelyExtendedRealNumbers.html
http://mathworld.wolfram.com/ AffinelyExtendedRealNumbers.html
http://mathworld.wolfram.com/ AffinelyExtendedRealNumbers.html
http://docs.python.org/2/library/
http://docs.python.org/2/library/
http://docs.python.org/2/library/
http://escriny.epsem.upc.edu/svn/rrb/src/roundrobinson/tags/0.3/
http://escriny.epsem.upc.edu/svn/rrb/src/roundrobinson/tags/0.3/
http://escriny.epsem.upc.edu/svn/rrb/src/roundrobinson/tags/0.3/
http://dx.doi.org/10.1109/MASS.2010.5663999

	Introduction
	Contributions
	Outline

	Previous work
	Database approaches
	Compression approaches
	Data stream approaches

	Multiresolution motivation
	Time series model
	Data model
	Operations
	Set operations
	Sequence operations
	Temporal function operations

	Multiresolution model
	Structure
	Queries
	Attribute aggregate function

	Reference implementation
	Pytsms
	RoundRobinson

	Case study
	Conclusions

